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Abstract

Event detection in a multimodal Twitter dataset is considered. We treat the hashtags in the dataset

as instances with two modes: text and geolocation features.The text feature consists of a bag-of-words

representation. The geolocation feature consists of geotags (i.e., geographical coordinates) of the tweets.

Fusing the multimodal data we aim to detect, in terms of topicand geolocation, the interesting events

and the associated hashtags. To this end, a generative latent variable model is assumed, and a generalized

expectation-maximization (EM) algorithm is derived to learn the model parameters. The proposed method

is computationally efficient, and lends itself to big datasets. Experimental results on a Twitter dataset

from August 2014 show the efficacy of the proposed method.

I. INTRODUCTION

Twitter is the most popular microblogging service and the second most popular social network with over

300 million active users generating more than 500 million tweets per day as of 2015. Its user-generated

content from all over the world provides a valuable source ofdata for researchers from a variety fields

such as machine learning, data mining, natural language processing, as well as social sciences. Twitter

data has been used for various tasks, e.g., event detection [1], sentiment analysis [2], breaking news

analysis [3], rumor detection [4], community detection [5], election results prediction [6], and crime

prediction [7].

Hashtags, which are keywords preceded by the hash sign #, arein general used to indicate the subject of

the tweets. Hence, they provide useful information for clustering tweets or users. However, it is a noisy
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information source since hashtags are generated by users, and sometimes convey inaccurate or even

counterfactual information. A small percentage of users (around 2%) also geotag their tweets. Given the

500 million tweets per day, geotags also constitute an important information source.

The detection of real-world events from conventional mediasources has long been studied [8]. Event

detection in Twitter is especially challenging because tweets use microtext, which is an informal language

with a preponderance of abbreviated words, spelling and grammar errors. There are also many tweets

of dubious value, consisting of nonsense, misrepresentations, and rumors. Much of the work on event

detection in Twitter has considered a diversity of event types. For instance, [9] considers unsupervised

breaking news detection; [10] considers supervised detection of controversial news events about celebri-

ties; [11] addresses supervised musical event detection; and [12] deals with supervised natural disaster

events monitoring. There are also a significant number of papers that consider unsupervised detection of

events that do not require prespecification of the event typeof interest, e.g., [13], [14], [15], [16], [17].

In this paper, we ntroduce a new unsupervised event detection pproach to Twitter that exploits the

multimodal nature of the medium. Data is pre-processed to form a network of hashtags. In this network,

each unique hashtag is an instance with multimodal features, namely text and geolocation. For a hashtag,

the text feature is given by the bag-of-words representation over the collection of words from tweets

that use the hashtag. The geolocation feature of a hashtag consists of the geotags of the tweets that

mention the hashtag. The proposed approach can detect events in terms of both topic and geolocation

through multimodal data fusion. To fuse the multimodal datawe use a probabilistic generative model,

and derive an expectation-maximization (EM) algorithm to find the maximum likelihood (ML) estimates

of the model parameters. The proposed model can be seen as a multimodal factor analysis model [18],

[19]. However, it is more general than the model in [19] in terms of the considered probabilistic models,

and also the temporal dimension that is inherent to our problem.

Fusing disparate data types, such as text and geolocation inour case, poses significant challenges. In

[20], source separation is used to fuse multimodal data, whereas [21] follows an information-theoretic

approach. Multimodal data fusion is studied for different applications such as multimedia data analysis

[22] and brain imaging [23]. Multimodal feature learning via deep neural networks is considered in [24].

The literature on multi-view learning, e.g., [25], [26], [27], is also related to the problem of multimodal

data fusion. Our contributions in this paper are twofold. Firstly, we propose a intuitive framework that

naturally extends to the exponential family of distributions. Secondly, based on a simple generative model,

the proposed algorithm is computationally efficient, and thus applicable to big datasets.

The paper is organized as follows. In Section II, we formulate the multimodal event detection problem,
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and propose a generative latent variable model. Then, a generalized EM algorithm is derived in Section III.

Finally, experiment results on a Twitter dataset are presented in Section IV, and the paper is concluded

in Section V. We represent the vectors and matrices with boldface lowercase and uppercase letters,

respectively.

II. PROBLEM FORMULATION

A. Observation Model

We considerP hashtags with text (i.e., collection of words used in tweets) and geotag (i.e., user

geolocation) features, as shown in Table I.

TABLE I

SAMPLE HASHTAGS WITH TEXT AND GEOTAG FEATURES.

Hashtag Text Geotag (Latitude, Longitude)

#Armstrong #Oprah mag ’alles vragen’ aan Lance

#Armstrong. Uiteraard! Looking for-

ward to the #Lance #Armstrong inter-

view next week! . . .

(52.4◦N, 4.9◦E)

(43.5◦N, 79.6◦W)

. . .

