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ON THE CYCLE STRUCTURE OF THE PRODUCT OF

RANDOM MAXIMAL CYCLES

MIKLÓS BÓNA AND BORIS PITTEL

Abstract. The subject of this paper is the cycle structure of the ran-
dom permutation σ of [N ], which is the product of k independent ran-
dom cycles of maximal length N . We use the character-based Fourier
transform to study the number of cycles of σ and also the distribution
of the elements of the subset [ℓ] among the cycles of σ.

1. Introduction

Enumeration of permutations of a set [N ] = {1, 2, . . . , N} according to
the numbers of cycles of various lengths has a long and glorious history.
The plentiful results are not infrequently cast in the probabilistic light, if
the assumption is made that a permutation is chosen uniformly at ran-

dom among all N ! permutations. The techniques wary widely, from bijec-
tive methods to multivariate generating functions to functional limit the-
orems, allowing to find solutions, exact or asymptotic, of rather delicate,
enumerative-probabilistic, problems. More recently there has been a grow-
ing interest in the probabilities regarding distribution of the elements of a
subset S ⊆ [N ] among the cycles of the random permutation. For instance,
we can determine the probability that each of the entries in S will be in a
different cycle, or that all entries of S will be in the same cycle, or that each
cycle of p will contain at least one entry of S. See Lovász [12] for results of
this kind.

The classic, and more recent, problems become much more difficult if
instead of the uniformly random permutation, we consider a random per-
mutation which is a product of random maximal cycles. That is, our sample
space is now that of all ordered k-tuples (p1, p2, · · · , pk), where all pi are
maximal cycles of length N . One can investigate the random permutation
σ := p1 · · · pk under the assumption that p1, . . . , pk are maximal cycles, cho-
sen uniformly at random, and independently of each other, from all (N−1)!
such cycles.

1.1. Motivation and recent results. Among the sources of our inspira-
tion are Zagier’s formula for the distribution of the number of cycles in σ for
k = 2, and the more recent results by Stanley [16] and Bernardi et al. [2],
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again for k = 2. For instance, in [2] a formula is proved for the probability
that σ, the product of two maximal cycles, separates the given disjoint sub-
sets of [N ], i.e. no two of those subsets are represented in the same cycle of
σ. In particular, the probability that σ separates the entries 1, . . . , ℓ is equal
to 1/ℓ! if N − ℓ is odd. In other words, in this aspect, the product of two
independent maximal cycles behaves as the uniformly random permutation!

Beside their intrinsic interest, solutions of the mentioned problems may
lead to surprising applications. In [3], Bóna and Flynn used a result of
Stanley [16] concerning the special case S = {1, 2} and k = 2 to prove an
exact formula for the average number of block interchanges needed to sort a
permutation, a problem motivated by genome sorting. Equally interesting
are the methods that can be used, as they come from a wide array of areas
in mathematics, such as character theory, multivariate Gaussian integration,
bijective combinatorics and the summation techniques for hypergeometric
sums.

1.2. Overview. In 1986 Harer and Zagier [8] discovered a remarkable for-
mula for the bivariate generating function of the number of cycles in the
product of a maximal cycle and the random, fixed-point free, involution of
[2n], thus solving a difficult problem of enumerating the chord diagrams by
the genus of an associated surface. The proof was based on evaluation of the
multidimensional Gaussian integrals. Soon after Jackson [9] and later Zagier
[19] found alternative proofs that used characters of the symmetric group
S2n. Recently the second author [13] found a different, character-based
proof. Its core is computing and marginally inverting the Fourier transform
of the underlying probability measure on S2n. In the present paper, we use
the techniques in [13], see also an earlier paper by Chmutov and Pittel [5],
to investigate the product of k maximal cycles in SN . To make the dis-
cussion reasonably self-contained we will introduce the necessary definitions
and facts from [13] in Section 2.

As far as our results go, we first prove an explicit formula for the prob-
ability distribution of the number of cycles in σ, the product of k random,
independent, maximal cycles in SN . Not surprisingly, the distribution is
expressed through the Stirling numbers of first kind. The formula yields
relatively simple corollaries for the probabilities that σ is the identity per-
mutation, or that σ is a maximal cycle. Our analysis yields a well-known
formula found by Zagier for the case k = 2; see Appendix by Zagier in
Lando and Zvonkin [10]. We also obtain a bivariate generating function for
the distribution of the number of cycles for the product of three cycles.

Then we turn to the following general question. Let pA(N, ℓ; k) be the
probability that the number of elements of [ℓ] = {1, 2, · · · , ℓ} in each cycle
of σ comes from the set A ⊆ Z≥0. What can we say about pA(N, ℓ; k)?

To this end, for a general A, we first enumerate the admissible permuta-
tions by the cycle counts and then evaluate the sum of character values over
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all admissible permutations for irreducible representations labeled by one-
hook Young diagrams. Then we consider the special case when A = Z>0, i.e.
when each cycle of σ contains at least one element of [ℓ]. Using the inverse
Fourier transform, we find an alternating sum expression for this probability
with N− ℓ+1 binomial-type summands. For k = 2, this sum reduces to two
notably simpler expressions, that can be efficiently computed for moderate
ℓ and moderate N − ℓ respectively.

Next we investigate the case of A = {0, ℓ}, that is, when all elements of ℓ
are in the same cycle of σ. This computation is longer than its counterpart in
the previous case, and it leads to a general formula for pA(N, ℓ; k) analogous
to that for A = Z>0. Again, if k = 2, then the formula shrinks to a
pair of computationally efficient sums for moderate ℓ and moderate N − ℓ
respectively. For ℓ = 2 and ℓ = 3, we recover the results obtained by Stanley
[16].

Having experimented with Maple, we feel confident that the residual sums
for k = 2 in either of the two cases do not have a more compact presentation.

After this, we turn to our most general problem. We consider disjoint sub-

sets S1,S2, · · · ,St of [N ] so that |Sj | = ℓj; define ℓ =
∑

j ℓj. Let p(N,~ℓ; k)
denote the probability that no cycle of σ contains elements from more than
one Sj, a property to which we refer by saying that σ separates the sets

S1,S2, · · · ,St. Bernardi et al. [2] found a striking formula for p(N,~ℓ; 2) that
contained an alternating sum of ℓ − t + 1 terms. Remarkably, the factor
∏

j ℓj ! aside, the rest of the formula depends on ℓ and t only. We show
that the separation probability continues to have this latter property for all
k ≥ 2, and find an alternating sum formula with N − ℓ+ t+1 terms for this
probability. So we find a computationally efficient formula if t and N − ℓ
are both bounded as N grows. Then, for k = 2, we are able to simplify this
formula to one that is close in appearance, but is significantly different from
the formula in [2]. Our formula still contains a sum of ℓ− t+ 1 summands,
but the signs are no longer alternating.

Finally, we consider the following question. Let us say that the elements
of [ℓ] are blocked in a permutation s of [N ] if no two elements of [ℓ] are
neighbors, and each element of [ℓ] has a neighbor from [N ] \ [ℓ]. Then, for a
general k ≥ 2, we find a two-term formula for the probability that σ blocks
the elements of [ℓ].

2. Preliminaries

A key observation is that the set of all maximal cycles forms a conjugacy

class in the symmetric group SN , a class with particularly simple character
values.

Let us start with the Fourier inversion formula for a general probability
measure P on SN :

(1) P (s) =
1

N !

∑

λ⊢N

fλ tr
(

ρλ(s−1)P̂ (ρλ)
)

; s ∈ SN ;
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see Diaconis and Shahshahani [6] and Diaconis [7]. Here λ is a generic par-
tition of the integer N , ρλ is the irreducible representation of SN associated
with λ, fλ = dim(ρλ), and P̂ (ρλ) is the fλ×fλ matrix-valued Fourier trans-

form of P (·) evaluated at ρλ, P̂ (ρλ) =
∑

s∈SN
ρλ(s)P (s). Let us evaluate the

right-hand side of (1) for P = Pσ, the probability measure on SN induced

by σ =
∏k

j=1 σj, where σj is uniform on a conjugacy class Cj . As the σj
are independent, we have that Pσ(s) =

∑

s1,...,sk

∏

j Pσj
(sj), (s1 · · · sk = s),

that is, Pσ is the convolution of Pσ1 , . . . , Pσk
. So, by multiplicativity of the

Fourier transform for convolutions, P̂σ(ρ
λ) =

∏

j P̂σj
(ρλ). Since each Pσj

is

supported by the single conjugacy class Cj, we have P̂σj
(ρλ) =

χλ(Cj)

fλ Ifλ ,

Ifλ being the fλ × fλ identity matrix, see [7]. So

P̂σ(ρ
λ) =

k
∏

j=1

P̂σj
(ρλ) = (fλ)−k

k
∏

j=1

χλ(Cj) Ifλ ,

and (1) becomes

(2)

Pσ(s) =
1

N !

