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ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS IN TYPE C

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

1. INTRODUCTION

The index of an (algebraic) Lie algebra q, ind q, is the minimal dimension of the stabilisers

for the coadjoint representation of q. It can be regarded as a generalisation of the notion of

rank. That is, ind q equals the rank of q, if q is reductive. In [1], the index of the subalgebras

of ”seaweed type” in gln (or sln) has been computed using certain graphs. In this article,

those graphs are called type-A meander graphs. Then the subalgebras of seaweed type, or

just seaweeds, have been defined and studied for an arbitrary simple Lie algebra g [6].

Namely, if p1, p2 ⊂ g are parabolic subalgebras such that p1 + p2 = g, then q = p1 ∩ p2 is a

seaweed in g. If p1 and p2 are “adapted” to a fixed triangular decomposition of g, then q

is said to be standard, see Section 2 for details. A general algebraic formula for the index

of seaweeds has been proposed in [8, Conj. 4.7] and then proved in [4, Section 8].

In this paper, elaborating on the “graphical” approach of [1], we introduce the type-C

meander graphs, i.e., the graphs associated with the standard seaweed subalgebras of sp2n,

and give a formula for the index in terms of these graphs. Although the seaweeds in sp2n

are our primary object in Sections 2–4 , we note that the very same graphs can be used in

case of the odd orthogonal Lie algebras, see Section 5.

Recall that q is called Frobenius, if ind q = 0. Frobenius Lie algebras are very important

in mathematics, because of their connection with the Yang-Baxter equation. We provide

some applications of our formula to Frobenius seaweeds in sp2n. Let Fn denote the set of

standard Frobenius seaweeds of sp2n. For a natural partition Fn =
⊔n

k=1Fn,k (see Section 4

for details), we construct the embeddings Fn,k →֒ Fn+1,k+1 for all n, k > 1. Since Fn+1,1

does not meet the image of the induced embedding Fn →֒ Fn+1 and #(Fn+1,1) > 0,

this implies that #(Fn) < #(Fn+1). The similar monotonicity question is open for the

standard Frobenius seaweeds in sln, even for the passage from n to n + 2. We also show

that Fn,1 and Fn,2 are related to certain Frobenius seaweeds in sln.

The ground field is algebraically closed and of characteristic zero.
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2. GENERALITIES ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS

Let p1 and p2 be two parabolic subalgebras of a simple Lie algebra g. If p1 + p2 = g, then

p1 ∩ p2 is called a seaweed subalgebra or just seaweed in g (see [6]). The set of seaweeds

includes all parabolics (if p2 = g), all Levi subalgebras (if p1 and p2 are opposite), and

many interesting non-reductive subalgebras. We assume that g is equipped with a fixed

triangular decomposition, so that there are two opposite Borel subalgebras b and b−, and

a Cartan subalgebra t = b ∩ b−. Without loss of generality, we may also assume that

p1 ⊃ b (i.e., p1 is standard) and p2 = p−2 ⊃ b− (i.e., p2 is opposite-standard). Then the

seaweed q = p1∩p−2 is said to be standard, too. Either of these parabolics is determined by

a subset of Π, the set of simple roots associated with (b, t). Therefore, a standard seaweed

is determined by two arbitrary subsets of Π, see [6, Sect. 2] for details.

For classical Lie algebras sln and sp2n, we exploit the usual numbering of Π, which al-

lows us to identify the standard and opposite-standard parabolic subalgebras with certain

compositions related to n. It is also more convenient to deal with gln in place of sln.

I. g = gln. We work with the obvious triangular decomposition of gln, where b consists

of the upper-triangular matrices. If p1 ⊃ b and the standard Levi subalgebra of p1 is

gla1⊕ . . .⊕glas , then we set p1 = p(a), where a = (a1, a2, . . . , as). Note that a1+ · · ·+as = n

and all ai > 1. Likewise, if p−2 ⊃ b− is represented by a composition b = (b1, . . . , bt)

with
∑

bj = n, then the standard seaweed p1 ∩ p−2 ⊂ gln is denoted by qA(a|b). The

corresponding type-A meander graph Γ = ΓA(a|b) is defined by the following rules:

• Γ has n consecutive vertices on a horizontal line numbered from 1 up to n.

