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LARGE DISPERSION, AVERAGING AND ATTRACTORS: THREE 1D

PARADIGMS

ANNA KOSTIANKO1, EDRISS TITI2,3 AND SERGEY ZELIK1

Abstract. The effect of rapid oscillations, related to large dispersion terms, on the dynamics of
dissipative evolution equations is studied for the model examples of the 1D complex Ginzburg-
Landau and the Kuramoto-Sivashinsky equations. Three different scenarios of this effect are
demonstrated. According to the first scenario, the dissipation mechanism is not affected and
the diameter of the global attractor remains uniformly bounded with respect to the very large
dispersion coefficient. However, the limit equation, as the dispersion parameter tends to infinity,
becomes a gradient system. Therefore, adding the large dispersion term actually suppresses the
non-trivial dynamics. According to the second scenario, neither the dissipation mechanism, nor
the dynamics are essentially affected by the large dispersion and the limit dynamics remains
complicated (chaotic). Finally, it is demonstrated in the third scenario that the dissipation
mechanism is completely destroyed by the large dispersion, and that the diameter of the global
attractor grows together with the growth of the dispersion parameter.
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1. Introduction

The study of systems involving rapid oscillations and their averaging is one of the central
subjects of the classical theory of dynamical systems which attract a great permanent interest
during the last century, see, e.g., [2,10,31,32,37–39] and references therein. Roughly speaking, it
is well-known that the structure of the averaged equations (as well as their validity) is determined
by certain resonance interactions. These resonances typically become very complicated when
multi-frequency systems are considered, which makes the corresponding averaging problem non-
trivial and challenging (e.g., due to the presence of small divisors, see, for instance, [2] and
references therein). Nevertheless, a lot of averaging results are now available for the case of
PDEs (which at least formally contain infinitely many frequencies) in both Hamiltonian and
dissipative cases, see, e.g., [5, 6, 9, 11–14,17–19,21,24,27–29,40] and references therein.

Very often the analytic structure of the limiting averaged equations is essentially simpler
than the structure of the initial problem which allows us to obtain a reasonable description
of the initial dynamics involving rapid oscillations using the averaged equations and singular
perturbation technique (see, e.g., [1, 42]). In particular, the presence of rapid oscillations may
prevent solutions from blowing up in finite time (e.g., for the complex Burgers equation with
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fast rotation, see [5, 30]), or may give the global in time regularity (e.g., for the 3D Navier-
Stokes equations involving strong Coriolis force term, see [6]) or global well-posedness of weak
solutions due to the averaging effects in large Fourier modes (e.g., for the KdV equations, see
[5,11,12,24]). However, the opposite effects when the presence of rapid oscillations destroys the
dissipation mechanism and makes the dynamics essentially more complicated are also known
(e.g., for the damped hyperbolic equations, see [43]). It is remarkable to observe that, even
though the limit averaged equations may remain relatively simple, and dissipative in this case,
the global dynamics of the initial system involving rapid oscillations cannot be described by
these averaged equations no matter how fast the oscillations are. Notably, it is not always
possible to obtain closed system giving the limit for the oscillatory dynamics or it may be even
not clear how to split the dependent variables into the ”slow” and ”fast” parts. In these cases, an
approach related with Young measures and the so-called slow observables may help to overcome
the problem, see [3, 4] for the details.

The aim of the present paper is to study the effect of rapid oscillations induced by large
dispersion on the long-time dynamics of dissipative PDEs. For simplicity, we restrict ourselves
to consider only the 1D complex Ginzburg-Landau and the Kuramoto-Sivashinsky equations
where, on the one hand, the resonances are not complicated and the averaged equations possess
a complete description and, on the other hand, a number of non-trivial phenomena which, as
believed, have general nature can be detected.

To be more precise, we consider the following three model problems on R:

∂tu = (1 + iL)∂2xu+ βu− (1 + iω)u|u|2;(1.1)

∂tu = (1 + iγ)∂2xu+ βu− (1 + iω)u|u|2 + L∂3xu;(1.2)

∂tu = −∂4xu− a∂2xu+ u∂xu+ L∂3xu,(1.3)

subject to periodic boundary conditions with fundamental periodic domain (−π, π). Here a, γ, ω
are given real parameters, β is a given complex parameter and L is a large real parameter. In
the first two equations u is assumed to be a complex-valued function: u = u1 + iu2, and it is
real-valued in the third equation.

Based on the analysis given below, we detect three principally different scenarios (paradigms)
of how the large dispersion may effect the global dynamics:

Paradigm I (corresponds to equation (1.1)). The dissipation mechanism is not affected by
large values of the dispersion parameter L and the diameter of the global attractor remains
bounded, as L → ∞. However, the large dispersion limit trivializes the dynamics and the limit
averaged equations is a gradient system, up to some simple change of variables. Thus, the global
attractor of the limit equation consists of equilibria and heteroclinic connections only (the so-
called regular attractor) and no complicated dynamics is possible in the non-averaged equations,
when L is large, see section 5 for more details.

Paradigm II (corresponds to equation (1.2)). Similarly to the previous one, the dissipation
mechanism is not affected. However, the complete trivialization of the dynamics, at the infinite
dispersion limit, does not happen. Although the global attractor of the limit averaged equations
is described by the finite system of ODEs, these ODEs are far from being a gradient system and
their dynamics is chaotic (at least for a range of the values of parameters (γ, β, ω) that forms
an open set in the space of parameters). Then this chaos persists in the initial equations (1.2),
when L is large enough, see Remark 5.7 below, and also [36] for more details.

Paradigm III (corresponds to equation (1.3)). The large dispersion destroys the dissipation
mechanism and the diameter of the global attractor grows, as L → ∞. In particular, as shown
below, see Proposition 4.7, the L2-norm of the global attractor associated with equation (1.3)
grows proportionally to L, as L → ∞. Moreover, we provide here rigorous justification to the
numerical investigation, reported in [22].
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The paper is organized as follows. The resonances and the corresponding infinite dispersion
limit equations are presented in section 2 for all three cases of equations (1.1), (1.2) and (1.3).
The existence of the corresponding global attractors for these limit equations, as well as the
upper bounds for the diameter of these global attractors, are verified in section 3. The singular
limit, L → ∞, is studied in section 4. In particular, the convergence of the global attractors of
the Ginzburg-Landau equations to the corresponding global attractors of the infinite dispersion
limit equations, as well as the growing lower bounds for the diameter of the global attractor of
the Kuramoto-Sivashinsky equation, are established in section 4. Finally, the gradient structure
of the infinite dispersion limit equations, corresponding to the Ginzburg-Landau equations (1.1)
and its consequences, are presented in section 5.

2. Preliminaries

In this section, we introduce the groups of solution operators associated with the auxiliary
linear dispersion equations:

∂tv = L∂3xv,(2.1)

∂tv = iL∂2xv(2.2)

on R, subject to periodic boundary conditions with fundamental periodic domain (−π, π),
and formulate their simple properties. Moreover, we compute here some averages of the non-
linearities with respect to the rapid time oscillations for large values of L, generated by these
groups, which are crucial for what follows.

We denote by H = L2
per(−π, π), the space of complex-valued 2π-periodic square integrable

functions, and introduce the family Hs, s ∈ R, of Sobolev spaces of periodic functions with
periodic fundamental domain (−π, π). Let en := einx, n ∈ Z, be the standard orthogonal basis
in H and let

v =
∑

n∈Z

vne
inx.

Neglecting the scalar factor 2π, we define the Hs-norm of v as follows:

(2.3) ‖v‖2Hs :=
∑

n∈Z

(|n|2 + 1)s|vn|2.

Lemma 2.1. The groups of solution operators HL(t) and FL(t), associated with equations (2.1)
and (2.2) respectively, are isometries on the Sobolev spaces Hs, for any s ∈ R. Moreover,
en = einx are eigenfunctions satisfying

(2.4) HL(t)en = e−iLn
3ten, FL(t)en = e−iLn

2ten, n ∈ Z.

Finally, these groups of solution operators are 2π/L-periodic with respect to time.

Indeed, formulas (2.4) follow immediately from equations (2.1) and (2.2) and all other asser-
tions of the lemma are immediate corollaries of these explicit expressions.

We are going to change the variable u in equations (1.2) and (1.3) using the transformation

(2.5) u(t) = HL(t)w(t)

and using the transformation

(2.6) u(t) = FL(t)w(t)
for equation (1.1). Then we will average the obtained rapidly oscillating in time terms. To this
end, we need to compute the resounant terms appearing from the nonlinearities. We will do
that in the following several lemmas. We start with the case of equation (1.2).
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Lemma 2.2. Let w ∈ Hs, s > 1/2, and let

(2.7) F (τ, w) := H1(−τ) ◦ (H1(τ)w · |H1(τ)w|2).
Then, for every fixed τ , the map w → F (τ, w) is a bounded smooth map from Hs to itself:

(2.8) ‖F (τ, w)‖Hs ≤ Cs‖w‖3Hs ,

with a constant Cs that is independent of τ . Moreover, the operator F is 2π-periodic with respect
to τ , and its time averaging has the form:

〈F (·, w)〉 := 1/(2π)

∫ 2π

0
F (τ, w) dτ =: N(w),

where the operator N has the following explicit form:

(2.9) N(w) = 2w‖w‖2H + w̄[w,w] − 2w0|w0|2e0 −
∑

n 6=0

wn(|wn|2 + 2|w−n|2)en.

with [w, v] :=
∑

n∈Zwnv−n and w =
∑

n∈Zwnen. In particular,

(2.10) N(w) =
(
2w0(‖w‖2H − |w0|2) + w̄0[w,w]

)
e0+

+
∑

n 6=0

(
wn(2‖w‖2H − |wn|2 − 2|w−n|2) + w̄−n[w,w]

)
en.