∑

λ

(fλ)−k+1





k
∏

j=1

χλ(Cj)



 tr
(

ρλ(s−1)Ifλ

)

=
1

N !

∑

λ

(fλ)−k+1χλ(s)

k
∏

j=1

χλ(Cj).

Note. For the special case s = id, the identity (2) becomes

Pσ(id) =
1

N !

∑

λ

(fλ)−k+2
k
∏

j=1

χλ(Cj).

Since the left-hand side is just N (C1, . . . , Ck), the number of ways to write
the identity permutation as the product of elements of C1, . . . , Ck, divided

by
∏k

j=1 |Cj|, we obtain the SN -version of Frobenius’s identity

(3) N (C1, . . . , Ck) =

∏k
j=1 |Cj |

N !

∑

λ

(fλ)−k+2
k
∏

j=1

χλ(Cj).

We will use (2) for Cj ≡ CN , where CN is the conjugacy class of all
maximal cycles. By the Murnaghan-Nakayama rule, Sagan [14] (Lemma
4.10.2) or Stanley [15] (Section 7.17, Equation (7.75)), χλ(CN ) = 0 unless
the diagram λ is a single hook λ∗, with one row of length λ1 and one column
of height λ1, so λ1 + λ1 = N + 1. In that case

(4) χλ(CN ) = (−1)λ
1−1.

As for fλ∗

, the number of Standard Young Tableaux of shape λ∗, applying
the hook length formula (or simply selecting the entries that go in the first
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column), we obtain

(5) fλ∗

=
N !

N
∏λ1−1

r=1 r
∏λ1−1

s=1 s
=

(

N − 1

λ1 − 1

)

.

The equations (2), (4) and (5) imply

(6) Pσ(s) =
1

N !

∑

λ∗

(−1)k(λ
1−1)

(

N − 1

λ1 − 1

)−k+1

χλ∗

(s).

By the Murnaghan-Nakayama rule, given a hook diagram λ∗, the value of
χλ∗

(s) depends on s only through ~ν = ~ν(s) := {νr}r≥1, where νr = νr(s)
is the total number of r-long cycles in the permutation s. It was proved in
[13] that

(7) χλ∗

(s) = (−1)λ
1+ν [ξλ1 ]

ξ

1− ξ

∏

r≥1

(1− ξr)νr ,

ν(s) :=
∑

r νr(s) being the total number of cycles of s. From (7) it follows
that

(8)

∑

s:~ν(s)=~ν

χλ∗

(s) = (−1)NN !A(N, ν, λ1),

A(N, ν, λ1) :=

(

N − 1

N − λ1

)

∑

ℓ≥1

(−1)ℓ
s(ℓ, ν)

ℓ!

(

N − λ1

N − ℓ

)

,

where s(ℓ, ν) is the signless, first-kind, Stirling number of permutations of
[ℓ] = {1, 2, · · · , ℓ} with ν cycles; see the proof of Theorem 2.1 and the
equation (2.20) in [13]. The formulas (2), (7) and (8) are the basis of the
proofs that follow.

3. Distribution of the number of cycles in σ

To stress dependence of σ on k, in this section we will write σ(k) instead
of σ. Combining (8) and (6), and using λ1 + λ1 = N + 1, we obtain

(9)

P(ν(σ(k)) = ν) = (−1)N
N
∑

λ1=1

(−1)k(N−λ1)

(

N − 1

N − λ1

)−k+2

×
∑

ℓ≥1

(−1)ℓ
s(ℓ, ν)

ℓ!

(

N − λ1

N − ℓ

)

.

For all k ≥ 2, the formula (9) and s(ℓ, ν) = 0 for ℓ < ν imply that

(10) P(σ(k) = id) =P(ν(σ) = N) =
1

N !

N−1
∑

r=0

(−1)kr
(

N − 1

r

)−k+2

.

In particular, P(σ(2) = id) = 1
(N−1)! . This is an obvious result, since it

simply says that if we multiply two maximal cycles, the probability that
their product is the identity permutation is 1/(N − 1)!. Further, combining
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(10) and the identity (14) for the alternating sum of binomial reciprocals in
Suri et al. [17], we have a non-obvious answer

(11) P(σ(3) = id) =
1 + (−1)N−1

(N − 1)!(N + 1)
.

That remarkable identity in [17] followed from the elementary, yet sur-
prisingly powerful, formula

(12)

(

n

r

)−1

= (n+ 1)

∫ 1

0
tr(1− t)n−r dt.

Note that for even N , equation (11) returns zero probability, and that
is how it should be, since the product of three even cycles is an odd per-
mutation, and therefore, cannot be the identity. Furthermore, since σ(k) =
σ(k−1)σk, σ

(k) is the identity iff σ(k−1) = (σk)
−1, which is a maximal cy-

cle. As (σk)
−1 is uniform on the set of all (N − 1)! maximal cycles, and

independent of σ(k−1), we see then that

(13) P(σ(k−1) is a cycle) = (N − 1)!P(σ(k) = id).

For k = 2 equations (11) and (13) imply that

(14) P(σ(2) is a cycle) =
1 + (−1)N−1

N + 1
.

The result for even N is obvious, since the product of two maximal cycles is
an even permutation, and hence, it cannot be an N -cycle for even N . The
result for odd N is equivalent to a well-known, not at all obvious, fact that

there are 2(N−1)!
N+1 ways to factor a given maximal cycle into a product of two

maximal cycles; see for instance [4] and the references therein. In general,
the equations (10), (13) imply

(15) P(σ(k) is a cycle) =
1

N

N−1
∑

r=0

(−1)(k+1)r

(

N − 1

r

)−k+1

.
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Further, it follows from (9) that for every real number x, we have

E
[

xν(σ)
]

= (−1)N
N
∑

λ1=1

(−1)k(N−λ1)

(

N − 1

N − λ1

)−k+2

×
∑

ℓ≥1

(−1)ℓ

ℓ!

(

N − λ1

N − ℓ

)

∑

ν≥1

xνs(ℓ, ν)

= (−1)N
N
∑

λ1=1

(−1)k(N−λ1)

(

N − 1

N − λ1

)−k+2
∑

ℓ≥1

(

N − λ1

N − ℓ

)(

−x

ℓ

)

= (−1)N
N
∑

λ1=1

(−1)k(N−λ1)

(

N − 1

N − λ1

)−k+2(N − λ1 − x

N

)

= (−1)N
N−1
∑

r=0

(−1)kr
(

N − 1

r

)−k+2(r − x

N

)

.(16)

For a positive integer x, the non-zero contributions to the sum come from
r < min{N,x}. So, for instance,

E
[

2ν(σ
(k))
]

=N + 1 +
(−1)k

(N − 1)k−2
, (N > 1),

E
[

3ν(σ
(k))
]

=2(N + 2)2 −
N + 1

(N − 1)k−2
+

(

N − 1

2

)−k+2

, (N > 2).

In particular, for k = 2 and x > N , equation (16) implies

E
[

xν(σ
(2))
]

= (−1)N
N
∑

λ1=1

(

N − λ1 − x

N

)

=

N
∑

λ1=1

(

λ1 + x− 1

N

)

=

N+x−1
∑

j=N

(

j

N

)

−
x−1
∑

j=N

(

j

N

)

=

(

N + x

N + 1

)

−

(

x

N + 1

)

=

(

N + x

N + 1

)

+ (−1)N
(

N − x

N + 1

)

.(17)

Of course, the identity (17) holds for all x. It is equivalent to Zagier’s result,
(see the Appendix by Zagier in Lando and Zvonkin [10]), stating that

P(ν(σ(2)) = ν) = (1 + (−1)N−ν) [xν ]

(

N + x

N + 1

)

.