#Arsenal Sementara menunggu Team Power be-

raksi..#Arsenal First game of 2013,

lets start it off with a our fifth win in a

row! Come on you Gunners! #Arsenal

(8.6◦S, 116.1◦E)

(23.7◦N, 58.2◦E)

. . .

We assume a model in which each word in a tweet that uses thei-th hashtag is independently generated

from the multinomial distribution with a single trial (i.e., categorical distribution)M(1; pi1, . . . , piD),

wherepid is the probability of thed-th word for thei-th hashtag, andD is the dictionary size. In this

model, the word countshi = [hi1, . . . , hiD]
T for the i-th hashtag are modeled as

hi ∼ M(Mi; pi1, . . . , piD), i = 1, . . . , P,

whereMi is the number of dictionary words used in the tweets for thei-th hashtag, i.e.,Mi =
∑D

d=1 hid.

To this end, we use the bag of words representation for the hashtags (Fig. 1).

The geolocation data of each tweet is a geographical location represented by a spherical coordinate

(latitude and longitude). This coordinate is modeled usingthe 3-dimensional von Mises-Fisher (vMF)

distribution, which is an extension of the Gaussian distribution to the unit sphere [28] (Fig. 2). We first

convert the geographical coordinates (latitude, longitude) to the Cartesian coordinates (x, y, z), where
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Fig. 1. A sample bag of words representation for the hashtag #RobinWilliams.

x2 + y2 + z2 = 1. Specifically, in our model, it is assumed that the geolocation of then-th tweet that

mentions thei-th hashtag is generated independently from the other tweets as follows

win ∼ V(αi, κi), i = 1, . . . , P, n = 1, . . . , Ni,

whereαi ∈ R
3, αT

i αi = 1, is the mean direction,κi ≥ 0 is the concentration parameter, andNi is

the number of geotagged tweets for thei-th hashtag. Largerκi means more concentrated distribution

aroundαi. Therefore, a local hashtag, such as #GoBlue, which is used by supporters of the University of

Michigan sports teams, requires a largeκ, whereas a global hashtag, such as #HalaMadrid, which means

“Go Madrid” and is used by the fans of the Real Madrid soccer team, requires a smallκ (Fig. 3). This

difference inκ is due to the fact that the Real Madrid supporters are well distributed around the globe,

while the University of Michigan supporters are mostly confined to North America.
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Fig. 2. Samples from the 3-dimensional von Mises-Fisher distribution with different concentration parameter valuesκ =

1, 10, 100 describing the spread of the distribution around random mean directions. The caseκ = 1 produces the uniform

distribution on the sphere.

B. Generative Latent Variable Model

Some hashtags are created by users as a result of an underlying event intimeandspace, which we call

a generative event. For instance, after Robin Williams’ death, many hashtags such as #RobinWilliams,

#RIPRobinWilliams, #RIPRobin, #mrsdoubtfire have been used to commemorate him. On the other hand,

some hashtags are more spread out over time, such as #jobs, #love, #Healthcare, #photo. With a slight

abuse of the terminology, we also consider such an underlying topic as agenerative event. In addition

to the topic/text feature, a generative event (time-dependent or -independent) possesses also a spatial

feature due to the event’s geolocation (e.g., Asia, America) or simply due to the language (e.g., English,

Spanish).
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Fig. 3. Geolocations for the hashtags #HalaMadrid (used forthe Real Madrid soccer team) and #GoBlue (used for the University

of Michigan athletics) in terms of the Cartesian coordinates. The estimated concentration parameters for the von Mises-Fisher

distribution areκmadrid = 1.3302 and κmich = 44.6167, representing the wider global interest in Real Madrid soccer team as

contrasted to the US-centric interest in University of Michigan sports teams.

We know that an event can generate multiple hashtags. Although there is usually a single event

responsible for the generation of a hashtag, for generality, we let multiple events contribute to a single

hashtag. In our generative model,K events linearly mix in thenatural parametersof the multinomial and

vMF distributions to generate the text and geolocation features of each hashtag, respectively. Letci ∈ R
K
+

denote the mixture coefficients ofK events for thei-th hashtag, whereR+ is the set of nonnegative real

numbers. Also let

U = [u1 . . .uK ] =
[

uT
(1) . . .u

T
(D)

]T
, uk ∈ R

D, u(d) ∈ R
1×K ,

DRAFT January 5, 2016
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denote the event scores for the words in the dictionary; and

V = [v1 . . . vK], vk ∈ R
3,

denote the event geolocations in the Cartesian coordinates. Then, in our model, the mean of the vMF

distribution is given by the normalized linear mixture

αi =
V ci

‖V ci‖
, i = 1, . . . , P,

where ‖ · ‖ is the l2-norm normalization is required to ensure thatαi is on the unit sphere; and the

multinomial probabilities are given by the softmax function of the linear mixtureu(d)ci, i.e.,

pid =
eu(d)ci

∑D
j=1 e

u(j)ci
, i = 1, . . . , P, d = 1, . . . ,D.

