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Multimodal Event Detection in Twitter Hashtag

Networks

Yasin Yilmaz*, and Alfred O. Herdg*

Abstract

Event detection in a multimodal Twitter dataset is congdeMe treat the hashtags in the dataset
as instances with two modes: text and geolocation featilifes.text feature consists of a bag-of-words
representation. The geolocation feature consists of gedta., geographical coordinates) of the tweets.
Fusing the multimodal data we aim to detect, in terms of t@pid geolocation, the interesting events
and the associated hashtags. To this end, a generativeVat@able model is assumed, and a generalized
expectation-maximization (EM) algorithm is derived torle¢he model parameters. The proposed method
is computationally efficient, and lends itself to big datas&xperimental results on a Twitter dataset

from August 2014 show the efficacy of the proposed method.

. INTRODUCTION

Twitter is the most popular microblogging service and theosel most popular social network with over
300 million active users generating more than 500 millioedte per day as of 2015. Its user-generated
content from all over the world provides a valuable sourcelath for researchers from a variety fields
such as machine learning, data mining, natural languageepsing, as well as social sciences. Twitter
data has been used for various tasks, e.g., event detedfiosentiment analysis [2], breaking news
analysis [[8], rumor detection [4], community detection, [8]ection results prediction [6], and crime
prediction [7].

Hashtags, which are keywords preceded by the hash sign ith, geaeral used to indicate the subject of

the tweets. Hence, they provide useful information for tdtieg tweets or users. However, it is a noisy
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information source since hashtags are generated by useissametimes convey inaccurate or even
counterfactual information. A small percentage of usersu@ad 2%) also geotag their tweets. Given the
500 million tweets per day, geotags also constitute an itapbinformation source.

The detection of real-world events from conventional mestiarces has long been studied [8]. Event
detection in Twitter is especially challenging becausesteweise microtext, which is an informal language
with a preponderance of abbreviated words, spelling anchigiar errors. There are also many tweets
of dubious value, consisting of honsense, misrepresentgtiand rumors. Much of the work on event
detection in Twitter has considered a diversity of evenes/pFor instance| [9] considers unsupervised
breaking news detectiori; [10] considers supervised detecf controversial news events about celebri-
ties; [11] addresses supervised musical event detectiwh{E] deals with supervised natural disaster
events monitoring. There are also a significant number oérghat consider unsupervised detection of
events that do not require prespecification of the event ofpaterest, e.g.,[[13],.[14],[15]/[16]/ [17].

In this paper, we ntroduce a new unsupervised event deteppicoach to Twitter that exploits the
multimodal nature of the medium. Data is pre-processedno f@ network of hashtags. In this network,
each unigue hashtag is an instance with multimodal fegtaesely text and geolocation. For a hashtag,
the text feature is given by the bag-of-words representatieer the collection of words from tweets
that use the hashtag. The geolocation feature of a hashtegist® of the geotags of the tweets that
mention the hashtag. The proposed approach can detecséaunet@rms of both topic and geolocation
through multimodal data fusion. To fuse the multimodal datuse a probabilistic generative model,
and derive an expectation-maximization (EM) algorithm tafthe maximum likelihood (ML) estimates
of the model parameters. The proposed model can be seen akimadal factor analysis model [18],
[19]. However, it is more general than the modellini[19] imterof the considered probabilistic models,
and also the temporal dimension that is inherent to our prabl

Fusing disparate data types, such as text and geolocatiourinase, poses significant challenges. In
[20], source separation is used to fuse multimodal datareas]21] follows an information-theoretic
approach. Multimodal data fusion is studied for differepplications such as multimedia data analysis
[22] and brain imaging [23]. Multimodal feature learningavdeep neural networks is considered.inl [24].
The literature on multi-view learning, e.qg., [25], [26],7R is also related to the problem of multimodal
data fusion. Our contributions in this paper are twofolds#y, we propose a intuitive framework that
naturally extends to the exponential family of distributio Secondly, based on a simple generative model,
the proposed algorithm is computationally efficient, angstlpplicable to big datasets.

