
A Unified Approach for Learning the Parameters of
Sum-Product Networks

Han Zhao
Machine Learning Department

Carnegie Mellon University
han.zhao@cs.cmu.edu

Pascal Poupart
David R. Cheriton School of Computer Science

University of Waterloo
ppoupart@uwaterloo.ca

Abstract

We present a unified approach for learning the parameters of Sum-Product net-
works (SPNs). We prove that any complete and decomposable SPN is equivalent
to a mixture of trees where each tree corresponds to a product of univariate dis-
tributions. Based on the mixture model perspective, we characterize the objective
function when learning SPNs based on the maximum likelihood estimation (MLE)
principle and show that the optimization problem can be formulated as a signomial
program. Both the projected gradient descent (PGD) and the exponentiated gradi-
ent (EG) in this setting can be viewed as first order approximations of the signo-
mial program after proper transformation of the objective function. Based on the
signomial program formulation, we construct two parameter learning algorithms
for SPNs by using sequential monomial approximations (SMA) and the concave-
convex procedure (CCCP), respectively. The two proposed methods naturally ad-
mit multiplicative updates, hence effectively avoiding the projection operation.
With the help of the a unified framework, we also show an intrinsic connection
between CCCP and Expectation Maximization (EM), where EM turns out to be
another relaxation of the signomial program. Extensive experiments on 20 data
sets demonstrate the effectiveness and efficiency of the two proposed approaches
for learning SPNs. We also show that the proposed methods can improve the
performance of structure learning and yield state-of-the-art results.

1 Introduction

Sum-product networks (SPNs) are new deep architectures that admit exact probabilistic inference
in linear time in the size of the network [Poon and Domingos, 2011]. Different from traditional
graphical models, where a compact representation does not necessarily lead to tractable inference,
one of the most appealing advantages of SPNs is that they directly relate the inference complexity
with the network size, thus leading to a notion of inference-aware learning [Peharz, 2015], where
practitioners can explicitly control the inference cost during the learning of the model. This concep-
tual simplicity of SPNs does not sacrifice expressiveness. In fact, it has been shown recently that
SPNs share the same modeling power as Bayesian networks (BNs) while at the same time being
more flexible to encode context-specific independence in the network structure [Zhao et al., 2015].
Because of their flexibility and modeling power, SPNs have been widely applied in many fields of
AI [Cheng et al., 2014, Amer and Todorovic, 2012, Peharz et al., 2014].

Similar to traditional graphical models, there are two main problems when learning SPNs: structure
learning and parameter learning. In structure learning the goal is to infer the structure of SPNs di-
rectly from the data, and in general this process will also learn a set of parameters for the constructed
SPNs (see Gens and Domingos [2013] for more details). However, the parameters obtained along
with structure learning are often greedily or locally optimized in the sense that they do not necessar-
ily maximize (minimize) the objective function of interest globally. As a result, structure learning

1

ar
X

iv
:1

60
1.

00
31

8v
1

 [
cs

.L
G

]
 3

 J
an

 2
01

6

algorithms alone usually cannot fully exploit the expressiveness of the constructed model even if
when an oracle provides the best structure. Hence an efficient parameter learning algorithm for
SPNs can be helpful both as a fine-tuning step after structure learning and as a parameter estimation
procedure by itself.

Poon and Domingos [2011], Gens and Domingos [2012] proposed both generative and discrimina-
tive learning algorithms for parameters in SPNs. At a high level, these approaches view SPNs as
deep architectures and apply projected gradient descent (PGD) to optimize the data log-likelihood.
There are several drawbacks associated with PGD. For example, the projection step in PGD hurts
the convergence of the algorithm and it will often lead to solutions on the boundary of the feasible
region. In [Poon and Domingos, 2011, Gens and Domingos, 2012], they also mentioned the possi-
bility of applying EM algorithms to train SPNs by viewing sum nodes in SPNs as hidden variables.
They presented an EM update formula without details. However, the update formula for EM given
in [Poon and Domingos, 2011, Gens and Domingos, 2012] is incorrect, as pointed out by Peharz
[2015].

In this paper we take a different perspective and present a unified framework for learning the param-
eters of SPNs. We prove that any complete and decomposable SPN is equivalent to a mixture of trees
where each tree corresponds to a product of univariate distributions. Based on the mixture model
perspective, we can precisely characterize the functional form of the objective function based on the
network structure. We show that the optimization problem associated with learning the parameters
of SPNs based on the MLE principle can be formulated as a signomial program (SP), where both
PGD and the EG can be viewed as first order approximations of the signomial program after suitable
transformations of the objective function. We also show that the signomial program formulation can
be equivalently transformed into a difference of convex functions (DCP) formulation, where the ob-
jective function of the program can be naturally expressed as a difference of two convex functions.
The DCP formulation allows us to develop two efficient optimization algorithms for learning the
parameters of SPNs based on sequential monomial approximations (SMA) and the concave-convex
procedure (CCCP), respectively. Both proposed approaches naturally admit multiplicative updates,
hence effectively dealing with the constraints of the optimization. PGD, EG, SMA and CCCP can
all be viewed as different levels of convex relaxation of the original SP. Hence the framework also
provides an intuitive way to compare all four approaches. We conduct extensive experiments on
20 benchmark data sets to compare the empirical performance of PGD, EG, SMA and CCCP. Ex-
perimental results validate our theoretical analysis that CCCP is the best among all 4 approaches,
showing that it converges consistently faster and with more stability than the other three methods.
Furthermore, we use CCCP to boost the performance of LearnSPN [Gens and Domingos, 2013],
showing that it can achieve results comparable to state-of-the-art structure learning algorithms using
SPNs with much smaller sizes.

2 Background

2.1 Sum-Product Networks

To simplify the discussion of the main idea of our unified framework, we focus our attention on
SPNs over boolean random variables. However, the framework presented here is general and can be
easily extended into other discrete and continuous random variables. We first define the notion of
network polynomial. We use Ix to denote an indicator variable that returns 1 when X = x and 0
otherwise.

Definition 1 (Network Polynomial [Poon and Domingos, 2011]). Let f(·) ≥ 0 be an unnormalized
probability distribution over a Boolean random vector X1:n. The network polynomial of f(·) is
a multilinear function

∑
x f(x)

∏n
i=1 Ixi of indicator variables, where the summation is over all

possible instantiations of the Boolean random vector X1:n.

Definition 2 (Sum-Product Network [Poon and Domingos, 2011]). A Sum-Product Network (SPN)
over Boolean variables X1:n is a rooted DAG whose leaves are the indicators Ix1

, . . . , Ixn and
Ix̄1
, . . . , Ix̄n and whose internal nodes are sums and products. Each edge (vi, vj) emanating from a

sum node vi has a positive weight wij . The value of a product node is the product of the values of
its children. The value of a sum node is

∑
vj∈Ch(vi)

wijval(vj) where Ch(vi) are the children of vi
and val(vj) is the value of node vj . The value of an SPN is the value of its root.

2

The scope of a node in an SPN is defined as the set of variables that have indicators among the
node’s descendants. For any node v in an SPN, if v is a terminal node, say, an indicator variable
over X , then scope(v) = {X}, else scope(v) =

⋃
ṽ∈Ch(v) scope(ṽ). Poon and Domingos [2011]

also define the following properties of an SPN:
Definition 3 (Complete). An SPN is complete iff each sum node has children with the same scope.
Definition 4 (Decomposable). An SPN is decomposable iff for every product node v, scope(vi)

⋂
scope(vj) = ∅ where vi, vj ∈ Ch(v), i 6= j.

In this paper, we focus on complete and decomposable SPNs. For a complete and decomposable
SPN S, each node v in S defines a network polynomial fv(·) which corresponds to the sub-SPN
(subgraph) rooted at v. The network polynomial of S, denoted by fS , is the network polynomial
defined by the root of S, which can be computed recursively from its children. The probability
distribution induced by an SPN S is defined as PrS(x) , fS(x)∑

x fS(x) .