• The parts of a determine the set of pairwise disjoint arcs (edges) that are drawn

above the horizontal line. Namely, part a1 determines [a1/2] consecutively embedded

arcs above the nodes 1, . . . , a1, where the widest arc joins vertices 1 and a1, the following

joins 2 and a1 − 1, etc. If a1 is odd, then the middle vertex (a1 + 1)/2 acquires no arc at all.

Next, part a2 determines [a2/2] embedded arcs above the nodes a1 + 1, . . . , a1 + a2, etc.

• The arcs corresponding to b are drawn following the same rules, but below the

horizontal line.

It follows that the degree of each vertex in Γ is at most 2 and each connected compo-

nent of Γ is homeomorphic to either a circle or a segment. (An isolated vertex is also a

segment!) By [1], the index of qA(a|b) can be computed via Γ = ΓA(a|b) as follows:

(2·1) ind qA(a|b) = 2·(number of cycles in Γ) + (number of segments in Γ).

Remark 2.1. Formula (2·1) gives the index of a seaweed in gln, not in sln. However, if

q ⊂ gln is a seaweed, then q∩sln is a seaweed in sln and the respective mapping q 7→ q∩sln
is a bijection. Here q = (q∩sln)⊕ (1-dim centre of gln), hence ind (q∩sln) = ind q−1. Since

ind qA(a|b) > 1 and the minimal value ‘1’ is achieved if and only if Γ is a sole segment, we

also obtain a characterisation of the Frobenius seaweeds in sln.
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Example 2.2. ΓA(5, 2, 2|2, 4, 3)= r r r r r r r r r✛ ✘☛ ✟ ✄ � ✄ �✂ ✁ ✒ ✑✂ ✁ ✡ ✠ and the index of the corre-

sponding seaweed in gl9 (resp. sl9) equals 3 (resp. 2).

II. g = sp2n. We use the embedding sp2n ⊂ gl2n such that

sp2n =

{(

A B

C −Â

)

| A,B,C ∈ gln, B = B̂,C = Ĉ

}

,

where A 7→ Â is the transpose with respect to the antidiagonal. If b̃ ⊂ gl2n (resp. b̃−) is

the set of upper- (resp. lower-) triangular matrices, then b = b̃ ∩ sp2n and b− = b̃− ∩ sp2n

are our fixed Borel subalgebras of g = sp2n. If p1 ⊃ b, then the standard Levi subalge-

bra of p is gla1⊕ . . . ⊕ glas ⊕ sp2d, where a1 + · · · + as + d = n, all ai > 1, and d > 0.

Since d is determined by n and the ‘gl’ parts, p1 can be represented by n and the com-

position a = (a1, . . . , as). We write pn(a) for it. Likewise, if p−2 is represented by another

composition b = (b1, . . . , bt) with
∑

bj 6 n, then p1 ∩ p−2 is denoted by qCn(a|b). To a stan-

dard parabolic p1 = pn(a) ⊂ sp2n, one can associate the parabolic subalgebra p̃1 ⊂ gl2n

that is represented by the symmetric composition ã = (a1, . . . , as, 2d, as, . . . , a1) of 2n. In

the matrix form, the standard Levi subalgebra of p̃1 has the consecutive diagonal blocks

gla1 , . . . , glas , gl2d, glas , . . . , gla1 and, for the above embedding sp2n ⊂ gl2n and compati-

ble triangular decompositions, one has p1 = p̃1 ∩ sp2n (and likewise for p−2 ⊂ sp2n and

p̃−2 ⊂ gl2n), see [6, Sect. 5] for details. If ã and b̃ are symmetric compositions of 2n, then

the seaweed qA(ã | b̃) ⊂ gl2n is said to be symmetric, too. The above construction provides

a bijection between the standard seaweeds in sp2n and the symmetric standard seaweeds

in gl2n (or sl2n).

We define the type-C meander graph ΓC

n(a |b) for qCn(a |b) to be the type-A meander graph

of the corresponding symmetric seaweed q̃ = p̃1 ∩ p̃−2 ⊂ gl2n. Formally,

ΓC

n(a |b) = ΓA(ã | b̃).

We indicate below new features of these graphs.

• ΓC

n(a |b) has 2n consecutive vertices on a horizontal line numbered from 1 up to 2n.