The paper is organized as follows. In Secfidn I, we fornaitlie multimodal event detection problem,
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and propose a generative latent variable model. Then, aajereel EM algorithm is derived in Sectiénllll.
Finally, experiment results on a Twitter dataset are preseim Sectiori IV, and the paper is concluded
in Section[Y. We represent the vectors and matrices with faold lowercase and uppercase letters,

respectively.

[I. PROBLEM FORMULATION
A. Observation Model
We considerP hashtags with text (i.e., collection of words used in tweetsd geotag (i.e., user

geolocation) features, as shown in Table I.

TABLE |

SAMPLE HASHTAGS WITH TEXT AND GEOTAG FEATURES

Hashtag Text Geotag (Latitude, Longitude)

#Armstrong #Oprah mag ’alles vragen’ aan Lan¢e(52.#N, 4.9E)
#Armstrong. Uiteraard! Looking for{ (43.5°N, 79.6W)

ward to the #Lance #Armstrong intef-...

view next week! ...

#Arsenal Sementara menunggu Team Power hg8.6°S, 116.2E)
raksi..#Arsenal First game of 2013,(23.7N, 58.2E)
lets start it off with a our fifth winin a| ...

row! Come on you Gunners! #Arsenal

We assume a model in which each word in a tweet that useistthbashtag is independently generated
from the multinomial distribution with a single trial (i,ecategorical distribution)M(1; pi1,...,pip),
wherep;, is the probability of thed-th word for thei-th hashtag, and is the dictionary size. In this

model, the word countd; = [h;1,...,h;p|T for the i-th hashtag are modeled as
h; ~ M(Mi;pil,... >piD)7 i=1,..., P,

where M; is the number of dictionary words used in the tweets forittiehashtag, i.e M; = 25:1 Rid.
To this end, we use the bag of words representation for thethgs (Fig[1L).

The geolocation data of each tweet is a geographical latagpresented by a spherical coordinate
(latitude and longitude). This coordinate is modeled ugimg 3-dimensional von Mises-Fisher (VMF)
distribution, which is an extension of the Gaussian distidn to the unit sphere [28] (Figl 2). We first

convert the geographical coordinates (latitude, longijui the Cartesian coordinates, ¢, z), where
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Fig. 1. A sample bag of words representation for the hashiRapiWilliams.

22 4+ y? + 22 = 1. Specifically, in our model, it is assumed that the geolocatf then-th tweet that

mentions the-th hashtag is generated independently from the other sasefollows

where a; € R3, afai = 1, is the mean directions; > 0 is the concentration parameter, ang is

the number of geotagged tweets for thth hashtag. Larger; means more concentrated distribution
arounde;. Therefore, a local hashtag, such as #GoBlue, which is ugediporters of the University of
Michigan sports teams, requires a largewhereas a global hashtag, such as #HalaMadrid, which means
“Go Madrid” and is used by the fans of the Real Madrid soccanmterequires a smak (Fig.[3). This
difference ink is due to the fact that the Real Madrid supporters are weltidiged around the globe,

while the University of Michigan supporters are mostly coafi to North America.
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Fig. 2. Samples from the 3-dimensional von Mises-Fishetritligion with different concentration parameter values=
1,10,100 describing the spread of the distribution around randommuieections. The case = 1 produces the uniform

distribution on the sphere.

B. Generative Latent Variable Model

Some hashtags are created by users as a result of an ungengnt intime andspace which we call
a generative event~or instance, after Robin Williams’ death, many hashtaghsas #RobinWilliams,
#RIPRobinWilliams, #RIPRobin, #mrsdoubtfire have beerdusecommemorate him. On the other hand,
some hashtags are more spread out over time, such as #jobs, #Healthcare, #photo. With a slight
abuse of the terminology, we also consider such an undgrlgipic as agenerative eventin addition
to the topic/text feature, a generative event (time-depehdr -independent) possesses also a spatial
feature due to the event’s geolocation (e.g., Asia, Amgcasimply due to the language (e.g., English,

Spanish).
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o #HalaMadrid
# #GoBlue

Fig. 3. Geolocations for the hashtags #HalaMadrid (usethiReal Madrid soccer team) and #GoBlue (used for the Usityer
of Michigan athletics) in terms of the Cartesian coordisafEhe estimated concentration parameters for the von Nfissteer
distribution arexmadia = 1.3302 and kmich = 44.6167, representing the wider global interest in Real Madrid sodeam as

contrasted to the US-centric interest in University of Mgan sports teams.