2.2 Signomial Programming (SP)

Before introducing SP, we first introduce geometric programming (GP), which is a strict subclass of
SP. A monomial is defined as a function h : R++ 7→ R: h(x) = dxa11 xa22 · · ·xann , where the domain
is restricted to be the positive orthant, the coefficient d is positive and the exponents ai ∈ R,∀i. A
posynomial is a sum of monomials: g(x) =

∑K
k=1 dkx

a1k
1 xa2k2 · · ·xankn . One of the key properties

of posynomials is its positivity, which allows us to transform it into the log-domain. A GP in standard
form has the following form:

minimize
K0∑
k=1

d0k

n∏
t=1

xa0ktt

subject to
Ki∑
k=1

dik

n∏
t=1

xaiktt ≤ 1, i = 1, . . . , p

dj

n∏
t=1

x
ajt
t , j = 1, . . . , q

(1)

where both the objective function and the inequaility constraints are posynomials and the equal-
ity constraints are monomials. Note that in GP there is also an implicit constraint that x ∈ Rn++.
GP in its standard form is not a convex program since posynomials are not convex functions in
general. However, we can effectively transform it into a convex problem by using the logarithmic
transformation trick on x, the multiplicative coefficients of each monomial and also each objec-
tive/constraint function [Chiang, 2005, Boyd et al., 2007]. We make the following change: let
y = log(x), cik = log(dik),∀i, k and take the log(·) of each function in (1). Then the standard GP
form is equivalent to the following formulation:

minimize log

(
K0∑
k=1

exp(aT0ky + c0k)

)

subject to log

(
Ki∑
k=1

exp(aTiky + cik)

)
≤ 0, i = 1, . . . , p

aTj y + cj = 0, j = 1, . . . , q

(2)

which is a convex program since the log-sum-exp function is convex in its argument and aTy + c
is affine in y. Furthermore, in the convex formulation of GP we have y ∈ Rn, i.e., we naturally
remove the positive constraint on x by taking the log transformation.

SP has the same form as GP except that the multiplicative constant d inside each monomial is not
restricted to be positive, i.e., d can take any real value. Although the difference seems to be small,
there is a huge difference between GP and SP from the computational perspective. The negative
multiplicative constant in monomials invalidates the log-log transformation trick frequently used in
GP. As a result, SP cannot be reduced into a convex program and is believed to be hard to solve [Boyd
et al., 2007].

3

3 Unified Approach for Learning

In this section we will first show that the parameter learning problem of SPNs based on the MLE
principle can be formulated as an SP. Although SP is hard to solve in general, the structure of the
problem at hand leads to efficient algorithms based on sequential convex approximations. More
specifically, we will use a sequence of optimal monomial approximations combined with backtrack-
ing line search and the concave-convex procedure to tackle the SP.

3.1 Sum-Product Networks as a Mixture of Trees

In this section we introduce the notion of induced trees from SPNs and use it to show that every
complete and decomposable SPN can be interpreted as a mixture of induced trees, where each
induced tree corresponds to a product of univariate distributions. From this perspective, SPNs in
general can be understood as a huge mixture model where the effective number of components in
the mixture model is determined by its network structure.
Definition 5 (Induced SPN). Given a complete and decomposable SPN S over X1:N , T is called
an induced SPN from S if

1. Root(S) ∈ TV .
2. If v ∈ TV is a sum node, then exactly one child of v in S is in TV , with the corresponding

edge be in TE .
3. If v ∈ TV is a product node, then all the children of v in S are in TV , with the corresponding

edges be in TE .

where in the definition above TV is the node set of T and TE is the edge set of T .

For notational convenience we will call T an induced SPN by omitting the fact that T is induced
from S if there is no confusion in the context.
Theorem 1. If T is an induced SPN from S , then T is a tree that is complete and decomposable.

Proof. Argue by contradiction that T is not a tree, then there must exist a node v ∈ T such that
v has more than one parent in T . This means that there exists at least two paths R, p1, . . . , v and
R, q1, . . . , v that connect the root of S(T), which we denote by R, and v. Let t be the last node
in R, p1, . . . , v and R, q1, . . . , v such that R, . . . , t are common prefix of these two paths. By con-
struction we know that such t must exist since these two paths start from the same root node R
(R will be one candidate of such t). Also, we claim that t 6= v otherwise these two paths over-
lap with each other, which contradicts the assumption that v has multiple parents. This shows that
these two paths can be represented as R, . . . , t, p, . . . , v and R, . . . , t, q, . . . , v where R, . . . , t are
the common prefix shared by these two paths and p 6= q since t is the last common node. From
the construction process defined in Def. 5, we know that both p and q are children of t in S. Re-
call that for each sum node in S, Def. 5 takes at most one child, hence we claim that t must be a
product node, since both p and q are children of t. Then the paths that t → p v and t → q v
indicate that scope(v) ⊆ scope(p) ⊆ scope(t) and scope(v) ⊆ scope(q) ⊆ scope(t), leading to
∅ 6= scope(v) ⊆ scope(p) ∩ scope(q), which is a contradiction of the decomposability of the
product node t. Hence as long as S is complete and decomposable, T must be a tree.

The completeness of T is trivially satisfied because each sum node has only one child in T . It is
also straightforward to verify that T satisfies the decomposability as T is an induced subgraph of S,
which is decomposable. �

As a result of Thm. 1, we will use the terms induced SPNs and induced trees interchangeably. With
some abuse of notation, we use T (x) to mean the value of the network polynomial of T with input
vector x.
Theorem 2. If T is an induced tree from S over X1:N , then T (x) =

∏
(vi,vi)∈TE θij

∏N
n=1 Ixn ,

where θij is the edge weight of (vi, vj) provided vi is a sum node and Ixn is the leaf indicator
variable in T of Xn.

Proof. First, the scope of T is the same as the scope of S because the root of S is also the root of
T . This shows that for each Xi there is at least one indicator Ixi in the constant otherwise the scope

4

of the root node of T will be a strict subset of the scope of the root node of S . Furthermore, for each
variable Xi there is at most one indicator Ixi in the constant. This is observed by the fact that there
is at most one child collected from a sum node into T and if Ixi and Ix̄i appear simultaneously in
the constant, then their least common ancestor must be a product node. Note that the least common
ancestor of Ixi and Ix̄i is guaranteed to exist because of the tree structure of T . However, this leads
to a contradiction of the fact that S is decomposable. As a result, there is exactly one indicator
Ixi for each variable Xi in T . Hence the multiplicative constant of the monomial admits the form∏n
i=1 Ixi , which is a product of univariate distributions. More specifically, it is a product of indicator

variables in the case of boolean input variables.

We have already shown that T is a tree and only product nodes in T can have multiple chil-
dren. It follows that the functional form of fT (x) must be a monomial, and only edge weights
that are in T contribute to the monomial. Combing all the above, we know that fT (x) =∏

(vi,vi)∈TE θij
∏n
i=1 Ixi . �

Definition 6 (Network cardinality). The network cardinality τS of an SPN S is the number of unique
induced trees from S.

Theorem 3. τS = fS(1|1) and S(x) =
∑τS
t=1 Tt(x), where Tt is the tth unique induced tree of S

and fS(1|1) is the value of the network polynomial of S with input vector 1 and all edge weights
set to be 1.

Proof. We prove by induction on the height of S. If the height of S is 2, then depending on the type
of the root node, we have two cases:

1. If the root is a sum node with K children, then there are C1
K = K different subgraphs that

satisfy Def. 5, which is exactly the value of the network by setting all the indicators and
edge weights from the root to be 1.

2. If the root is a product node then there is only 1 subgraph which is the graph itself. Again,
this equals to the value of S by setting all indicators to be 1.

Assume the theorem is true for SPNs with height≤ h. Consider an SPN S with height h+1. Again,
depends on the type of the root node, we need to discuss two cases:

1. If the root is a sum node with K children, where the kth sub-SPN has fSk(1|1)
unique induced trees, then by Def. 5 the total number of unique induced trees of S is∑K
k=1 fSk(1|1) =

∑K
k=1 1 · fSk(1|1) = fS(1|1).

2. If the root is a product node with K children, then the total number of unique induced trees
of S can then be computed by

∏K
k=1 fSk(1|1) = fS(1|1).

The second part of the theorem follows by using distributive law between multiplication and addition
to combine unique trees that share the same prefix in bottom-up order. �

Remark. The above three theorems prove the fact that an SPN S is essentially an ensemble of trees,
where each tree computes an unnormalized distribution over X1:N . The total number of unique
trees in S is characterized by the network cardinality τS , which only depends on the structure of
S. Equivalently, this means that an SPN S can be treated as a mixture model with τS effective
components, where each component is a simple deterministic distribution. We illustrate the theorems
above with a simple example shown in Fig. 1.

+

× × ×

X1 X1 X2 X2

=
+

×

X1 X2

+
+

×

X1 X2

+
+

×

X1 X2

Figure 1: A complete and decomposable SPN is a mixture of induced trees. Double circle indicates
univariate distributions over X1 and X2. Different colors are used to highlight unique induced trees
where each induced tree is a product of univariate distributions over X1 and X2.

