
Back to the sampling theory: a practical and less 

redundant alternative to "Compressed sensing" 

LEONID YAROSLAVSKY 

Dept. of Physical Electronics, School of Electrical Engineering, Tel Aviv University, Tel-Aviv, 69978, Israel 

*Corresponding author: yaro@eng.tau.ac.il 

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 
Abstract 

A method is suggested for restoration of images of N samples from their M<N samples in the assumption that 

images can be replaced by their sparse approximations. The method represents a practical and less redundant 

alternative to “Compressed sensing”. Results of experimental verification of the method are presented and some its 

limitations are discussed 
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1. Introduction 

The very first step in digital image acquisition is discretization, i.e. 
obtaining a set of numbers, which is sufficient for image reconstruction 
with a given accuracy. Most frequently discretization is implemented 
as sampling of the image sensor signal. Before recently, image 
reconstruction from samples was performed by analog display 
devices. Because of this sampled image representation was very 
frequently redundant and, therefore, compressible.  With an advent of 
digital computational imaging, an option of numerical reconstruction 
of sampled images emerged, which opened a possibility of non-
redundant image sampling and numerical restoration with a required 
accuracy.  In the paper we address the ways for implementation of this 
option.  

The main issues in image sampling and numerical restoration are 
these: given a number M of image samples that can be taken and a 
number N>M of nodes of a regular sampling grid for a desired image 
display,  

- How to optimally arrange M samples over the image plane? 
- How to reconstruct images of N>M samples with the highest 

possible accuracy?  
Two approaches exist to answering these questions: the 

"Compressive sensing" approach and sampling theory based 
approach.  

The “Compressive sensing” approach suggests techniques of 
obtaining approximations to images by their “sparse” copies, i.e. by 
images that have only certain number of non-zero coefficients in 
domain of a certain “sparsifying” transform, such as Discrete wavelet, 
Discrete Fourier or Discrete Cosine transforms ([ 1] - [ 4]). It was 
mathematically proven ([ 5]) that if an image of N samples is known to 
have, in a domain of a certain transform, only K non-zero transform 
coefficients out of N, it can be precisely restored from its M random 

samples by means of L1 norm minimization in the transform domain, 
provided the following relationship between the required number of 
samples N, the required number of measurements M and the number 
K  of signal nonzero spectral coefficients holds: 

 
M > 2 · K · log(N/M)(1 + o(1)).       (1) 
 
In this formulation, the number N of required image samples is a 

free parameter. Obviously, applicability parameters of restored image, 
such as, for instance, image sharpness, do not depend on N and depend 
solely on the number K of non-zero spectral coefficients. 

The “Compressed sensing” approach gained in recent years a 
considerable popularity as it promises image restoration from fewer 
number of samples than it is required to restore. However it has 
several drawbacks: 

- As it follows from Eq. 1, M>K, i.e. the number M of required image 
samples for images with K nonzero spectral coefficients is considerably 
redundant with respect to the minimal required number, which is K, 
according to the discrete sampling theorem ([ 6]). For the range of 
sparsity K/N of real images from 10-1 to   10-3, the required redundancy 
M/K reaches 5 to10 times ([ 7]). 

- While “Compressive sampling” approach guaranties precise 
restoration of images with sparse spectrum, it does not say, what 
specific kind of sparse approximation it provides for real images with 
spectrum, which is not precisely sparse, and it does not provide 
numerical measures of sparse approximation error. 

- Compressed sensing approach ignores aliasing sampling artifacts, 
which always emerge unless an appropriate antialiasing filtering is 
applied to signals at sampling.  