We know that an event can generate multiple hashtags. Adthhdbere is usually a single event
responsible for the generation of a hashtag, for generaligylet multiple events contribute to a single
hashtag. In our generative modél, events linearly mix in theatural parametersf the multinomial and
vMF distributions to generate the text and geolocationuiest of each hashtag, respectively. ket Rf
denote the mixture coefficients &f events for the-th hashtag, wher® . is the set of nonnegative real

numbers. Also let

T
U=lu...ug|= [ua)...u{D)} ., up € RP, U(g) e RVK
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denote the event scores for the words in the dictionary; and
V =[v,...vg], v, € R,

denote the event geolocations in the Cartesian coordinate=n, in our model, the mean of the vMF
distribution is given by the normalized linear mixture

VCZ'

i =7, t=1,..., P
S el T

where || - || is the I2-norm normalization is required to ensure that is on the unit sphere; and the

multinomial probabilities are given by the softmax funatiof the linear mixtureu 4 c;, i.e.,

eu(d)ci )
Pu=spe =L P d=1.D.
j:
That is,
h. M eUmCi (@) Ci . P .
i~ 19 D u(j)Ci""’ D w(H e , L=1,... ()
Z]:le Z]:le
Ve,
wmmv<ﬁ§ﬁ“0’i:L““R n=l. N )
)

We assume a Gaussian prior for the latent variable vector R”
ukNN([l,k,Ek), k‘ZI,...,K, (3)

and a vVMF prior forv;, € R3

’Uk’\’V(,Bk,Sk), kzla"'aKa (4)

since the conjugate prior to the vMF likelihood with unknowrean and known concentration is also
vMF [29].

The graphical model in Fid.]4 depicts the proposed generdditent variable model. The proposed
model can be regarded asvaultimodal factor analysisnodel [18] since it combines features from two
disparate domains(geotag and text). In classical factatyais [30], the mean of a Gaussian random
variable is modeled with the linear combinatiefw of factor scores inu, where the coefficients in
c are called factor loadings.The number of factors is tyfjcaluch less than the number of variables
modeled, as < P in our case. In the proposed model, the generative eventsspamnd to the factors
with the multimodal score$u;} and{v;} for the multinomial and vMF observations, respectivelyr Fo
both modalities, the natural parameters are modeled wihlittear combination of the factor scores
using thesame factor loading vectat; for the i-th hashtag. In the multinomial distribution, the softmax

function maps the natural parameters to the class probesijliwvhereas in the vMF distribution, the
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Fig. 4. Generative graphical model. Plate representatiamsed to show repeated structures. Circles and rectarepessent

random and deterministic variables, respectively. Olexbmariables are shaded.

natural parameter coincides with the (scaled) mean. Fon éashtagi, the factor loading vectoe;

correlates the two observation modalities: text and gexioo.

Next we will present an EM algorithm to learn the parametdrthe proposed model from the data.

I1l. EM ALGORITHM

We propose a generalized EM (GEM) algorithm that consistsvof separate EM steps for the two
modalities, and a coordinating M step for the mixture cogffits{c;}. Specifically, at each iteration of
the GEM algorithm, the vMF EM steps are followed by the mutivial EM steps, which are followed by
the M step for{¢;}. The individual EM steps for vMF and multinomial are coupéedy through{c; }, and
independent otherwise. In the proposed GEM algorithm, thbaj likelihood function is monotonically

increasing.
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A. Von Mises-Fisher Parameters

We would like to find the ML estimates of the paramet@fssy, x; under the graphical model depicted
in the right branch of Fid.]14. We take a variational EM apptot deal with the latent variable vectors
{wi}-