5

[Zhao et al., 2015] show that every complete and decomposable SPN is equivalent to a bipartite
Bayesian network where a layer of hidden variables pointing to a layer of observable random vari-
ables. The number of hidden variables in the bipartite Bayesian network is equal to the number
of sum nodes in S. A naive expansion of such Bayesian network to a mixture model will lead to
a huge mixture model with O(2M) components. Here we complement their theory and show that
each complete and decomposable SPN is essentially a mixture of trees and the effective number of
unique induced trees is given by τS . Note that τS = fS(1|1) depends only on the network struc-
ture. Without loss of generality assuming that in S layers of sum nodes are alternating with layers of
product nodes, then fS(1|1) = Ω(2h), where h is the height of S . However, the exponentially many
trees are recursively merged and combined in S such that the overall network size is still tractable.

3.2 Maximum Likelihood Estimation as SP

Without loss of generality, let’s consider the likelihood function computed by an SPN S over n
binary random variables with model parameters w ∈ RD++ and input vector x ∈ {0, 1}n. Here the
model parameters in S are edge weights from every sum node and we collect them together into a
long vector w, where D corresponds to the number of edges emanating from sum nodes in S. By
definition, the probability distribution induced by S can be computed by

Pr
S

(x|w) ,
fS(x|w)∑
x fS(x|w)

=
fS(x|w)

fS(1|w)
(3)

where fS(1|w) means the value of the network polynomial by setting all the indicators at the leaves
of the network to be 1. The second equation in (3) comes from the fact that the partition function of
SPNs can be computed efficiently by setting all the indicators to 1 and evaluating the network in a
bottom-up fashion.

Theorem 4. Let S be an SPN with weights w ∈ RD++ over input vector x ∈ {0, 1}n, the network
polynomial fS(x|w) is a posynomial of the following form:

fS(x|w) =

fS(1|1)∑
l=1

n∏
i=1

I(l)xi
D∏
d=1

w
Iwd∈Sl
d (4)

where Sl is the lth unique induced tree taken from S, and I(l)xi is the indicator variable ofXi appearing
in Sl. fS(1|1) is the value of the network polynomial obtained by setting all indicators and weights
to be 1.

This theorem is a direct corollary of Thm. 1 and Thm. 2. From the definition of network polynomial,
we know that fS is a multilinear function of the indicator variables. Thm. 4 works as a complement
to characterize the functional form of a network polynomial in terms of w. Each monomial in (4)
corresponds exactly to a unique induced tree SPN from S. It follows that the likelihood function
LS(w) , PrS(x|w) can be expressed as the ratio of two posynomial functions. We now show that
the optimization problem based on MLE is an SP.

Proposition 5. The MLE problem for SPNs is a signomial program.

Proof. Using the definition of Pr(x|w) and Thm. 4, let L = fS(1|1), the MLE problem can be
rewritten as

maximizew
fS(x|w)

fS(1|w)
=

∑L
l=1

∏n
i=1 I

(l)
xi

∏D
d=1 w

Iwd∈Sl
d∑L

l=1

∏D
d=1 w

Iwd∈Sl
d

subject to w ∈ RD++

(5)

which we claim is equivalent to:

minimizew,t − t

subject to
L∑

l=1

t

D∏
d=1

w
Iwd∈Sl
d −

L∑
l=1

n∏
i=1

I(l)xi

D∏
d=1

w
Iwd∈Sl
d ≤ 0

w ∈ RD
++, t > 0

(6)

6

It is easy to check that both the objective function and constraint function in (6) are signomials.
To see the equivalence of (5) and (6), let p∗ be the optimal value of (5) achieved at w∗. Choose
t = p∗ and w = w∗ in (6), then −t is also the optimal solution of (6) otherwise we can find feasible
(t′,w′) in (6) which has −t′ < −t⇔ t′ > t. Combined with the constraint function in (6), we have
p∗ = t < t′ ≤ fS(x|w′)

fS(1|w′) , which contradicts the optimality of p∗. In the other direction, let t∗,w∗ be
the solution that achieves optimal value of (6), then we claim that t∗ is also the optimal value of (5),
otherwise there exists a feasible w in (5) such that t , fS(x|w)

fS(1|w) > t∗. Since (w, t) is also feasible in
(6) with −t < −t∗, this contradicts the optimality of t∗. �

The transformation from (5) to (6) does not make the problem any easier to solve. Rather, it destroys
the structure of (5), i.e., the objective function of (5) is the ratio of two posynomials. However, the
equivalent transformation does reveal some insights about the intrinsic complexity of the optimiza-
tion problem, which indicates that it is hard to solve (5) efficiently with the guarantee of achieving a
globally optimal solution.

3.3 Sequential Convex Approximations

PGD optimizes the log-likelihood by projecting the intermediate solution back to the positive orthant
after each gradient update. Since the constraint in (5) is an open set, we need to manually create a
closed set on which the projection operation can be well defined. One feasible choice is to project on
to Rnε , {x ∈ Rn++ | xi ≥ ε,∀i} where ε > 0 is assumed to be very small. To avoid the projection,
one direct solution is to use the exponentiated gradient (EG) method[Kivinen and Warmuth, 1997],
which was first applied in an online setting and latter successfully extended to batch settings when
training with convex models [Collins and McAllester, 2005, Globerson et al., 2007, Collins et al.,
2008]. EG admits a multiplicative update at each iteration and hence avoids the need for projection
in PGD. Both PGD and EG are first-order methods and they can be viewed as approximating the SP
after applying a log-transformation to the objective function only.

Notice that although (5) is a signomial program, its objective function is expressed as the ratio of
two posynomials. Hence, we can still apply the logarithmic transformation trick used in geometric
programming to its objective function and to the variables to be optimized. More concretely, let
wd = exp(yd),∀d and take the log of the objective function, it becomes equivalent to maximize the
following new objective without any constraint on y:

maximize log

L(x)∑
l=1

exp(

D∑
d=1

ydIyd∈Sl)

− log

(
L∑
l=1

exp(

D∑
d=1

ydIyd∈Sl)

)
(7)

Note that in the first term of Eq. 7 the upper index L(x) ≤ L , fS(1|1) depends on the current
input x because not all the induced tree SPNs take positive value for the current input x. By trans-
forming into the log-space, we naturally guarantee the positivity of the solution at each iteration,
hence transforming a constrained optimization problem into an unconstrained optimization problem
without any sacrifice. Furthermore, both terms in Eq. 7 are convex functions in y after the transfor-
mation. Hence, the transformed objective function is now expressed as the difference of two convex
functions, which is called a DC function [Hartman et al., 1959]. The class of DC functions is a
super class of convex functions and is closed under most of the operations that can be encountered
in mathematical optimization [Piot et al., 2014]. The optimization problem with respect to DC func-
tions is known as DCP. The DCP formulation helps us to design two efficient algorithms to solve the
problem based on the general idea of sequential convex approximations for nonlinear programming.

3.3.1 Sequential Monomial Approximation

Let’s consider the linearization of both terms in Eq. 7 in order to apply first-order methods in the
transformed space. To compute the gradient with respect to different components of y, we view
each node of an SPN as an intermediate function of the network polynomial and apply the chain rule
to back propagate the gradient. The differentiation of fS(x|w) with respect to the root node of the
network is set to be 1. The differentiation of the network polynomial with respect to a partial function
at each node can then be computed in two passes of the network: the bottom-up pass evaluates
the values of all partial functions given the current input x and the top-down pass differentiates the

7

+
vi,

∂fS(x|w)
∂fvi (x|w)

×vj, fvj(x|w) × ×

wij(yij)

Figure 2: Information flow about the computation of the gradient of log-network polynomial with
respect to yij(wij). Each edge yij(wij) collects the evaluation value from vj in bottom-up pass and
also differentiation value from vi in top-down pass.

network polynomial with respect to each partial function. Since the model parameters y(w) are only
associated with sum nodes, they can be easily computed once we have obtained the differentiations
for each node:

∂ log fS(x|w)

∂yij
=
∂ log fS(x|w)

∂fvi(x|w)
fvj (x|w)wij (8)

where vi is restricted to be a sum node and vj is a child of vi. Following the evaluation-differentiation
passes, the gradient of the objective function in (7) can be computed in O(|S|). Furthermore, al-
though the computation is conducted in y, the results are fully expressed in terms of w, which
suggests that in practice we do not need to explicitly construct y from w. An illustration of the
process is provided in Fig. 2.