That is,

hi ∼ M

(

Mi;
eu(1)ci

∑D
j=1 e

u(j)ci
, . . . ,

eu(d)ci

∑D
j=1 e

u(j)ci

)

, i = 1, . . . , P (1)

win ∼ V

(
V ci

‖V ci‖
, κi

)

, i = 1, . . . , P, n = 1, . . . , Ni. (2)

We assume a Gaussian prior for the latent variable vectoruk ∈ R
D

uk ∼ N (µk,Σk), k = 1, . . . ,K, (3)

and a vMF prior forvk ∈ R
3

vk ∼ V(βk, sk), k = 1, . . . ,K, (4)

since the conjugate prior to the vMF likelihood with unknownmean and known concentration is also

vMF [29].

The graphical model in Fig. 4 depicts the proposed generative latent variable model. The proposed

model can be regarded as amultimodal factor analysismodel [18] since it combines features from two

disparate domains(geotag and text). In classical factor analysis [30], the mean of a Gaussian random

variable is modeled with the linear combinationcTu of factor scores inu, where the coefficients in

c are called factor loadings.The number of factors is typically much less than the number of variables

modeled, asK ≪ P in our case. In the proposed model, the generative events correspond to the factors

with the multimodal scores{uk} and{vk} for the multinomial and vMF observations, respectively. For

both modalities, the natural parameters are modeled with the linear combination of the factor scores

using thesame factor loading vectorci for the i-th hashtag. In the multinomial distribution, the softmax

function maps the natural parameters to the class probabilities, whereas in the vMF distribution, the

January 5, 2016 DRAFT



8

cK×1

i

i = 1, . . . , P

α3×1

i
κi

v3×1

k

n = 1, . . . , Ni

w3×1

in

uD×1

k

pD×1

i

hD×1

i

Mi

k = 1, . . . , K

µD×1

k Σ
D×D
k β3×1

k
sk

Fig. 4. Generative graphical model. Plate representation is used to show repeated structures. Circles and rectangles represent

random and deterministic variables, respectively. Observed variables are shaded.

natural parameter coincides with the (scaled) mean. For each hashtagi, the factor loading vectorci

correlates the two observation modalities: text and geolocation.

Next we will present an EM algorithm to learn the parameters of the proposed model from the data.

III. EM A LGORITHM

We propose a generalized EM (GEM) algorithm that consists oftwo separate EM steps for the two

modalities, and a coordinating M step for the mixture coefficients{ci}. Specifically, at each iteration of

the GEM algorithm, the vMF EM steps are followed by the multinomial EM steps, which are followed by

the M step for{ci}. The individual EM steps for vMF and multinomial are coupledonly through{ci}, and

independent otherwise. In the proposed GEM algorithm, the global likelihood function is monotonically

increasing.

DRAFT January 5, 2016
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A. Von Mises-Fisher Parameters

We would like to find the ML estimates of the parametersβk, sk, κi under the graphical model depicted

in the right branch of Fig. 4. We take a variational EM approach to deal with the latent variable vectors

{vk}.

1) E-Step:Starting with the E-step we seek the posterior probability density function (pdf)P({vk}|{win}, θ),

whereθ = {βk, sk, κi, ci}. From (2) and (4), we know that the likelihoodP({win}|{vk}, θ) and the prior

P({vk}|θ) are both vMF, hence the joint distribution is given by

P({vk}, {win}|θ) = P({win}|{vk}, θ) P({vk}|θ)

=

P∏

i=1

Ni∏

n=1

C(κi)
Ni exp

(

κiw
T
in

V ci

‖V ci‖

) K∏

k=1

C(sk) exp
(
skv

T
k βk

)
,

where

C(x) =
x1/2

(2π)3/2I1/2(x)
=

x

2π(ex − e−x)
(5)

is the normalization factor in the 3-dimensional vMF pdf, with Iy(x) being the modified Bessel function

of the first kind at ordery. Reorganizing the terms we get

P({vk}, {win}|θ) =
P∏

i=1

C(κi)
Ni

K∏

k=1

C(sk)

exp

(
P∑

i=1

Ni∑

n=1

κiw
T
in

K∑

k=1

cik
‖V ci‖

vk +

K∑

k=1

skv
T
k βk

)

=

P∏

i=1

C(κi)
Ni

K∏

k=1

C(sk)

K∏

k=1

exp



vTk





P∑

i=1

Ni∑

n=1

cik
√

cTi V
TV ci

κiwin + skβk







 . (6)

In the alternative expression for the joint pdf

P({vk}, {win}|θ) = P({vk}|{win}, θ) P({win}|θ),

the dependency on{vk} appears only in the posterior pdf, henceP({vk}|{win}, θ) lies in the exponential

term in (6), which resembles the vMF pdf except the dependence of the normalization factor on{vk}.