1) E-Step:Starting with the E-step we seek the posterior probabiktygity function (pdfP ({vg }{wir }, 0),
wheref = {By, sk, ki, ¢; }. From [2) and[(4), we know that the likeliho®d{w;, }|{vs},6) and the prior
P({vi}|#) are both vMF, hence the joint distribution is given by

P({vi}, {win}|0) = P({win}[{ve}, 0) P({vi}0)
P N; VCZ K
— H H Ni exp ( wl, v z||> H C(sk) exp (skvi Br) »

i=1n=1 k=1

where
x1/2 X

Cle) = (2m)3/21; )5 () - 2rr(e® — e™7) ®)

is the normalization factor in the 3-dimensional vMF pdfttwi, (x) being the modified Bessel function
of the first kind at ordel. Reorganizing the terms we get

P

K
P({vr}, {win}|d) = H O (k)™ H C(sk)

K P N; C:
[ exp (Ug (Z > S L E—— T Skﬁk> ) : (6)

In the alternative expression for the joint pdf

P({vr}, {win}|0) = P({vi}[{win}, 0) P{win}l0),

the dependency ofw; } appears only in the posterior pdf, herftlf vy, } |[{w;x }, 0) lies in the exponential
term in [6), which resembles the vMF pdf except the deperel@fiche normalization factor ofwy}.
The diagonal entries 0¥ "'V arev] v, = 1; and the off-diagonal entries aw v, < 1, j # k. Since

cik >0, k=1,...,K, the inequalityc! VI'Ve; < el'1x1%¢; holds, wherel  is the vector of K
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ones. To make[(6) tractable we replageV? Ve; with ¢!'1x1% ¢; and obtain the lower bound

P{vr}, {win}|0) = Qu({vr},0)

K N,
Cik
H exp | vi Z Z ————KiWin + 1Bk . (7)
k=1 im1n=14/cl 11t c;

To put [7) into the standard form of the vMF pdf we normalize term in the inner parentheses and

obtain

P N, K
Qv({vi},0) = HHH RZ o) Sk) C(rk)exp(rkvkbk) (8)

qv(vr)

P
Zz 15K lckﬁzz 1wm+3kﬁk

9)
HZZ 121{ sz 1wzn+3kﬁkH
P
i in + SkBk|| » (10)

where by is the mean direction andk is the concentration parameter. We approximate the posteri
P(vi[{win}, 0) with the vMF distributiong, (vy) for k =1,... K.
2) M-Step: In the M-step, we find the parametess, s;, x; that maximize the expected value of the

lower bound for the complete-data log-likelihood, whicbrfr () is given by

T
qu(vk [IOg Qu {vk} 9 Z <Z K Zwm + Sk,@k> by,

,1Zk 16k =1

K P
+ Z log C(sk) + Z N;log C(k;), (11)

k=1 i=1
where the expectation is taken ovgf(vy), which approximates the posterior pBfvg|{w;,},0) (see
@)).

We start with the estimatot; which is given by

N, T K
k; = argmax K; Z’wm Z 71% + N;log C (k).
i > 1y it

n=1 k=1
Sincek; makes the derivative with respect &g zero,

Cl TE Cik A
Wi, — b, =7, (12)
Z ; Zszl Cik
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where, from [(2b), we write the derivativ@'(%;) as

') = L ( 1 [{/2(/%1')) = C(i) < 1 11/2(&')) :

(277)3/211/2("%1') 2%; VAGH 2% VG
Hence,

C(Ri) Rily (ki)

C' (k) ’%i[{/2("%i) — I 2(Rq)/2

Using (12) and the following recurrence relation|[31, S&tt.6.26]

wly/o(x) = 21y j(2) = Iy jo(2) /2

we get
I39(Ri)
Iy 5 (#i)

Since there is not analytical solution fo [13), we resortgpraximatings;. In [32], using the following

continuing fraction representation

I3/2(R) 1 .
I /2(R) % + ;i '
/; IS approximated as

1

— R =+

Ti %

. 37—@'

T 1— 7'22'

Furthermore, an empirical correction is also provided i2]{3

3
3T

R; =~
1—7'Z-2 ’

(14)

which is constrained to be nonnegative for feasibility. Weedduce a Lagrange multiplier > 0, replacing
7; with 7; = 7 + X to enforce this non-negativity constraint. Due to completagy slackness, this leads

to the following estimator
3

37— T
m{oli} (15)

Similar to x; (12)-[(15), from[(I1), we estimatg, with

$p = arg max skﬁzbk + log C(sg)-
Sk

3681 by — (B br)’ }
1 — (B by,)? .