Let f(y) = log fS(x|exp(y)) − log fS(1|exp(y)), consider the optimal first-order approximation
of f(y) at point y(k):

f̂(y) = f(y(k)) +∇yf(y(k))T (y − y(k)) (9)
which is equivalent to

exp(f̂(w)) = exp{f(y(k)) +∇yf(y(k))T (y − y(k))} = C1

D∏
d=1

w
∇ydf(y(k))

d (10)

in the original space, whereC1 is a positive constant irrelevant of y(w). Eq. 10 suggests that approx-
imating f̂(y) with the best linear function is equivalent to using the best monomial approximation
of the signomial program (5). This leads to a sequential monomial approximation of the original SP
formulation: at each iteration y(k), we linearize both terms in Eq. 7 and form the optimal monomial
function in terms of w(k). The additive update of y(k) in Eq. 9 leads to a multiplicative update of
w(k). We use a backtracking line search to determine the step size of the update in each iteration.

3.3.2 Concave-convex Procedure

Sequential monomial approximation is a general approximation technique that is applicable to any
SP [Boyd et al., 2007, Chiang, 2005]. It linearizes both terms in f(y) to obtain an approximation
of (7) and then applies gradient descent in the transformed space. However, it fails to utilize the
structure of the problem when learning SPNs. Here we propose another approach based on the
concave-convex procedure (CCCP) [Yuille et al., 2002] to utilize the fact that the objective function
is expressed as the difference of two convex functions. At a high level CCCP solves a sequence of
concave surrogate functions until convergence. In most of the cases, the maximum of a concave
surrogate function can only be solved using other convex solvers and as a result the efficiency of
the CCCP highly depends on the choice of the convex solvers. However, we show that by a suitable
transformation of the network we can compute the maximum of the concave surrogate in closed

8

form in time that is linear in the network size, which leads to a very efficient algorithm for learning
the parameters of SPNs. We also prove the convergence properties of our algorithm.

Consider the objective function to be maximized in DCP: f(y) = log fS(x| exp(y)) −
log fS(1| exp(y)) , f1(y) + f2(y) where f1(y) , log fS(x| exp(y)) is a convex function and
f2(y) , − log fS(1| exp(y)) is a concave function. We can linearize only the convex part f1(y) to
obtain a surrogate function

f̂(y, z) = f1(z) +∇yf1(z)T (y − z) + f2(y) (11)

for ∀y, z ∈ RD. Due to the convexity of f1(y) we have f1(y) ≥ f1(z) +∇yf1(z)T (y − z),∀y, z
and as a result the following two properties always hold for ∀y, z:

f̂(y, z) ≤ f(y) and f̂(y,y) = f(y) (12)

Hence, f̂(y, z) is a concave function in y. CCCP updates y at each iteration k by solving

y(k) ∈ arg max
y

f̂(y,y(k−1)) (13)

unless we already have y(k−1) ∈ arg maxy f̂(y,y(k−1)), in which case a generalized fixed point
y(k−1) has been found and the algorithm stops. It is easy to show that at each iteration of CCCP we
always have f(y(k)) ≥ f(y(k−1)). Note also that f(y) is computing the log-likelihood of input x
and therefore it is bounded above by 0. By the monotone convergence theorem, limk→∞ f(y(k))
exists and the sequence {f(y(k))} converges.

We now discuss how to compute a closed form solution for the maximization of the concave surro-
gate f̂(y,y(k−1)). Since f̂(y,y(k−1)) is concave for any fixed y(k−1), a sufficient and necessary
condition to find its maximum is

∇yf̂(y,y(k−1)) = ∇yf1(y(k−1)) +∇yf2(y) = 0 (14)
In the above equation, if we consider only the partial derivative with respect to yij(wij), we obtain

w
(k−1)
ij fvj (x|w(k−1))

fS(x|w(k−1))

∂fS(x|w(k−1))

∂fvi(x|w(k−1))
=
wijfvj (1|w)

fS(1|w)

∂fS(1|w)

∂fvi(1|w)
(15)

Since there are D partial derivatives in the gradient, this leads to a system of D nonlinear equations,
which is hard to solve in closed form. However, if we do a change of variable by considering
locally normalized weights w′ij (i.e., w′ij ≥ 0 and

∑
j w
′
ij = 1 ∀i), then a solution can be easily

computed. As described in [Peharz et al., 2015, Zhao et al., 2015], any SPN can be transformed into
an equivalent normal SPN with normalized weights in a bottom up pass as follows:

w′ij =
wijfvj (1|w)∑
j wijfvj (1|w)

(16)

We can then replace wijfvj (1|w) in the above equation by the expression it is equal to in Eq. 15 to
obtain a closed form solution:

w′ij ∝ w(k−1)
ij

fvj (x|w(k−1))

fS(x|w(k−1))

∂fS(x|w(k−1))

∂fvi(x|w(k−1))
(17)

Eq. 17 also suggests that in order to obtain a solution to Eq. 15, for each edge weight wij , the
sufficient statistics include only three terms, i.e, the evaluation value at vj , the differentiation value
at vi and the previous edge weight w(k−1)

ij , all of which can be obtained in two passes of the network
for each input x as illustrated in Fig. 2. Thus the computational complexity to obtain a maximum of
the concave surrogate is O(|S|).

We discussed before that the sequence of function values {f(y(k))} converges to a limiting point.
However, this fact alone does not necessarily indicate that {f(y(k))} converges to f(y∗) where
y∗ is a stationary point of f(·) nor does it imply that the sequence {y(k)} converges as k → ∞.
Zangwill’s global convergence theory [Zangwill, 1969] has been successfully applied to study the
convergence properties of many iterative algorithms frequently used in machine learning, including
EM [Wu, 1983], generalized alternating minimization [Gunawardana and Byrne, 2005] and also
CCCP [Lanckriet and Sriperumbudur, 2009]. Here we also apply Zangwill’s theory and combine
the analysis from Lanckriet and Sriperumbudur [2009] to show the following theorem:

9

Theorem 6. Let {w(k)}∞k=1 be any sequence generated using Eq. 17 from any positive initial point,
then all the limiting points of {w(k)}∞k=1 are stationary points of the DCP in (7). In addition,
limk→∞ f(y(k)) = f(y∗), where y∗ is some stationary point of (7).

We delay the proof of this theorem to appendix. It is worth to point out that the above theorem does
not imply the convergence of the sequence {w(k)}∞k=1. Thm. 6 only indicates that all the limiting
points of {w(k)}∞k=1, i.e., the limits of subsequences of {w(k)}∞k=1, are stationary points of the
DCP in (7). We also present a negative example in the appendix that invalidates the application of
Zangwill’s global convergence theory on the analysis in this case.

The convergence rate of general CCCP is still an open problem [Lanckriet and Sriperumbudur,
2009]. Salakhutdinov et al. [2002] studied the convergence rate of unconstrained bound optimization
algorithms with differentiable objective functions, of which our problem is a special case. The
conclusion is that depending on the curvature of f1 and f2 (which are functions of the training
data), CCCP will exhibit either a quasi-Newton behavior with superlinear convergence or first-order
convergence. We show in experiments that CCCP normally exhibits a fast, superlinear convergence
rate compared with PGD, EG and SMA. Both CCCP and EM are special cases of a more general
framework known as Majorization-Maximization Hunter and Lange [2004]. We show that in the
case of SPNs these two algorithms coincide with each other, i.e., they lead to the same update
formulas despite the fact that they start from totally different perspectives. We refer interested
readers to the appendix for a detailed derivation and discussion. We summarize all 4 algorithms
and highlight their connections and differences in Table 1.

Table 1: Summary of PGD, EG, SMA and CCCP. Var. means the optimization variables.

Algo Var. Update Type Approx. Type Update Formula
PGD w Additive Linearization w

(k+1)
d ← PRε++

{
w

(k)
d + γ(∇wdf1(w

(k))−∇wdf2(w
(k)))

}
EG w Multiplicative Linearization w

(k+1)
d ← w

(k)
d exp{γ(∇wdf1(w

(k))−∇wdf2(w
(k)))}

SMA logw Multiplicative Monomial w
(k+1)
d ← w

(k)
d exp{γw(k)

d × (∇wdf1(w
(k))−∇wdf2(w

(k)))}
CCCP logw Multiplicative Log-sum-exp+Affine w

(k+1)
ij ∝ w(k)

ij ×∇vifS(w
(k))× fvj (w(k))

4 Experiments

4.1 Experimental Setting

We conduct experiments on 20 benchmark data sets from various domains to compare and evaluate
the convergence performance of the four algorithms: PGD, EG, SMA and CCCP. These 20 data sets
are widely used in [Gens and Domingos, 2013, Rooshenas and Lowd, 2014] to assess different SPNs
for the task of density estimation. The domain of these 20 data sets include click-through logs, plant
habitats, nucleic acid sequences, text documents, movie rates and many others. All the features in
the 20 data sets are binary features. The 20 data sets cover three typical statistical estimation settings
where the number of training instances is either greater, similar or much smaller than the number
of optimization variables. Hence, they enable a thorough experimental comparison to test these 4
algorithms under different applications and statistical scenarios. Detailed information about these
20 datasets and the SPNs used in the experiments are provided in Table. 2 and Table. 5. All the
SPNs that are used for comparisons of PGD, EG, SMA and EM are trained using LearnSPN [Gens
and Domingos, 2013]. We throw away the weights returned by LearnSPN and use random weights
as initial model parameters. The random weights are determined by the same random seed in all
four algorithms.