For k = 3, the combination of (16) and the identity (12) allows us to show
that

(18)
∑

N≥1

yN

N
E
[

xν(σ
(3)(N))

]

=

∫ 1

0

(1− y(1− t))−x − (1− y(1− t))x

1− yt(1− t)
dt;
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here σ(3)(N) is the product of 3 random cycles of length N , and |x| ≤ 1,
|y| < 1. The right-hand side is an odd function of x, which should be
expected, since –regardless of the parity of N– the number of cycles in
σ(3)(N) is odd. In particular, differentiating both sides at x = 1, we obtain:
for y ∈ [0, 1),

∑

N≥1

yN

N
P(σ(3)(N) is a cycle) = 2

∫ 1

0

log
(

1− y(1− t)
)−1

1− yt(1− t)
dt

= 2
∑

j>0

1

j

∫ 1

0

(

y(1− t)
)j

1− yt(1− t)
dt = 2

∑

j>0,h≥0

yj+h

j

∫ 1

0
(1− t)j+hth dt

= 2
∑

j>0,h≥0

yj+h

j
(j + 2h+ 1)−1

(

j + 2h

h

)−1

.

So

(19) P(σ(3)(N) is a cycle) = 2N
∑

h<N

(N − h)−1(N + h+ 1)−1

(

N + h

h

)−1

;

compare with the equation (15) for k = 3.
Let us prove (18). Since both sides of this equation are analytic for |y| < 1,

it suffices to prove the identity for |y| ≤ 1/3. From (16), (12) and

(−1)N
(

r − x

N

)

= [zN ](1− z)r−x,

we obtain

N−1E
[

xν(σ
(3)(N))

]

= [zN ]

N−1
∑

r=0

(1− z)r−x

∫ 1

0
(1− t)N−1−rtr dt

= [zN ](1 − z)−x

∫ 1

0
(1− t)N−1

N−1
∑

r=0

(

−
(1− z)t

1− t

)r

dt

= [zN ](1− z)−x

∫ 1

0

(1− t)N + (−1)N+1
(

(1− z)t
)N

1− tz
dt.

Next

yN (1− t)N [zN ]
(1− z)x

1− tz
= [zN ]

(

1− (1− t)yz
)−x

1− t(1− t)yz
;

so
∫ 1

0

∑

N≥1

yN (1− t)N [zN ]
(1− z)−x

1− tz
dt =

∫ 1

0

∑

N≥1

[zN ]

(

1− (1− t)yz
)−x

1− t(1− t)yz
dt

=

∫ 1

0

(

1− (1− t)y
)−x

1− t(1− t)y
dt− 1.(20)
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Further, by the Cauchy integral formula,

yN [zN ]
(1 − z)−x

1− tz

(

(1− z)t
)N

=
1

2πi

∮

|z|=2/3

(1− z)−x

zN+1(1− tz)

(

y(1− z)t
)N

dz

=
1

2πi

∮

|z|=2/3

(1− z)−x

z(1− tz)

(

y(1− z)t

z

)N

dz.

On the circle |z| = 2/3, we have
∣

∣

y(1−z)t
z

∣

∣ ≤ 5|y|/2 ≤ 5/6; so summing over
N ≥ 1,

∑

N≥1

(−1)N+1yN [zN ]
(1 − z)−x

1− tz

(

(1− z)t
)N

=
1

2πi

∮

|z|=2/3

(1− z)−x

z(1− tz)

y(1−z)t
z

1 + y(1−z)t
z

dz

=
1

2πi

∮

|z|=2/3

(1− z)−x

z(1− tz)
·

y(1− z)t

z + y(1− z)t
dz.

For t > 0, in the circle |z| ≤ 2/3 the integrand has two poles, both simple,

at z = 0 and z = − yt
1−yt , with respective residues equal 1 and − (1−yt)x

1−yt(1−t) .

Thus
∑

N≥1

(−1)N+1yN [zN ]
(1 − z)−x

1− tz

(

(1− z)t
)N

= 1−
(1− yt)x

1− yt(1− t)
.

Integrating for t ∈ [0, 1] and adding to (20), we obtain

∑

N≥1

yN

N
E
[

xν(σ
(3)(N))

]

=

∫ 1

0

(1− y(1− t))−x − (1− yt)x

1− yt(1− t)
dt,

which is equivalent to (18), as t(1− t) is symmetric with respect to t = 1/2.

4. Probability that the occupancy numbers of the cycles of σ
by the elements of [ℓ] belong to a given set

In the section title and elsewhere below σ is σ(k), the product of k random
maximal cycles. Let A ⊆ Z≥0 be given. Introduce pA(N, ℓ; k), the probabil-
ity that the number of elements of [ℓ] in each cycle of σ belongs to the set
A.

The examples include: (1) A1 = Z>0; each cycle must contain at least
one element of [ℓ]; (2) A2 = {0, ℓ}; one of the cycles of σ contains the whole
set [ℓ]; (3) A3 = {0, 1}; each element of [ℓ] belongs to a distinct cycle of σ.
The case of k = 2, ℓ = 2 and A = {0, 2} or A = {0, 1} was solved by Stanley
[16]. Very recently Bernardi et al. [2] solved the case k = 2, A = {0, 1} for
ℓ ≥ 2. In fact they solved a general problem of separation probability for t
disjoint sets S1, . . . ,St.

To evaluate pA(N, ℓ; k), consider first QA(~ν, ℓ), the total number of per-
mutations s of [N ], with ~ν(s) = {νr(s)} = {νr} = ~ν, such that the number of
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elements of [ℓ] in every cycle is an element of A. The reason we need QA(~ν, ℓ)
is that the key formula (7) expresses χλ∗(s) through the cycle counts νr(s),
r ≥ 1.

To evaluate QA(~ν, ℓ), introduce the non-negative integers ar,j, br,j that
stand for the generic numbers of elements from [ℓ] and [N ] \ [ℓ] and in the
j-th cycle of length r, (j ≤ νr). For a, b to be admissible we must have

ar,j + br,j = r,(21)

ar,j ∈ A,(22)
∑

r,j

ar,j = ℓ,
∑

r,j

br,j = N − ℓ.(23)

Therefore

(24)

QA(~ν, ℓ) = (N − ℓ)! ℓ!
∑

a,b meet
(21),(22),(23)

∏

r

((r − 1)!)νr

νr!

∏

j≤r

1

ar,j! br,j!

= (N − ℓ)! ℓ! [wℓ]
∏

r

1

rνrνr!

∏

j≤νr

∑

ar,j∈A

(

r

ar,j

)

war,j

= (N − ℓ)! ℓ! [wℓ]
∏

r

1

νr!

(

∑

a∈A

(

r
a

)

wa

r

)νr

.

So, using (7) and ν =
∑

r νr, we conclude that

∑

s:~ν(s)=~ν

χλ∗

(s) = (−1)λ
1
(N − ℓ)! ℓ!

× [ξλ1wℓ]
ξ

1− ξ

∏

r

1

νr!

(

−
(1− ξr)

(
∑

a∈A

(

r
a

)

wa
)

r

)νr

.

Call a permutation s of [N ] admissible if the numbers of elements from [ℓ]
in each cycle of s meet the constraint (22). The above identity implies

(25)
∑

s admissible

χλ∗

(s) = (−1)λ
1
(N − ℓ)! ℓ!

× [ξλ1wℓ]
ξ

1− ξ

∑

~ν:
1ν1+2ν2+···=N

∏

r

1

νr!

(

−
(1− ξr)

(
∑

a∈A

(r
a

)

wa
)

r

)νr

.
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The expression in the second line of (25) equals

[ξλ1wℓxN ]
ξ

1− ξ

∑

~ν≥0

∏

r

(xr)νr

νr!

(

−
(1− ξr)

(
∑

a∈A

(r
a

)

wa
)

r

)νr

=[ξλ1wℓxN ]
ξ

1− ξ

∏

r

∑

νr≥0

1

νr!

(

−
xr(1− ξr)

(
∑

a∈A

(r
a

)

wa
)

r

)νr

=[ξλ1wℓxN ]
ξ

1− ξ

∏

r

exp

(

−
xr(1− ξr)

(
∑

a∈A

(r
a

)

wa
)

r

)

=[ξλ1wℓxN ]
ξ

1− ξ
exp



−
∑

r≥1

xr(1− ξr)
(
∑

a∈A

(r
a

)

wa
)

r



 .(26)

4.1. Probability that each cycle of σ contains at least one element

of [ℓ]. In this case A = A1 = Z>0. Therefore

∑

a∈A

(

r

a

)

wa = (1 + w)r − 1.

So, using (25), (26) and
∑

j≥1 z
j/j = − log(1− z), |z| < 1, we obtain

(27)

∑

s admissible

χλ∗

(s) =(−1)λ
1
(N − ℓ)! ℓ!

× [ξλ1wℓxN ]
ξ

1− ξ

(

1− x(1 + w)
)

(1− ξx)
(

1− ξx(1 + w)
)

(1− x)
.