~ max {0, (16)
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Since 3, is a mean direction on the unit sphere, it has to satﬁm = 1.Therefore, from[(11), our
estimator is given by

By = arg mﬁax Bgskbk subject to ﬁ,{,@k =1.

Maximum ofﬁgskbk is attained when the angle betwegp and s.b,, is zero, i.e.,Bk = ¢ s;b. Since

the feasible set is the unit sphef®, = ||§ig:|\ = IIgill' The posterior mean directidh),, given by [9), is

already on the unit sphere, hence

Br = by. (17)

B. Multinomial Parameters

Note that there ar® — 1 degrees of freedom in the multinomial class probabilities tb the constraint

zf;lpid = 1. For identifiability, we set theD-th word as pivot, and deal with the latent event scores
Ug) = Ug) —Upy, d=1,...,D—1,
and accordinghyU' = [4 ... @ug], where from [(B)
a1~ N (g, Bi). (18)
1) E-Step:We seek the posterior pdf ({i;}|{h;}, ) whered = {fi;., X\, ¢;}. From [1) and[(T8),
P ({@}, {hi}|6) = P ({hi}| {1}, 0) P ({i, }16)
P D

M;!
- H Bl hip! H exp (hid [1ia — 1S€(n;)])
i=1 71- 1D - =1

K exp (-%(’&k — ) "2 (g — ﬂk))

- ) (19)
kl;Il (2m)(D=1)/2 |51/
wheren,y = ugci, d=1,...,D —1, nip =0, n; = i1 .. mip_1]T = Uc;, and the log-sum-exp
function
D—1
Ise(n;) = log (1 + > exp (nz-d)) : (20)
d=1

As in the VMF case[(6), the normalization factor [n](19), whis the Ise function, prevents a tractable
form. Following [19] we use a quadratic upper bound of the flagction based on the Taylor series
expansion to obtain a lower bound for the complete-datdiliged, given in [(I9). The second order

Taylor series expansion around a fixed pajntis given by
1 .
Ise(n;) = Ise(tp;) + (m; — ;)" Vise(ep;) + 5(mi = ¥i) ' V2Ise(;) (1; — i),
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wherep; € (n;, ;). From [20),

Vise(y) = | PO ew i) ] o
se(v) 1+ 375" exp (vig) 1 >t exp (thia) b
Vis€ (i) = Ay, — pgpy . Ay = diagpy,),

whereAq;i is the diagonal matrix form opq;i. In [33], it is shown that the matrix

1

B 1p 11} z -
A= 5 Ip_, — —5 |7 VIs€ (), Vap;, (21)

in the positive semi-definite sense, whdigis the d-dimensional identity matrix. That is,
Ise(mi) < 5 ! n; An; + g¢ M+ Cj,» (22)
9y, = Py, — Ay,
= Ise(ys) + 57 Avpi — ¥ pys.

In (19), replacing Isgy;) with the quadratic upper bound ih _{22) we get the following/éo bound
for the likelihoodP ({h;}|{@},0)

P

- M;!
P({hi}{ux}.0) > H ol
s il 1D

D

exp (Z hidMid — < AN+ gy mi+ g ) Z hzd)

d=1

VA
B 21;[1 hii!- - hip!