4.2 Parameter Learning

We implement all four algorithms in C++ and test them on a compute server with 32 cores. Each
core is Intel Xeon(R) CPU E5 2.00GHz. For each algorithm, we set the maximum number of
iterations to 50. If the absolute difference in the training log-likelihood at two consecutive steps is
less than 0.001, the algorithms are stopped. We combine PGD, EG and SMA with backtracking line

10

Table 2: Statistics of data sets and models. N is the number of variables modeled by the network, |S|
is the size of the network and p is the number of parameters to be estimated in the network. N×n/p
means the ratio of training instances times the number of variables to the number parameters.

Data set N |S| p Train Valid Test N × n/p
NLTCS 16 13,733 1,716 16,181 2,157 3,236 150.871
MSNBC 17 54,839 24,452 291,326 38,843 58,265 202.541
KDD 2k 64 48,279 14,292 180,092 19,907 34,955 806.457
Plants 69 132,959 58,853 17,412 2,321 3,482 20.414
Audio 100 739,525 196,103 15,000 2,000 3,000 7.649
Jester 100 314,013 180,750 9,000 1,000 4,116 4.979
Netflix 100 161,655 51,601 15,000 2,000 3,000 29.069
Accidents 111 204,501 74,804 12,758 1,700 2,551 18.931
Retail 135 56,931 22,113 22,041 2,938 4,408 134.560
Pumsb-star 163 140,339 63,173 12,262 1,635 2,452 31.638
DNA 180 108,021 52,121 1,600 400 1,186 5.526
Kosarak 190 203,321 53,204 33,375 4,450 6,675 119.187
MSWeb 294 68,853 20,346 29,441 3,270 5,000 425.423
Book 500 190,625 41,122 8,700 1,159 1,739 105.783
EachMovie 500 522,753 188,387 4,524 1,002 591 12.007
WebKB 839 1,439,751 879,893 2,803 558 838 2.673
Reuters-52 889 2,210,325 1,453,390 6,532 1,028 1,540 3.995
20 Newsgrp 910 14,561,965 8,295,407 11,293 3,764 3,764 1.239
BBC 1058 1,879,921 1,222,536 1,670 225 330 1.445
Ad 1556 4,133,421 1,380,676 2,461 327 491 2.774

search and use a weight shrinking coefficient set at 0.8. The learning rates are initialized to 1.0 for
all three methods. For PGD, we set the projection margin ε to 0.01. There is no learning rate and
no backtracking line search in CCCP. We set the smoothing parameter to 0.001 in CCCP to avoid
numerical issues.

We show in Fig. 3 the average log-likelihood scores on 20 training data sets to evaluate the con-
vergence speed and stability of PGD, EG, SMA and CCCP. Clearly, CCCP wins by a large margin
over PGD, EG and SMA, both in convergence speed and solution quality. Furthermore, among the
four algorithms, CCCP is the most stable due to its guarantee that the log-likelihood (on training
data) will not decrease after each iteration. These 20 experiments also clearly show that CCCP of-
ten converges in a few iterations, exhibiting a superlinear convergence speed. On the other hand,
PGD, EG and SMA are on par with each other since they are all first-order methods. SMA is more
stable than PGD and EG and often achieves better solutions than PGD and EG. On large data sets,
SMA also converges faster than PGD and EG. Surprisingly, EG performs worse than PGD in some
cases and is quite unstable despite the fact that it admits multiplicative updates. The “hook shape”
curves of PGD in some data sets are due to the projection operations, which makes PGD the most
unstable one among the four algorithms. The computational complexity per update is O(|S|) in all
four algorithms. The constant involved in the |S| term of CCCP is slightly larger than those of the
other three algorithms as there are more exp(·) calls in CCCP. However, in practice, CCCP often
takes less time than the other three algorithms because it takes fewer iterations to converge. We list
detailed running time statistics for all four algorithms on the 20 data sets in Table. 3.

4.3 Boosting Structure Learning

In this experiment, we combine CCCP as a “fine tuning” procedure with the structure learn-
ing algorithm LearnSPN and compare it to the state-of-the-art structure learning algorithm ID-
SPN [Rooshenas and Lowd, 2014]. More concretely, we keep the model parameters learned from
LearnSPN and use them to initialize CCCP. We then update the model parameters globally using
CCCP as a fine tuning technique. This normally helps to obtain a better generative model since the
original parameters are learned greedily and locally during the structure learning algorithm. The fi-
nal CCCP procedure adjusts all the parameters globally toward a better solution. In this experiment,
we use the validation set log-likelihood score to avoid overfitting. The algorithm returns the set of

11

0 10 20 30 40 50

Iterations

5

6

7

8

9

10

11

12

−
lo

g
P

r(
x
|w

)

NLTCS
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

6

7

8

9

10

11

12

13

−
lo

g
P

r(
x
|w

)

MSNBC
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

10

20

30

40

50

−
lo

gP
r(

x
|w

)

KDD 2000
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

10

15

20

25

30

35

40

45

50

55

−
lo

gP
r(

x
|w

)

Plants
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

35

40

45

50

55

60

65

70

75

−
lo

gP
r(

x
|w

)

Audio
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

50

55

60

65

70

75

−
lo

gP
r(

x
|w

)

Jester
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

50

55

60

65

70

75

80

85

−
lo

gP
r(

x
|w

)

Netflix
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

30

40

50

60

70

80

90

−
lo

gP
r(

x
|w

)

Accidents
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

20

40

60

80

100

120

−
lo

gP
r(

x
|w

)

Retail
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

20

40

60

80

100

120

140

−
lo

gP
r(

x
|w

)

Pumsb Star
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

90

100

110

120

130

140

150

−
lo

gP
r(

x
|w

)

DNA
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

20

40

60

80

100

120

140

160

−
lo

gP
r(

x
|w

)

Kosarek
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

50

100

150

200

250

−
lo

gP
r(

x
|w

)

MSWeb
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

50

100

150

200

250

300

350

400

450

−
lo

gP
r(

x
|w

)

Book
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

50

100

150

200

250

300

350

400

450
−

lo
gP

r(
x
|w

)
EachMovie

PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

100

200

300

400

500

600

700

−
lo

gP
r(

x
|w

)

WebKB
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

100

200

300

400

500

600

700

800

−
lo

gP
r(

x
|w

)

Reuters-52
PGD
EG
SMA
CCCP

0 5 10 15 20 25 30 35 40

Iterations

100

200

300

400

500

600

700

800

−
lo

gP
r(

x
|w

)

20 Newsgroup
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

200

300

400

500

600

700

800

900

−
lo

gP
r(

x
|w

)

BBC
PGD
EG
SMA
CCCP

0 10 20 30 40 50

Iterations

0

200

400

600

800

1000

1200

1400

−
lo

gP
r(

x
|w

)

Ad
PGD
EG
SMA
CCCP

Figure 3: Negative log-likelihood values on training data versus number of iterations for PGD, EG,
SMA and CCCP.

parameters that achieve the best validation set log-likelihood score as output. Experimental results
are reported in Table. 4.

As shown in Table 4, the use of CCCP after LearnSPN always helps to improve the model perfor-
mance. By optimizing model parameters on these 20 data sets, we boost LearnSPN to achieve better
results than state-of-the-art ID-SPN on 7 data sets, where the original LearnSPN only outperforms
ID-SPN on 1 data set. Note that the sizes of the SPNs returned by LearnSPN are much smaller than
those produced by ID-SPNs. Hence, it is remarkable that by fine tuning the parameters with CCCP,
we can achieve better performance despite the fact that the models are smaller. For a fair compar-
ison, we also list the size of the SPNs returned by ID-SPN in Table. 5. As a result, we suggest
using CCCP after structure learning algorithms to fully exploit the expressiveness of the constructed
model.