Proof. Indeed, estimate (2.8) follows immediately from the fact that Hs is an algebra, for s >
1/2, and that HL(τ) are isometries. So, we only need to compute the average of F (τ, w). Indeed,
inserting

(2.11) u = H1(τ)w =
∑

n∈Z

e−in
3τwnen

to (2.7) and using that ekel = ek+l, we have

(2.12) F (τ, w) =
∑

n,m,k∈Z

e−i(n
3+m3+k3−(n+m+k)3)τwnw−mwken+m+k.

Thus, the resonance condition reads

n3 +m3 + k3 = (m+ n+ k)3,

which is equivalent to (n+m)(m+ k)(n + k) = 0. Each of the resonance cases n+m = 0 and
m+ k = 0 give the term

∑

n∈Z

wnen
∑

m∈Z

w̄−mw−m = w
∑

m∈Z

|wm|2 = w‖w‖2H

in the right-hand side of (2.9), and the case n+ k = 0 gives the term
∑

m∈Z

w̄−mem
∑

n∈Z

wnw−n = w̄[w,w],

where we have used the fact that ēm = e−m. However, these three families of resonances are
not disjoint, but intersect when m = n = k = 0, for the zero mode (i.e., the corresponding term
w0|w0|2e0 is counted three times, so the term 2w0|w0|2e0 should be substracted). Moreover,
there are three pairwise intersections at (m,n, k) = (−l, l, l), (l, l,−l) and (l,−l, l), for l 6= 0 (all
counted twice). These intersections give the remaining terms in formula (2.9). It remains to
note that (2.10) is equivalent to (2.9) and Lemma 2.2 is proved. �

The next corollary gives the dissipativity of the non-linear operator N(w).
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Lemma 2.3. The operator N , defined by (2.9), satisfies the following estimate

(2.13) [N(w), w̄] ≥ ‖w‖4H .
In particular, the value of [N(w), w̄] is real for every w ∈ Hs, s > 1/2.

Proof. Indeed, using (2.10), we have

[N(w), w̄] = 2‖w‖4H + |[w,w]|2 − 2|w0|4 −
∑

n 6=0

|wn|2(|wn|2 + 2|w−n|2),

and the fact that [N(w), w̄] is real is proved. Let us prove (2.13). To this end, we transform the
last formula to a more convenient form:

(2.14) [N(w), w̄] = ‖w‖4H +
∑

n∈Z

|wn|2
∑

m6=n

|wm|2 +
∑

n∈Z

wnw−n

∑

m6=±n

wmw−m.

Using now the Young inequality |ab| ≤ 1
2(|a|2 + |b|2), we get

(2.15) |
∑

n∈Z

wnw−n

∑

m6=±n

wmw−m| ≤
∑

n∈Z

|wn||w−n|
∑

m6=±n

|wm||w−m| ≤

≤
∑

n∈Z

|wn||w−n|
1

2

∑

m6=±n

(|wm|2 + |w−m|2) =
∑

n∈Z

|wn||w−n|
∑

m6=±n

|wm|2 ≤

≤ 1

2

∑

n∈Z

(|wn|2 + |w−n|2)
∑

m6=±n

|wn|2 =
∑

n∈Z

|wn|2
∑

m6=±n

|wm|2.

This estimate together with (2.14) gives the desired estimate (2.13) and finishes the proof of the
lemma. �

Remark 2.4. We recall that, according to our notations, H = L2
per((−π, π),C),

‖w‖2H =
∑

n∈Z

|wn|2 =
1

2π

∫ π

−π
|w(x)|2 dx

and

(v,w)H =
∑

n∈Z

vnw̄n = [v, w̄] =
1

2π

∫ π

−π
v(x)w̄(x) dx

(note that w̄ =
∑

n∈Zwnen =
∑

n∈Z w̄−nen). Thus, inequality (2.13) can be rewritten in the
form

Re(N(w), w)H = (N(w), w)H ≥ ‖w‖4H
which indeed a standard form of the dissipativity condition.

We now formulate the analogue of Lemma 2.2 for equation (1.1).

Lemma 2.5. Let w ∈ Hs, s > 1/2, and let

(2.16) G(τ, w) := F1(−τ) ◦ (F1(τ)w · |F1(τ)w|2).
Then, for every fixed τ , the map w → G(τ, w) is a bounded smooth map from Hs to itself, and
its norms are uniformly bounded with respect to τ :

(2.17) ‖G(τ, w)‖Hs ≤ Cs‖w‖3Hs ,

with a constant Cs that is independent of τ . Moreover, the operator G is 2π-periodic with respect
to τ , and its time averaging has the form:

(2.18) M(w) := 〈G(·, w)〉 = 2w‖w‖2H −
∑

n∈Z

wn|wn|2en =
∑

n∈Z

wn(2‖w‖2H − |wn|2)en.
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Proof. As before, we only need to compute the average of G(τ, w). Inserting

u = F1(τ)w =
∑

n∈Z

e−in
2τwnen

into (2.16), after some elementary calculations we get

(2.19) G(τ, w) =
∑

n,m,k∈Z

ei(n
2−m2+k2−(n−m+k)2)τwnwmwken−m+k.

Thus, the resonance condition reads

n2 −m2 + k2 = (n−m+ k)2,

which is equivalent to (n−m)(k−m) = 0. Thus, we have two families of resonances n = m and
k = m. Each of them gives the term

∑

k∈Z

wkek
∑

n∈Z

wnw̄n = w‖w‖2H .

Observe that these resonance families are not disjoint, and intersect when (n, k,m) = (l, l, l),
l ∈ Z. The common resonance terms are counted twice, so we need to subtract the corresponding
term

∑
n∈Zwn|wn|2en. This gives the desired formula (2.18) and finishes the proof of Lemma

2.5. �

Analogously to the case of equation (1.2), we also have the dissipativity for M .

Lemma 2.6. The operator M , defined by (2.18), satisfies

(2.20) [M(w), w̄] ≥ ‖w‖4H
and again [M(w), w̄] is real.

Proof. Indeed, according to (2.18),

[M(w), w̄)] = 2‖w‖4H −
∑

n∈Z

|wn|4 = ‖w‖4H +
∑

n∈Z

|wn|2
∑

m6=n

|wm|2 ≥ ‖w‖4H ,

and the lemma is proved �

We conclude this section by considering the nonlinearity u∂xu associated with the Kuramoto-
Sivashinsky equation.

Lemma 2.7. Let w ∈ Hs, s > 1/2, and let

(2.21) H̃(τ, w) := H1(−τ) · (H1(τ)w · ∂xH1(τ)w).

Then, the operator H̃(τ, ·) is well-defined and is smooth as an operator from Hs to Hs−1, and
the analogue of uniform bounds (2.8) holds, namely

(2.22) ‖H̃(τ, w)‖Hs−1 ≤ Cs‖w‖2Hs ,

with a constant Cs that is independent of τ . Moreover, this operator is 2π-periodic with respect
to time, and its time averaging has the form:
(2.23)

K(w) :=
〈
H̃(·, w)

〉
= 〈w〉sp ∂xw + ie0

∑

n∈Z

nwnw−n = w0

∑

n∈Z

inwnen +

(
∑

n∈Z

inwnw−n

)
e0,

where 〈w〉sp = w0 = 1/(2π)
∫ π
−π w(x) dx.
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Proof. As before, we only need to check formula (2.23). Indeed, inserting (2.11) into (2.21),
after some elementary calculations, we get

(2.24) H̃(τ, w) =
∑

n,m∈Z

ine−i(n
3+m3−(m+n)3)τwnwm, en+m

and, therefore, the resonance condition is

n3 +m3 = (n+m)3,

which gives nm(n +m) = 0. Moreover, the case n = 0 gives nothing due to the multiplier in.
So, we only have the cases m = 0 and m + n = 0 which give the first and the second terms in
formula (2.23) respectively. In contrast to the previous cases, these two families intersect only
by (n,m) = (0, 0), which gives zero effect on K due to the multiplier in. Thus, Lemma 2.7 is
proved. �

Remark 2.8. In the case of real-valued functions u and w (which is the case for the Kuramoto-
Sivashinky equation), we have the additional condition

(2.25) w−n = w̄n, n ∈ Z,

and, therefore, the second term in the expression for K(w) equals zero identically. Moreover,
in the case of the Kuramoto-Sivashinsky equation, we have the additional restriction w0 = 0.
Thus, in that case the average of H equals zero identically:

(2.26) K(w) ≡ 0.

3. Global attractors

The aim of this section is to formulate and prove some uniform (with respect to L) estimates
for the global attractors of Ginzburg-Landau equations and verify that their analogue does not
take place for the KS equation. The estimates provided here are formal and can be justified
in a rigorous way, for instance, by using Galerkin approximation method and then passing to
the limit using the appropriate Aubin compactness theorems, see, e.g., [8, 14,41] and references
therein. We start with the case of equation (1.2).

Theorem 3.1. Equation (1.2) is well-posed in every Hs, with s ≥ 0, and the following dissipative
estimate holds:

(3.1) ‖u(t)‖Hs ≤ Qs(‖u0‖Hs)e−γt + C∗,

where the monotone function Q and the positive constants γ and C∗ depend on s, but are
independent of L, as L → ∞. Moreover, the following smoothing property is valid:

(3.2) ‖u(t)‖Hs ≤ (1 + t−Ns)Q̃s(‖u0‖H), t > 0,

where the monotone function Q̃s and the constant Ns are also uniform with respect to L, as
L → ∞. Finally, for any two solutions u1(t) and u2(t) of problem (1.2), the following estimate
holds:

(3.3) ‖u1(t)− u2(t)‖H ≤ eKt‖u1(0)− u2(0)‖H ,
where the constant K depends on the H-norms of ui(0), i = 1, 2, but is independent of L and t.