• Part a1 determines [a1/2] embedded arcs above the nodes 1, . . . , a1. By symmetry,

the same set of arcs appears above the vertices 2n−a1+1, . . . , 2n. Next, part a2 determines

[a2/2] embedded arcs above the nodes a1+1, . . . , a1+a2 and also the symmetric set of arcs

above the nodes 2n− a1 − a2 + 1, . . . 2n− a1, etc.

• If d = n −
∑

ai > 0, then there are 2d unused vertices in the middle, and we draw

d embedded arcs above them. This corresponds to part 2d that occurs in the middle of ã.

The arcs corresponding to b are depicted by the same rules, but below the horizontal line.

• A type-C meander graph is symmetric with respect to the vertical line between the

n-th and (n+ 1)-th vertices, and the symmetry w.r.t this line is denoted by σ. We also say
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that this line is the σ-mirror. The arcs crossing the σ-mirror are said to be central. These

are exactly the arcs corresponding to d = n−
∑

ai and d′ = n−
∑

bj .

Our main result is the following formula for the index in terms of the connected com-

ponents of ΓC

n(a|b):

(2·2) ind qCn(a|b) = (number of cycles) +
1

2
(number of segments that are not σ-stable).

To illustrate this formula, we recall that, for the parabolic subalgebra p with Levi part

gla1⊕ . . .⊕glas⊕sp2d, we have ind p =
[
a1
2

]
+ . . . +

[
as
2

]
+ d, see [6, Theorem 5.5]. Here

p−2 = sp2n and the composition b is empty. On the other hand, the graph ΓC

n(a | ∅) has

n central arcs below the horizontal line corresponding to b = ∅. Hence each part ai
gives rise to

[
ai
2

]
cycles and, if ai is odd, to one additional segment, which is σ-invariant.

The middle part corresponding to sp2d gives rise to d cycles. This clearly yields the same

answer, cf. Example 2.3. Hence we already know that Eq. (2·2) is correct, if q is a parabolic

subalgebra, i.e., if a = ∅ or b = ∅. Note also that ind p = 0 if and only if d = 0 and all

ai = 1, i.e., if p = b.

Example 2.3. Here a = (2, 3) and n = 7 (hence d = 2), and the σ-mirror is represented

by the vertical dotted line. It is easily seen that the only segment here is σ-stable and the

total number of circles is 4. (The circles are depicted by blue arcs). Hence ind p = 4.

ΓC

7 (2, 3 |∅) :
s s s s s s s s s s s s s s

✫ ✪
✞ ☎ ✎ ☞ ✎ ☞✞ ☎✗ ✔✞ ☎✝ ✆✖ ✕✫ ✪✫ ✪✫ ✪✫ ✪

Fig. 1. The meander graph for a parabolic subalgebra of sp14

Remark 2.4. 1) For both gln and sp2n, one has q∗(a|b) ≃ q∗(b|a). Hence one can freely choose

what composition is going to appear first.

2) It is also true that q∗(a|b) is reductive (i.e., a Levi subalgebra) if and only if a = b.

Convention. If q is a seaweed in either sp2n or gl2n, and the corresponding compositions

are not specified, then the respective meander graph is denoted by ΓC(q) or ΓA(q).

Remark 2.5. Let q be a seaweed in sp2n or gln. Then there is a point γ ∈ q∗ such that the

stabiliser qγ ⊂ q is a reductive subalgebra, see [7]. A Lie algebra possessing such a point

in the dual space is said to be (strongly) quasi-reductive [2], see also [5, Def. 2.1]. One of the

main results of [2] states that if a Lie algebra q = LieQ is strongly quasi-reductive, then

there is a reductive stabiliser Qγ (with γ ∈ q∗) such that any other reductive stabiliser Qβ
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(with β ∈ q∗) is contained in Qγ up to conjugation. In [5] this subgroup Qγ is a called a

maximal reductive stabiliser, MRS for short. For a seaweed q = qA(a |b), an MRS of q can be

described in terms of ΓA(a |b) [5, Theorem 5.3]. A similar description is possible in type C

if we use ΓC

n(a |b). It will appear elsewhere.

3. SYMPLECTIC MEANDER GRAPHS AND THE INDEX OF SEAWEED SUBALGEBRAS

In this section, we prove formula (2·2) on the index of the seaweed subalgebras of type C.