5 Conclusion

In this paper we show that the network polynomial of an SPN is a posynomial function of the model
parameters and that learning the parameter by maximum likelihood yields a signomial program. We
propose two convex relaxations to solve the SP based on sequential monomial approximations and
the concave-convex procedure. We analyze the convergence properties of CCCP for learning SPNs.
Extensive experiments are conducted to evaluate the proposed approaches and current methods.

12

Table 3: Running time of 4 algorithms on 20 data sets, measured in seconds.

Data set PGD EG SMA CCCP
NLTCS 438.35 718.98 458.99 206.10
MSNBC 2720.73 2917.72 8078.41 2008.07
KDD 2k 46388.60 22154.10 27101.50 29541.20
Plants 12595.60 10752.10 7604.09 13049.80
Audio 19647.90 3430.69 12801.70 14307.30
Jester 6099.44 6272.80 4082.65 1931.41
Netflix 29573.10 27931.50 15080.50 8400.20
Accidents 14266.50 3431.82 5776.00 20345.90
Retail 28669.50 7729.89 9866.94 5200.20
Pumsb-star 3115.58 13872.80 4864.72 2377.54
DNA 599.93 199.63 727.56 1380.36
Kosarak 122204.00 112273.00 49120.50 42809.30
MSWeb 136524.00 13478.10 65221.20 45132.30
Book 190398.00 6487.84 69730.50 23076.40
EachMovie 30071.60 32793.60 17751.10 60184.00
WebKB 123088.00 50290.90 44004.50 168142.00
Reuters-52 13092.10 5438.35 20603.70 1194.31
20 Newsgrp 151243.00 96025.80 173921.00 11031.80
BBC 20920.60 18065.00 36952.20 3440.37
Ad 12246.40 2183.08 12346.70 731.48

Table 4: Average log-likelihoods on test data. Highest aver-
age log-likelihoods are highlighted in bold.

Data set CCCP LearnSPN ID-SPN
NLTCS -6.029 -6.099 -6.050
MSNBC -6.045 -6.113 -6.048
KDD 2k -2.134 -2.233 -2.153
Plants -12.872 -12.955 -12.554
Audio -40.020 -40.510 -39.824
Jester -52.880 -53.454 -52.912
Netflix -56.782 -57.385 -56.554
Accidents -27.700 -29.907 -27.232
Retail -10.919 -11.138 -10.945
Pumsb-star -24.229 -24.577 -22.552
DNA -84.921 -85.237 -84.693
Kosarak -10.880 -11.057 -10.605
MSWeb -9.970 -10.269 -9.800
Book -35.009 -36.247 -34.436
EachMovie -52.557 -52.816 -51.550
WebKB -157.492 -158.542 -153.293
Reuters-52 -84.628 -85.979 -84.389
20 Newsgrp -153.205 -156.605 -151.666
BBC -248.602 -249.794 -252.602
Ad -27.202 -27.409 -40.012

Table 5: Sizes of SPNs produced by
LearnSPN and ID-SPN.

Data set LearnSPN ID-SPN
NLTCS 13,733 24,690
MSNBC 54,839 579,364
KDD 2k 48,279 1,286,657
Plants 132,959 2,063,708
Audio 739,525 2,643,948
Jester 314,013 4,225,471
Netflix 161,655 7,958,088
Accidents 204,501 2,273,186
Retail 56,931 60,961
Pumsb-star 140,339 1,751,092
DNA 108,021 3,228,616
Kosarak 203,321 1,272,981
MSWeb 68,853 1,886,777
Book 190,625 1,445,501
EachMovie 522,753 2,440,864
WebKB 1,439,751 2,605,141
Reuters-52 2,210,325 4,563,861
20 Newsgrp 14,561,965 3,485,029
BBC 1,879,921 2,426,602
Ad 4,133,421 2,087,253

References
M. R. Amer and S. Todorovic. Sum-product networks for modeling activities with stochastic struc-

ture. In Computer Vision and Pattern Recognition, 2012.

S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming.
Optimization and engineering, 8(1):67–127, 2007.

W.-C. Cheng, S. Kok, H. V. Pham, H. L. Chieu, and K. M. A. Chai. Language modeling with
sum-product networks. INTERSPEECH, 2014.

13

M. Chiang. Geometric programming for communication systems. Now Publishers Inc, 2005.
M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated gradient algo-

rithms for conditional random fields and max-margin markov networks. The Journal of Machine
Learning Research, 9:1775–1822, 2008.

P. L. B. M. Collins and B. T. D. McAllester. Exponentiated gradient algorithms for large-margin
structured classification. In Advances in Neural Information Processing Systems 17: Proceedings
of the 2004 Conference, volume 17, page 113. MIT Press, 2005.

A. Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50(3):280–305, 2003.

R. Gens and P. Domingos. Discriminative learning of sum-product networks. In Advances in Neural
Information Processing Systems, pages 3248–3256, 2012.

R. Gens and P. Domingos. Learning the structure of sum-product networks. In Proceedings of The
30th International Conference on Machine Learning, pages 873–880, 2013.

A. Globerson, T. Y. Koo, X. Carreras, and M. Collins. Exponentiated gradient algorithms for log-
linear structured prediction. In Proceedings of the 24th international conference on Machine
learning, pages 305–312. ACM, 2007.

A. Gunawardana and W. Byrne. Convergence theorems for generalized alternating minimization
procedures. The Journal of Machine Learning Research, 6:2049–2073, 2005.

P. Hartman et al. On functions representable as a difference of convex functions. Pacific J. Math, 9
(3):707–713, 1959.

D. R. Hunter and K. Lange. A tutorial on mm algorithms. The American Statistician, 58(1):30–37,
2004.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–63, 1997.

G. R. Lanckriet and B. K. Sriperumbudur. On the convergence of the concave-convex procedure.
pages 1759–1767, 2009.

D.-I. R. Peharz. Foundations of Sum-Product Networks for Probabilistic Modeling. PhD thesis,
Aalborg University, 2015.

R. Peharz, G. Kapeller, P. Mowlaee, and F. Pernkopf. Modeling speech with sum-product networks:
Application to bandwidth extension. In Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pages 3699–3703. IEEE, 2014.

R. Peharz, S. Tschiatschek, F. Pernkopf, P. Domingos, and B. BioTechMed-Graz. On theoretical
properties of sum-product networks. pages 744–752, 2015.

B. Piot, M. Geist, and O. Pietquin. Difference of convex functions programming for reinforcement
learning. pages 2519–2527, 2014.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In Proc. 12th Conf. on
Uncertainty in Artificial Intelligence, pages 2551–2558, 2011.

A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable in-
teractions. In Proceedings of The 31st International Conference on Machine Learning, pages
710–718, 2014.

R. Salakhutdinov, S. Roweis, and Z. Ghahramani. On the convergence of bound optimization algo-
rithms. Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pages
509–516, 2002.

C. J. Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages
95–103, 1983.

A. L. Yuille, A. Rangarajan, and A. Yuille. The concave-convex procedure (cccp). Advances in
neural information processing systems, 2:1033–1040, 2002.

W. I. Zangwill. Nonlinear programming: a unified approach, volume 196. Prentice-Hall Englewood
Cliffs, NJ, 1969.

H. Zhao, M. Melibari, and P. Poupart. On the relationship between sum-product networks and
bayesian networks. In Proceedings of The 32nd International Conference on Machine Learning,
2015.

14

A Convergence of CCCP for SPNs

Theorem 6. Let {w(k)}∞k=1 be any sequence generated using Eq. 17 from any positive initial point,
then all the limiting points of {w(k)}∞k=1 are stationary points of the DCP in (7). In addition,
limk→∞ f(y(k)) = f(y∗), where y∗ is some stationary point of (7).

Proof. We will use Zangwill’s global convergence theory for iterative algorithms [Zangwill, 1969]
to show the convergence in our case. Before showing the proof, we need to first introduce the notion
of “point-to-set mapping”, where the output of the mapping is defined to be a set. More formally, a
point-to-set map Φ from a set X to Y is defined as Φ : X 7→ P(Y), where P(Y) is the power set of
Y . SupposeX andY are equipped with the norm ||·||X and ||·||Y , respectively. A point-to-set map Φ
is said to be closed at x∗ ∈ X if xk ∈ X , {xk}∞k=1 → x∗ and yk ∈ Y, {yk}∞k=1 → y∗, yk ∈ Φ(xk)
imply that y∗ ∈ Φ(x∗). A point-to-set map Φ is said to be closed on S ⊆ X if Φ is closed at
every point in S. The concept of closedness in the point-to-set map setting reduces to continuity if
we restrict that the output of Φ to be a set of singleton for every possible input, i.e., when Φ is a
point-to-point mapping.