The diagonal entries ofV TV arevTk vk = 1; and the off-diagonal entries arevTj vk ≤ 1, j 6= k. Since

cik ≥ 0, k = 1, . . . ,K, the inequalitycTi V
TV ci ≤ cTi 1K1

T
Kci holds, where1K is the vector ofK

January 5, 2016 DRAFT
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ones. To make (6) tractable we replacecTi V
TV ci with cTi 1K1

T
Kci and obtain the lower bound

P({vk}, {win}|θ) ≥ Qv({vk}, θ)

=

P∏

i=1

C(κi)
Ni

K∏

k=1

C(sk)

K∏

k=1

exp



vTk





P∑

i=1

Ni∑

n=1

cik
√

cTi 1K1TKci

κiwin + skβk







 . (7)

To put (7) into the standard form of the vMF pdf we normalize the term in the inner parentheses and

obtain

Qv({vk}, θ) =
P∏

i=1

Ni∏

n=1

K∏

k=1

C(κi)
Ni C(sk)

C(rk)
C(rk) exp

(
rkv

T
k bk

)

︸ ︷︷ ︸

qv(vk)

, (8)

bk =

∑P
i=1

cik∑
K

k=1 cik
κi
∑Ni

n=1win + skβk
∥
∥
∥
∑P

i=1
cik∑

K

k=1 cik
κi
∑Ni

n=1win + skβk

∥
∥
∥

, (9)

rk =

∥
∥
∥
∥
∥

P∑

i=1

cik
∑K

k=1 cik
κi

Ni∑

n=1

win + skβk

∥
∥
∥
∥
∥
, (10)

where bk is the mean direction andrk is the concentration parameter. We approximate the posterior

P(vk|{win}, θ) with the vMF distributionqv(vk) for k = 1, . . . ,K.

2) M-Step: In the M-step, we find the parametersβk, sk, κi that maximize the expected value of the

lower bound for the complete-data log-likelihood, which from (7) is given by

Eqv(vk) [logQv({vk}, θ)] =
K∑

k=1

(
P∑

i=1

cik
∑K

k=1 cik
κi

Ni∑

n=1

win + skβk

)T

bk

+

K∑

k=1

logC(sk) +

P∑

i=1

Ni logC(κi), (11)

where the expectation is taken overqv(vk), which approximates the posterior pdfP(vk|{win}, θ) (see

(8)).

We start with the estimator̂κi which is given by

κ̂i = argmax
κi

κi

(
Ni∑

n=1

win

)T K∑

k=1

cik
∑K

k=1 cik
bk +Ni logC(κi).

Sinceκ̂i makes the derivative with respect toκi zero,

−
C ′(κ̂i)

C(κ̂i)
=

(

1

Ni

Ni∑

n=1

win

)T K∑

k=1

cik
∑K

k=1 cik
bk , τi, (12)
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where, from (25), we write the derivativeC ′(κ̂i) as

C ′(κ̂i) =
κ̂
1/2
i

(2π)3/2I1/2(κ̂i)

(

1

2κ̂i
−
I ′1/2(κ̂i)

I1/2(κ̂i)

)

= C(κ̂i)

(

1

2κ̂i
−
I ′1/2(κ̂i)

I1/2(κ̂i)

)

.

Hence,

−
C ′(κ̂i)

C(κ̂i)
=
κ̂iI

′
1/2(κ̂i)− I1/2(κ̂i)/2

κ̂iI1/2(κ̂i)
.

Using (12) and the following recurrence relation [31, Section 9.6.26]

xI3/2(x) = xI ′1/2(x)− I1/2(x)/2

we get
I3/2(κ̂i)

I1/2(κ̂i)
= τi. (13)

Since there is not analytical solution to (13), we resort to approximatingκ̂i. In [32], using the following

continuing fraction representation

I3/2(κ̂i)

I1/2(κ̂i)
=

1
3
κ̂i

+ 1
5

κ̂i
+···

= τi

κ̂i is approximated as

1

τi
≈

3

κ̂i
+ τi

κ̂i ≈
3τi

1− τ2i
.

Furthermore, an empirical correction is also provided in [32]:

κ̂i ≈
3τi − τ3i
1− τ2i

, (14)

which is constrained to be nonnegative for feasibility. We introduce a Lagrange multiplierλ > 0, replacing

τi with τ̃i = τ + λ to enforce this non-negativity constraint. Due to complementary slackness, this leads

to the following estimator

κ̂i ≈ max

{

0,
3τi − τ3i
1− τ2i

}

. (15)

Similar to κi (12)–(15), from (11), we estimatesk with

ŝk = argmax
sk

skβ
T
k bk + logC(sk).