Proof. Since the assertion of the theorem is more or less standard, we give below only brief
derivation of the estimates stated in the theorem, see, e.g., [41] for more details. Moreover,
to avoid the technicalities, we derive the dissipative estimate (3.1) for s = 0. The estimate in
a general case, s ≥ 0, can be obtained in a straightforward way by using the bootstrapping
arguments.
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Taking the inner product in H of equation (1.2) with u and integrating by parts, after the
straightforward transformations, we have

(3.4)
1

2

d

dt
‖u(t)‖2H + ‖∂xu(t)‖2H +

1

2π
‖u(t)‖4L4 ≤ Reβ‖u(t)‖2H .

Using that 1
2π‖u(t)‖4L4 ≥ (Re β + 1)‖u(t)‖2H − C, and applying the Gronwall’s inequality to

estimate (3.4), we obtain the following uniform with respect to L, as L → ∞, estimate

(3.5) ‖u(t)‖2H +

∫ t+1

t
‖∂xu(t)‖2H dt ≤ Q(‖u0‖H)e−γt + C∗,

which coincides with the desired estimate (3.1), for s = 0.
Let us now verify the smoothing property (3.2). For simplicity, we deduce estimate (3.2) for

s = 1 only (for s > 1, it can be obtained in a standard way using bootstrap arguments). Indeed,
due to the embedding theorem

(3.6) L∞((t, t+ 1), L2((−π, π)) ∩ L2((t, t+ 1),H1((−π, π)) ⊂ L6((t, t+ 1)× (−π, π)),
estimates (3.4) and (3.5) one can establish an estimate for the L2((t, t + 1) × (−π, π))-norm of

the nonlinearity. Multiplying now equation (1.2) by −t∂2xu and taking the real part, after the
standard transformations, we have

(3.7)
d

dt
(t‖∂xu(t)‖2H) +Kt‖∂2xu(t)‖2H ≤ (1 +Bt)‖∂xu(t)‖2H + Ct‖u(t)‖6L6 ,

where K,B and C are positive constants. Integrating this relation with respect to time on [0, t),
with t ∈ (0, 1), and using (3.5), we deduce estimate (3.2) for s = 1.

Let us now verify the Lipschitz continuity (3.3). Indeed, let u1(t) and u2(t) be two solutions
of equation (1.2) and let v = u1 − u2. Then, the function v satisfies

(3.8) ∂tv = (1 + iγ)∂2xv + βv − (1 + iω)[u1|u1|2 − u2|u2|2] + L∂3xv, v(0) = u1(0)− u2(0).

Taking the inner product in H of this equation with v and arguing as before, we get

1

2

d

dt
‖v‖2H + ‖∂xv‖2H − Reβ‖v‖2H ≤

√
1 + w2(|u1|u1|2 − u2|u2|2, |u1 − u2|).

The right-hand side of this inequality can be estimated using the Hölder inequality with expo-

nents 3 and 3/2, and the interpolation inequality ‖v‖L3 ≤ C‖v‖5/6
L2 ‖v‖1/6H1 :

(3.9) (|u1|u1|2 − u2|u2|2|, |u1 − u2|) ≤ C(|u1|2 + |u2|2, |v|2) ≤ C(‖u1‖2L6 + ‖u2‖2L6)‖v‖2L3 ≤
≤ C(‖u1‖2L6 + ‖u2‖2L6)‖v‖5/3H ‖v‖1/3

H1 ≤ C(1 + ‖u1‖6L6 + ‖u2‖6L6)‖v‖2H + ‖∂xv‖2H .
Thus, we derived the following estimate:

1

2

d

dt
‖v‖2H ≤ C(1 + ‖u1‖6L6 + ‖u2‖6L6)‖v‖2H ,

where the constant C is independent of L, u1 and u2. Applying the Gronwall inequality to this
relation and using that the space-time L6-norm of ui is under control, due to estimate (3.5) and
the embedding (3.6), we derive the desired estimate (3.3). The uniqueness of a solution follows
from (3.3). Thus, Theorem 3.1 is proved. �

Let us consider now the Ginzburg-Landau equation (1.1).

Theorem 3.2. Equation (1.2) is well-posed in every space Hs, with s ≥ 0, and estimates (3.1),
(3.2) and (3.3) hold uniformly with respect to L, as L→ ∞.



LARGE DISPERSION 9

The proof of this theorem follows word by word the proof of the previous one and, thus, is
omitted.

Due to Theorems 3.1 and 3.2, the solution semigroups SLGL1(t) and SLGL2(t) associated with
equations (1.2) and (1.1) are well-defined in H:

(3.10) SLGLi(t)u(0) := u(t), t ≥ 0, u(0) ∈ H,

where i = 1, 2, and u(t) solves equations (1.2) or (1.1) if i = 1 or i = 2 respectively. Moreover,
according to estimate (3.1), these semigroups are dissipative in Hs, s ≥ 0:

(3.11) ‖SLGLi(t)u0‖Hs ≤ Qs(‖u0‖Hs)e−γst +Cs,

where Qs, γs and Cs depend on s, but are independent of L.
Our next step is to study the global attractors of the introduced semigroups. For the conve-

nience of the reader we start by recalling the definitions related with global attractors, see, e.
g., [8, 41] for more details.

Definition 3.3. Let X be a Banach space and S(t) : X 7→ X, t ≥ 0, be a semigroup in X.
Then, a set B is an absorbing set for the semigroup S(t) if for any bounded subset B ⊂ X there
exists T = T (B) such that

S(t)B ⊂ B
for all t ≥ T .

A set B ⊂ X is an attracting set for the semigroup S(t) if for every bounded B ⊂ X and every
open neighbourhood O(B) there exists time T = T (B,O) such that

S(t)B ⊂ O(B)
for all t ≥ T . The attraction property can be rewritten in the equivalent form using the so-called
non-symmetric Hausdorff distance. Namely, B is an attracting set for the semigroup S(t) if, for
every bounded B ⊂ X,

lim
t→∞

distX(S(t)B,B) = 0,

where the non-symmetric Hausdorff distance between sets U and V of X is defined as follows:

distX(U, V ) := sup
x∈U

inf
y∈V

‖x− y‖X .

Finally, a set A is a global attractor for the semigroup S(t) if the following conditions are
satisfied:

1) The set A is compact in X;
2) The set A is strictly invariant: S(t)A = A for all t ≥ 0;
3) The set A is an attracting set for the semigroup S(t).

The next corollary gives the existence of global attractors and their uniform bounds with
respect to L, as L→ ∞, for equations (1.2) and (1.1).

Corollary 3.4. Let SLGL1(t) : H 7→ H and SLGL2(t) : H 7→ H be the solution semigroups gener-
ated by equations (1.2) and (1.1), respectively. Then these semigroups possess global attractors
(AGL1(L) and AGL2(L), respectively) in the phase space H. Moreover, these global attractors
are uniformly bounded with respect to L, as L→ ∞, in Hs, for every s ≥ 0:

(3.12) ‖AGL1(L)‖Hs + ‖AGL2(L)‖Hs ≤ Cs,

where Cs depends on s, but is independent of L. Finally, the global attractors AGLi(L), for
i = 1, 2, can be described as follows:

(3.13) AGLi(L) = KGLi(L)
∣∣
t=0

,

where KGLi(L) ⊂ Cb(R,H
s), are the sets of all solutions of equation (1.2) (resp. (1.1)) which

are defined for all t ∈ R and are bounded.
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Proof. Indeed, according to the abstract theorem on the existence of a global attractor existence,
see, e. g., [8, 41], we need to verify that

1) Operators SLGLi(t) are continuous in H, with respect to the initial data, for every fixed t;
2) Semigroups SGLi(t) possess compact absorbing sets in H.
Note that the first assertion is an immediate corollary of estimate (3.3), so we only need to

verify the existence of a compact absorbing set. According to estimate (3.11), the set

B := {u ∈ H, ‖u‖2H ≤ 2C∗}
is an absorbing set for the semigroups SLGLi(t), i = 1, 2. However, this set is not compact in H.
To overcome this difficulty, we consider the sets

Bi := SLGLi(1)B, i = 1, 2.

Then, due to estimate (3.2), the sets Bi are uniformly (with respect to L, as L → ∞) bounded
in Hs, for all s > 0, and, therefore, they are compact in H. Thus, all of the assumptions of the
abstract global attractor existence theorem are verified and, consequently, the global attractors
AGLi(L), i = 1, 2, exist. Since the global attractor is always a subset of an absorbing set,
estimate (3.12) follows from the fact that the absorbing sets Bi are uniformly bounded, with
respect to L, in any Hs. The description (3.13) also follows from the above mentioned global
attractor existence theorem and the corollary is proved. �

Remark 3.5. It is well-known (see, e.g., [20]) that the global attractors AGL1 and AGL2 are
not only smooth, but also analytic (belong to certain class of Gevrey regularity). Moreover,
arguing in a standard way, one can also show that they are uniformly (with respect to L→ ∞)
bounded in the appropriate Gevrey norm.

We now turn to the case of Kuramoto-Sivashinsky equation, where the situation is a bit
different.

Theorem 3.6. Equation (1.3) possesses a unique solution u(t) ∈ H0 := {u ∈ H, 〈u〉sp = 0}
for every u0 ∈ H0, and the following estimate holds:

(3.14) ‖u(t)‖2H ≤ ‖u(0)‖2He−t + C(L2 + 1),

where the positive constant C is independent of L, but depends on the parameter a.

Proof. We only verify below the dissipative estimate (3.14). The existence and uniqueness can
be checked in a usual way (see, e.g., [41]). To this end, we need the following standard lemma
(see, e.g., [16, 23,33,35,41]).

