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Problem solving (e.g., drug design, traffic engineering, software development) by task forces rep-
resents a substantial portion of the economy of developed countries. Here we use an agent-based
model of cooperative problem solving systems to study the influence of diversity on the performance
of a task force. We assume that agents cooperate by exchanging information on their partial success
and use that information to imitate the more successful agent in the system – the model. The agents
differ only in their propensities to copy the model. We find that, for easy tasks, the optimal orga-
nization is a homogeneous system composed of agents with the highest possible copy propensities.
For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal
solutions. However, when the system size is adjusted to maximize performance the homogeneous
systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be
preferred to diversity.

PACS numbers: 89.75.Fb,87.23.Ge,89.65.Gh

INTRODUCTION

Understanding the factors that influence the capability
of a group of individuals to solve problems is a central is-
sue on collective intelligence [1–3] and on organizational
design [4–6], nonetheless the meager interchange of ideas
between these two research areas. Conventional wisdom
says that a group of cooperating individuals can solve a
problem faster than the same group of individuals work-
ing in isolation, and that the higher the diversity of the
group members, the better the performance. Although
there has been some progress on the quantitative un-
derstanding of the factors that make cooperative group
work effective [2, 7, 8], only very recently a workable min-
imal agent-based model of distributed cooperative prob-
lem solving system was proposed [3] (see also [5]). Here
we build on that model to dispute some common-sense
views of the benefits of diversity in group organization.

We consider a distributed cooperative problem solv-
ing system in which agents cooperate by broadcasting
messages informing on their partial success towards the
completion of the goal and use this information to imitate
the more successful agent (model) in the system. In do-
ing so, we follow Bloom in conferring imitative learning
the central role in the emergence of collective intelligence:
“Imitative learning acts like a synapse, allowing informa-
tion to leap the gap from one creature to another” [9].
The parameters of the model are the number of agents
in the system L and the copy or imitation propensities
pa ∈ [0, 1] of agent a = 1, . . . , L. Previous analyses have
considered the homogeneous case only, pa = p ∀a [3, 10].
Here we focus on the case that the copy propensities are
random variables instead, and measure the system per-
formance by the time t∗ the system requires to find the
solution of the task.

We find that endowing the agents with different copy
propensities can greatly reduce the chances that the sys-

tem is temporarily trapped in sub-optimal solutions (lo-
cal maxima), which is a very likely outcome of the imita-
tive search for large homogeneous systems [3, 10]. How-
ever, in the regime of system sizes where that search
strategy is more effective than the independent search,
diversity impairs the system performance and the opti-
mal performance is achieved by the homogeneous system.

THE TASK

The task posed to the agents is to find the unique
global maximum of a fitness landscape generated using
Kauffman’s NK model [11]. This model allows the tun-
ing of the ruggedness of the landscape – and hence of
the difficulty of the task – by changing the integer pa-
rameters N and K. More pointedly, the NK landscape is
defined in the space of binary strings of length N and so
this parameter determines the size of the solution space,
namely, 2N . The other parameter K = 0, . . . , N − 1 is
the degree of epistasis that has a direct influence on the
number of local maxima on the landscape. In particular,
for K = 0 the (smooth) landscape has a single maximum,
whereas for K = N−1, the (uncorrelated) landscape has
on the average 2N/ (N + 1) maxima with respect to sin-
gle bit flips and the NK model reduces to the Random
Energy model [12].

The NK model associates a fitness value Φ (x) to each
binary string x = (x1, x2, . . . , xN ), with xi = 0, 1, which
is given by an average of the contributions from each
entry of the string, i.e.,

Φ (x) =
1

N

N∑
i=1

φi (x) , (1)

where φi is the contribution of entry i to the fitness of
the string x. The quantity φi depends on the state xi
as well as on the states of the K right neighbors of i,
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i.e., φi = φi (xi, xi+1, . . . , xi+K) with the arithmetic in
the subscripts done modulo N . This is the reason the
parameter K is known as the degree of epistasis: it mea-
sures the degree of interaction (epistasis) among entries
of the strings. In addition, we assign to each φi a uni-
formly distributed random number in the unit interval
[11], which guarantees that Φ ∈ (0, 1) has a unique global
maximum. Finding this maximum for K > 0 is a NP-
complete problem [13], which means that the time re-
quired to solve the problem using any currently known
deterministic algorithm increases exponentially fast with
the length N of the strings [14]. For K = 0 the sole
maximum of Φ is easily located by picking for each en-
try i the state xi = 0 if φi (0) > φi (1) or the state
xi = 1, otherwise. Finally, we note that the correla-
tion between the fitness of any two neighboring configu-
rations (i.e., configurations that differ by a single entry)
is corr