Let us simplify this formula. Write

[wℓ]
1− x(1 + w)

1− ξx(1 + w)
=

ξ − 1

ξ
[wℓ]

1

1− ξx(1 + w)

=
1− ξ

ξ2x
[wℓ]

(

w −
1− ξx

ξx

)−1

=
1− ξ

ξ2x

(

−1

ℓ

)

(−1)−1−ℓ

(

1− ξx

ξx

)−1−ℓ

=−
1− ξ

ξ2x

(

ξx

1− ξx

)1+ℓ

.
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Therefore

[ξλ1wℓxN ]
ξ

1− ξ

(

1− x(1 + w)
)

(1− ξx)
(

1− ξx(1 + w)
)

(1− x)
= −[ξλ1xN ] (1−x)−1

(

ξx

1− ξx

)ℓ

= −[xN ]xλ1(1− x)−1 · [yλ1 ]

(

y

1− y

)ℓ

= −[yλ1−k](1− y)−ℓ = −

(

λ1 − 1

λ1 − ℓ

)

,

where
(a
b

)

= 0 for b < 0. So (27) becomes

(28)
∑

s admissible

χλ∗

(s) = (−1)λ
1−1(N − ℓ)! ℓ!

(

λ1 − 1

λ1 − ℓ

)

.

Combining (28) and (6) we conclude that

(29)

pA1(N, ℓ; k) =
1

N !

∑

λ∗

(−1)k(λ
1−1)

(

N − 1

λ1 − 1

)−k+1
∑

s admissible

χλ∗

(s)

=

(

N

ℓ

)−1 N
∑

λ1=ℓ

(−1)(k−1)(N−λ1)

(

N − 1

N − λ1

)−k+1(λ1 − 1

ℓ− 1

)

.

For N → ∞, the dominant contribution to the right-hand side in (29) comes

from λ1 = ℓ and λ1 = N , so that pA1(N, ℓ; k) = ℓ/N + O(N−2ℓ+1); the
formula is useful for ℓ > 1. We remark that ℓ/N is the probability that
every cycle of the uniformly random permutation of [N ] contains at least
one element of [ℓ]; see Lovász [12], Section 3, Exercise 6.

For k = 2 we are able to replace the right-hand side of (29) with a sum
of just ℓ + 1 terms, which will allow us to determine compact formulas for
moderate values of ℓ. To do so we will need a certain binomial identity.
Introduce

(30) Sn,a,b =

n
∑

r=a+b

(−1)r
(r−a

b

)

(n
r

) .

This function is relevant since (29) is equivalent to

(31) pA1(N, ℓ; 2) = (−1)N−1

(

N

ℓ

)−1

SN−1,0,ℓ−1.

Suri et al. [17] proved that

(32) Sn,0,0 = (1 + (−1)n)
n+ 1

n+ 2
.

The key element of their argument was an identity that we have previously
mentioned and used, namely

(33)

(

n

r

)−1

= (n+ 1)

∫ 1

0
tr(1− t)n−r dt.
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They used (33) to derive a sum-type formula, still with n+ 1 terms, for

n
∑

r=0

(−1)r
xr
(n
r

) ,

that yielded (32) via setting x = 1. We also use (33) but avoid an interme-
diate sum with n + 1 terms, and instead differentiate the resulting integral
with respect to the parameter x. Here are the details. First define and
evaluate Sn,a,b(x): for a+ b ≤ n,

(34)

Sn,a,b(x) :=

n
∑

r=a+b

(−1)r
xr−a

(

n
r

)

=(n+ 1)

∫ 1

0

(

n
∑

r=a+b

(−1)rxr−atr(1− t)n−r

)

dt

=(n+ 1)(−1)a+b

∫ 1

0
ta+b(1 − t)n−a−bxb

n
∑

r=a+b

(

−
xt

1− t

)r−a−b

dt

=(n+ 1)(−1)a+b

∫ 1

0

xb + (−1)n−a−bxn−a+1
(

t
1−t

)n−a−b+1

1 + xt
1−t

× ta+b(1− t)n−a−b dt.

The connection between S(n, a, x) and S(n, a, b) is: Sn,a,b =
1
b!

dbSn,a,b(x)

dxb

∣

∣

∣

x=1
.

To compute this derivative, we differentiate b times the right-hand side
of (34) with respect to x by carrying the operation inside the integral and
then setting x = 1. So
(35)

dbS(n, a, x)

dxb

∣

∣

∣

∣

x=1

= (−1)a+b(n+ 1)

×

∫ 1

0

∂b

∂xb

xb + (−1)n−a−bxn−a+1
(

t
1−t

)n−a−b+1

1 + xt
1−t

∣

∣

∣

∣

x=1

ta+b(1− t)n−a−b dt.
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By (uv)(b) =
∑

j

(b
j

)

u(j)v(b−j), the partial derivative at x = 1 is

b
∑

j=0

(

b

j

)(

(b)j + (−1)n−a−b
(

t
1−t

)n−a−b+1
(n − a+ 1)j

)

× (−1)b−j (b− j)!
(

1 + t
1−t

)b−j+1
·

(

t

1− t

)b−j

=
b
∑

j=0

(−1)b−j

(

b

j

)[

b! tb−j(1−t)+(−1)n−a−b(b−j)! (n−a+1)j
tn−a+1−j

(1− t)n−a−b

]

= b!



(1− t)b+1 +

b
∑

j=0

(−1)n−a−j

(

n− a+ 1

j

)

tn−a+1−j

(1− t)n−a−b



 .

Plugging the last expression into (35) and using (33) we obtain

(36)

Sn,a,b =

n
∑

r=a+b

(−1)r
(r−a

b

)

(

n
r

) = (n+ 1)

[

(−1)a+b

(n+ 2 + b)
(n+b+1

a+b

)

+
b
∑

j=0

(−1)n+b−j

(

n− a+ 1

j

)

1

n+ 2 + b− j

]

.

For large n, this formula is a significant improvement of the initial definition
of Sn,a,b if b remains moderately valued. Using yet another identity

u
∑

j=0

(−1)j
(

u

j

)

1

v + j + 1
=

1

(u+ v + 1)
(u+v

v

) ,

from Suri et al. [17], the equation (36) is easily transformed into

(37) Sn,a,b = (−1)a+b(n+ 1)

n−a−b
∑

i=0

(−1)i
(

n− a+ 1

i

)

1

i+ a+ b+ 1
.

This alternative formula is efficient for the extreme case, when n− a− b is
moderately valued as n grows.

So, applying the formulas (36), (37) for n = N − 1, a = 0 and b = ℓ− 1,
we obtain from (31) that

(38) pA1(N, ℓ; 2) = (−1)N−1N

(

N

ℓ

)−1

×

[

(−1)ℓ−1

(N + ℓ)
(N+ℓ−1

ℓ−1

) +
ℓ−1
∑

j=0

(−1)N+ℓ−j

(

N

j

)

1

N + ℓ− j

]

= (−1)N+ℓN

(

N

ℓ

)−1 N−ℓ
∑

i=0

(−1)i
(

N

i

)

1

i+ ℓ
,
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two expressions that can be efficiently computed for moderate ℓ and mod-
erate N − ℓ, respectively. In particular, using the first expression we obtain

pA1(N, 1; 2) =







2
N+1 if N is odd,

0 if N is even.

This is equivalent to the result already mentioned in Section 3, since pA1(N, 1; 2)
is indeed equal to the probability that σ is a maximal cycle.

4.2. Probability that the elements 1, . . . , ℓ are in the same cycle of

σ. This time A = A2 = {0, ℓ}, so that

∑

a∈A2

(

r

a

)

wa = 1 +

(

r

ℓ

)

wℓ.

Therefore

(39) QA2(~ν, ℓ) = (N − ℓ)! ℓ! [wℓ]
∏

r

1

νr!

(

1+(rℓ)w
ℓ

r

)νr

.

So, using (7) and ν =
∑

r νr, we conclude that

(40)
∑

s admissible

χλ∗

(s) = (−1)λ
1
(N − ℓ)! ℓ!

× [ξλ1wℓ]
ξ

1− ξ

∑

~ν:
1ν1+2ν2+···=N

∏

r

1

νr!

(

−(1− ξr)
1 +

(r
ℓ

)

wℓ

r

)νr

.

Since
∑

r rνr = N , the identity
∑

r z
r/r = − log(1 − z), (|z| < 1), implies

that the second line expression in (40) equals

[ξλ1wℓxN ]
ξ

1− ξ

∑

~ν≥0

∏

r

(xr)νr

νr!