Lemma 3.7. For every M > 0, there exists an odd function φ = φ(M) ∈ C∞ ∩H0 such that
the following inequality

(3.15) ‖∂2xw‖2H − (w∂xφ,w) ≥M‖w‖2H
holds for all w ∈ H2 such that w(0) = 0.

Following [23], we fix φ from Lemma 3.7 with M being large enough, consider a family of
shifted functions φs(x) := φ(x− s), s ∈ R, and introduce a functional

(3.16) F (u(t)) := min
s∈[−π,π]

‖u(t) − φs‖2H ,

where u is a solution of equation (1.3). Obviously, the minimum exists and is achieved for some
value s∗ = s(t) which satisfies the following orthogonality condition:

(3.17) (u(t)− φs∗ , ∂xφs∗) = 0.

Let now v(t) := u(t)− φs∗(t). Then, this function formally satisfies the equation

(3.18) ∂tu = ∂tv + ∂ts
∗(t)∂xφs∗ = −∂4xv − a∂2xv + φs∗∂xv + ∂xφs∗v + v∂xv + L∂3xv + fL(t),
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where fL(t) := −∂4xφs∗ −a∂2xφs∗ +φs∗∂xφs∗ +L∂3xφs∗ . Multiplying this equation, again formally,
by v, integrating by x and using the orthogonality condition (3.17), we obtain

(3.19)
1

2

d

dt
‖v‖2H + ‖∂2xv‖2H − 1

2
(v∂xφs∗ , v) = a‖∂xv‖2H + (fL, v).

In addition, we claim that the inequality (3.15) with φ = φs∗(t) is satisfied for w = v(t), for every
t (although v(t, s∗) 6= 0 in general). Indeed, from Lemma 3.7, we know that (3.15) with φ = φs∗
holds for any w ∈ H2 such that w(s∗) = 0. Let now K := v(t, s∗) and w = v −K. Then, using
again the orthogonality condition and the facts that 〈v〉sp = 〈∂xφs∗〉sp = 0 and w(s∗) = 0, we
get

(3.20) ‖∂2xv‖2H − (∂xφs∗v, v) = ‖∂2xw‖2H − (∂xφs∗w,w) − 2K(∂xφs∗ , v) +K2 〈∂xφs∗〉sp =
= ‖∂2xw‖2H − (∂xφs∗w,w) ≥M‖w‖2H =

=M(‖v‖2H − 2K 〈v〉sp +K2) =M‖v‖2H +MK2 ≥M‖v‖2H .
Thus, estimates (3.19) and (3.20) give

(3.21)
d

dt
‖v‖2H + ‖v‖2H2 +M‖v‖2H ≤ 2a‖v‖2H1 + 2|(fL, v)|.

It remains to recall that ‖fL(t)‖H ≤ C(|L|+ 1) and that, due to interpolation, we have

(3.22) 2a‖v‖2H1 ≤ ‖v‖2H2 + (M − 2) ‖v‖2H
if M is large enough, depending on the parameter a. This gives

(3.23)
d

dt
‖v‖2H + ‖v‖2H ≤ ‖fL‖2H ≤ C(L2 + 1),

and by the Gronwall’s inequality we formally derive the desired estimate (3.14).
However, there is still an essential gap in the proof, namely, although the minimizer s∗ = s∗(t)

for problem (3.16) exists, it is non-necessarily unique. To overcome this problem, we may
select one-valued (measurable) branch of the multi-valued function s∗(t) (which will be also
denoted by s∗(t)). More essential is the fact that s∗(t) may be non-differentiable and even
have discontinuities (jumps) at the points where the value s∗(t) is not unique. Thus, neither
∂ts

∗(t) nor ∂tv(t) are properly defined and the multiplication of equation (3.18) by v(t) should
be justified. This is done in the following lemma.

Lemma 3.8. Let u(t) ∈ H0, t ∈ [0, T ], be smooth. Then the function t → F (u(t)) is absolutely
continuous in time and the following formula is valid:

(3.24)
d

dt
F (u(t)) =

d

dt
‖v‖2H = 2(∂tu(t), v(t)), for almost all t ∈ [0, T ],

where v(t) = u(t)− φs∗(t) and s
∗(t) is a minimizer of (3.16).

Proof. We first note that, due to the triangle inequality, the distance function

u→ dist(u, {φs, s ∈ [−π, π]})
is Lipschitz continuous with Lipschitz constant one. For this reason, for any t1, t2 ∈ [0, T ], we
have

(3.25) | ‖v(t1)‖H − ‖v(t2)‖H | ≤ ‖u(t1)− u(t2)‖H ,
so the function t → ‖v(t)‖2H is Lipschitz continuous despite the fact that v(t) may have jumps.
Moreover, if the function u is regular enough, we have

(3.26) ‖u(t1)− u(t2)‖H ≤ C|t1 − t2|.
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Inequalities (3.25) and (3.26) show that the function t→ ‖v(t)‖2H is absolutely continuous and,
therefore, is differentiable for almost all t ∈ [0, T ]. Thus, we only need to find the derivative.
To this end, we take 0 < t2 < t1 < T such that ‖v(t)‖2H is differentiable at t1 and t2, and we
introduce w = u(t1)− u(t2). Then using the fact that F (u(ti)) is a minimum, we have

‖u(t1)−φs1‖2H ≤ ‖u(t1)−φs2‖2H = ‖u(t2)−φs2+w‖2H = ‖u(t2)−φs2‖2H+2(u(t2)−φs2 , w)+‖w‖2H
and, analogously,

‖u(t2)− φs2‖2H ≤ ‖u(t1)− φs1‖2H − 2(u(t1)− φs1 , w) + ‖w‖2H ,
where si = s∗(ti). From these two inequalities we conclude that

(3.27) 2

(
v(t1),

u(t1)− u(t2)

t1 − t2

)
− ‖u(t1)− u(t2)‖2H

t1 − t2
≤ ‖v(t1)‖2H − ‖v(t2)‖2H

t1 − t2
≤

≤ 2

(
v(t2),

u(t1)− u(t2)

t1 − t2

)
+

‖u(t1)− u(t2)‖2H
t1 − t2

.

Passing now to the limit t1 → t2 in the right-hand side of (3.27), we see that, for almost all
t2 ∈ [0, T ],

d

dt
‖v(t)‖2H

∣∣
t=t2

≤ 2(∂tu(t2), v(t2))

(recall that the existence of the derivative has already been proved). Analogously, passing to
the limit t2 → t1 in the left-hand side of inequality (3.27), we get

d

dt
‖v(t)‖2H

∣∣
t=t1

≥ 2(∂tu(t1), v(t1))

for almost all t1 ∈ [0, T ]. The last two inequalities imply (3.24) and finish the proof of the
lemma. �

Now, it is not difficult to finish the proof of the theorem. Indeed, the already proved lemma
justifies the derivation of the key inequality (3.23) for the case where the solution u(t) is smooth
(which will be the case if we start from smooth initial data). The validity of the desired estimate
(3.14) for any u(0) ∈ H0 follows then by the usual approximation arguments. Thus, Theorem
3.6 is proved. �

Corollary 3.9. Let the assumptions of Theorem (3.6) hold. Then, the Kuramoto-Sivashinsky
equation (1.3) possesses a global attractor AKS(L), in the phase space H0. Moreover, this global
attractor is smooth and

(3.28) ‖AKS(L)‖Hs ≤ Cs(L),

for some positive constant C dependent on s, a and L. In particular, C0(L) = CL with some C
independent of L, but dependent on the parameter a.

Proof. Indeed, analogously to (3.2), we have the smoothing property on a finite interval for the
parabolic equation (1.3) (see, e.g., [26]):

(3.29) ‖u(t+ 1)‖Hs ≤ C(1 + ‖u(t)‖Ns

H )

for some positive C and Ns. Moreover, the analogue of the Lipschitz estimate (3.3) also holds
for this equation (and can be proved analogously to the proof given in Theorem 3.1). Thus, the
proof of the corollary repeats word by word the proof of Corollary 3.4 and, for this reason, is
omitted. �

Remark 3.10. As before, one can show that the global attractor AKS is analytic in the sense
of Gevrey class. However, in contrast to the cases of Ginzburg-Landau equations, its Gevrey
norm is not uniformly bounded as L→ ∞. As we will see in the next section, the norms of the
global attractors AKS(L) indeed grow, as L→ ∞.
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4. The limit L→ ∞
The main aim of this section is to study the dependence of the above constructed global

attractors on L, as L → ∞. We start with the case of complex Ginzburg-Landau equations
(1.1) and (1.2). To this end, we change the dependent variable u as follows

(4.1)

{
u(t) = HL(t)w(t) for the case of equation (1.2),

u(t) = FL(t)w(t) for the case of equation (1.1),

where the isometries HL and FL are defined by (2.4). Then, introducing a small parameter
ε := 1

L , we rewrite equations (1.2) and (1.1) in the form

(4.2) ∂tw = (1 + iγ)∂2xw + βw − (1 + iω)F (t/ε, w),

and

(4.3) ∂tw = ∂2xw + βw − (1 + iω)G(t/ε, w)

respectively. The functions F and G are defined by (2.7) and (2.16).
Equations (4.2) and (4.3) contain rapidly oscillating in time terms F (t/ε, w) and G(t/ε, w)

and we can (formally) write the limit averaged equations:

(4.4) ∂tŵ = (1 + iγ)∂2xŵ + βŵ − (1 + iω)N(ŵ),

and

(4.5) ∂tŵ = ∂2xŵ + βŵ − (1 + iω)M(ŵ),

where the nonlocal operators N and M are introduced in Lemma 2.2 and Lemma 2.5. Our first
assertion gives the dissipative estimate for the solutions of the limit averaged equations.