T
ex —l MA — 2M; hZ\D a ; +2M;c -
p B ni M, 94y, ni iCep, )

wherehi\D = [hi1... hip_1]T is the count vector of thé-th hashtag for the firsbD — 1 words. Defining

a new observation vector

7 — hiD — th

we write

P ({hil{a).0) > ﬁ f. 05D (—% (i~ hi) " 2iA (i - m)) , (23)
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Recall thaty; = Uc; = Z{f:l ciktg. In (23), the latent variable vectofsi }, which are independently
modeleda priori (18), are coupled, thus no more independeposterioriin P ({fak}|{hi}, 9). To capture
the dependency we treat them in a single veater [uj) . .. a(K)]T. Without loss of generalitya priori
we assume independence among the words for the same eeer¥i.= I_,, Vk. Prior probability
distribution reflects our initial belief about the unknowntigy; and a priori we do not know anything
about the inter-word dependencies of the hidden eventscé{dhis is a quite reasonable assumption. In
any case (under any prior assumption), we learn the posteistribution for w. For the same reason,

without loss of generality, we also assugig = 0p_1, Vk, i.e.,

U~ N(Og(p-1), Ix(p-1))- (24)

To rewrite [23) in terms ofz we note thaty; = C7a where

Ci=1Ip 1®c, (25)

and® denotes the Kronecker product.

Then, from[[2B) and_(24), we approximate the complete-dketinood with the following lower bound

P ({hi} @l0) = Quia {e})
s
= rywto=re

exp (_% [(é}a k) Ma(CTa-h)+ uTuD

[y

1=

I
A:w

@
Il
—

f, exp ([(bT‘I’_lcb - ﬁsz-AiLi] /2) B!/

1, - _
o (- o) ® - g)) [en O Ie o
(IM('&‘)
where using[(Z5)
P _ ~ P ~
=23 MCAR=2% (M,-Ahi) ® ci, 27)
i=1 i=1
p -1 p —1
P = (Z MiCiACiT"i_IK(D—l)> = (Z MZ‘A®CZ‘CZT+IK(D_1)> . (28)
=1 i=1

Using the lower bound in[(26) we approximate the posteR rfa|{ﬁi},9) with ¢,,(@), which is
N(o, ).
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Note thatK (D — 1) can be very large due to the dictionary si2e As a result, it is, in general, not

practical to perform the matrix inversion inh_(28). From thetkix Inversion Lemma, it can be shown
that

=Ip 1 @F'-1p117_,®A, (29)
1

F:§CAMCT+LQ

A=F'cyc'rF!

Ay Ay F Ay 1 A
y — _AM: MICT<D 1_C J\/LCT> oM

2D 2D’

whereC = [¢; ... cp|, and Ay, is the diagonal matrix whose entries a8, ..., Mp. Using [29) we
efficiently compute® by only inverting K x K matrices. Since, typically, the number of events is setkcte

a small number, the proposed algorithm is now feasible fgrdaitasets with largé and D.

We can similarly simplify the computation @, given in [2T). Define

zZ; = MZ‘A’NLZ',

and partition the posterior meah of the K (D — 1) event-word scores int® — 1 vectors of sizeK’

d): [${...$%_1]T, X = [:Bl...ZBD_l]. (30)
We can efficiently compute&X, which is nothing but a reorganized versiong@f as

X =Fl'Ccz-ACZ, (31)

Z:[zl...zp]T

)

Z=2Z1p15_,.

2) M-step: The mean and covariance @fare estimated using (27) arid [(28). Fram|[19], the optimum

value of; is given by

;= CT . (32)
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For the estimation of¢;}, which is considered in the next section, we use the expecke of the
lower bound to the complete-data Iog-likelihood given[2@)

qm [long( Aeih)] = D) qm(u [NT <ZMCAC +IK(D 1)) ]

=1

P
+ Eqm(ﬂ) ['&]T (Z MlézAﬁz> + Const.
=1
1 P
- . T

P
+¢" > M;C;Ah; + Const, (33)
=1
whereTr(-) is the trace of a matrix, and the expectation is taken witpeestoq,, () (see [(26)). To

compute the expectation of the quadratic term we use thetffattE [a” Xa| = E [Tr(a’ Xa)] =
E [Tr(Xaa”)] = Tr (XE[aaT]).