(

−(1− ξr)
1 +

(

r
ℓ

)

wℓ

r

)νr

= [ξλ1wℓxN ]
ξ

1− ξ

∏

r

∑

νr≥0

1

νr!

(

−xr(1− ξr)
1 +

(

r
ℓ

)

wℓ

r

)νr

= [ξλ1wℓxN ]
ξ

1− ξ

∏

r

exp

(

−xr(1− ξr)
1 +

(

r
ℓ

)

wℓ

r

)

= [ξλ1wℓxN ]
ξ

1− ξ
exp



−
∑

r≥1

xr(1− ξr)
1 +

(r
ℓ

)

wℓ

r



 .
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Here, using
∑

b≥a

(b
a

)

zb = za

(1−z)a+1 ,

∑

r≥1

xr(1− ξr)
1 +

(r
ℓ

)

wℓ

r

= − log(1− x) + log(1− xξ) +
wℓ

ℓ

∑

r≥1

(

r − 1

ℓ− 1

)

(

xr − (xξ)r
)

= log
1− xξ

1− x
+

wℓ

ℓ

(

xℓ

(1− x)ℓ
−

(xξ)ℓ

(1− xξ)ℓ

)

.

Therefore

[wℓ] exp



−
∑

r≥1

xr(1− ξr)
1 +

(r
ℓ

)

wℓ

r





=
1− x

1− xξ
[wℓ] exp

[

−
wℓ

ℓ

(

xℓ

(1− x)ℓ
−

(xξ)ℓ

(1− xξ)ℓ

)]

=
1

ℓ

1− x

1− xξ

(

(xξ)ℓ

(1− xξ)ℓ
−

xℓ

(1− x)ℓ

)

.

Therefore the expression in the second line of (40) is equal to

1

ℓ
[ξλ1xN ]

ξ

1− ξ
·
1− x

1− xξ

(

(xξ)ℓ

(1− xξ)ℓ
−

xℓ

(1− x)ℓ

)

=
1

ℓ
[ξλ1xN ]

(

1

1− ξ
−

1

1− xξ

)(

(xξ)ℓ

(1− xξ)ℓ
−

xℓ

(1− x)ℓ

)

=:
1

ℓ
(T1 + T2 + T3 + T4).

Here

(41)

T1 = [ξλ1xN ]
1

1− ξ
·

(xξ)ℓ

(1− xξ)ℓ

= [ξλ1 ]
ξN

1− ξ
[yN ]

yℓ

(1− y)ℓ
= 1{λ1=N}

(

N − 1

ℓ− 1

)

;

next

(42)

T2 = −[ξλ1xN ]
1

1− ξ
·

xℓ

(1− x)ℓ

= −[xN−ℓ]
1

(1− x)ℓ
= −

(

N − 1

ℓ− 1

)

;
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next

(43)

T3 = −[ξλ1xN ]
(xξ)ℓ

(1− xξ)ℓ+1

= −1{λ1=N} [y
N−ℓ]

1

(1− y)ℓ+1
= −1{λ1=N}

(

N

ℓ

)

;

and finally

(44)

T4 = [ξλ1xN ]
1

1− xξ

xℓ

(1− x)ℓ

= [xN ]
xλ1+ℓ

(1− x)ℓ
= [xN−λ1−ℓ]

1

(1− x)ℓ

= 1{λ1<N}

(

N − λ1 − 1

ℓ− 1

)

.

It follows from (41), (42), (43) and (44) that

1

ℓ
(T1 + T2 + T3 + T4)

= −
1

ℓ

{

1{λ1<N}

[(

N − 1

ℓ− 1

)

−

(

N − λ1 − 1

ℓ− 1

)]

+ 1{λ1=N}

(

N

ℓ

)}

.

So (40) becomes

(45)
∑

s admissible

χλ∗

(s) = (−1)λ
1−1(N − ℓ)! ℓ!

×
1

ℓ

{

1{λ1<N}

[(

N − 1

ℓ− 1

)

−

(

N − λ1 − 1

ℓ− 1

)]

+ 1{λ1=N}

(

N

ℓ

)}

.

Combining (45) and (6) we thus proved

pA2(N, ℓ; k) =
1

N !

N
∑

λ1=1

(−1)k(λ
1−1)

(

N − 1

λ1 − 1

)−k+1
∑

s admissible

χλ∗

(s)

=
1

ℓ

(

N

ℓ

)−1
∑

λ1

(−1)(k+1)(λ1−1)

(

N − 1

λ1 − 1

)−k+1

×

{

1{λ1<N}

[(

N − 1

ℓ− 1

)

−

(

N − λ1 − 1

ℓ− 1

)]

+ 1{λ1=N}

(

N

ℓ

)}

.

For k = 2, introducing r = N − λ1, we equivalently have

(46)

pA2(N, ℓ; 2) =
1

ℓ
+

1

ℓ

(

N

ℓ

)−1

×
N−1
∑

r=1

(−1)r ·

(

N − 1

r

)−1 [(N − 1

ℓ− 1

)

−

(

r − 1

ℓ− 1

)]

.
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By (30), the last sum is the linear combination of SN−1,0,0−1 and SN−1,1,ℓ−1.
According to (36) and (37), we have

SN−1,0,0 =
[

1 + (−1)N−1
] N

N + 1
,

SN−1,1,ℓ−1 =(−1)ℓ
[(

N + ℓ

ℓ

)−1

+N
ℓ−1
∑

j=0

(−1)N−j

(

N − 1

j

)

1

N + ℓ− j

]

=(−1)ℓN

N−1−ℓ
∑

i=0

(−1)i
(

N − 1

i

)

1

i+ ℓ+ 1
.

Plugging these expressions into (46), we obtain after simple algebra

pA2(N, ℓ; 2) =
1

ℓ
+

[

1 + (−1)N−1

N + 1
−

1

N

]

+
(−1)ℓ+1

ℓ
(

N
ℓ

)





(

N + ℓ

ℓ

)−1

+N
ℓ−1
∑

j=0

(−1)N−j

(

N − 1

j

)

1

N + ℓ− j





=
1

ℓ
−

1

(N + 1)2
(47)

+
(−1)ℓ+1

ℓ
(

N
ℓ

)





(

N + ℓ

ℓ

)−1

+N
ℓ−2
∑

j=0

(−1)N−j

(

N − 1

j

)

1

N + ℓ− j





=
1

ℓ
−

1

(N + 1)2
(48)

+ (−1)ℓ+1

(

N − 1

ℓ− 1

)−1 N−ℓ
∑

i=0

(−1)i
(

N − 1

i

)

1

i+ ℓ+ 1
.

The equivalent formulas (47) and (48) are computationally efficient for mod-
erate ℓ and moderate N − ℓ respectively. In particular, plugging ℓ = 2, 3
into (47) and simplifying, we recover Stanley’s results, [16].

5. The probability that σ separates the disjoint sets S1, . . . ,St

Let ℓj = |Sj |, 1 ≤ j ≤ t, ℓ =
∑

j ℓj . Introduce p(N,~ℓ; k), the probability
that the permutation σ separates the sets S1, . . . ,St, meaning that no cycle
of σ contains a pair of elements from two distinct sets Si and Sj . Bernardi

et al. [2] were able to derive a striking formula for p(N,~ℓ; 2):
(49)

p(N,~ℓ; 2) =
(N − ℓ)!

∏

j ℓj !

(N + t)(N − 1)!





(−1)N+ℓ
(N−1
t−2

)

(N+ℓ
ℓ−t

) +

ℓ−t
∑

j=0

(−1)j
(ℓ−t

j

)(N+j+1
ℓ

)

(N+t+j
j

)



 ,
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which is a sum of ℓ− t+ 2 terms. Remarkably,
∏

j ℓj! aside, the rest of this

expression does not depend on the individual ℓj. The equation (49) is very
efficient for values of ℓ, t relatively small compared to N .

In this section we apply our approach to obtain an efficient formula for
this probability when ℓ is close to N , implying in particular that, for ℓ = N ,

p(N,~ℓ; 2) =

∏

j ℓj !

(N − 1)!(N − t+ 1)
.

We will also obtain an equivalent version of (49).

Let Q(~ν, ~ℓ) denote the total number of permutations of [N ] with cycle
counts ~ν = (ν1, ν2, . . . ) that separate S1, . . . ,St. Each cycle of such a per-
mutation either does not contain any element of ∪jSj, or contains some of
the elements of exactly one set Sj . Since |[N ] ∪j Sj | = N − ℓ, Denoting
∏

j w
ℓj
j = ~w

~ℓ, analogously to (24) we have

(50)

Q(~ν, ~ℓ)

(N − ℓ)!
∏

j ℓj!
= [yN−ℓ ~w

~ℓ]

[

∏

r

1

νr!