Proposition 4.1. Problems (4.4) and (4.5) are globally well-posed for any ŵ(0) ∈ Hs, s ≥ 0,
and the corresponding solutions ŵ(t) satisfy the analogues of estimates (3.1), (3.2) and (3.3).

Indeed, due to the dissipativity conditions (2.13) and (2.20), the proof of these assertions
repeats word by word the proof of Theorem 3.1 and for this reason it is omitted.

Since the averaged problems (4.4) and (4.5) are globally well-posed, the corresponding solution

semigroups ŜGL1(t) : H 7→ H and ŜGL2(t) : H 7→ H are well defined:

ŜGLi(t)ŵ(0) := ŵ(t), i = 1, 2,

where ŵ(t) solves problem (4.4) if i = 1, and problem (4.5) if i = 2.

Proposition 4.2. The solution semigroups associated with averaged equations (4.4) and (4.5)

possess global attractors ÂGL1 and ÂGL2, respectively, which are bounded in Hs, for any s.
Moreover, these semigroups are invariant with respect to H1(s) and F1(s), respectively:

(4.6) H1(s) ◦ ŜGL1(t) = ŜGL1(t) ◦ H1(s), F1(s) ◦ ŜGL2(t) = ŜGL2(t) ◦ F1(s),

for all s ∈ R and t ≥ 0, therefore,

(4.7) HL(s)ÂGL1 = ÂGL1, FL(s)ÂGL2 = ÂGL2,

for all L > 0 and s ∈ R.

Proof. Indeed, the existence of global attractors can be verified exactly as in Corollary 3.4, and
(4.7) is an immediate corollary of the invariance (4.6). Thus, we only need to check (4.6). In
turn, in order to check (4.6), it is enough to verify the invariance of the nonlinearities N and M :

H1(s)N(w) = N(H1(s)w), F1(s)M(w) =M(F1(s)w), s ∈ R, w ∈ H.

Finally, the invariance of N andM can be easily verified using the explicit formulas (2.4), (2.10)
and (2.18). Thus, the proposition is proved. �
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Our next observation shows that the global attractors ÂGL1 and ÂGL2 of the limit equations
belong to the finite-dimensional invariant hyperplane of the phase space and, thus, can be
obtained by solving a system of ODEs.

Proposition 4.3. Let HD, where D ∈ N be the 2D + 1-dimensional hyperplane

(4.8) HD :=

{ D∑

n=−D

anen, an ∈ C

}
.

Then the hyperplanes HD are invariant with respect to equations (4.4) and (4.5), for all D.
Moreover, their global attractors belong to HD provided D = D(β, ω) is large enough:

(4.9) ÂGL1 ⊂ HD, ÂGL2 ⊂ HD.

In particular, we may take D = [
√
Reβ] + 1 for the case of equation (4.5), here [z] denotes the

integer part of the number z (the global attractor of (4.5) is trivial if Re β < 0).

Proof. Indeed, the invariance of hyperplanes HD follows immediately from the explicit structure
of nonlinearities N(w) and M(w) given by (2.10) and (2.18). So we only need to prove the
embeddings (4.9) if D is large enough. Let us start with the case of the equation (4.4).

Let us consider the equations for wk and w−k from (4.4). Then, multiplying them by w̄k and
w̄−k respectively, and taking a sum and the real part, after the standard calculations, we get

(4.10)
1

2

d

dt
(|wk|2 + |w−k|2) + (k2 − Re β)(|wk|2 + |w−k|2)+

+ Re((1 + iω)([N(w)]k · w̄k + [N(w)]−k · w̄−k)) = 0,

where we denote by [N(w)]k the kth coordinate of N(w) in the basis {en}n∈Z. Using the explicit
formula (2.10) for the coordinates of N(w), we see that

|Re((1 + iω)([N(w)]k · w̄k + [N(w)]−k · w̄−k))| ≤ C
√

1 + ω2‖w‖2H(|wk|2 + |w−k|2),

where the constant C is independent of k and ω. Thus, (4.10) reads

(4.11)
1

2

d

dt
(|wk|2 + |w−k|2) + (k2 − Reβ − C

√
1 + ω2‖w‖2H)(|wk|2 + |w−k|2) ≤ 0.

Since the H-norm of w is bounded on the global attractor, for sufficiently large k, the second
term in (4.11) becomes positive and the Gronwall’s inequality gives

|wk(t)|2 + |w−k(t)|2 ≤ e−αt(|wk(0)|2 + |w−k(0)|2), for some α > 0.

Thus, wk(t) = w−k(t) = 0 on the global attractor, for |k| large enough, and embedding (4.9) is
verified for the case of equation (4.4).

Let us now consider equation (4.5). The situation here is simpler since the expression

[M(w)]kw̄k = |wk|2(2‖w‖2H − |wk|2)

is real and is non-negative and the analogue of (4.11) reads

1

2

d

dt
|wk|2 + (k2 − Re β)|wk|2 ≤ 0.

Thus, indeed, wk(t) = 0 on the global attractor if k2 > Re β, and the proposition is proved. �

The next result shows that the distance between the appropriate averaged and non-averaged
trajectories is indeed small on the finite time interval.
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Theorem 4.4. Let w0 ∈ Hs, for some s ≥ 1, and let wε(t) and ŵ(t) be the non-averaged and
averaged solutions of (4.2) and (4.4), respectively, (or of (4.3) and (4.5), respectively). Assume
also that

wε(0) = ŵ(0) ∈ Hs.

Then, the following estimate holds:

(4.12) ‖wε(t)− ŵ(t)‖Hs ≤ Csεe
Kt,

where the constants Cs and K depend on s and on the Hs norm of w(0), but are independent
of ε, as ε→ 0.

Proof. Estimate of the form (4.12) is a standard result of the averaging theory and can be
referred to as the first Bogolyubov theorem, see, e.g., [10, 14, 29, 39]. However, verifying that
the difference between the averaged and non-averaged solutions is of order O(ε) requires some
analysis especially in the case of PDEs. For this reason, we sketch below the proof of this fact
for the case of equation (4.2) and s = 1 (following mainly [21]).

We first note that, according to the estimate (3.1) all of the trajectories wε(t) and ŵ(t) are
uniformly bounded in H1. The usual L2-parabolic regularity theorem applied to equations (4.2)
and (4.4) gives

(4.13) ‖∂twε‖L2((T,T+1),H) + ‖wε‖L2((T,T+1),H2) ≤ C,

where the constant C depends on the H1-norm of the initial data ŵ(0), but is independent of
ε, as ε→ 0, and T ≥ 0, and the same estimate holds for the limit function ŵ as well.

Let us define a function θ = θε(t) as the solution of the following equation:

(4.14) ∂tθ − (1 + iγ)∂2xθ + θ = (1 + iω)[F (t/ε, wε)−N(wε)] =: H̃(t/ε, wε(t)), θ(0) = 0.

We claim that

(4.15) ‖θε(t)‖H1 ≤ Cε, for all t ≥ 0,

for some constant C that is independent of ε. Indeed, expanding the function H̃(τ, wε(t, x)) into
the Fourier series with respect to τ , we have

H̃(τ, wε(t, x)) =
∑

n∈Z

einτFn(t, x),

where

Fn(t, x) :=
1

2π

∫ π

−π
H̃(τ, wε(t, x))e

−inτ dτ.

Moreover, by the definition of the operator N ,

F0 = 0

and, by the Parseval identity

∑

n∈Z

|Fn(t, x)|2 = 2π

∫ π

−π
|H̃(τ, wε(t, x))|2 dτ,

∑

n∈Z

|∂xFn(t, x)|2 = 2π

∫ π

−π
|∂xH̃(τ, wε(t, x))|2 dτ.

Integrating these equalities in x, we get

(4.16)
∑

n∈Z

‖Fn(t)‖2H1 = 2π

∫ π

−π
‖H̃(τ, wε(t))‖2H1 dτ.

Since wε are uniformly bounded in H1, we have

(4.17)
∑

n∈Z

‖Fn(t)‖2H1 ≤ C <∞,
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where the constant C is independent of ε and t (here we have implicitly used (2.17)). Further-
more, using the fact that ∂twε(t) are uniformly bounded in L2([T, T + 1],H), and wε(t) are
uniformly bounded in L2([T, T + 1],H2), with respect to ε, and the explicit formula (2.7) for
the nonlinearity F , arguing analogously, we can prove that

(4.18)
∑

n∈Z

‖∂tFn(·)‖2L2([T,T+1],H) ≤ C,

where the constant C is independent of ε and T .

We fix approximate solution θ̂ of (4.14) in the form

(4.19) θ̂(t) :=
∑

n 6=0

eint/ε(−(1 + iγ)∂2x + 1 + in/ε)−1Fn(t)

(we solve equation (4.14) with respect to the “fast” variable considering the “slow” variable t as
a parameter). Then, since the operator −(1 + iγ)∂2x generates an analytic semigroup in Hs, we
have

(4.20) ‖(−(1 + iγ)∂2x + 1 + in/ε)−1‖Hs→Hs ≤ Cs
ε

n
,

see, e.g., [26]. Estimate (4.20) together with (4.17) gives

(4.21) ‖θ̂(t)‖H1 ≤ Cε
∑

n 6=0

‖Fn(t)‖H1

n
≤ Cε


∑

n 6=0

1

n2




1/2
∑

n 6=0

‖Fn(t)‖2H1




1/2

≤ C ′ε.

We now set θ̃ := θ − θ̂. Then, this function solves

(4.22) ∂tθ̃ − (1 + iγ)∂2xθ̃ + θ̃ = h(t), θ̃(0) = −θ̂(0),
where

h(t) := −
∑

n 6=0

eint/ε(−(1 + iγ)∂2x + 1 + in/ε)−1∂tFn(t).