Let us recall the inductive procedure for computing the index of seaweeds in a sym-

plectic Lie algebra introduced by the first author [6]. Suppose that a = (a1, . . . , as) and

b = (b1, . . . , bt) are two compositions with
∑

ai 6 n and
∑

bj 6 n. Then we consider the

standard seaweed qCn(a|b) ⊂ sp2n.

Inductive procedure:

1. If either a or b is empty, then qCn(a|b) is a parabolic subalgebra and the index is com-

puted using [6, Theorem 5.5] (cf. also Introduction).

2. Suppose that both a and b are non-empty. Without loss of generality, we can assume

that a1 6 b1. By [6, Theorem 5.2], ind qCn(a|b) can inductively be computed as follows:

(i) If a1 = b1, then qCn(a|b) ≃ gla1 ⊕ qCn−a1
(a2, . . . , as|b2, . . . , bt), hence

ind qCn(a|b) = a1 + ind qCn−a1
(a2, . . . , as|b2, . . . , bt).

(ii) If a1 < b1, then

ind qCn(a|b) =

{

ind qCn−a1
(a2, . . . , as|b1 − 2a1, a1, b2, . . . , bt) if a1 6 b1/2;

ind qCn−b1+a1
(2a1 − b1, a2, . . . , as|a1, b2, . . . , bt) if a1 > b1/2.

(iii) Step 2 terminates when one of the compositions becomes empty, i.e., one obtains

a parabolic subalgebra in a smaller symplectic Lie algebra, where Step 1 applies.

Remark 3.1. Iterating transformations of the form 2(ii) yields a formula that does not re-

quire considering cases, see [6, Theorem 5.3]. Namely, if a1 < b1, then ind qCn(a|b) =

ind qCn−a1
(a′|b′), where a′ = (a2, . . . , as), b′ = (b′1, b

′′

1, b2, . . . , bt), and b′1 and b′′1 are de-

fined as follows. Let p be the unique integer such that
p

p+ 1
<

a1
b1

6
p + 1

p + 2
. Then

b′1 = (p + 1)b1 − (p + 2)a1 > 0 and b′2 = (p + 1)a1 − pb1 > 0. (If b′1 = 0, then it has to

be omitted.)

Theorem 3.2. Let q = qCn(a|b) be a seaweed in sp2n and ΓC(q) = ΓC

n(a|b) the type-C meander

graph associated with q. Then

ind qCn(a|b) = #{cycles of ΓC

n(a|b)}+
1

2
#{segments of ΓC

n(a|b) that are not σ-stable}.

Proof. Our argument exploits the above inductive procedure. Let us temporarily write

Tn(a|b) for the topological quantity in the right hand side of the formula. Let us prove
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that for the pairs of seaweeds occurring in either 2(i) or 2(ii) of the inductive procedure,

the required topological quantity behaves accordingly.

If a1 = b1 and gla1 is a direct summand of q, then the index of qCn−a1
(a2, . . . , as|b2, . . . , bt)

decreases by a1; on the other hand, ΓC

n−a1
(a2, . . . , as|b2, . . . , bt) is obtained from ΓC(q) by

deleting 2
[
a1
2

]
cycles (and two segments, which are not σ-invariant in case a1 is odd).

This is in perfect agreement with the formula.

If a1 < b1, then one step of sp-reduction for q is equivalent to two steps of gl-reduction

for the meander graph of ΓA(q̃), where q̃ is the corresponding symmetric seaweed in gl2n.

These two “symmetric” steps are applied one after another to the left and right hand

sides of ΓA(q̃) = ΓC(q). According to [5, Lemma 5.4(i)], the gl-reduction does not change

the topological structure of the graph. Hence Tn(a|b) = Tn−a1(a
′|b′).

Since we have already observed (in Section 2) that our formula holds for the parabolic

subalgebras, the result follows. �

Example 3.3. For the seaweed q10(3, 3|4, 5) in sp20, the recursive formula of Remark 3.1

yields the following chain of reductions:

q = qC10(3, 3|4, 5) ❀ qC7 (3|1, 5) ❀ qC6 (1, 1|5) ❀ qC5 (1|3, 1) ❀ qC4 (∅|1, 1, 1).