(

yr +
∑t

j=1

∑

a>0

(r
a

)

wa
j y

r−a

r

)νr]

= [yN−ℓ ~w
~ℓ]

[

∏

r

1

νr!

(

−(t− 1)yr +
∑t

j=1(wj + y)r

r

)νr]

.

Using (7) and (50), we obtain

(51)
∑

s admissible

χλ∗

(s) = (−1)λ
1
(N − ℓ)!

∏

j

ℓj!

×[ξλ1yN−ℓ ~w
~ℓ]

ξ

1− ξ

∑

~ν

∏

r

1

νr!

(

−
(1− ξr)

(

−(t− 1)yr +
∑

j(wj + y)r
)

r

)νr

,
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the sum being for ~ν ≥ 0 with
∑

r rνr = N . So the expression in the second
line of (51) equals

[ξλ1xNyN−ℓ ~w
~ℓ]

ξ

1− ξ

∑

~ν≥0

∏

r

(xr)νr

νr!

×

(

−
(1− ξr)

[

−(t− 1)yr +
∑

j(wj + y)r
]

r

)νr

=[ξλ1xNyN−ℓ ~w
~ℓ]

ξ

1− ξ

∏

r

exp

(

−
xr(1− ξr)

[

−(t− 1)yr +
∑

j(wj + y)r
]

r

)

=[ξλ1xNyN−ℓ]
ξ

1− ξ

(

1− ξxy

1− xy

)t−1

[~w
~ℓ]
∏

j

1− x(wj + y)

1− ξx(wj + y)

= [ξλ1xNyN−ℓ]
ξ

1− ξ

(

1− ξxy

1− xy

)t−1( 1− xy

1− ξxy

)t

·
∏

j

[w
ℓj
j ]

1−
xwj

1−xy

1−
ξxwj

1−ξxy

=[ξλ1xNyN−ℓ]
ξ

1− ξ

1− xy

1− ξxy

∏

j

[

(

ξx

1− ξxy

)ℓj

−
x

1− xy

(

ξx

1− ξxy

)ℓj−1
]

=[ξλ1xNyN−ℓ]
ξ

1− ξ

1− xy

1− ξxy

(

ξx

1− ξxy

)ℓ−t( (ξ − 1)x

(1− ξxy)(1− xy)

)t

=(−1)t [ξλ1−1−(ℓ−t)xN−ℓyN−ℓ](1− ξ)t−1(1− xy)−t+1(1− ξxy)−ℓ−1

=(−1)tK(N, ℓ, t;λ1 − 1).

Thus, ξ aside, we need to extract a coefficient of (xy)N−ℓ from a power series
of xy. So

(52)

K(N,ℓ, t; r) := [ξr−ℓ+tzN−ℓ] (1− ξ)t−1(1− z)−t+1(1− ξz)−ℓ−1

=
∑

j

(−1)r−∆−j

(

ℓ+ j

j

)(

t− 1

r −∆− j

)(

N −∆− j − 2

t− 2

)

,

where we set ∆ = ℓ− t. Obviously K(N, ℓ, t; r) = 0 for r < ℓ − t, and less
obviously for r ≥ N . Indeed

(53) [zN−ℓ] (1− ξ)t−1(1− z)−t+1(1− ξz)−ℓ+1

=
∑

j≤N−ℓ

(−1)N−ℓ−j

(

−t+ 1

N − ℓ− j

)

[zj ](1 − ξ)t−1(1− ξz)−ℓ−1,

and the [zj ]-factor is a polynomial of ξ of degree t− 1+ j ≤ t− 1+N − ℓ <
r − ℓ+ t if r ≥ N .
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Combining this with equation (6), and λ1+λ1 = N +1, we conclude that

(54)

p(N,~ℓ; k) =
1

N !

∑

λ1

(−1)k(λ
1−1)

(

N − 1

λ1 − 1

)−k+1
∑

s admissible

χλ∗

(s)

=
(−1)αk(N,t)

∏

j ℓj!

(N)ℓ

N−1
∑

r=0

(−1)(k+1)r

(

N − 1

r

)−k+1

K(N, ℓ, t; r),

where αk(N, t) = t− 1 if k is odd, and αk(N, t) = N + t if k is even.
The sum in the second line depends only on ℓ and t, rather than the

individual ℓ1, . . . , ℓt, and K(N, ℓ, t, r) is given by each of two lines in (52).
In particular,

K(N,N, t; r) = [ξr−N+t](1− ξ)t−1 = (−1)r−N+t

(

t− 1

r −N + t

)

.

Let ℓ =
∑

j ℓj = N . Introducing βk(N) = N − 1 for k odd, βk(N) = 0 for k

even, equation (54) becomes

p(N,~ℓ; k) =
(−1)βk(N)

∏

j ℓj!

(N)ℓ

N−1
∑

r=N−t

(−1)kr
(

N − 1

r

)−k+1( t− 1

r −N + t

)

,

an alternating sum of t terms. For t = N , p(N,~ℓ; k) = P(σ = id); the
resulting formula agrees with (10), since for k odd and N even the sum over
r ∈ [0, N − 1] is zero.

From now on we focus on k = 2, and general ~ℓ. In this case (54) becomes

p(N,~ℓ; 2) =
(−1)N+t

∏

j ℓj !

(N)ℓ

N−1
∑

r=ℓ−t

(−1)r
(

N − 1

r

)−1

K(N, ℓ, t; r),(55)

K(N, ℓ, t; r) := [ξr−ℓ+tzN−ℓ] (1− ξ)t−1(1− z)−t+1(1− ξz)−ℓ−1.

In (55) we can extend the summation to r ∈ [ℓ−t,∞), since K(N, ℓ, t; r) = 0
for r ≥ N .

Let us evaluate the sum in (55) halfway, i.e. dropping (1 − z)−t+1 and
postponing the extraction of the coefficient by zN−ℓ till the next step. Using
(33), and the observation above to replace N − 1 with ∞, we reduce the
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halfway sum to

(56) N
∞
∑

r=ℓ−t

(−1)r[ξr−ℓ+t]
(1 − ξ)t−1

(1− ξz)ℓ+1

∫ 1

0
ur(1− u)N−1−r du

= N

∫ 1

0
(1− u)N−1

(

∞
∑

r=ℓ−t

(

−
u

1− u

)r

[ξr−ℓ+t]
(1− ξ)t−1

(1− ξz)ℓ+1

)

du

= N

∫ 1

0
(1− u)N−1

(

−
u

1− u

)ℓ−t
(

∞
∑

r=ℓ−t

[ξr−ℓ+t]
(1 + ξ u

1−u)
t−1

(1 + ξz u
1−u)

ℓ+1

)

du

= N

∫ 1

0
(1− u)N−1

(

−
u

1− u

)ℓ−t
(

∞
∑

r=ℓ−t

[ξr−ℓ+t]
(1 + ξ u

1−u)
t−1

(1 + ξz u
1−u)

ℓ+1

)

du

= N

∫ 1

0
(1− u)N−1

(

−
u

1− u

)ℓ−t (1 + ξ u
1−u)

t−1

(1 + ξz u
1−u)

ℓ+1

∣

∣

∣

∣

∣

ξ=1

du

= (−1)ℓ−tN

∫ 1

0

(1− u)N+1uℓ−t

(1− u+ zu)ℓ+1
du;

(in the fifth line we used
∑

r≥0[ξ
r]f(ξ) = f(1) for the series f(ξ) =

∑

r≥0 arξ
r).

So (55) is transformed into

(57)

p(N,~ℓ; 2) =
(−1)N+ℓN

∏

j ℓj!

(N)ℓ

× [zN−ℓ](1− z)−t+1

∫ 1

0

(1− u)N+1uℓ−t

(1− u+ zu)ℓ+1
du.

In particular, for ℓ = N this formula yields

(58) p(N,~ℓ; 2) =
N
∏

j ℓj!

N !

∫ 1

0
uN−t du =

∏

j ℓj !

(N − 1)!(N − t+ 1)
.

Notice that, for ℓ = N , the separation probability for the uniformly ran-
dom permutation of [N ] is

∏

j ℓj !

N !
.

More generally,

(59) p(N,~ℓ; 2) =
N
∏

j ℓj !

(N)ℓ

∑

k≤N−ℓ

(−1)k
(

t+k−2
t−2

)(

N−k
ℓ

)

(N − t+ 1)
(N−t

k

) ,

an equation computationally efficient for moderate N − ℓ, but progressively
less useful for larger values of N − ℓ.