(
Φ (xq) ,Φ

(
xb
))

= 1 − (K + 1) /N , where xa =
(x1, . . . , xi, . . . xN ) and xb = (x1, . . . , 1− xi, . . . , xN ), re-
gardless of the value of the entry i.

THE AGENTS

We consider a system composed of L agents and as-
sume that each agent can interact with all the others
(see [15] for the study of more complex connection pat-
terns). Each agent operates in an initial binary string
drawn at random with equal probability for the bits 0
and 1. At any trial t, agent a can choose between two
distinct processes to operate on its associated string.

The first process, which happens with probability 1−
pa, is a random, exploratory move in the solution space
that consists of flipping a single randomly selected bit of
the binary string. The second process, which happens
with probability pa, is the imitation of a model string,
i.e., the string with the highest fitness value among the
L strings at the trial. The imitation or copy process
is implemented as follows. First the target string a is
compared with the model string m and the different bits
are singled out. Then the agent selects at random one
of the distinct bits and flips it so that this bit is now
the same in both strings. As a result of the imitation
process the target string becomes more similar to the
model string. In the case the string a is identical to the
model string, the agent executes the exploratory move
with probability one.

The imitation procedure was motivated by the mecha-
nism used to simulate the influence of an external media
[16, 17] in the celebrated agent-based model proposed
by Axelrod to study the process of culture dissemination
[18]. This procedure sets our model apart from a similar
model studied in the Management and Organizations lit-
erature [5] (see also [6]) where the imitation mechanism is
such that the target string becomes identical to the model
string after imitation. This non-incremental change may

permanently stuck the search in a local maximum. In
that context, the exploratory move is called exploration,
since the agent may generate new information, and the
copying process, exploitation, since the agent uses infor-
mation that is already present in the system [19].

The parameter pa ∈ [0, 1] is the imitation or copy
propensity of agent a. If pa = 0 then agent a will explore
the solution space independently of the other agents. In
previous studies of this model [3, 10, 15] we assumed that
the L agents exhibited the same imitation behavior, i.e.,
pa = p for a = 1, . . . , L. Here we introduce variety in
the behavior of the agents by endowing them with differ-
ent copy propensities. In particular, we consider the case
that the pa’s are identically distributed independent ran-
dom variables drawn from the uniform probability dis-
tribution QU (pa) = 1 for pa ∈ [0, 1] and QU (pa) = 0
otherwise, as well as the case that they are drawn from
the trimodal distribution

QT (pa) =
1

3
δ (pa) +

1

3
δ (pa − 1/2) +

1

3
δ (pa − 1) . (2)

Since in both cases we have 〈pa〉 = 1/2, a suitable homo-
geneous system that can serve as standard for gauging
the benefits of diversity is that for which pa = 1/2 for
a = 1, . . . , L. We note that in the case of the trimodal
distribution we consider only realizations which exhibit
all the three different values of the copy propensities, re-
gardless of their proportions.

The search ends only when one of the agents finds the
global maximum and we denote by t∗ the number of trials
made by the agent that found the solution. Since the
trial number t is incremented by one unit when the L
agents have executed one of the two operations on its
associated string, t∗ stands also for the number of trials
made by any one of the L agents in the system. Hence
the total number of agent updates necessary to find the
global maximum is Lt∗ and so the computational cost
of the search can be defined as C ≡ Lt∗/2N , where for
convenience we have rescaled t∗ by the size of the solution
space 2N . We note that the update of the L agents in a
trial is sequential and so the model strings may change
several times within the same trial.

THE SIMULATIONS

Since the complexity of the task is a key element to
be considered when determining the organization that
maximizes the problem-solving performance of the sys-
tem [5, 6], we study imitative searches on easy tasks, i.e.,
smooth NK landscapes with a single maximum (K = 0),
and on more difficult tasks, i.e., rugged NK landscapes
characterized by the parameters (N = 12,K = 3) and
(N = 18,K = 5). For each realization of a fitness land-
scape we carry out 105 searches starting from different
initial conditions (initial strings and copy-propensity re-
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alizations) and the averaged results are then averaged
again over at least 103 realizations of landscapes char-
acterized by the same values of the parameters N and
K > 0. In the case K = 0 all landscapes are equivalent
and so we do not need to average over different realiza-
tions.