Using now estimate (4.18) together with (4.20), we obtain

(4.23) ‖h‖L2([T,T+1],H) ≤ Cε
∑

n 6=0

‖∂tFn‖L2([T,T+1],H)

n
≤

≤ Cε


∑

n 6=0

1

n2




1/2
∑

n 6=0

‖∂tFn(t)‖2L2([T,T+1],H)




1/2

≤ C ′ε,

where the constant C ′ is independent of ε and T . Estimates (4.21) and (4.23) show that the

solution θ̃ of equation (4.22) satisfies

‖θ̃(t)‖H1 ≤ Cε,

where the constant C depends on the initial condition w0, but is independent of ε and t. Thus,

since θ = θ̂ + θ̃, estimate (4.15) is indeed satisfied.
Now, we are ready to finish the proof of the theorem. Let w̃ := wε − ŵ + θ where θ solves

(4.14). Then, this function satisfies the following equation

(4.24) ∂tw̃ − (1 + iγ)∂2xw̃ = βw̃ − (β + 1)θ + (1 + iω)[N(ŵ)−N(wε)], w̃(0) = 0.

Multiplying this equation by ∂2xw̃ and integrating over x, we deduce that

(4.25)
d

dt
‖w̃‖2H1 ≤ C(‖w̃‖2H1 + ‖θ‖2H1 + ‖N(wε)−N(ŵ)‖2L2).
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Using that wε and ŵ are uniformly bounded in H1, one can easily see that

‖N(wε)−N(ŵ)‖L2 ≤ C‖w̃‖H1 + ‖θ‖H1

and, consequently,
d

dt
‖w̃‖2H1 ≤ K‖w̃‖2H1 + C‖θ‖2H1

for some K and C independent of t and ε. Applying the Gronwall’s inequality for that relation
and using (4.15), we deduce estimate (4.12) and finish the proof of the theorem. �

As a standard corollary of this theorem (see, for instance, [14] or [25]), we obtain the following
result on the convergence of global attractors AGL1(L) and AGL2(L) as L → ∞.

Corollary 4.5. Let the assumptions of Theorem (4.4) hold, and let ÂGL1 and ÂGL2 be the
global attractors of equations (4.4) and (4.5), respectively. Then the family of global attractors
AGL1(L) (resp. AGL2) of equations (1.2) (resp. (1.1)) converge, as L → ∞, to the global

attractors ÂGL1 (resp. ÂGL2) associated with limit equations (4.4) (resp. (4.5)) in the sense of
the upper semi-continuity in Hs, s ≥ 0:

(4.26) lim
L→∞

distHs(AGL1(L), ÂGL1) = lim
L→∞

distHs(AGL2(L), ÂGL2) = 0,

recall that distV (X,Y ) denotes the non-symmetric Hausdorff distance between sets X and Y in
the V norm.

Proof. Let u0 ∈ AGLi for i = 1 or i = 2. We need to estimate the distance between u0 and the
global attractor ÂGLi. According to (3.13), there exists a complete bounded trajectory uε(t),
t ∈ R, such that uε(t) ∈ AGLi, for all t ∈ R. Moreover, due to (3.12), this trajectory is uniformly
bounded by a constant independent of ε = 1/L in any space Hs. Let also wε(t) := HL(−t)uε(t)
(resp. wε(t) := FL(−t)uε(t)). Then, clearly

uε(0) = wε(0) = u0

and wε(t), t ∈ R, solves equation (4.2) (resp. (4.3)). Take now an arbitrary T > 0 and consider
the solution ŵ(t), for t ≥ −T , of the averaged equation (4.4) (resp. (4.5)) with the initial data

ŵ(−T ) = wε(−T ).
Then, due to estimate (4.12), we have

(4.27) ‖u0 − ŵ(0)‖Hs ≤ ‖wε(0) − ŵ(0)‖Hs ≤ Csεe
KT ,

where the constants C and K depend only on s. On the other hand, since the limit averaged
equation possesses a global attractor in Hs, for any δ > 0 we may find T = T (δ, s) such that

dHs(ŵ(0), ÂGLi) ≤ δ/2

for i = 1 or i = 2, respectively. Finally, fix ε ∈ (0, ε0] where ε0 > 0 is small enough that
Csε0e

KT ≤ δ/2, and using the triangle inequality, we see that

dHs(u0, ÂGLi) ≤ δ/2 + δ/2 = δ,

and since δ > 0 and u0 are arbitrary, this inequality proves the desired convergence (4.26), which
finishes the proof of the corollary. �

We now turn to the case of Kuramoto-Sivashinsky equation (1.3). In contrast to the case
of cubic nonlinearities, the quadratic Kuramoto-Sivashinsky nonlinearity disappears after the
averaging and we end up with the non-dissipative averaged equation. This explains why the
norm of the global attractor grows with L, as L → ∞. To be more precise, the following result
holds.
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Theorem 4.6. Assume that a 6= k2, k ∈ N. Then, for every R > 0 there exists L0 = L0(R)
such that u(t) ≡ 0 is the only complete trajectory on the global attractor AKS(L), for L ≥ L0

which belongs to the R-ball in H for all t ∈ R, i.e, the inequality

(4.28) ‖u(t)‖H ≤ R, t ∈ R,

where u ∈ AKS(L), implies that u ≡ 0.

Proof. Let u(t) be a complete trajectory of the KS equation (1.3) satisfying (4.28). Then,
according to the smoothing property, see (3.29), we infer that

(4.29) ‖u(t)‖Hs ≤ Rs, t ∈ R,

where the constants Cs depend on s, but are independent of L.
Let us now introduce a new dependent variable w(t) := HL(−t)u(t). Then, equation (1.3)

reads

(4.30) ∂tw = −∂4xw − a∂2xw + H̃(t/ε, w),

where the operator H̃ is defined by (2.21). Using now the fact that u is real, we obtain that

w−n = w̄n and, since 〈u〉sp = 0, formula (2.26) gives that the τ -average of H̃ equals zero. Thus,

the limit averaged equation for (4.30) reads

(4.31) ∂tŵ = −∂4xŵ − a∂2xŵ.

Let us fix τ ∈ R and a solution ŵ(t), t ≥ τ of equation (4.31) such that

ŵ(τ) = w(τ).

Then, using estimate (4.29) and arguing exactly as in Theorem 4.4, we establish that, for any
τ ∈ R and t ≥ 0, the following estimate holds:

(4.32) ‖w(t+ τ)− ŵ(t+ τ)‖H ≤ CεeKt, t ≥ 0,

where the positive constants C and K are independent of t, τ and ε := 1/L.
However, the situation is principally different from the case of Ginzburg-Landau equations,

since the averaged equation is now linear and have exponentially growing modes. We claim that
inequalities (4.32) and (4.28) imply the estimate

(4.33) ‖u(t)‖H ≤ Cε, t ∈ R,

for some positive C which may depend on R, but is independent of ε → 0. Instead of proving
estimate (4.33) for the function u, we will prove its analogue for w which is equivalent to (4.33)
since HL is an isometry in H.

Indeed, let PN be an orthogonal projector onto the unstable modes of equation (4.31) (i.e.,
to the vectors en with n2 < a) and QN := 1− PN is the associated projector to the stable ones
(we recall that

√
a /∈ N, so the equilibrium ŵ = 0 is hyperbolic). Thus, the solution ŵ satisfies

the standard exponential dichotomy estimates

(4.34)

{
‖PN ŵ(t+ τ)‖H ≥ C‖PN ŵ(τ)‖Heαt, t ≥ 0,

‖QN ŵ(t+ τ)‖H ≤ C‖QN ŵ(τ)‖He−αt, t ≥ 0,

for some positive C and α. Let us first consider PN -component of w. Then, using the solution
ŵ and estimate (4.34), we get

‖PNw(t+ τ)‖H ≥ ‖PN ŵ(t+ τ)‖H − ‖w(t + τ)− ŵ(t+ τ)‖H ≥ C‖PNw(τ)‖Heαt − CεeKt

which gives

C‖PNw(τ)‖Heαt ≤ CεeKt + ‖PNw(t+ τ)‖H .
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Taking now the supremum over τ ∈ R from the both sides of that inequality, we arrive at

(4.35) sup
τ∈R

‖PNw(τ)‖H ≤ Cε
eKt

Ceαt − 1
.

Fixing here t in an optimal way, we obtain the analogue of (4.33) for the PN -component of w:

(4.36) sup
τ∈R

‖PNw(τ)‖H ≤ C∗ε,

where C∗ is independent of ε.
Let us consider now the QN -component of w. Then, the analogous arguments lead to the

inequality

‖QNw(t+ τ)‖H ≤ C1‖QNw(τ)‖He−αt + C2εe
Kt.

Taking again the supremum over τ ∈ R, we arrive at

sup
τ∈R

‖QNw(τ)‖H ≤ C2ε
eKt

1− C1e−αt
, for all t >

ln(C1 + 1)

α
.

Minimizing the right-hand side with respect to t over [ln(C1 + 1)/α,∞) we obtain

(4.37) sup
τ∈R

‖QNw(τ)‖H ≤ C∗ε.

Thus, estimate (4.33) is verified.
We see that any trajectory w(t) of equation (4.30) which is contained in the ball of radius R

in H should belong to the Cε-neighbourhood of zero equilibrium w ≡ 0 (where the constant C
depends on R, but is independent of ε = 1/L). It remains to note that, since the equilibrium

w ≡ 0 is hyperbolic and H̃(τ, 0) = 0, DwH̃(τ, w)|w=0 = 0, the usual implicit function theorem
shows that the only solution w(t) of (4.30) which belongs to some small r-ball of H for any t (r
is independent of ε!) is w ≡ 0. Thus, u ≡ 0 if ε is small enough and the theorem is proved. �

The proof of Theorem 4.6 indicates particularly that the diameter of the global attractor
AKS(L) (say, in the H-norm) indeed expands as L → ∞:

(4.38) lim
L→∞

‖AKS(L)‖H = ∞,

but gives no information about the rate of expansion. The next proposition removes this draw-
back and shows that the upper bound given by estimate (3.14) is optimal. The proof is based
on the well-known fact on the existence of rotating waves for the perturbed KdV equation with
periodic boundary conditions, see [34] (see also [22] for the numerical study of the stability of
these waves as well as the related attractors).