The last term represents the minimal parabolic subalgebra of sp8 corresponding to the

unique long simple root. The respective graphs are gathered in Figure 2. It is readily seen

that both ends of the graphs undergo the symmetric transformations on each step; also

all the segments are σ-stable and the total number of cycles equals 1. Thus, ind q = 1.

One can notice that each reduction step consists of contracting certain arcs starting

from some end vertices of a meander graph. Clearly, such a procedure does not change

the topological structure of the graph, and this is exactly how Lemma 5.4(i) in [5] has been

proved.

Example 3.4. In Figure 3, one finds the graph of a seaweed in sp16 of index 1. The seg-

ments that are not σ-stable are depicted by red arcs.

4. APPLICATIONS OF SYMPLECTIC MEANDER GRAPHS

In this section, we present some applications of Theorem 3.2. We begin with a simple

property of the index.

Lemma 4.1. If
∑

ai < n and
∑

bj < n, then ind qCn(a|b) = (n − n′) + ind qCn′(a|b), where

n′ = max{
∑

ai,
∑

bj}.

Proof. Here ΓC

n(a|b) contains n − n′ arcs crossing the σ-mirror on the both sides of the

horizontal line. They form n − n′ central circles, and removing these circles reduces the

index by n− n′ and yields the graph ΓC

n′(a|b). �
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ΓC

10(3, 3 |4, 5) : s s s s s s s s s s s s s s s s s s s s✎ ☞✎ ☞ ✞ ☎✗ ✔✬ ✩✬ ✩
✎ ☞✎ ☞

✖ ✕✝ ✆ ✍ ✌✧ ✦✝ ✆ ✍ ✌✧ ✦✝ ✆✖ ✕

ΓC

7 (3 |1, 5) : s s s s s s s s s s s s s s✎ ☞ ✞ ☎✗ ✔✬ ✩✬ ✩
✎ ☞

✍ ✌✧ ✦✝ ✆ ✍ ✌✧ ✦

ΓC

6 (1, 1 |5) : s s s s s s s s s s s s✞ ☎✗ ✔✬ ✩✬ ✩
✍ ✌✧ ✦✝ ✆ ✍ ✌✧ ✦

ΓC

5 (1 |3, 1) : s s s s s s s s s s✞ ☎✗ ✔✬ ✩✬ ✩
✍ ✌ ✝ ✆ ✍ ✌

ΓC

4 (∅ |1, 1, 1) : s s s s s s s s✞ ☎✗ ✔✬ ✩✬ ✩
✝ ✆

Fig. 2. The reduction steps for a seaweed subalgebra of sp20

s s s s s s s s s s s s s s s sΓC

8 (3, 4 |5, 3) :

✎ ☞ ✞ ☎✗ ✔✞ ☎ ✞ ☎✗ ✔✎ ☞
✍ ✌✧ ✦✍ ✌✍ ✌ ✍ ✌✧ ✦

Fig. 3. A seaweed subalgebra of sp16 with index 1

Recall that a Lie algebra q is Frobenius, if ind q = 0. In the rest of the section, we apply

Theorem 3.2 to studying Frobenius seaweeds. Clearly, if qCn(a|b) is Frobenius, then ΓC

n(a|b)

has only σ-stable segments and no cycles. Another consequence of Theorem 3.2 is the

following necessary condition.

Lemma 4.2. If qCn(a|b) is Frobenius, then either
∑

ai < n and
∑

bj = n or vice versa.
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Proof. If
∑

ai < n and
∑

bj < n, then the index is positive in view of Lemma 4.1. If
∑

ai =
∑

bj = n, then there are no arcs crossing the σ-mirror. Therefore ΓC

n(a|b) consists

of two disjoint σ-symmetric parts, and the topological quantity of Theorem 3.2 cannot be

equal to 0. (More precisely, in the second case qCn(a|b) is isomorphic to the seaweed qA(a|b)

in gln, and ind q > 1 for all seaweeds q ⊂ gln, see Remark 2.1.) �

Graphically, Lemma 4.2 means that, for a Frobenius seaweed, one must have some cen-

tral arcs (= arcs crossing the σ-mirror) on one side of the horizontal line in the meander

graph, and then there has to be no central arcs on the other side. The number of cen-

tral arcs can vary from 1 to n (the last possibility represents the case in which one of the