  
 



2.  Sampling theory based non-redundant image sampling and 
restoration 

 
The sampling theory approach suggests a solution based on the 

Sampling Theorem, which tells that the minimal number of image 
samples per unit of image area required for image restoration with a 
given mean square error, is inverse to the area of image Fourier 
spectrum, which contains (1-ɛ2) fraction of image energy, where ɛ2 is 
the acceptable mean square error normalized to the image energy ([ 
8]). The corresponding Discrete Sampling Theorem ([ 6], [ 8]) that 
assumes image numerical restoration tells that given K samples of an 
image, one can approximate this image by an image with K non-zero 
spectral coefficients in a domain of a certain transform with mean 
square approximation error equal to the energy of the rest N-K 
transform coefficients. The approximation error is minimal if selected 
are K the most intensive transform coefficients. In case of Discrete 
Fourier and Cosine transforms, K samples can be taken in arbitrary 
positions. When N tends to infinity, Discrete Sampling Theorem 
converts to the classical Sampling Theorem. 

Obviously that, in distinction from the “compressive sensing” 
approach, the discrete sampling theorem based approach provides 
non-redundant sampled representation of images. However its 
implementation requires specification, what particular spectral 
coefficients of the approximating image should be nonzero, which is 
not required in the “compressed sensing” approach. This, however, 
should not, in fact, be a problem in practical imager acquisition at least 
for three reasons:  

- The relevant energy compacting transforms, such as DCT, DFT and 
wavelets, have a feature to compact image energy into few transform 
coefficients that form compact groups in transform domain rather than 
chaotically spread over it.  

- For overwhelming number of real images it is known that 
appropriate transforms such as DCT compact image energy into the 
lower frequency part of spectral components. It is this property that is 
put in the base of transform coefficient zonal quantization tables in 
transform image coding such as JPEG. 

- As soon as one believes that an image can be replaced by its copy 
with sparse spectrum, one usually knows, at least roughly, the region in 
spectral domain, where non-zero spectral coefficients are 
concentrated; otherwise this belief has no substance. 

Therefore, one can, in addition to specifying the number N of desired 
images samples and the number M of samples to be taken make a 
natural assumption that image non-zero spectral components 
important for image reconstruction are concentrated within a certain, 
say, oval or rectangular shape that encompasses K=M spectral 
components with the lowest indices. With this assumption, one can 
reconstruct image sparse approximation defined by the selected 
spectral shape from a set of K=M samples taken, in the case of sparsity 
of DCT or DFT spectra, in arbitrary positions.  

For image restoration, there are two options: 
- Direct inversion of the MxN transform matrix for computing M 

transform non-zero coefficients specified by the selected spectral 
shape from M samples with given indices, setting the rest N-M 
transform coefficients to zero and applying inverse transform to the 
found zero-pad spectrum. Generally, matrix inversion is a very hard 
computational problem and no fast matrix inversion algorithms are 
known. In our specific case, a pruned transform matrix should be 
inverted. There exist pruned versions of fast transforms for computing 
subsets of transform coefficients of signals with all but some subset of 
samples being zeros ([ 9] [ 10]), which is inverse to what is required in 
given case. The question, whether these pruned algorithms can be 
adapted for computing subset of transform non-zero coefficients from 
subset of signal samples is open.   

- An iterative Gershberg-Papoulis type algorithm, in which 
transform and inverse transform are performed alternatively at each 
iteration; in transform domain transform coefficients that are 
supposed to be zero are zeroed and then, in image domain, image 
samples in positions, where they were taken at sampling, are replaced 
by the corresponding available samples. Computational complexity of 
this method with using fast transform algorithms is O(2Nit·NlogN), 
where Nit is the number of iterations sufficient for achieving a required 
restoration accuracy.  

For the sake of brevity we’ll call this method of image sampling and 
restoration ArSBLR (“Arbitrary Sampling and Band-Limited 
Restoration”)-method.  