Proposition 4.7. Let a > 1 and L be large enough. Then, the global attractor AKS(L) satisfies
the following estimate:

(4.39) C1L ≤ ‖AKS(L)‖H ≤ C2L,

where the positive constants C1, C2 are independent of L.

Proof. Indeed, the upper bound is an immediate corollary of estimate (3.14), so we only need
to establish the lower one. To this end, we do change of variables u(t) = Lv(t) where v is a new
dependent variable. Then, equation (1.3) reads

ε∂tv = ε(−∂4xv − a∂2xv) + v∂xv + ∂3xv,

and, finally, introducing the fast variable τ = Lt, we end up with

(4.40) ∂τv = ε(−∂4xv − a∂2xv) + v∂xv + ∂3xv,
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which is a well studied small damped-driven perturbation of the Korteweg de Vries equation.
In particular, as shown in [34], if a > 1 and ε is small enough, there is a rotating wave solution

v(τ, x) = V (x− cτ)

of this equation, where V = Vε(ξ) is a 2π-periodic function with zero mean and c = cε is a wave
speed, both of which have finite non-zero limits as ε → 0. Since this rotating wave obviously
belongs to the global attractor, it gives the desired lower bound and finishes the proof of the
proposition. �

5. Reduction to the gradient case

The main aim of this section is to give more comprehensive study of the dynamics of the
complex Ginzburg-Landau equation (1.1) for large dispersion parameter L. As we will see, the
large dispersion suppresses the non-trivial dynamics and makes the system gradient-like up to
some isometric transformation.

Indeed, the limit averaged equation for (1.1) has the following form, see (4.5):

(5.1)
d

dt
wn = −n2wn + βwn − (1 + iω)(2wn‖w‖2H − wn|wn|2), n ∈ Z,

where w(t) =
∑

n∈Z wn(t)en and β = α+ iγ.

Introducing the new variables vn such that wn = eiAn(t)vn, n ∈ Z, and the phases An(t) will
be determined later, we get

(5.2) ivn
d

dt
An(t) +

d

dt
vn = −n2vn + (α+ iγ)vn − (1 + iω)vn(2‖v‖2H + |vn|2), n ∈ Z.

Thus, if we fix the phases An as follows:

(5.3) An(t) :=

∫ t

0
(γ − 2ω‖v‖2H + ω|vn|2)dt =

∫ t

0
(γ − 2ω‖w‖2H + ω|wn|2)dt,

we arrive to the equation with real coefficients

(5.4)
d

dt
vn = −n2vn + αvn − 2vn‖v‖2H + vn|vn|2, n ∈ Z.

Moreover, any solution w(t) of (5.1) determines in a unique way the corresponding solution v(t)
of (5.4) and vice versa. Therefore, it is sufficient to study equations (5.4) only.

Furthermore, equations (5.4) possess a global Lyapunov function

(5.5) L(v) := ‖v‖2H1 + ‖v‖4H −
∑

n∈Z

1

2
|vn|4 − (α+ 1)‖v‖2H .

Indeed, as direct calculations show

(5.6)
d

dt
L(v(t)) = −2

∑

n∈Z

d

dt
vn
d

dt
vn = −2

∑

n∈Z

| d
dt
vn|2.

We are going to apply what is called regular attractors theory (see, e.g. [7]) in order to describe

the global attractor ÂGL2 of the limit equation (4.5) and the global attractor AGL2(L) of the
perturbed system (4.3), for L is large enough. However, our situation is slightly more complicated
in comparison with the standard theory since equation (5.4) possesses a huge symmetry group
and, for this reason, all of the equilibria are degenerate. Indeed, it follows from the structure of
(5.4) that the group R

∞ acting on the phase space by

(5.7) [S(φ)v]n = eiφnvn, φn ∈ R, φ = {φn}n∈Z ∈ R
∞
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is a symmetry group of (5.4). For this reason, if v is an equilibrium of equation (5.4), then we
automatically have the whole torus of equilibria generated by this symmetry group:

(5.8) Tv := {S(φ)v, φ ∈ R
∞}

(due to Proposition 4.3, vn ≡ 0 for |n| ≥ N = N(β), for any equilibrium and, consequently,
all these tori are, in a fact, finite-dimensional). Thus, the assumption on the hyperbolicity of
equilibria should be naturally replaced by the assumption that all of the equilibria tori (5.8) are
normally hyperbolic.

In order to verify this normal hyperbolicity and the consequent structure of the global attrac-

tor ÂGL2 of the limit equation (4.5), we use a simple observation that a real hyperplane

(5.9) Hreal := {v ∈ H, vn ∈ R, n ∈ Z}
is invariant with respect to the limit equation (5.4). Moreover, every initial data v ∈ H can
be reduced to this hyperplane by the appropriate action of the symmetry group S(φ). Thus,
it is sufficient to check all of the hyperbolicity assumptions for the case of real equations (5.4)
and after that obtain the required result for the initial complex phase space by the action of
the symmetry group. In particular, one has a natural relation between the real and complex
attractors:

(5.10) ÂGL2 = {S(φ)Âre
GL2, φ ∈ R

∞}.
The next lemma gives an explicit description of all possible equilibria for problem (5.4) and
establishes their hyperbolicity for generic β.

Lemma 5.1. The set R of all equilibria of equation (5.4) consists of v = 0 and v 6= 0 such that
the non-zero components {vn}n∈Z possess the following description: let

N0 :=
∑

n,vn 6=0

1, N2 :=
∑

n,vn 6=0

n2.

Then, for vn 6= 0,

(5.11)

{
‖v‖2H = N0

2N0−1α− N2

2N0−1 > 0,

|vn|2 = n2 + α−2N2

2N0−1 > 0

and every sequence of vn satisfying these conditions gives an equilibrium.
Moreover, a non-zero equilibrium v is not hyperbolic (i.e., the corresponding torus is not

normally hyperbolic) if and only if

(5.12) k2 +
α− 2N2

2N0 − 1
= 0 for some k for which vk = 0.

Finally, zero equilibrium is hyperbolic if and only if α 6= k2 for some k ∈ Z. In particular, all of
the equilibria are hyperbolic if α 6= Z.

Proof. Indeed, let v be a non-zero equilibrium. Then, equations (5.4) for vn 6= 0 are equivalent
to

(5.13) − n2 + α− 2‖v‖2H + |vn|2 = 0.

Solving these equations (by using that ‖v‖2H =
∑

n,vn 6=0 |vn|2), we obtain (5.11).
Let us now study the hyperbolicity. As we have already mentioned before, to this end, it is

sufficient to consider the case of real equilibrium v ∈ R∩Hreal and real perturbation θ ∈ Hreal.
For that class of perturbations, the equation of variations reads

(5.14)
d

dt
θn = −n2θn + αθn − 2θn‖v‖2H − 4vn(v, θ) + 3θnv

2
n, n ∈ Z.
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Let us try to find a non-zero eigenvector θ ∈ Hreal for the right-hand side of these equations
which would correspond to the zero eigenvalue.

For nth with vn 6= 0, equations (5.13) allow to transform the equilibria equation for (5.14) as
follows

−4vn(v, θ) + 2θnv
2
n = 0

or, since vn 6= 0, this gives

(5.15) θnvn = 2(v, θ).

Taking a sum of that equations, we see that (v, θ) = 2N0(v, θ) and consequently (v, θ) = 0.
Equation (5.15) now gives that θn = 0 for all n such that vn 6= 0. Let us now consider k ∈ Z

such that vk = 0. Then, equation for θk reads

θk(−k2 + α− 2‖v‖2H ) = θk(−k2 −
α− 2N2

2N0 − 1
) = 0

which implies θk = 0 if (5.12) is not satisfied. This implies θ ≡ 0 and non-zero equilibrium v is
hyperbolic. Moreover, we see that (5.12) cannot be true if α is not integer, so, for the non-integer
α any non-zero equilibrium v is automatically hyperbolic.

Finally, the assertion about zero equilibrium is evident and Lemma 5.1 is proved. �

The next lemma gives the stability of the equilibria found in the previous lemma.

Lemma 5.2. Let α > 0. Then all equilibria v ∈ R which have two or more non-zero components
(vm 6= 0 and vk 6= 0 for some m 6= k) are unstable. The only stable equilibria are the one
component ones: vn = 0 for n 6= k vk 6= 0 and k2 < α

2 .

Proof. Let us prove that any equilibrium with two or more non-zero components is unstable.
Indeed, let v ∈ R be such that vk 6= 0 and vm 6= 0 for some k 6= m. Then, equation (5.13) holds
for n = k and n = m. Then, (5.14) for these components reads

(5.16)
d

dt
θk = 2θk|vk|2 − 4vk(v, θ),

d

dt
θm = 2θm|vm|2 − 4vm(v, θ)).

Thus, if we take an inner product of the right-hand side of (5.14) with the non-zero vector θ
such that θn = 0 if n 6= k,m satisfying (v, θ) = 0 (exactly for this reason we need at least
two non-zero components of v), the result will be strictly positive: θ2kv

2
k + θ2mv

2
m > 0. By the

min-max theorem, this means that the corresponding equilibrium is unstable.
Let us now study the equilibria with only one non-zero component vk 6= 0 for some k 6= 0.