parabolics is the Borel subalgebra). Let Fn,k denote the set of standard Frobenius sea-

weeds whose meander graph contains k central arcs. Then Fn =
⊔n

k=1Fn,k is the set of

all standard Frobenius seaweeds in sp2n. If qCn(a|b) lies in Fn,k, then so is qCn(b|a). As we

are interested in essentially different meander graphs, we will not distinguish graphs and

algebras corresponding to (a|b) and (b|a). Set F n,k = #(Fn,k/∼) and F n = #(Fn/ ∼),

where ∼ is the corresponding equivalence relation. Then

F n,n = 1, F n,n−1 =







1, n = 2;

2, n > 3.
, and F n,n−2 =







2, n = 3;

4, n = 4;

5, n > 5.

.

It follows from Lemma 4.2 that if qCn(a|b) ∈ Fn and
∑

bj = n, then the integer k such

that qCn(a|b) ∈ Fn,k is determined as k = n −
∑

ai. In Figure 4, one finds the meander

graphs of Frobenius seaweeds in sp14 with k = 1 and 2.

s s s s s s s s s s s s s sΓC

7 (2, 4 |4, 3) :
✞ ☎ ✗ ✔✞ ☎ ✞ ☎ ✗ ✔✞ ☎ ✞ ☎
✖ ✕✝ ✆ ✍ ✌✍ ✌ ✝ ✆✖ ✕
s s s s s s s s s s s s s sΓC

7 (3, 2 |2, 5) :

✎ ☞✞ ☎ ✞ ☎✗ ✔✞ ☎ ✎ ☞
✝ ✆ ✍ ✌✧ ✦✧ ✦✍ ✌ ✝ ✆

Fig. 4. Frobenius seaweed subalgebras of sp14

Lemma 4.3. If q ∈ Fn,k, then ΓC(q) has exactly k connected components (σ-stable segments)

corresponding to the central arcs. Furthermore, the total number of arcs in ΓC(q) equals 2n− k.

Proof. 1) Let Ai be the i-th central arc and Γi the connected component of ΓC(q) that

contains Ai. Each Γi is a σ-stable segment.

• If Γi = Γj for i 6= j, then continuations of Ai and Aj meet somewhere in the left hand

half of ΓC(q). By symmetry, the same happens in the right hand half, which produces a

cycle. Hence the connected components Γ1, . . . ,Γk must be different.
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• Assume that there exists yet another connected component Γk+1. Then it belongs to

only one half of ΓC(q). By symmetry, there is also the “same” component Γk+2 in the other

half of ΓC(q). This would imply that ind q > 0.

2) Since the graph ΓC(q) has 2n vertices and is a disjoint union of k trees, the number

of edges (arcs) must be 2n− k. �

Lemma 4.4. For any k > 1, there is an injective map Fn,k → Fn+1,k+1. Moreover, F n+1 > F n,

that is, the total number of Frobenius seaweeds strictly increases under the passage from n to n+1.

Proof. For any q ∈ Fn,k (k > 1), we can add two new vertices in the middle of ΓC(q)

and connect them by an arc (on the appropriate side!). This yields an injective mapping

Fn,k → Fn+1,k+1 for any k > 1 and thereby an injection in : Fn →֒ Fn+1.

Since Fn+1,1 does not intersect the image of in, the second assertion follows from the

fact that F n+1,1 > 0 for any n > 0. �

Proposition 4.5. (i) For a fixed m ∈ N, the numbers F n,n−m stabilise for n > 2m+ 1. In other

words, F n,n−m = F 2m+1,m+1 for all n > 2m+ 1.

(ii) Furthermore, F 2m+1,m+1 = F 2m,m + 1.

Proof. (i) Let q = qCn(a|b) ∈ Fn,n−m. Then
∑s

i=1 ai = m and
∑t

j=1 bj = n. Consider the n-th

vertex of the graph (one that is closest to the σ-mirror). We are interested in bt, the size of

the last part of b, i.e., the part that contains the n-th vertex. By the assumption, we have

n −m central arcs over the horizontal line. Therefore, if n > 2m + 2 and bt > 2, then the

smallest arc corresponding to bt hits two vertices covered by central arcs above the line.