Theorem 7 (Global Convergence Theorem [Zangwill, 1969]). Let the sequence {xk}∞k=1 be gener-
ated by xk+1 ∈ Φ(xk), where Φ(·) is a point-to-set map from X to X . Let a solution set Γ ⊆ X be
given, and suppose that:

1. all points xk are contained in a compact set S ⊆ X .
2. Φ is closed over the complement of Γ.
3. there is a continuous function α on X such that:

(a) if x 6∈ Γ, α(x′) > α(x) for ∀x′ ∈ Φ(x).
(b) if x ∈ Γ, α(x′) ≥ α(x) for ∀x′ ∈ Φ(x).

Then all the limit points of {xk}∞k=1 are in the solution set Γ and α(xk) converges monotonically to
α(x∗) for some x∗ ∈ Γ.

Let w ∈ RD+ . Let Φ(w(k−1)) = exp(arg maxy f̂(y,y(k−1))) and let α(w) = f(logw) = f(y) =
log fS(x| exp(y)) − log fS(1| exp(y)). Here we use w and y interchangeably as w = exp(y) or
each component is a one-to-one mapping. Note that since the arg maxy f̂(y,y(k−1)) given y(k−1)

is achievable, Φ(·) is a well defined point-to-set map for w ∈ RD+ .

Specifically, in our case given w(k−1), at each iteration of Eq. 17 we have

w′ij =
wijfvj (1|w)∑
j wijfvj (1|w)

∝ w(k−1)
ij

fvj (x|w(k−1))

fS(x|w(k−1))

∂fS(x|w(k−1))

∂fvi(x|w(k−1))

i.e., the point-to-set mapping is given by

Φij(w
(k−1)) =

w
(k−1)
ij fvj (x|w(k−1)) ∂fS(x|w(k−1))

∂fvi (x|w(k−1))∑
j′ w

(k−1)
ij′ fvj′ (x|w(k−1)) ∂fS(x|w(k−1))

∂fvi (x|w(k−1))

Let S = [0, 1]D, the D dimensional hyper cube. Then the above update formula indicates that
Φ(w(k−1)) ∈ S. Furthermore, if we apply Alg. ?? to w(1) before the update, we can guarantee that
{wk}∞k=1 ⊆ S, which is a compact set in RD+ .

The solution to maxy f̂(y,y(k−1)) is not unique. In fact, there are infinitely many solutions to this
nonlinear equations. However, as we define above, Φ(w(k−1)) returns one solution to this convex
program in the D dimensional hyper cube. Hence in our case Φ(·) reduces to a point-to-point map,
where the definition of closedness of a point-to-set map reduces to the notion of continuity of a point-
to-point map. Define Γ = {w∗ |w∗ is a stationary point of α(·)}. Hence we only need to verify the
continuity of Φ(w) when w ∈ S. To show this, we first characterize the functional form of ∂fS(x|w)

∂fvi (x|w)

as it is used inside Φ(·). We claim that for each node vi,
∂fS(x|w)
∂fvi (x|w) is again, a posynomial function

of w. A graphical illustration is given in Fig. 4 to explain the process. This can also be derived from

15

+

× × × ×

+vi + + +

w1

Figure 4: Graphical illustration of ∂fS(x|w)
∂fvi (x|w) . The partial derivative of fS with respect to fvi (in

red) is a posynomial that is a product of edge weights lying on the path from root to vi and network
polynomials from nodes that are children of product nodes on the path (highlighted in blue).

the sum rules and product rules used during top-down differentiation. More specifically, if vi is a
product node, let vj , j = 1, . . . , J be its parents in the network, which are assumed to be sum nodes,

the differentiation of fS with respect to fvi is given by ∂fS(x|w)
∂fvi (x|w) =

∑J
j=1

∂fS(x|w)
∂fvj (x|w)

∂fvj (x|w)

∂fvi (x|w) . We
reach

∂fS(x|w)

∂fvi(x|w)
=

J∑
j=1

wij
∂fS(x|w)

∂fvj (x|w)
(18)

Similarly, if vi is a sum node and its parents vj , j = 1, . . . , J are assumed to be product nodes, we
have

∂fS(x|w)

∂fvi(x|w)
=

J∑
j=1

∂fS(x|w)

∂fvj (x|w)

fvj (x|w)

fvi(x|w)
(19)

Since vj is a product node and vj is a parent of vi, so the last term in Eq. 19 can be equivalently
expressed as

fvj (x|w)

fvi(x|w)
=
∏
h6=i

fvh(x|w)

where the index is range from all the children of vj except vi. Combining the fact that the partial
differentiation of fS with respect to the root node is 1 and that each fv is a posynomial function, it
follows by induction in top-down order that ∂fS(x|w)

∂fvi (x|w) is also a posynomial function of w.

We have shown that both the numerator and the denominator of Φ(·) are posynomial functions
of w. Because posynomial functions are continuous functions, in order to show that Φ(·) is also
continuous on S\Γ, we need to guarantee that the denominator is not a degenerate posynomial
function, i.e., the denominator of Φ(w) 6= 0 for all possible input vector x. Recall that Γ =
{w∗ | w∗ is a stationary point of α(·)}, hence ∀w ∈ S\Γ, w 6∈ bd S, where bd S is the boundary
of the D dimensional hyper cube S. Hence we have ∀w ∈ S\Γ ⇒ w ∈ int S ⇒ w > 0 for each
component. This immediately leads to fv(x|w) > 0,∀v. As a result, Φ(w) is continuous on S\Γ
since it is the ratio of two strictly positive posynomial functions.

We now verify the third property in Zangwill’s global convergence theory. At each iteration of
CCCP, we have the following two cases to consider:

1. If w(k−) 6∈ Γ, i.e., w(k−1) is not a stationary point of α(w), then y(k−1) 6∈
arg maxy f̂(y,y(k−1)), so we have α(w(k)) = f(y(k)) ≥ f̂(y(k),y(k−1)) >

f̂(y(k−1),y(k−1)) = f(y(k−1)) = α(w(k−1)), where the first inequality and the third
equality comes from (12).

16

+

× × ×

+ +

X1 X̄1 X2 X̄2

w1 w2
w3

2
3

1
3

2
3

1
3

Figure 5: An SPN over two binary random variables.

2. If w(k−1) ∈ Γ, i.e., w(k−1) is a stationary point of α(w), then y(k−1) ∈
arg maxy f̂(y,y(k−1)), so we have α(w(k)) = f(y(k)) ≥ f̂(y(k),y(k−1)) =

f̂(y(k−1),y(k−1)) = f(y(k−1)) = α(w(k−1)).

By Zangwill’s global convergence theory, we now conclude that all the limit points of {wk}∞k=1 are
in Γ and α(wk) converges monotonically to α(w∗) for some stationary point w∗ ∈ Γ. �

Remark 1. Technically we need to choose w0 ∈ int S to ensure the continuity of Φ(·). This initial
condition combined with the fact that inside each iteration of CCCP the algorithm only applies
positive multiplicative update and renormalization, ensure that after any finite k steps, wk ∈ intS.
Theoretically, only in the limit it is possible that some components of w∞ may become 0. However
in practice, due to the numerical precision of float numbers on computers, it is possible that after
some finite update steps some of the components in wk become 0. So in practical implementation
we recommend to use a small positive number ε to smooth out such 0 components in wk during the
iterations of CCCP. Such smoothing may hurt the monotonic property of CCCP, but this can only
happens when wk is close to w∗ and we can use early stopping to obtain a solution in the interior of
S.