C. Mixture Coefficients
From [11) and[(33), we estimate the mixture coefficients efitth hashtag as

¢; = arg mczl;x Eq. (1) log Qu({vr}, {ci})] + Eq. (@) log Qm(u, {ci})]

T N;
k=1 Cik n=1

whereB = [b; ... bg] holds the posterior mean directions of the event geolocatfsee[(9)). From_(27),

¢" M;C;Ah; = ¢" (2 ® ¢;)
=cl' Xz (35)
Using the definitions ofA and C;, given in [21) and[{25), we write

S M; ~ -~ M;  ~ -
M;C;ACT = —Ciq-T — —(Ci1D_1)(CZ-1D_1)T

M; M r
—ID 1®702 1D 11D 1®2D

As a result, from[(29),

- M; _ M;
Tr(M,-CiACZ-T@) =Tr <ID_1 ® 7ciciTF '“1p.1f @ 2Dcz clF~ )

M; M;(D -1
—Tr (]_D 11D 1® CZC A ]_D 11D 1®%C@C?A>

. Mi(D-1)
MDD =) o MD =) 1
5 F 5 Al e (36)
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Algorithm 1 The proposed EM algorithm
1: Input {w* = SN vy, AP} i=1,.. P

n=1
2. Initialize {cX*!, ki, 55, B2Y, k=1,... K
3: while not convergedio
4.  Compute posterior parametefsy, v, 7;} for vMF as in [9), [(1D), [(IR)

5. Update vMF parameters:

m—max{O, - TT?}, sk—max{O,%}, Br = by,

6: Compute posterior parametef®, ¢} for multinomial as in[(2P),[(31)
7. Update multinomial parametep; = (Ip_; ® ¢! )¢

8:  Update mixture coefficient§c;} by solving [38)

9: end while

Similarly, using [(30) we write

D-1 D-1D-1
T(M;6,AC! 90" = > <%demg> -y <%deﬂ>

d=1 j=1
D-1 D-1D-1
=c! M; xgxl — Mi Z zqxl | ¢ (37)
T2 4 2D L s A
d=1 d=1 j=1

Substituting [(3b),[(36) and_(B7) il (34) we have the follogviquadratic program

A 1
C; = argmax — §c;?F1",-ci + c’;r'yi
C;

K
subjectto Y ey =1 and ¢z >0, k=1,...,K, (38)
k=1
MiD—lz_ MiD D—-1D-1
1",-:7(21) )F 1—7(21) dewd—zDZdew
d=1 j=1
N;
Yi = BTK/i szn + Xz,
n=1

which can be efficiently solved using the interior point naeth

The resulting algorithm is summarized as Algorithin 1.

IV. EXPERIMENTS

We have tested the proposed algorithm on a Twitter datas®t August 2014 obtained from the Twitter
stream API at gardenhose level access. It spans the wholthjreond includes a random sample of 10
% of all tweets from all over the world. We consider about 30iani geotagged tweets, among which

around 3 million use approximately 1 million unique hasiktag/e have organized the data in terms of

January 5, 2016 DRAFT



18

hashtags. That is, each unique hashtag is an instance wjtofb@ords and geolocation features. The
rarely used hashtags and the hashtags with small geogahgistribution are filtered out, leaving us with
13000 hashtagsH = 13000), and a dictionary o67000 significant words D = 67000). The number
of geotags,V;, for hashtags varies frora to 71658; and the number of words)/;, varies from10 to
426892. The number of eventdy, is selected using a recursive adaptive procedure. Wevsithrg. large
number (e.g./K = 40), and after a certain number of iterations, automaticaiypove the uninformative

events that are not associated with any hashtag,{ig.}; are all small for a giverk.