And this produces a cycle in the graph! This contradiction shows that the only possibility

is bt = 1. Then one can safely remove two central vertices from the graph and conclude

that F n,n−m = F n−1,n−1−m as long as n > 2m + 2. (The last step is opposite to one that is

used in the proof of Lemma 4.4.)

(ii) Again, for q = qC2m+1(a|b) ∈ F2m+1,m+1, we consider bt, the last coordinate of b. If

bt = 1, then the central pair of vertices in ΓC(q) can be removed, which yields a seaweed in

F2m,m. Next, it is easily seen that if bt ∈ {2, 3, . . . , 2m}, then ΓC(q) contains a cycle. Hence

this is impossible. While for bt = 2m + 1, one obtains a unique admissible possibility

a = (1, 1, . . . , 1
︸ ︷︷ ︸

m

). �

Remark. Using a similar analysis, one can show that F 2m,m = F 2m−1,m−1 + 3, if m > 3.

Remark 4.6. Our stabilisation result for F n,n−m can be compared with [3], where Duflo and

Yu consider a partition of the set of standard Frobenius seaweeds in sln into classes and

study the asymptotic behaviour of the cardinality of these classes as n tends to infinity. Let

p(a) be the number of nonzero parts of the composition a and let F̃n,p be the number of the

standard Frobenius seaweeds qA(a|b)∩sln such that p(a)+p(b) = p. By [3, Theorem 1.1(b)],
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if n is sufficiently large, then F̃n,n+1−t is a polynomial in n of degree [t/2], with positive

rational coefficients.

It seems that Fn,1 is the most interesting part of the symplectic Frobenius seaweeds. Re-

call from Section 2 that to any standard seaweed q ⊂ sp2n one can associate a “symmetric”

seaweed q̃ ⊂ gl2n such that q = q̃ ∩ sp2n. In this context, we also set q̃0 = q̃ ∩ sl2n.

Proposition 4.7. (i) If q ∈ Fn,1, then ind q̃ = 1, hence q̃0 is a Frobenius seaweed in sl2n.

(ii) There is an injective map Fn,1 → Fn+1,1, which is not onto if n > 2.

Proof. (i) If q ∈ Fn,1, then ΓC(q) and thereby ΓA(q̃) consists of a sole segment (Lemma 4.3).

By Eq. (2·1), we have ind q̃ = 1 and therefore ind q̃0 = ind q̃− 1 = 0.

(ii) If q = qCn(a|b) ∈ Fn,1, then
∑s

i=1 ai = n − 1 and
∑t

j=1 bj = n. We associate to it

a seaweed q̂ ∈ Fn+1,1 as follows. Set q̂ = qCn+1(â|b), where â = (a1, . . . , as, 2). Note that

ΓC

n(a|b) has one central arc above the horizontal line, while ΓC

n+1(â|b) has one central arc

below. The following is a graphical illustration of the transform q 7→ q̂:

s s. . . . . .
✞ ☎✝✆ 7→ s s s s. . . . . .

✞ ☎ ✞ ☎✝ ✆ ✝✆
This provides a bijection between Fn,1 and the seaweeds in Fn+1,1 whose last part of the

composition that sums up to n+1 equals 2. If n+1 > 3, then there are seaweeds in Fn+1,1

such that the above-mentioned last part is bigger than 2. Hence F n,1 < F n+1,1. �

Remark 4.8. Another curious observation is that Fn,1 and Fn,2 are related to certain Frobe-

nius seaweeds in sln:

(i) Suppose that q ∈ Fn,1. Let us remove the only central arc in ΓC(q) and take the

remaining left hand half of the graph as it is. It is a connected type-A meander graph with

n vertices. Therefore, it represents a seaweed of index 1 in gln (= Frobenius seaweed in sln).

Formally, if q = qCn(a|b), with
∑

ai = n − 1 and
∑

bj = n, then we set q′ = qA(a′|b) ⊂ sln,

where a′ = (a, 1). This yields a bijection between Fn,1 and the Frobenius seaweeds of sln
such that the last part of a′ equals 1.

(ii) Suppose that q ∈ Fn,2. Let us remove the two central arcs and take the remaining left

hand half. We obtain a graph with n vertices and two connected components (segments).

Joining the last two “lonely” vertices by an arc, we get a connected type-A meander graph.