≈ max

{

0,
3βT

k bk − (βT
k bk)

3

1− (βT
k bk)

2

}

. (16)
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Sinceβk is a mean direction on the unit sphere, it has to satisfyβT
k βk = 1.Therefore, from (11), our

estimator is given by

β̂k = argmax
β
βT
k skbk subject to βT

k βk = 1.

Maximum ofβT
k skbk is attained when the angle betweenβk andskbk is zero, i.e.,β̂k = c skbk. Since

the feasible set is the unit sphere,β̂k = skbk
‖skbk‖

= bk
‖bk‖

. The posterior mean directionbk, given by (9), is

already on the unit sphere, hence

β̂k = bk. (17)

B. Multinomial Parameters

Note that there areD−1 degrees of freedom in the multinomial class probabilities due to the constraint
∑D

d=1 pid = 1. For identifiability, we set theD-th word as pivot, and deal with the latent event scores

ũ(d) = u(d) − u(D), d = 1, . . . ,D − 1,

and accordinglyŨ = [ũ1 . . . ũK ], where from (3)

ũD−1×1
k ∼ N (µ̃k, Σ̃k). (18)

1) E-Step:We seek the posterior pdfP ({ũk}|{hi}, θ) whereθ = {µ̃k, Σ̃k, ci}. From (1) and (18),

P ({ũk}, {hi}|θ) = P ({hi}|{ũk}, θ)P ({ũk}|θ)

=

P∏

i=1

Mi!

hi1! · · · hiD!

D∏

d=1

exp (hid [ηid − lse(ηi)])

K∏

k=1

exp
(

−1
2(ũk − µ̃k)

T
Σ̃

−1
k (ũk − µ̃k)

)

(2π)(D−1)/2 |Σ̃k|1/2
, (19)

whereηid = ũ(d)ci, d = 1, . . . ,D − 1, ηiD = 0, ηi = [ηi1 . . . ηiD−1]
T = Ũci, and the log-sum-exp

function

lse(ηi) = log

(

1 +

D−1∑

d=1

exp (ηid)

)

. (20)

As in the vMF case (6), the normalization factor in (19), which is the lse function, prevents a tractable

form. Following [19] we use a quadratic upper bound of the lsefunction based on the Taylor series

expansion to obtain a lower bound for the complete-data likelihood, given in (19). The second order

Taylor series expansion around a fixed pointψi is given by

lse(ηi) = lse(ψi) + (ηi −ψi)
T∇lse(ψi) +

1

2
(ηi −ψi)

T∇2lse(ψ̃i)(ηi −ψi),

DRAFT January 5, 2016
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whereψ̃i ∈ (ηi,ψi). From (20),

∇lse(ψi) =

[

exp (ψi1)

1 +
∑D−1

d=1 exp (ψid)
· · ·

exp (ψiD−1)

1 +
∑D−1

d=1 exp (ψid)

]

= pψi

∇lse2(ψ̃i) = Λψ̃i
− pψ̃i

pT
ψ̃i

, Λψ̃i
= diag(pψ̃i

),

whereΛψ̃i
is the diagonal matrix form ofpψ̃i

. In [33], it is shown that the matrix

A =
1

2

(

ID−1 −
1D−11

T
D−1

D

)

< ∇lse2(ψ̃i), ∀ψ̃i, (21)

in the positive semi-definite sense, whereId is thed-dimensional identity matrix. That is,

lse(ηi) ≤
1

2
ηTi Aηi + g

T
ψ̃i

ηi + c
ψ̃i
, (22)

gψ̃i
= pψi

−Aψi,

c
ψ̃i

= lse(ψi) +
1

2
ψT

i Aψi −ψ
T
i pψi

.

In (19), replacing lse(ηi) with the quadratic upper bound in (22) we get the following lower bound

for the likelihoodP ({hi}|{ũk}, θ)

P ({hi}|{ũk}, θ) ≥
P∏

i=1

Mi!

hi1! · · · hiD!

exp

(
D∑

d=1

hidηid −

(
1

2
ηTi Aηi + g

T
ψ̃i

ηi + c
ψ̃i

) D∑

d=1

hid

)

=

P∏

i=1

Mi!

hi1! · · · hiD!

exp

(

−
1

2

(

ηTi MiAηi − 2Mi

(
hi\D

Mi
− g

ψ̃i

)T

ηi + 2Micψ̃i

))

,

wherehi\D = [hi1 . . . hiD−1]
T is the count vector of thei-th hashtag for the firstD− 1 words. Defining

a new observation vector

h̃i = A
−1

(
hi\D

Mi
− g

ψ̃i

)

= A−1

(
hi\D

Mi
− pψi

)