Then, (5.13) gives

(5.17) |vk|2 = α− k2 > 0.

Using this equation in order to simplify (5.14) with n 6= k and using that vn = 0, we have

d

dt
θn = θn(α− 2|vk|2 − n2) = θn(2k

2 − α− n2).

Finally, the equation for the component with n = k reads

d

dt
θk = −2θkv

2
k.

Thus, the linearization (5.14) at such equilibria is diagonal. Moreover, obviously, all entries on
the diagonal will be negative if and only if 2k2 − α < 0, and the lemma is proved. �

As a standard corollary of this lemma and the existence of a global Lyapunov function, we
obtain the following result.
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Theorem 5.3. Let the parameter α be such that all of the equilibria v ∈ R of the equation (5.4)
are hyperbolic (see Lemma 5.1). Then,
1) The unstable set of any equilibrium v0 ∈ R
(5.18) M+

v0 := {v ∈ H1, ∃v(t), t ∈ R, v solves (5.4), v(0) = v, lim
t→−∞

dist(v(t),Tv0) = 0}

is a finite-dimensional submanifold of the phase space (say, H1).

2) The global attractor ÂGL2 for equations (5.4) is a finite union of the finite-dimensional
unstable manifolds:

(5.19) ÂGL2 = ∪v0∈RM+
v0 .

3) Any trajectory v(t), t ∈ R, belonging to the global attractor is a heteroclinic orbit between two
equilibria v+0 , v

−
0 ∈ R belonging to different tori:

(5.20) lim
t→+∞

‖v(t) − v+0 ‖H1 = lim
t→−∞

‖v(t) − v−0 ‖H1 = 0, Tv+
0

6= Tv−
0

4) The global attractor ÂGL2 is exponential, i.e., there exists a positive constant α > 0 and a
monotone function Q such that

(5.21) distH1(S(t)B, ÂGL2) ≤ Q(‖B‖H1)e−αt

for any bounded subset B of the phase space H1.

Indeed, the standard regular attractors theory (see, e.g., [7, 15]) can be applied for the real-
valued version of equations (5.4) where all of the equilibria are hyperbolic in a usual sense and
the general case can be treated after that by expression (5.10).

Let us return now to the initial equation (5.1). To this end, we just need to put wn(t) =

eiAn(t)vn(t), where the phases An(t) are defined by (5.3). In particular, any equilibrium v ∈ R
generates a quasi-periodic solution of (5.1). Indeed, in that case

An(t) = (γ + ω(n2 − α))t+ Cn, vn 6= 0,

and we see the quasi-periodic motion with no more than two independent frequencies (generated
by γ−ωα and ω). Thus, invariant tori of equilibria for equation (5.4) correspond to the same tori,
but filled by quasi-periodic motions on the level of equation (5.1). Analogously, any heteroclinic
orbit connecting the equilibria of equation (5.4) corresponds to the heteroclinic orbits between
the aforementioned quasi-periodic motions on the invariant tori. Thus, Theorem 5.3 extends
to the initial equation (5.1) just by replacing the tori of equilibria by the tori filled by the
aforementioned quasi-periodic motions.

We conclude the section by treating the non-averaged equation (4.3) as a small (of order
ε = 1/L according to Theorem 4.4) perturbation of the limit equation (5.4). For simplicity, we
restrict ourselves to the gradient case β = α ∈ R, ω = 0, see Remark 5.6 below, concerning the
general case.

We first note that the non-averaged equations do not possess the symmetry group (5.7) and,
consequently the equilibria tori Tw0

disappear (in general) for the perturbed equations (4.3).
However, since the (finite-dimensional) invariant tori Tw, w ∈ R, are normally hyperbolic,

they preserve under the small perturbations. To be more precise, in the ε-neighbourhood of
every the non-perturbed torus Tw0

∼ T
N there exists a smooth (Ck-smooth) invariant torus

Tw0
(ε) of the perturbed system (4.3) if ε > 0 is small enough. In contrast to the non-perturbed

case, the points w = w(φ) ∈ Tw0
(ε), φ ∈ T

N are no more equilibria, but evolve slowly in time
and this evolution is governed by the appropriate system of ODEs

(5.22)
d

dt
φ = εfε(t, φ), φ ∈ T

N
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where the vector field fε is of order one as ε→ 0:

‖fε(t, ·)‖Ck(TN ) ≤ C.

We also mention that, although the non-perturbed system (4.3) depends explicitly on time,
the invariant tori Tw0

(ε) are independent of time since this equation is invariant under the
FL(s)-transformations.

Furthermore, according to the general theory, the normally hyperbolic invariant manifolds
Tw0

(ε) possess the unstable manifolds M+
w0
(ε) which are ε-close to the unstable manifolds M+

w0

of the limit system (moreover, by the above mentioned reasons, they are also independent of t).
Finally, applying the standard perturbation theory of regular attractors we end up with the

following result.

Theorem 5.4. Let the assumptions of Theorem 5.3 hold and let in addition β = α ∈ R and
ω = 0. Then, there exists ε0 > 0 such that, for any ε ∈ [0, ε0],
1) Every equilibria torus Tw0

, w0 ∈ R, generates (in an ε-neighbourhood) a normally hyperbolic
invariant torus Tw0

(ε) of the perturbed system (4.3) and the dynamics on it is governed by the
slow equations (5.22).

2) The global attractor AGL2(L) is a finite union of the finite-dimensional unstable manifolds
M+

w0
(ε) to that tori:

(5.23) AGL2(L) = ∪w0∈RM+
w0
(ε).

3) Every trajectory w(t) of the perturbed system (4.3) is a heteroclinic orbit between two trajec-
tories w−(t) ∈ Tw−

0

(ε) and w+(t) ∈ Tw+

0

(ε) belonging to different invariant tori:

(5.24) lim
t→+∞

‖w(t) − w+(t)‖H1 = lim
t→−∞

‖w(t) − w−(t)‖H1 = 0, w±(t) ∈ T
±
w0
(ε), Tw−

0

6= Tw+

0

.

4) The global attractor AGL2(L) is exponential, i.e., there exist a positive constant α and a
monotone function Q, such that, for every bounded set B of H1,

(5.25) distH1(Sε(t)B,AGL2(L)) ≤ Q(‖B‖H1)e−αt,

where Sε(t) is a solving operator for equation (4.3).

5) The global attractors AGL2(L) of the equation (4.3) tend to the global attractor ÂGL2 of
the limit equation (4.5) in the sense of symmetric Hausdorff distance. Moreover, the following
estimate holds

(5.26) distsym
H1 (AGL2(L), ÂGL2) ≤ C

(
1

L

)κ
,

where the positive constants C and κ are independent of L.

Indeed, although, in contrast to the general theory, we have now invariant normally hyperbolic
tori instead of hyperbolic equilibria, the proof of the result repeats word by word the standard
arguments and for this reason it is omitted (see, e.g., [7, 15,21] for the details).

Remark 5.5. The last result shows that, for large dispersion parameter L and ω = 0, the
dynamics generated by the Ginzburg-Landau equation (1.1) generates three different time scales:
1) rapid oscillations of the phases of the Fourier coefficients (with the frequency proportional to
L) generated by the group action FL(t);
2) order one heteroclinic motion of their amplitudes close to the limit dynamics of (5.4);
3) slow drift of their phases (of order ε = 1/L) governed by equations (5.22). We see that the
first two types of dynamics are regular. However, the last small drift on the invariant tori, in
principle, may be chaotic.
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Remark 5.6. The analogue of Theorem 5.4 remains true in the general case β ∈ C and ω 6= 0.
The only difference is that the invariant tori will be filled not by slow motions, but by the
motions ε-close to the quasi-periodic ones.

Remark 5.7. It is natural to ask whether or not the analogous results hold for the equation
(1.2). In particular, whether or not the averaged equations (4.4) are in a sense gradient or
possess the global Lyapunov function which forbid the complicated dynamics. As shown in [36],
the answer on this question is negative and the dynamics of (4.4) is chaotic at least for some
values of the parameters γ, β and ω. Indeed, equations (4.4) obviously possess the 4-dimensional
invariant manifold

(5.27) ŵ = ye0 + v(e1 + e−1), y, v ∈ C

and the dynamics on this manifold is given by the equations

(5.28)

{
ẏ = βy − (1 + iω)[y(|y|2 + 4|v|2) + 2ȳv2],

v̇ = (β − 1− iγ)v − (1 + iω)[v(2|y|2 + 3|v|2) + v̄y2].

Substituting y =
√
reiϕ, v =

√
ρeiψ , η = 2(ψ − ϕ) and scaling time by the factor of 2, we arrive

at the following 3-dimensional system:

(5.29)





ṙ = r[β − r − 4ρ− 2ρ(cos η − ω sin η)],

ρ̇ = ρ[β − 1− 2r − 3ρ− r(cos η + ω sin η)],

η̇ = −γ + ω(ρ− r) + r(sin η − ω cos η) + 2ρ(sin η + ω cos η)],

see [36] for the details. As shown there, there are values of parameters (γ0, β0, ω0) for which
equations (5.29) possess an equilibrium (r0, ρ0, η0) with 3 zero eigenvalues. Then, the standard
bifurcation analysis (also performed in [36]) shows that this system possesses the Shilnikov
saddle-focus homoclinic loop at certain values of the parameters and, as a result there is an open
region in the space of parameters (β, γ, ω) for which the corresponding dynamics generated by
(5.29) is chaotic.

Thus, in contrast to (4.5), the averaged equations (4.4) cannot be transformed to a gradient
system. Moreover, the standard perturbation arguments show that the chaotic dynamics of the
limit averaged equations (4.4) persists at the initial equations (1.2) if L is large enough.
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