  
3. Experimental verification and practical considerations 
 
The suggested ArSBLR-method of image sampling and restoration 

was experimentally verified on a large data base of test images. In the 
experiments, the described iterative Gershberg-Papoulis type 
algorithm was used and three types of sampling grid were tested: (i) 
uniform sampling grid, in which K image samples are uniformly 
distributed, with appropriate rounding up of their positions to nearest 
nodes of a dense square sampling grid of N samples; (ii) uniform 
sampling grid with jitter, in which each node of the grid is randomly 
placed, independently in each of two image coordinates, within 
primary uniform sampling intervals; and (iii) random sampling grid, in 
which positions of samples are random. As an image transform that 
compacts image spectrum, Discrete Cosine Transform was used. Two 
types of spectrum shapes of lower frequency part of image DCT 
spectra were tested in the experiments: rectangular and oval, with 
aspect ratio (ratio of maximal horizontal dimension to maximal 
vertical dimension) manually set on the base of visual evaluation of 
possible presence or absence of image spectrum anisotropy. For 
instance, if vertical edges prevailed in a particular image, the aspect 
ratio was set larger than one and when horizontal edges prevailed, it 
was set lower than one.  

It was found in experiments that on the very first steps of the 
iteration restoration procedure restored image estimates are 
produced with a number of localized outliers, which very substantially 
slack the speed of convergence of the process. Introducing a simple 
outlier filtering on few first iteration steps allows overcoming this 
problem.     

Figure 1 and Figure 2 illustrate the experiments’ outcomes obtained 
for two images of the tested set: test images “Man” of 1024x1024 pixels 
and “Interferogram” of 256x256 pixels. The former is the image, which 
was used for demonstrating potentials of the “Compressed Sensing” 
approach in Ref. [ 11]. In order to make results of experiments 
comparable with those reported in [ 11], spectrum of the image was 
artificially sparsified by zeroing its all but 25000 most intensive DCT 
coefficients.   

Shown in figures are: initial test image subjected to antialiasing pre-
filtering according to the selected image spectrum shape, restored 
image, sparsely sampled image, restoration error (difference between 
initial test and restored images), image sparse DCT spectrum and 
graph of root mean square (RMS) restoration error vs iteration 
number. RMS error was evaluated in units of image gray level range (0-
255). Image sparse spectra were evaluated by selecting image most 
intensive spectral component that reconstruct image with the same 
RMS error as regular JPEG compression does. Test image “Man” was 
sparsely sampled over random sampling grid, test image 
“Interferogram” was sampled uniformly. 



 
 

 
 

 
Band limited test image 1024x1024; Spectr. mask area 0.0452; RMS BL Err 4.8 

a) 

 
Restored image;  Sampling rate 0.0452. RMS RestErr=0.00378 

b) 

 
Sampled band-limited test image. Sampling rate=0.0452; Sampling grid: Random 

c) 

 
Restoration error; RMS RestErr=0.00378; 

90% trimmed RMS RestErr= 0.00233 

d) 

 
Sparse spectrum and filter shape (white oval); Aspect ratio=1.1; 

RMS Sprs Err=1.44 SpectrSparsity 0.0245. Spectr. mask area 0.0452; RMS BL Err 4.8 

e) 
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f) 
Figure 1. Results of experiments on sampling and restoration of test image “Man”.  Root mean square (RMS) of restoration error is given in units of 
image range 0-255. 



 

 
Band limited test image 256x256;  Spectr. mask area 0.25; RMS BL Err 2.2 

a) 

  

Restored image;  Sampling rate 0.25; RMS RestErr=2.47e-012 
b) 

 
Sampled initial test image; Sampling rate=0.25; Sampling grid: Uniform 

c) 

 
 Restoration error; RMS RestErr=2.47e-012; 90% trimmed RMS RestErr= 1.65e-012 

f) 

 
Sparse spectrum; RMS Sprs Err=2.81;SpectrSparsity 0.184. Spectr. mask area 0.25; 

RMS BL Err 2.2 
e) 
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f) 

Figure 2. Results of experiments with test image “Interferogram” of 256x256 pixels. 