Smooth Landscapes
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FIG. 1. (Color online) Mean computational cost 〈C〉 as func-
tion of the system size L for a system of identical agents with
pa = 0.5 ∀a ( ), a system of agents with pa uniformly dis-
tributed in the unit interval (N), and a system of agents with
pa generated using a trimodal distribution (H). The symbols
(+) are the results for the independent search (pa = 0 ∀a) and
the symbols (×) for the imitative search with pa = 1 ∀a. The
solid line is the linear function 〈C〉 = L/218, and the dashed

line is the fitting 〈C〉 = 0.79
(
L/218

)0.65
of the uniform dis-

tribution data in the range L ∈
[
103, 105

]
. The parameters

of the smooth NK landscape are N = 18 and K = 0.

In Fig. 1 we show the performances, as measured by
the mean computational cost 〈C〉, of a system composed
of identical agents (i.e., pa = 0.5 for all agents), a sys-
tem composed of agents with pa drawn from the uni-
form distribution QU (pa) and a system of agents with pa
drawn from the (biased) trimodal distribution QT (pa).
As observed in previous analyses of the imitative search
[3, 10, 15], for each condition there is a system size at
which the computational cost is minimum. We note
that, for a landscape without local maxima, the best
performance of the imitative search is achieved by set-
ting pa = 1 for all agents (see Fig. 1), since copying the
fittest string at the trial is always a certain step towards
the solution of the problem [10]. This is the reason the
trimodal distribution gives the best performance among
the three distributions with 〈pa〉 = 0.5 exhibited in Fig.
1: it simply produces systems with a large proportion
of experts (i.e., agents with pa = 1). In fact, we have

verified that a bimodal distribution, in which half of the
agents have pa = 0 and the other half pa = 1, yields a
better performance than the trimodal distribution.

For L greater than the optimal system size, we ob-
serve two distinct growth regimes of the computational
cost. The first regime, which occurs for L < 2N and
holds over for nearly three decades for the data of Fig.
1, is characterized by a sublinear growth 〈C〉 ∼ Lα with
α < 1 and signals a scenario of mild negative synergy
among the agents since the time t∗ necessary to find the
global maximum decreases with Lα−1 rather than with
L−1 as in the case of the independent search (absence of
synergy). Although this regime is important because for
large N it is the only growth regime that can be observed
in the simulations, the specific value of the exponent α is
not very informative since it depends on the distribution
of the copy propensities (see Fig. 1) and it increases with
increasing N . For instance, for the uniform distribution
we found α ≈ 0.51 for N = 12, α ≈ 0.65 for N = 18
and α ≈ 0.72 for N = 22. The second regime, which
takes place for L > 2N , is described by the linear func-
tion 〈C〉 = L/2N and corresponds to the situation where
the system size is so large that the solution is found in
the first trials. In this regime, t∗ is not affected by the
value of L, i.e., adding more agents to the system does
not decrease the time required to find the solution. Fi-
nally, we note that for K = 0 the imitative search always
performs better than the independent search.
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FIG. 2. (Color online) Ratio µ between the standard devia-
tion of the computational cost and its mean value as function
of the system size L for the different system compositions
shown in Fig. 1. The symbols convention and the parameters
of the NK landscape are the same as for that figure.

It is also instructive to consider the ratio between the
standard deviation of the computational cost and its