+ψi

we write

P

(

{h̃i}|{ũk}, θ
)

≥
P∏

i=1

f
ψ̃i

exp

(

−
1

2

(

ηi − h̃i

)T
MiA

(

ηi − h̃i

))

, (23)

f
ψ̃i

=
Mi!

hi1! · · · hiD!
exp

(

h̃T
i MiAh̃i

2
−Micψ̃i

)

.
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Recall thatηi = Ũci =
∑K

k=1 cikũk. In (23), the latent variable vectors{ũk}, which are independently

modeleda priori (18), are coupled, thus no more independenta posterioriin P

(

{ũk}|{h̃i}, θ
)

. To capture

the dependency we treat them in a single vectorũ = [ũ(1) . . . ũ(K)]
T . Without loss of generality,a priori

we assume independence among the words for the same event, i.e., Σ̃k = ID−1, ∀k. Prior probability

distribution reflects our initial belief about the unknown entity; and a priori we do not know anything

about the inter-word dependencies of the hidden events. Hence, this is a quite reasonable assumption. In

any case (under any prior assumption), we learn the posterior distribution for ũ. For the same reason,

without loss of generality, we also assumeµ̃k = 0D−1, ∀k, i.e.,

ũ ∼ N (0K(D−1), IK(D−1)). (24)

To rewrite (23) in terms of̃u we note thatηi = C̃T
i ũ where

C̃i = ID−1 ⊗ ci, (25)

and⊗ denotes the Kronecker product.

Then, from (23) and (24), we approximate the complete-data likelihood with the following lower bound

P

(

{h̃i}, ũ|θ
)

≥ Qm(ũ, {ci})

=

P∏

i=1

fψ̃i

(2π)K(D−1)/2

exp

(

−
1

2

[(

C̃T
i ũ− h̃i

)T
MiA

(

C̃T
i ũ− h̃i

)

+ ũT ũ

])

=

P∏

i=1

f
ψ̃i

exp
([

φT
Φ

−1φ− h̃T
i MiAh̃i

] /
2
)

|Φ|1/2

exp

(

−
1

2
(ũ− φ)TΦ−1(ũ−φ)

)/

(2π)K(D−1)/2|Φ|1/2

︸ ︷︷ ︸

qm(ũ)

, (26)

where using (25)

φ = Φ

P∑

i=1

MiC̃iAh̃i = Φ

P∑

i=1

(

MiAh̃i

)

⊗ ci, (27)

Φ =

(
P∑

i=1

MiC̃iAC̃
T
i + IK(D−1)

)−1

=

(
P∑

i=1

MiA⊗ cic
T
i + IK(D−1)

)−1

. (28)

Using the lower bound in (26) we approximate the posteriorP

(

ũ|{h̃i}, θ
)

with qm(ũ), which is

N (φ,Φ).
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Note thatK(D − 1) can be very large due to the dictionary sizeD. As a result, it is, in general, not

practical to perform the matrix inversion in (28). From the Matrix Inversion Lemma, it can be shown

that

Φ = ID−1 ⊗ F
−1 − 1D−11

T
D−1 ⊗∆, (29)

F =
1

2
CΛMi

CT + IK ,

∆ = F−1CY CTF−1

Y = −
ΛMi

2D
−

ΛMi

2D
CT

(
F

D − 1
−C

ΛMi

2D
CT

)−1

C
ΛMi

2D
,

whereC = [c1 . . . cP ], andΛMi
is the diagonal matrix whose entries areM1, . . . ,MP . Using (29) we

efficiently computeΦ by only invertingK×K matrices. Since, typically, the number of events is selected

a small number, the proposed algorithm is now feasible for big datasets with largeP andD.

We can similarly simplify the computation ofφ, given in (27). Define

zi =MiAh̃i,

and partition the posterior meanφ of theK(D − 1) event-word scores intoD − 1 vectors of sizeK

φ = [xT
1 . . .x

T
D−1]

T , X = [x1 . . .xD−1]. (30)

We can efficiently computeX, which is nothing but a reorganized version ofφ, as

X = F−1CZ −∆CZ̃ , (31)

Z = [z1 . . . zP ]
T ,

Z̃ = Z 1D−11
T
D−1.

2) M-step: The mean and covariance ofũ are estimated using (27) and (28). From [19], the optimum

value ofψi is given by

ψi = C̃
T
i φ. (32)
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For the estimation of{ci}, which is considered in the next section, we use the expectedvalue of the

lower bound to the complete-data log-likelihood, given in (26),

Eqm(ũ) [logQm(ũ, {ci})] = −
1

2
Eqm(ũ)

[

ũT

(
P∑

i=1

MiC̃iAC̃
T
i + IK(D−1)

)

ũ

]

+ Eqm(ũ) [ũ]
T

(
P∑

i=1

MiC̃iAh̃i

)

+ Const.