We want to show that equation (57) can be transformed so that extraction
of the coefficient of zN−ℓ will lead to a sum with ℓ− t+ 2 number of terms,
close in appearance to the formula (49) by Bernardi et al.
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Clearly it is the outside factor (1 − z)−t+1 that causes the number of
summands in (59) grow indefinitely with N . To get rid of (1 − z)−t+1, we
resort to repeated integration by parts of the integral, denote it I(z), with
each step producing the outside factor 1− z. However the factor uℓ−t in the
integrand of I(z) would have made the integration process unwieldy; so we
apply it instead to K1(z), where

Kν(z) :=

∫ 1

0

(1− u)N+ν

(1− u+ zu)t+ν
du,

because

(60) I(z) =
(−1)ℓ−t

(t+ 1)(ℓ−t)

dℓ−tK1(z)

dzℓ−t
.

One integration by parts leads to

K1(z) =
1

N + 2
+

(t+ 1)(1 − z)

N + 2

∫ 1

0

(1− u)N+2

(1− u+ zu)t+2
du

=
1

N + 2
+

(t+ 1)(1 − z)

N + 2
K2(z).

After ℓ− 1 integrations by parts, we get

K1(z) =

ℓ−1
∑

j=1

(t+ 1)(j−1)

(N + 2)(j)
(1− z)j−1 +

(t+ 1)(ℓ−1)

(N + 2)(ℓ−1)
(1− z)ℓ−1Kℓ(z).

So, using (60) and

dℓ−t
[

(1− z)ℓ−1Kℓ

]

dzℓ−t
=

ℓ−t
∑

µ=0

(−1)µ
(

ℓ− t

µ

)

(ℓ− 1)µ(1− z)ℓ−1−µ d
ℓ−t−µKℓ

dzℓ−t−µ
,

we obtain

(1− z)−t+1I(z)
(−1)ℓ−t

(t+1)(ℓ−t)

= (−1)ℓ−t
ℓ−1
∑

j=1

(t+ 1)(j−1)(j − 1)ℓ−t

(N + 2)(j)
(1− z)j−ℓ

+
(t+ 1)(ℓ−1)

(N + 2)(ℓ−1)

ℓ−t
∑

µ=0

(−1)µ
(

ℓ− t

µ

)

(ℓ− 1)µ(1− z)ℓ−t−µ dℓ−t−µKℓ(z)

dzℓ−t−µ
.

It remains to extract the coefficient of [zN−ℓ] in the right-hand side expres-
sion. First,

[zN−ℓ](1− z)j−ℓ = (−1)N−ℓ

(

j − ℓ

N − ℓ

)

.
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Next, for every r ≥ 0,

[zr]
dℓ−t−µKℓ

dzℓ−t−µ
= (−1)ℓ−t−µ(t+ ℓ)(ℓ−t−µ)[zr]

∫ 1

0

(1− u)N+ℓuℓ−t−µ

(1− u+ zu)2ℓ−µ
du

=(−1)ℓ−t−µ(t+ ℓ)(ℓ−t−µ)

(

−2ℓ+ µ

r

)∫ 1

0
(1− u)N−ℓ+µ−ruℓ−t−µ+r du

=(−1)ℓ−t−µ (t+ ℓ)(ℓ−t−µ)
(

−2ℓ+µ
r

)

(N − t+ 1)
( N−t
ℓ−t−µ+r

) .

So

(61)

[zN−ℓ]

{

(1− z)ℓ−t−µ dℓ−t−µKℓ

dzℓ−t−µ

}

=
∑

k≤ℓ−t−µ

{

[zk](1− z)ℓ−t−µ
}

{

[zN−ℓ−k]
dℓ−t−µKℓ

dzℓ−t−µ

}

=
∑

k≤ℓ−t−µ

(−1)k
(

ℓ− t− µ

k

)

(−1)ℓ−t−µ (t+ ℓ)(ℓ−t−µ)
(

−2ℓ+µ
r

)

(N − t+ 1)
(

N−t
ℓ−t−µ+r

)

∣

∣

∣

∣

∣

r=N−ℓ−k

.

Collecting the pieces,

[zN−ℓ](1− z)−t+1I(z)
(−1)ℓ−t

(t+1)(ℓ−t)

= (−1)N−t
ℓ−1
∑

j=1

(t+ 1)(j−1)(j − 1)ℓ−t

(N + 2)(j)

(

j − ℓ

N − ℓ

)

+ (−1)ℓ−t (t+ 1)(ℓ−1)

(N + 2)(ℓ−1)

ℓ−t
∑

µ=0

(

ℓ− t

µ

)

(ℓ− 1)µ(t+ ℓ)(ℓ−t−µ)

×
∑

k≤ℓ−t−µ

(−1)k
(

ℓ− t− µ

k

)

(−2ℓ+µ
N−ℓ−k

)

(N − t+ 1)
(N−t
µ+k

) .

So, since

(

−a

b

)

= (−1)b
(

a+ b− 1

a− 1

)

,
(t+ 1)(ℓ−1)(t+ ℓ)(ℓ−t−µ)

(t+ 1)(ℓ−t)
=

(2ℓ− µ− 1)!

ℓ!
,
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equation (57) becomes

(62)

p(N,~ℓ; 2) =
N
∏

j ℓj !

(N)ℓ

×



(−1)N+ℓ
ℓ−1
∑

j=1

(t+ 1)(j−1)(j − 1)ℓ−t

(t+ 1)(ℓ−t)(N + 2)(j)

(

N − j − 1

ℓ− j − 1

)

+
1

ℓ!(N + 2)(ℓ−1)(N − t+ 1)

×
ℓ−t
∑

µ=0

(

ℓ− t

µ

)

(ℓ− 1)µ

ℓ−t
∑

ν=µ

(

ℓ− t− µ

ℓ− t− ν

)

(N + ℓ− ν − 1)2ℓ−µ−1
(

N−t
ν

)



 ;

ν in the bottom sum comes from substitution ν = k + µ in (61). Changing
the order of summation, the double sum above equals

(63)
(ℓ− t)!

(N − ℓ)!

ℓ−t
∑

ν=0

(N + ℓ− ν − 1)!

(ℓ− t− ν)!

1
(N−t

ν

)

ν
∑

µ=0

(

ℓ− 1

µ

)(

N − ℓ

ν − µ

)

=
(ℓ− t)!

(N − ℓ)!

ℓ−t
∑

ν=0

(N + ℓ− ν − 1)!

(ℓ− t− ν)!

(N−1
ν

)

(N−t
ν

) .

Let Σ(N, ℓ, t) denote the top, ordinary, sum in (62). A Maple-aided sym-
bolic computation of Σ(N, ℓ, t) for a few small values of ℓ, t makes it highly
plausible that, in general,

(64) Σ(N, ℓ, t) =
(N − 1)t−2 (ℓ− t)!

(t− 2)!(N + t)(ℓ−t+1)
.

We confirmed this conjecture via the powerful Wilf-Zeilberger algorithm, see
Nemes et al. [11], Wilf and Zeilberger [18]. Combining (63) and (64), we
simplify the formula (62) to

(65) p(N,~ℓ; 2) =
(N − ℓ)!

∏

j ℓj!

(N − 1)! (N + t)

[

(−1)N+ℓ

(N−1
t−2

)

(N+ℓ
ℓ−t

)

+
(N + t)(N + 1)ℓ+1

(N − t+ 1)(N + ℓ)! (ℓ)t

ℓ−t
∑

ν=0

(N + ℓ− ν − 1)!(N − 1)ν
(ℓ− t− ν)!(N − t)ν

]

.

The outside factor and the first inside term are exactly those in (49) by
Bernardi et al. The second inside term, a sum of ℓ − t + 1 terms, times

(N+t)(N+1)ℓ+1

(N−t+1)(N+ℓ)! (ℓ)t
, is quite different in appearance from its counterpart in

(49). For ℓ− t ≤ 5, Maple confirms that the rational functions given by the
sums are identical; we did not try to prove equality in general.

Here is the proof of (64) via the W-Z algorithm, as succinctly presented
and illustrated by Andrews et al. [1]. Given ∆ ≥ 0, introduce a function of
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t ≥ 2, defined by

S(t) =

t−1+∆
∑

j=1

(t+ 1)(j−1)(j − 1)∆

(t+ 1)(∆)(N + 2)(j)

(

N − j − 1

t+∆− j − 1

)

.