 

As one can see in figures, test image “Man” is restored with high 
accuracy (RMS error < 0.004) from 0.0452x1024x1024=47396 
samples. “Compressive sensing” approach required 96000 samples for 
the same image, i.e. more than two times more ([ 11]). Test image 
“Interferogram” was precisely (to the accuracy of Matlab 
computations) restored from 0.25x256x256=16384 samples.  Note 
that RMS quantization error for images quantized to 256 gray levels is                                                                                                                         
1/√12 =0.2887 in units of image gray level range (0-255). This level of 
accuracy was achieved in both cases after less than 20 iteration.   

The presence of outliers is illustrated in graphs of RMS restoration 
error in Figure 1, f) and Figure 2, f), where two plots of RMS errors vs 
the number of iteration are presented: RMS error found for all errors 
(solid line) and trimmed RMS error found for 90% of lowest errors. 

Several practical considerations can be added to conclude the 
discussion: 

- When image anisotropy is clearly visible, one can apply anisotropic 
oval or rectangular band limitation; for instance in reconstruction of 
the test image “Man” an oval band limitation shape was used with 
aspect ratio (ratio of horizontal to vertical diameters) 1.1 in view of the 
prevalence in the image of vertical edges . 

- The speed of convergence of the restoration error to zero depends 
of the type of the sampling grid used. It is the fastest when sampling 
grid is uniform; it is the slowest for random sampling grids; it is 
intermediate between above cases, when sampling grid is uniform 
with jitter.  This has a simple and intuitive explanation. For the case of 
random sampling, restoration error converges to zero non-uniformly 
over the image area: considerably slower in places, where samples are 
happen to be more sparse, and faster in places, where samples are 
denser than on average. 

- The method is somewhat redundant with respect to potential 
sparsity of image spectra. In Figure 1, e) and in Figure 2, e) shown 
white are image spectra non-zero spectral components that allow to 
reconstruct image with the same RMS error as that of image regular 
JPG compression. The ratio of the number of these coefficients to the 
number of image samples determines image spectrum sparsity at this 
level of image approximation accuracy. As one can see on these figures, 
within the selected spectrum shapes outlined by ovals there are a 
number of zero samples in image spectra. Experimental experience 
shows that ArSBLR-method requires 1.5-2 times excessive number of 
image samples with respect to the number of the image non-zero 
spectral coefficients. For instance, for the test image “Man” (Figure 1) 
the redundancy turns to be 1.84.  

- There are some texture images, which contain very few periodic 
components such as an image shown in Figure 3, a), for which ArSBLR- 
method, with its assumption that image spectra most intensive 
components are concentrated in low frequency area in spectral 
domain, will require excessive number of image samples.  The area 
bounded by image spectral components shown by white points in 
Figure 3, b) represents spectrum shape that would be selected by 
ArSBLR-method of sampling, and the number of spectral component 
within this area would be taken as the number of required samples.  
Obviously, this number substantially exceeds the number of non-zero 
spectral components of the image sufficient for its restoration. In such 
cases, for efficient application of the ArSBLR-method, more smart 
evaluation of signal spectrum shape using appropriate simple 
measurements of spatial parameters of the image texture is required.  

 

 
a) 

 
b) 

Figure 3. A texture image of extremely low sparsity (a) and its 

DCT spectrum (b, white dots) 

4. Conclusion 

The described ArSBLR-method of restoration of images of N 
samples from its arbitrarily taken M<N samples represents a less 
redundant and practical alternative to “Compressed Sensing”. For the 
given transform, in which the image is supposed to have a sparse 
spectrum, and for the given number of image samples M, it secures 
RMS image approximation error equal to the energy of M-N transform 
coefficients set to zero and, if appropriately applied, the absence of 
aliasing errors. Image restoration from its samples can be easy 
implemented using fast transform algorithms in the iterative 
Gershberg-Papoulis procedure with computational complexity 
O(2Nit·NlogN), where Nit is the number of iterations sufficient for 
achieving a required restoration accuracy.  
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