We run the algorithm in a hierarchical manner. In each rouhd,hashtags that localize well in an
event with a dominant mixture coefficient are pruned, andrémeaining hashtags are further processed
in the next round. In other words, in the next round, we zooto the previously unexplored sections of
the data to discover new events. We also zoom into the bratistpvered events to find specific events.
For example, in the first round, we have discovered populantsvsuch as the Ice Bucket Challenge and
the Robin Williams’ death, and also generic events for thitidBr and Asian hashtags (Figl 5). In the
following round, separately processing the generic evantsthe non-localized data we have identified
further specific events such as the Ferguson unrest and thAend®onal basketball team for the FIBA
world championship (Fig.16). Specifically, we have identifien Indian event about a Hindu religious
leader in jail, and a British event about the Commonwealtim€ain the generic Asian and British
events, respectively. In Figl 6, it is seen also that theipuesly found Ice Bucket Challenge event has
decomposed into a local event and a global event. It is seligif and Figl b that the proposed algorithm
successfully finds interesting events in terms of both tapid geolocation. The geographical distribution
of the tweets that use hashtags associated with the evenisthe Commonwealth Games and the Hindu
religious leader are depicted in F[g. 7. Similarly, Hig. Bistrates the geographical distributions of the
tweets that use hashtags about the death of Robin Williarms. geolocations of the tweets that are
shown in Fig[¥ and Fid.]18 are consistent with the correspanévents. As expected, the tweets that
mention Robin Williams are well distributed around the wowith a center in the USA, whereas the
tweets about the Commonwealth Games are sent only from ther@oawealth countries, and the tweets

about the Hindu leader are only from India.

Finally as an application, we cluster the hashtags basedeomixture coefficientg;. A sample result
using k-means and multidimensional scaling (MDS) is showFig.[9. As seen in Fid.]9, the proposed

algorithm can be used to effectively cluster multimodal dajasets.
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Sahabat (Indonesian:
friend) oE
Loved #RIP race #CommonwealthGames Rangrasiya (Indian TV #BosesNgBulilit
robinwilliams | #hook medal #nufc series) N #MMK
Suicide #RIProbinwillams uk bol #arsenal Manchester #9irlsGenera7ion
Peace #Robin usainbolt | 4 Glasgow2014 Sur (Indian city #ggmu
Depression #RIPRobin Glasgow iMUFcC lll:l)g(gl;ltpzlbl‘i(lilyl)li(rlll(()l:nt:;: )c@re\ #WhyMedialsAntiHindu

challenge [ #alsicebucketchallenge
donate #ASLIceBucketChallenge
nominate | #IceBucketChallenge
ice

bucket

q0°y, 20 €
20"w 0

Fig. 5. Some events discovered in the first round of the alyori Dominant hashtags and words used for the events, as well

as their mean geolocations are displayed.

V. CONCLUSION

We have treated the event detection problem in a multimoddtér hashtag network. Utilizing the bag-
of-words and the geotags from related tweets as the fedrésshtags we have developed a variational
EM algorithm to detect events according to a generative indde computational complexity of the
proposed algorithm has been simplified such that it is viédnebig datasets. A hierarchical version of
the proposed algorithm on a Twitter dataset with 13000 lagshfrom August 2014. By pruning data
in each round multi-resolution events (higher in each rourave been learned. Significant events, such
as Robin Williams’ death, and the Ice Bucket Challenge, ab agesome generic events, such as the
British and the Asian hashtags, have been learned in therdiustd. Later in the second round, new
specific events have been discovered within the genericevwAfe have also successfully clustered a set
of hashtags using the detected events. The number of evasitseen automatically set by removing the

uninformative events that are not associated with any hgsafter a certain number of iterations.
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Loved #RIP race #CommonwealthGames Law #WhyMedialsAntiHindu
robinwilliams || #hook medal #Glasgow2014 Divine #VedicRakshaBandhanWithBapuji
Suicide #RIProbinwillams uk Bandhan |#ProbeMisuseOfPOCSOinBapujiCase
Peace #Robin usainbolt jail #UnfairProbeByJodhpurPolice
Depression #RIPRobin - Glasgow justice #365DaysOfPOCSOmisuse
O.
challenge [ #alsicebucketchallenge _ z EN
donate #ASLIceBucketChallengog |
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ice I )
bucket B
o. 7
U o
u r
mEs
2
ice #IceBucketChallenge
Police V? acccptcd‘ j )
white 9. v donate - U
black #Ferguson % water
cops #MikeBrown als
Protest | #mediablackout
& S
2 <
<
60° ‘e
Paul 4 g 0
George [#USABasketball w0y, ©E

USA #paulgeorge
heart #PrayForPG
Sorry #PrayForPaulGeorge

Fig. 6. Some specific events discovered after two rounds. ibamh hashtags and words used for the events, as well as their

mean geolocations are displayed.
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