The non-zero summands are those for j ∈ [∆+1, t− 1+∆]. We can extend
summation to j ∈ [1,∞), since the last binomial is zero for j ≥ t+∆. We
need to show that

(66) S(t) = S∗(t) :=
(N − 1)t−2∆!

(t− 2)!(N + t)(∆+1)
.

To do so, first we compute

S∗(t)

S∗(t− 1)
=

β(t)

α(t)
,

α(t) := (t− 2)(N + t+∆), β(t) := (N − t+ 2)(N + t− 1).

Next, let F (t, j) stand for the j-term in the series S(t). Introduce the
“partner” sequence G(t, j) (which again for each t is 0 for all but finitely
many j) such that

(67) G(t, j) −G(t, j − 1) = α(t)F (t, j) − β(t)F (t − 1, j), j ≥ ∆+ 1,

and G(t,∆) = 0.
The equation (66) will be proved if we demonstrate that G(t, j) = 0 for j

large enough.
Computation by Maple shows that

G(t,∆+ 1) =−
(∆ + 1)!(∆ + 2t− 2)

(N + 2)(∆+1)

(

N −∆− 2

t− 3

)

,

G(t,∆+ 2) =−
(∆ + 2)!(∆ + 2t− 2)(t+∆+ 1)

(N + 2)(∆+2)

(

N −∆− 3

t− 4

)

,

G(t,∆+ 3) =−
(∆ + 3)!(∆ + 2t− 2)(t+∆+ 2)2

2(N + 2)(∆+3)

(

N −∆− 4

t− 5

)

.

The evidence is unmistakable: it must be true that for all u ≥ 1

(68) G(t,∆+ u) = −
(∆ + u)!(∆ + 2t− 2)

(

t+∆+u−1
u−1

)

(N + 2)(∆+u)

(

N −∆− u− 1

t− u− 2

)

.

Sure enough, the inductive step based on the recurrence (67) is easily carried
out with a guided assistance of Maple. It remains to notice that the last
binomial coefficient is zero for u > t− 2.

6. Probability that σ blocks the elements of [ℓ]

We say that the elements of [ℓ] are blocked in a permutation s of [N ] if
in every cycle of s (1) no two elements of [ℓ] are neighbors, and (2) each
element from [ℓ] has a neighbor from [N ] \ [ℓ].

As customary, let us begin with Q(~ν, ℓ), the total number of permuta-
tions with cycle counts ~ν such that the elements of [ℓ] are blocked. To
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evaluate Q(~ν, ℓ), introduce the non-negative integers ar,j, br,j that stand for
the generic numbers of elements from [ℓ] and [N ] \ [ℓ] in the j-th cycle of
length r, (j ≤ νr). Then

ar,j + br,j = r,(69)

br,j > 0,(70)
∑

r, j≤νr

ar,j =ℓ,
∑

r, j≤νr

br,j = N − ℓ.(71)

For ar,j > 0, the number of admissible cycles with parameters ar,j, br,j is

(72) c(ar,j , br,j) := (ar,j − 1)! br,j !

(

br,j − 1

ar,j − 1

)

= (br,j − 1)!ar,j !

(

br,j
ar,j

)

.

The last expression works for ar,j = 0 as well.
Indeed (ar,j − 1)! is the total number of directed cycles formed by ar,j

elements from [ℓ]; br,j! is the total number of ways to order, linearly, br,j
elements from [N ] \ ℓ, and

(br,j−1
ar,j−1

)

is the total number of ways to break

any such br,j-long sequence into ar,j blocks of positive lengths to be fitted
between ar,j cyclically arranged elements from [ℓ], starting with the smallest
element among them and moving in the cycle’s direction, say.

Therefore

(73)

Q(~ν, ℓ) = (N − ℓ)! ℓ!
∑

a,b meet
(69),(70),(71)

∏

r≥1

1

νr!

∏

j≤νr

c(ar,j, br,j)

ar,j! br,j!

= (N − ℓ)! ℓ! [wℓ]
∏

r≥1

1

νr!





∑

b>0, a+b=r

1

b

(

b

a

)

wa





νr

.

Having found Q(~ν, ℓ), we turn to p(N, ℓ, k), the probability that σ blocks
the elements of [ℓ]. Using (7), the equality ν =

∑

r νr, and and (73), we
obtain

∑

s:~ν(s)=~ν

χλ∗

(s) = (−1)λ
1
(N − ℓ)! ℓ!

× [ξλ1wℓ]
ξ

1− ξ

∏

r

1

νr!






−(1− ξr)







∑

b>0,
a+b=r

1

b

(

b

a

)

wa













νr

.
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Call a permutation s of [N ] admissible if it blocks the elements of [ℓ]. The
above identity implies

(74)
∑

s admissible

χλ∗

(s) = (−1)λ
1
(N − ℓ)! ℓ!

× [ξλ1wℓ]
ξ

1− ξ

∑

~ν:
1ν1+2ν2+···=N

∏

r

1

νr!






−(1− ξr)







∑

b>0,
a+b=r

1

b

(

b

a

)

wa













νr

.

The expression in the second line of (74) equals

[ξλ1wℓxN ]
ξ

1− ξ

∑

~ν≥0

∏

r

(xr)νr

νr!



−(1− ξr)





∑

b>0, a+b=r

1

b

(

b

a

)

wa









νr

= [ξλ1wℓxN ]
ξ

1− ξ

∏

r

∑

νr≥0

1

νr!



−xr(1− ξr)





∑

b>0, a+b=r

1

b

(

b

a

)

wa









νr

= [ξλ1wℓxN ]
ξ

1− ξ

∏

r

exp



−xr(1− ξr)





∑

b>0, a+b=r

1

b

(

b

a

)

wa









= [ξλ1wℓxN ]
ξ

1− ξ
exp



−
∑

r≥1

[xr − (xξ)r]





∑

b>0, a+b=r

1

b

(

b

a

)

wa







 .

Since

∑

r≥1

yr
∑

b>0, a+b=r

1

b

(

b

a

)

wa =
∑

b>0

yb

b

∑

a

(

b

a

)

(yw)a

=
∑

b>0

yb

b
(1 + yw)b =

∑

b>0

[y(1 + yw)]b

b

= log
1

1− y(1 + yw)
,
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the bottom part (75) becomes

[ξλ1wℓxN ]
ξ

1− ξ
exp

(

− log
1

1− x(1 + xw)
+ log

1

1− xξ(1 + xξw)

)

=[ξλ1wℓxN ]
ξ

1− ξ

1− x(1 + xw)

1− xξ(1 + xξw)

=[ξλ1xN ]
ξ(1− x)

(1− ξ)(1− xξ)
[wℓ]

1− x2

1−xw

1− (xξ)2

1−xξw

=[ξλ1xN ]
ξ(1− x)

(1− ξ)(1− xξ)

[

(

(xξ)2

1− xξ

)ℓ

−
x2

1− x

(

(xξ)2

1− xξ

)ℓ−1
]

=[ξλ1xN ]
ξ

1− xξ

(

(xξ)2

1− xξ)

)ℓ−1
x2

1− xξ
(xξ − 1− ξ)

=− [ξλ1xN ]

(

x2ℓξ2ℓ−1

(1− xξ)ℓ
+

x2ℓξ2ℓ

(1− xξ)ℓ+1

)

=− [ξλ1−2ℓ+1xN−2ℓ](1− xξ)−ℓ − [ξλ1−2ℓxN−2ℓ](1− xξ)−ℓ−1

=−

(

N − ℓ− 1

ℓ− 1

)

1{λ1=N−1} −

(

N − ℓ

ℓ

)

1{λ1=N}.

So (74) simplifies, greatly, to

(75)
∑

s admissible

χλ∗

(s) = (−1)λ
1−1(N − ℓ)! ℓ!

×

[(

N − ℓ− 1

ℓ− 1

)

1{λ1=N−1} +

(

N − ℓ

ℓ

)

1{λ1=N}

]

.

The rest is easy. By (6),

p(N, ℓ; k) := P(σ blocks elements of [ℓ])

=
1

N !

∑

λ∗

(−1)k(λ
1−1)

(

N − 1

λ1 − 1

)−k+1
∑

s admissible

χλ∗

(s).

Combining this with (75) we conclude that

(76) p(N, ℓ; k) =

(

N−ℓ
ℓ

)

(

N
ℓ

) + (−1)k+1

(N−ℓ−1
ℓ−1

)

(N − 1)k−1
(

N
ℓ

) .

Note. The equation (76) shows that limk→∞ p(N, ℓ; k) =
(N−ℓ

ℓ

)

/
(N
ℓ

)

, the
probability that the uniformly random permutation blocks [ℓ].
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