mean value, i.e., µ =
[
〈C2〉/〈C〉2 − 1

]1/2
, which is shown

in Fig. 2. Clearly, µ also gives the ratio between the stan-
dard deviation of the time required to find the global
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maximum t∗ and its means value. In the regime that
µ ≈ 1, the distribution of the computational cost can be
well described by an exponential distribution, though we
note that the correct distribution in the case of the in-
dependent search is the geometric distribution [15]. The
high dispersion observed for small size heterogeneous sys-
tems is due to the great dispersion of the system com-
position, a factor whose effect decreases as L increases.
We recall that this effect is absent for L = 3 in the case
the propensities are generated by the trimodal distribu-
tion because we consider only realizations where the three
classes are represented in the system. This effect aside, it
was expected that the dispersion of t∗ would be smaller
than for the independent search: given the smoothness
and non-degeneracy of the landscape, the searches should
follow neighboring paths in the solution space. It is in-
teresting that although the search strategies exhibit the
same mean computational cost in the regime L � 2N ,
the imitative search has a much smaller dispersion than
the independent search.
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FIG. 3. (Color online) Fraction of the searches for which
the global maximum was found by agents with low-copy (4),
average-copy (◦) and high-copy (O) propensities for the case
pa is uniformly distributed in the unit interval. The parame-
ters of the smooth NK landscape are N = 18 and K = 0.

An interesting issue that we can address in the case
of heterogeneous systems is whether there is a correla-
tion between the propensity of an agent to imitate pa
and its chances of finding the global maximum. To treat
this issue for the case the propensities are generated by
the uniform distribution QU (pa) we divide the agents in
three classes, namely, low-copy propensity agents charac-
terized by pa ∈ [0, 1/3), average-copy propensity agents
for which pa ∈ [1/3, 2/3) and high-copy propensity agents
for which pa ∈ [2/3, 1]. Figure 3 shows the probability ξ
that an agent belonging to one of those classes hits the
global maximum. This figure corroborates our preceding
remark that for a smooth landscape the best strategy for
the agents is to copy the model string, since that string

always displays faithful information about the location
of the global maximum. For L > 2N the determining
factor for an agent to hit the solution is its proximity to
the global maximum when the initial strings are set ran-
domly and so all copy propensity classes perform equally
in this regime, as expected. The results for the trimodal
distribution QT (pa) are qualitatively the same as those
shown in Fig. 3, except that the high-copy propensity
class, which in this case is characterized by pa = 1, has a
slightly higher probability of finding the global maximum
than it has for the uniform distribution.

Rugged Landscapes

The study of the performance of the imitative search on
rugged landscapes is way more compute-intensive than
on smooth landscapes for two reasons: first, the number
of trials t∗ to hit the solution for system sizes near the
optimal size is about 100 times greater than for smooth
landscapes. Second, now we need to average the results
over many (at least, 103) realizations of the NK land-
scape. Hence to grasp the behavior of the system in
all regimes of L studied before, we will consider first a
rather small landscape with parameters (N = 12,K = 3)
and then verify whether the results hold true for a larger
landscape with parameters (N = 18,K = 5). Note that
for both landscapes the correlation between the fitness of
neighboring strings is 2/3.
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FIG. 4. (Color online) Mean computational cost 〈C〉 as func-
tion of the system size L for a system of identical agents with
pa = 0.5 ∀a ( ), a system of agents with pa uniformly dis-
tributed in the unit interval (N), and a system of agents with
pa generated using a trimodal distribution (H). The symbols
(+) are the results for the independent search pa = 0 ∀a. The
solid line is the linear function 〈C〉 = L/212. The parameters
of the rugged NK landscape are N = 12 and K = 3.

Figure 4 summarizes our results for the NK landscape
with parameters (N = 12,K = 3). This figure reveals
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that moderately large (i.e., L ∈ [20, 2000]) homogeneous
systems can easily be trapped by the local maxima, from
which escape can be extremely costly. This is akin to the
groupthink phenomenon [20], when everyone in a group
starts thinking alike, which can occur when people put
unlimited faith in a talented leader (the model strings,
in our case). The finding that these traps can be circum-
vented by endowing the agents with different parameters
of the behavioral rules is a main thrust of the arguments
pro diversity to boost system performance [4]. Our re-
sults corroborate that viewpoint since the heterogeneous
systems exhibit an overall performance slightly superior
to the independent search, which, we recall, is not af-
fected by the presence or absence of local maxima. The
surprising finding, however, is that for small system sizes,
where the imitative search can be said to be efficient in
the sense that t∗ decreases superlinearly with increasing
L [1, 2], the homogeneous system performs best.