Remark 2. Thm. 6 only implies that any limiting point of the sequence {wk}∞k=1({yk}∞k=1) must
be a stationary point of the log-likelihood function and {f(y)k}∞k=1 must converge to some f(y∗)
where y∗ is a stationary point. Thm. 6 does not imply that the sequence {wk}∞k=1({yk}∞k=1) is guar-
anteed to converge. Lanckriet and Sriperumbudur [2009] studies the convergence property of general
CCCP procedure. Under more strong conditions, i.e., the strict concavity of the surrogate function
or that Φ() to be a contraction mapping, it is possible to show that the sequence {wk}∞k=1({yk}∞k=1)
also converges. However, none of such conditions hold in our case. In fact, in general there are
infinitely many fixed points of Φ(·), i.e., the equation Φ(w) = w has infinitely many solutions in
S. Also, for a fixed value t, if α(w) = t has at least one solution, then there are infinitely many
solutions. Such properties of SPNs make it generally very hard to guarantee the convergence of the
sequence {wk}∞k=1({yk}∞k=1). We give a very simple example below to illustrate the hardness in
SPNs in Fig. 5. Consider applying the CCCP procedure to learn the parameters on the SPN given
in Fig. 5 with three instances {(0, 1), (1, 0), (1, 1)}. Then if we choose the initial parameter w0

such that the weights over the indicator variables are set as shown in Fig. 5, then any assignment
of (w1, w2, w3) in the probability simplex will be equally optimal in terms of likelihood on inputs.
In this example, there are uncountably infinite equal solutions, which invalidates the finite solution
set requirement given in [Lanckriet and Sriperumbudur, 2009] in order to show the convergence of
{wk}∞k=1. However, we emphasize that the convergence of the sequence {wk}∞k=1 is not as im-
portant as the convergence of {α(w)k}∞k=1 to desired locations on the log-likelihood surface as in
practice any w∗ with equally good log-likelihood may suffice for the inference/prediction task.

17

B Expectation Maximization

It is clear that an SPN is a generative model and maintains a joint distribution over {X1, . . . , Xn}.
However when it was first proposed it was not clear what is the exact joint distribution and proba-
bilistic independence properties encoded in the structure of an SPN. Recent work shows that SPNs
are essentially equivalent to bipartite Bayesian networks if we allow more compact data structures,
i.e., directed acyclic graphs, to represent local conditional distributions in BNs [Zhao et al., 2015].
This finding leads us to use EM algorithms for training SPNs. It should be noted that although the
idea of treating sum nodes in SPNs as hidden variables is not new [Poon and Domingos, 2011, Gens
and Domingos, 2012], a correct EM algorithm for learning the parameters of SPNs is not available
in the literature because of the misconception about the joint probability distribution represented by
SPNs. To the best of our knowledge, the only correct EM algorithm for SPN so far is derived this
year, independently, by Peharz [2015] using his augmented SPN argumentation. The main differ-
ence lies in the fact that we obtain the algorithm based on the bipartite BN interpretation of an SPN
and make a connection to the probabilistic semantics of differential operations in BN [Darwiche,
2003] without seeking to change or augment the original SPN. Hence we provide an alternative,
perhaps easier and more concise, derivation of EM algorithm for SPNs.

A latent random variable interpretation of sum nodes in SPNs was pointed out in [Poon and Domin-
gos, 2011], where the authors suggest a hard EM parameter learning algorithm. Later, Gens et al.
summarize both the hard and soft versions of the EM algorithm in [Gens and Domingos, 2012, table
2], where the marginal posterior of a hidden variable H is given as

Pr(H = hk|x,w) ∝ wk
∂fS(x|w)

∂fSH (x|w)
(20)

where SH is a sub-SPN rooted at a sum node H , interpreted to be a hidden variable. It is then
suggested that Eq. 20 should be used for weight updates in soft EM algorithm and a variant of
Eq. 20, which assigns all the credit, which is 1, to the winning child of a sum node for hard EM
weight updates. We point out here that although the marginal posterior of a hidden variable can
indeed be used for weight updates in soft EM algorithm, which will become clear later using the
bipartite BN perspective of an SPN, the expression in Eq. 20 is incorrect. A direct and intuitive
explanation of Eq. 20 is that the marginal posterior of a hidden variable keeps as same with its prior
since the term ∂fS(x|w)

∂fSH (x|w) is a constant for all the children of the sum node H . This further means
that if we do weight updates in EM based on Eq. 20, the data log-likelihood on training set will
keep the same after every EM iteration since the weights of sum nodes keep the same. However,
one of the useful properties of EM algorithm applied to generative models lies in the fact that it will
improve the training data log-likelihood monotonously until convergence. It should be noted here
that the same conclusion has been observed independently by [Peharz, 2015].

We now proceed to derive the EM algorithm for learning the parameters of SPNs based on the
bipartite BN perspective. Given an SPN S, we first construct an equivalent bipartite BN as shown in
Fig. 6. The joint probability distribution of S over both observable variables X and hidden variables

H1 H2 H3 · · · Hm

X1 X2 X3 · · · Xn

Figure 6: A bipartite BN representation of a given SPN S with m hidden variables (sum nodes) and
n observable variables.

(sum nodes) H can be written as:

Pr(X,H|w) =

(
m∏
i=1

Pr(Hi|wi)
)(

n∏
t=1

Pr(Xt|Pa(Xt))

)

18

Consider the expected complete data log-likelihood function

Q(w,w(k−1)) , EPr(h|x,w(k−1))[log Pr(x,h|w)] (21)

Substituting the joint distribution into Eq. 21, we reach

Q(w,w(k−1)) =

m∑
i=1

|Hi|∑
j=1

EPr(h|x,w(k−1))[IHij logwij] (22)

where IHij is the indicator function of the events “hidden variable Hi takes its jth value”. It is
worthwhile to point out here that due to the bipartite topology of the BN, the terms including model
parameters of hidden variables are independent of each other, which makes the following optimiza-
tion easier to deal with. Further define

γij , EPr(h|x,w(k−1))[IHij] = Pr(Hi = j|x,w(k−1)) (23)

to be the sufficient statistics for model parameter wij . In order to maximize Eq. 22 with respect to
wij , we augment Eq. 22 using Lagrange multiplier method with the constraints

∑
j wij = 1,∀i,

differentiate the augmented Lagrangian with respect to wij and then set the derivatives to 0, we
achieve the weight update formula for EM algorithm asw(k)

ij =
γij∑
j γij

, where the sufficient statistics
is the marginal probability of each hidden variable (sum node) in SPN,

γij = Pr(Hi = j|x,w(k−1)) =
fS(x, Hi = j|w(k−1))

fS(x|w(k−1))
(24)

where the denominator is simply the value of the SPN S with current model parameters w(k−1)

given x as input. To compute the numerator fS(x, Hi = j|w(k−1)), we need to introduce a theorem
about the probabilistic semantics of differentiation in Bayesian network:
Theorem 8 ([Darwiche, 2003]). Let B be a Bayesian network representing probability distribution
Pr with network polynomial function fB. For every variable H and evidence x, we have

∂fB
∂ IHj

(x) = Pr(H = j,x\H)

where x\H means excluding variable H from evidence x. For an example, for evidence x = x1:n,
∂fB(x1:n)
∂ IXi,j

= Pr(Xi = j,x1:i−1,xi+1:n). As another example, for x = x1:n and Hi 6∈ X1:n, we

have ∂fB(x1:n)
∂ IHij

= Pr(Hi = j,x1:n). Thm. 8 is particularly useful here to compute the numerator in
Eq. 24, which gives us

Pr(x, Hi = j|w(k−1)) =
∂fS(x|w(k−1))

∂IHij
where

∂fS(x|w(k−1))

∂ IHij
=

∂fS(x|w(k−1))

∂fSH (x|w(k−1))

∂fSH (x|w(k−1))

∂ IHij

= wij
∂fS(x|w(k−1))

∂fSH (x|w(k−1))
fSHij (x|w(k−1)) (25)

Combine all the above results, the formula for computing the sufficient statistics γij is given by

γij ∝ w(k−1)
ij fSHi,j (x|w(k−1))

∂fS(x|w(k−1))

∂fSH (x|w(k−1))
(26)

Comparing γij in EM algorithm with the update formula Eq. 17 in CCCP, they share exactly the
same form. Although the development of CCCP and EM for SPNs comes from different perspec-
tives, where CCCP treats SPNs as deep models and optimize the transformed signomial program
while EM treats SPNs as a special kind of probabilistic graphical models and optimize the expected
complete data log-likelihood. This is not a coincidence. In fact, both CCCP and EM are special
instances of a more general bound optimization framework frequently used in statistics and machine
learning, known as minorization maximization (MM) or majorization minimization depending on
the context [Hunter and Lange, 2004].

19

	1 Introduction
	2 Background
	2.1 Sum-Product Networks
	2.2 Signomial Programming (SP)

	3 Unified Approach for Learning
	3.1 Sum-Product Networks as a Mixture of Trees
	3.2 Maximum Likelihood Estimation as SP
	3.3 Sequential Convex Approximations
	3.3.1 Sequential Monomial Approximation
	3.3.2 Concave-convex Procedure

	4 Experiments
	4.1 Experimental Setting
	4.2 Parameter Learning
	4.3 Boosting Structure Learning

	5 Conclusion
	A Convergence of CCCP for SPNs
	B Expectation Maximization