= −
1

2
Tr

[(
P∑

i=1

MiC̃iAC̃
T
i + IK(D−1)

)

(
Φ+ φφT

)

]

+ φT
P∑

i=1

MiC̃iAh̃i + Const., (33)

whereTr(·) is the trace of a matrix, and the expectation is taken with respect toqm(ũ) (see (26)). To

compute the expectation of the quadratic term we use the factthat E
[
ũTXũ

]
= E

[
Tr(ũTXũ)

]
=

E
[
Tr(XũũT )

]
= Tr

(
XE[ũũT ]

)
.

C. Mixture Coefficients

From (11) and (33), we estimate the mixture coefficients of the i-th hashtag as

ĉi = argmax
ci

Eqv(vk) [logQv({vk}, {ci})] + Eqm(ũ) [logQm(ũ, {ci})]

=

(

B
ci

∑K
k=1 cik

)T

κi

Ni∑

n=1

win +φTMiC̃iAh̃i −
1

2
Tr

[

MiC̃iAC̃
T
i

(
Φ+φφT

)]

, (34)

whereB = [b1 . . . bK ] holds the posterior mean directions of the event geolocations (see (9)). From (27),

φTMiC̃iAh̃i = φ
T (zi ⊗ ci)

= cTi Xzi. (35)

Using the definitions ofA andC̃i, given in (21) and (25), we write

MiC̃iAC̃
T
i =

Mi

2
C̃iC̃

T
i −

Mi

2D
(C̃i1D−1)(C̃i1D−1)

T

= ID−1 ⊗
Mi

2
cic

T
i − 1D−11

T
D−1 ⊗

Mi

2D
cic

T
i .

As a result, from (29),

Tr

(

MiC̃iAC̃
T
i Φ

)

= Tr

(

ID−1 ⊗
Mi

2
cic

T
i F

−1 − 1D−11
T
D−1 ⊗

Mi

2D
cic

T
i F

−1

)

− Tr

(

1D−11
T
D−1 ⊗

Mi

2
cic

T
i ∆− 1D−11

T
D−1 ⊗

Mi(D − 1)

2D
cic

T
i ∆

)

= cTi

[
Mi(D − 1)2

2D
F−1 −

Mi(D − 1)

2D
∆

]

ci. (36)
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Algorithm 1 The proposed EM algorithm

1: Input {w̄3×1
i =

∑Ni

n=1win,h
D×1
i }, i = 1, . . . , P

2: Initialize {cK×1
i , κi, sk, β

3×1
k }, k = 1, . . . ,K

3: while not convergeddo
4: Compute posterior parameters{bk, rk, τi} for vMF as in (9), (10), (12)
5: Update vMF parameters:

κi = max
{

0, 3τi−τ3
i

1−τ2
i

}

, sk = max
{

0, 3β
T
k bk−(βT

k bk)
3

1−(βT
k bk)

2

}

, βk = bk
6: Compute posterior parameters{Φ,φ} for multinomial as in (29), (31)
7: Update multinomial parameterψi = (ID−1 ⊗ c

T
i )φ

8: Update mixture coefficients{ci} by solving (38)
9: end while

Similarly, using (30) we write

Tr

(

MiC̃iAC̃
T
i φφ

T
)

=

D−1∑

d=1

Tr

(
Mi

2
cic

T
i xdx

T
d

)

−
D−1∑

d=1

D−1∑

j=1

Tr

(
Mi

2D
cic

T
i xdx

T
j

)

= cTi




Mi

2

D−1∑

d=1

xdx
T
d −

Mi

2D

D−1∑

d=1

D−1∑

j=1

xdx
T
j



 ci. (37)

Substituting (35), (36) and (37) in (34) we have the following quadratic program

ĉi = argmax
ci

−
1

2
cTi Γici + c

T
i γi

subject to
K∑

k=1

cik = 1 and cik ≥ 0, k = 1, . . . ,K, (38)

Γi =
Mi(D − 1)2

2D
F−1 −

Mi(D − 1)

2D
∆+

Mi

2

D−1∑

d=1

xdx
T
d −

Mi

2D

D−1∑

d=1

D−1∑

j=1

xdx
T
j

γi = B
Tκi

Ni∑

n=1

win +Xzi,

which can be efficiently solved using the interior point method.

The resulting algorithm is summarized as Algorithm 1.