The properly rescaled deviations around the mean val-
ues of the computational cost are shown in Fig. 5. As
opposed to the results for the smooth landscape (see Fig.
2), the deviations now are larger than those for the in-
dependent search for almost all values of L. The reason
is that the searches that are (temporarily) trapped by
local maxima contribute with very large costs, whereas
the searches that avoid those traps can reach the global
maximum very quickly. We note that µ does not account
for fluctuations of the computational cost due to the dif-
ferent landscape realizations: the standard deviation as
well as the mean of the computational cost are measured
for each landscape realization and then their ratio is av-
eraged over the different realizations.
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FIG. 5. (Color online) Ratio µ between the standard devia-
tion of the computational cost and its mean value as function
of the system size L for the different system compositions
shown in Fig. 4. The symbols convention and the parameters
of the NK landscape are the same as for that figure.

The chances that agents belonging to the low-copy,
average-copy or high-copy propensity classes hit the
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FIG. 6. (Color online) Fraction of the searches for which
the global maximum was found by agents with low-copy (4),
average-copy (◦) and high-copy (O) propensities for the case
pa is uniformly distributed in the unit interval. The parame-
ters of the rugged NK landscape are N = 12 and K = 3.

global maximum are shown in Fig. 6 in the case pa is
drawn from the uniform distribution QU (pa). The sit-
uation now is way more complex than for the smooth
landscape. In this case the minimum cost occurs for
L = 7, which coincides with the system size at which
the probability that an agent in the high-copy class hits
the solution is maximum. Interestingly, the agents in the
low-copy class are the most likely to hit the solution in
the region where the imitative search is outperformed by
the independent search, i.e., for the values of L where the
system seems to be more susceptible to the presence of
the local maxima. The results are qualitatively the same
for the trimodal distribution.

The average performance of the imitative search
on rugged landscapes characterized by the parameters
(N = 18,K = 5) is shown in Fig. 7 for small system sizes.
These results are qualitatively the same as those shown
in Fig. 4, except that a tendency that is barely visible in
that figure becomes evident now: the heterogeneous sys-
tems exhibit the best performance for very small (L < 10)
system sizes. Nevertheless, the advantage of the homoge-
neous system is striking for sizes in the range L ∈ [10, 30],
corroborating the puzzling finding that if the system size
can be adjusted to maximize performance then the homo-
geneous system performs better than the heterogeneous
one, given the constraint that 〈pa〉 is the same in all con-
ditions. The results regarding the dispersion around the
mean computational cost and the chances of agents in
the different copy propensity classes to hit the solution
are qualitatively the same as those discussed for the land-
scapes with parameters (N = 12,K = 3).

Finally, we note that since finding the global maxima of
NK landscapes with K > 0 is an NP-Complete problem
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FIG. 7. (Color online) Mean computational cost 〈C〉 as func-
tion of the system size L for a system of identical agents with
pa = 0.5 ∀a ( ), a system of agents with pa uniformly dis-
tributed in the unit interval (N), and a system of agents with
pa generated using a trimodal distribution (H). The symbols
(+) are the results for the independent search pa = 0 ∀a.
The parameters of the rugged NK landscapes are N = 18 and
K = 5.

[13], one should not expect that the imitative search (or
any other search strategy, for that matter) would find
those maxima much more rapidly than the independent
search.

CONCLUSION

Our findings corroborate, in part, the prevalent views
on the effects of diversity on the efficiency of cooperative
problem-solving systems [4]. In particular, in the case of
easy tasks, modeled here by smooth landscapes without
local maxima, for which there is an optimal imitation
strategy, the best performance is achieved by a homo-
geneous system of agents equipped with that strategy,
the so-called experts (see Fig. 1). In the case of difficult
tasks, modeled by landscapes plagued of local maxima,
we find that diversity is a palliative for the main defi-
ciency of the imitative search strategy, namely, the lure
of the model strings in the vicinity of the local maxima.
In fact, for some system sizes diversity may produce a
more than tenfold decrease of the computational cost in
comparison with that of homogeneous systems.

The surprising finding is that if one is allowed to adust
the system size L to maximize the performance, then the
homogeneous system will outperform the heterogeneous
ones. To offer a clue to understand this finding, we note
that the optimal size of the homogeneous system is L∗ ≈
N (see Figs. 1, 4 and 7), which means that the optimal

system is composed of a model string together with a
cloud of mutant strings that differ from it typically by one
or two entries. Since this is the manner viral quasispecies
explore their fitness landscapes [21], it is probably the
optimal (or near-optimal) way to explore rugged fitness
landscapes.
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