Formally, if q = qCn(a|b), with
∑

ai = n − 2 and
∑

bj = n, then we set q′ = qA(a′|b) ⊂ sln,

where a′ = (a, 2). Again, this yields a bijection between Fn,2 and the Frobenius seaweeds

of sln such that the last part of a′ equals 2.

Unfortunately, such a nice relationship does not extend to Fn,3.

We present the table of numbers F n,k for n 6 7.
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n
k❅
❅ 1 2 3 4 5 6 7 Σ = F n

1 1 - - - - - - 1

2 1 1 - - - - - 2

3 2 2 1 - - - - 5

4 4 4 2 1 - - - 11

5 8 10 5 2 1 - - 26

6 15 20 13 5 2 1 - 56

7 28 44 28 14 5 2 1 122

TABLE 1. The numbers F n,k for n 6 7

Note that the values 14, 5, 2, 1 in the 7-th row are stable in the sense of Proposition 4.5(i).

Using preceding information, we can also compute the next stable value:

F 9,5 = F 8,4 + 1 = (F 7,3 + 3) + 1 = 32.

5. ON MEANDER GRAPHS FOR THE ODD ORTHOGONAL ALGEBRAS

As in the case of sp2n, the standard parabolic subalgebras of so2n+1 are parametrised by

the compositions a = (a1, . . . , as) such that
∑

ai 6 n. For instance, if pBn(a) is the stan-

dard parabolic subalgebra corresponding to a, then a Levi subalgebra of it is of the form

gla1⊕ · · · ⊕ glas ⊕ so2(n−
∑

ai)+1. Therefore, the standard seaweed subalgebras of so2n+1 are

also parametrised by the pairs of compositions a, b such that
∑

ai 6 n and
∑

bj 6 n,

see [6, Section 5]. Furthermore, the inductive procedure for computing the index of stan-

dard seaweeds (see Section 3, Step 2.), which reduces the case of arbitrary seaweeds to

parabolic subalgebras, also remains the same [6, Theorem 5.2].

This means that if the formula for the index of parabolic subalgebras of so2n+1 in terms

of a also remains the ”same” as in the symplectic case, then one can use our type-C me-

ander graphs in type Bn as well. Although, there are only partial results on the index of

parabolic subalgebras of so2n+1 in [6, Section 6], one can use the general Tauvel-Yu-Joseph

formula, see [8, Conj. 4.7] and [4, Section 8], which reeds:

ind p = rk g− dimEΠ,T +#(K(Π) ∩ K(T )).

Our observation is that it easily implies that, for any composition a, one has

(5·1) ind pBn(a) =
[a1
2

]

+ . . .+
[as
2

]

+ (n−
s∑

i=1

ai) = ind pCn(a).

In fact, it is a consequence of the following general assertion.
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Theorem 5.1. Let g be a simple Lie algebra such that ind b = 0. Let p ⊂ g be a parabolic

subalgebra, with a Levi subalgebra l. If b(l) is a Borel subalgebra of l and u(l) = [b(l), b(l)], then

ind p = ind u(l) = rk g− ind b(l).

In particular, ind p = 0 if and only if u(l) = 0, i.e., p = b.

Under our assumptions dimEΠ,T = rk g and #(K(Π) ∩ K(T )) = #K(T ) = ind u(l). We

note that the second equality in the theorem is the manifestation of the general fact that

rk l = ind b(l) + ind u(l) for any reductive Lie algebra l. A more detailed explanation and

some applications of the theorem will appear elsewhere.

Recall that, for a simple Lie algebra g, ind b = 0 if and only if g 6= An,D2n+1,E6. As

already noticed before, for pBn(a), we have l = gla1⊕ · · · ⊕ glas ⊕ so2(n−
∑

ai)+1. Since

ind b(gln) = n− [n/2], we obtain the required equalities in (5·1).

Conclusion. 1) Given a standard seaweed q = qBn(a|b) ⊂ so2n+1, we can draw ex-

actly the same meander graph as in type C (with 2n vertices) and use exactly the same

topological formula (Theorem 3.2) to compute the index of q.

2) Using our type-C meander graphs, we can establish a bijection between the standard

Frobenius seaweeds for the symplectic and odd orthogonal Lie algebras of the same rank.

It would be very interesting to realise whether there is a deeper reason for such a bijection.
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