IV. EXPERIMENTS

We have tested the proposed algorithm on a Twitter dataset from August 2014 obtained from the Twitter

stream API at gardenhose level access. It spans the whole month, and includes a random sample of 10

% of all tweets from all over the world. We consider about 30 million geotagged tweets, among which

around 3 million use approximately 1 million unique hashtags. We have organized the data in terms of
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hashtags. That is, each unique hashtag is an instance with bag-of-words and geolocation features. The

rarely used hashtags and the hashtags with small geographical distribution are filtered out, leaving us with

13000 hashtags (P = 13000), and a dictionary of67000 significant words (D = 67000). The number

of geotags,Ni, for hashtags varies from2 to 71658; and the number of words,Mi, varies from10 to

426892. The number of events,K, is selected using a recursive adaptive procedure. We startwith a large

number (e.g.,K = 40), and after a certain number of iterations, automatically remove the uninformative

events that are not associated with any hashtag, i.e.,{cik}i are all small for a givenk.

We run the algorithm in a hierarchical manner. In each round,the hashtags that localize well in an

event with a dominant mixture coefficient are pruned, and theremaining hashtags are further processed

in the next round. In other words, in the next round, we zoom into the previously unexplored sections of

the data to discover new events. We also zoom into the broadlydiscovered events to find specific events.

For example, in the first round, we have discovered popular events such as the Ice Bucket Challenge and

the Robin Williams’ death, and also generic events for the British and Asian hashtags (Fig. 5). In the

following round, separately processing the generic eventsand the non-localized data we have identified

further specific events such as the Ferguson unrest and the USA national basketball team for the FIBA

world championship (Fig. 6). Specifically, we have identified an Indian event about a Hindu religious

leader in jail, and a British event about the Commonwealth Games in the generic Asian and British

events, respectively. In Fig. 6, it is seen also that the previously found Ice Bucket Challenge event has

decomposed into a local event and a global event. It is seen inFig. 5 and Fig. 6 that the proposed algorithm

successfully finds interesting events in terms of both topicand geolocation. The geographical distribution

of the tweets that use hashtags associated with the events about the Commonwealth Games and the Hindu

religious leader are depicted in Fig. 7. Similarly, Fig. 8 illustrates the geographical distributions of the

tweets that use hashtags about the death of Robin Williams. The geolocations of the tweets that are

shown in Fig. 7 and Fig. 8 are consistent with the corresponding events. As expected, the tweets that

mention Robin Williams are well distributed around the world with a center in the USA, whereas the

tweets about the Commonwealth Games are sent only from the Commonwealth countries, and the tweets

about the Hindu leader are only from India.

Finally as an application, we cluster the hashtags based on the mixture coefficientsci. A sample result

using k-means and multidimensional scaling (MDS) is shown in Fig. 9. As seen in Fig. 9, the proposed

algorithm can be used to effectively cluster multimodal bigdatasets.
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Fig. 5. Some events discovered in the first round of the algorithm. Dominant hashtags and words used for the events, as well

as their mean geolocations are displayed.

V. CONCLUSION

We have treated the event detection problem in a multimodal Twitter hashtag network. Utilizing the bag-

of-words and the geotags from related tweets as the featuresfor hashtags we have developed a variational

EM algorithm to detect events according to a generative model. The computational complexity of the

proposed algorithm has been simplified such that it is viablefor big datasets. A hierarchical version of

the proposed algorithm on a Twitter dataset with 13000 hashtags from August 2014. By pruning data

in each round multi-resolution events (higher in each round) have been learned. Significant events, such

as Robin Williams’ death, and the Ice Bucket Challenge, as well as some generic events, such as the

British and the Asian hashtags, have been learned in the firstround. Later in the second round, new

specific events have been discovered within the generic events. We have also successfully clustered a set

of hashtags using the detected events. The number of events has been automatically set by removing the

uninformative events that are not associated with any hashtag after a certain number of iterations.

January 5, 2016 DRAFT



20

 120 ° W

 100 ° W

  80 °
 W

  60 °
 W

  40 ° W
  20° W    0

°
  20

°  E

  40
°  E

  6
0
°  E

  8
0

°  E

 1
00

°  E

  0 °  

 20 ° N
  

 40 ° N
  

 60 ° N
  

race
medal
uk
usainbolt
Glasgow

ice
accepted
donate
water
als

#IceBucketChallenge

#CommonwealthGames
#Glasgow2014

Police
white
black
cops
Protest

Paul
George
USA
heart
Sorry

Law
Divine
Bandhan
jail
just ice

#WhyMediaI sAntiHindu
#VedicRakshaBandhanWithBapuj i
#ProbeMisuseOfPOCSOinBapuj iCase
#UnfairProbeByJodhpurPolice
#365DaysOfPOCSOmisuse

Loved
robinwilliams
Suic ide
Peace
Depression

#RIP
#hook
#RIProbinwillams
#Robin
#RIPRobin

#Ferguson
#MikeBrown
#mediablackout

#USABasketball
#paulgeorge
#PrayForPG
#PrayForPaulGeorge

#alsicebucketchallenge
#ASLIceBucketChallenge

challenge
donate
nominate
ice
bucket
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mean geolocations are displayed.
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