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Axion and dilaton + metric emerge jointly from
an electromagnetic model universe
with local and linear response behavior

Friedrich W. Hehl

Abstract We take a quick look at the different possible universallymled scalar
fields in nature. Then, we discuss how the gauging of the gobspale transforma-
tions (dilations), together with the Poincaré group, etk Weyl-Cartan spacetime
structure. There theilatonfield finds a natural surrounding. Moreover, we describe
shortly the phenomenology of the hypothetiagionfield. — In the second part of
our essay, we consider a spacetime, the structure of whextlgsively specified by
the premetric Maxwell equations and a fourth rank electrgmesic response tensor
densityx'IM = —y Ik — _yiilk with 36 independent components. This tensor den-
sity incorporates the permittivities, permeabilitiesg @ine magneto-electric moduli
of spacetime. No metric, no connection, no further propsrprescribed. If we for-
bid birefringence (double-refraction) in this model of sptime, we eventually end
up with the fields of an axion, a dilaton, and the 10 componehésmetric tensor
with Lorentz signature. If the dilaton becomes a constdr {acuum admittance)
and the axion field vanishes, we recover the Riemannian 8paxef general rela-
tivity theory. Thus, the metric is encapsulategyi#!, it can bederivedfrom it.
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“Universally coupled, thus gravitational, scalar fieldseastill
active players in contemporary theoretical physics. Scatvi$
the relationship between the scalar of scalar-tensor tlesgithe
dilaton and the inflaton? Clearly this is an unanswered and im
portant question. The scalar field is still alive and actiifeyot
always well, in current gravity research.”

Carl H. Brans (1997)
1 Dilaton and axion fields

1.1 Scalar fields

The Jordan-BrarisDicke scalar, thedilaton, the axion theinflaton—scalar fields
everywhere—and eventually even one, the scalar, thatassgimlesdHiggsboson

1 carl Brans is one of the pioneers of the scalar-tensor thefagsavitation. This essay is dedicated
to Carl on the occasion of his 80th birthday with all best wisko him and his family. During the

year of 1998, we had the privilege to host Carl, as an Alexawaie Humboldt awardee, for several
months at the University of Cologne. | remember with pleasbe many lively discussions we had
on scalars, on structures of spacetime, on physics in deaechon various other topics.
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HO, which has been found experimentally as heavy as some 13dnstolhese
different scalar fieldsare not necessarily independent from each other, it coyld be
for example, that the JBD-scalar can be identified with tHatalh (see $C]) or

the Higgs boson with the inflaton (se& [/]). Thus, the list of potentially existing
universally coupled scalar fields could be somewhat sm&tarthe history of the
JBD-scalar, one can compare Bransg][and GoennerdZ] and, for the role of the
inflaton in different models, Vennin et ab ).

1.2 Einstein gravity and the energy-momentum current

As remarked by Bransl[] in the quotation above, if universally coupled, the
scalar fields are intrinsically related to the gravitatidifeld. In Einstein’s theory
of gravity, general relativity (GR), the gravitational patial is the metri@;j, with

i,j =0,1,2,3 as (holonomic) coordinate indices. As its source acts ynenset-

ric energy-momentum tensdy; of matter. This is a second rank tensor, which is
generated already in special relativity (SR) with the hélfhe groupT (4) of trans-
lationsin space and in time. Together with the Lorentz transforomst5Q(1, 3),
the translationd (4) build up the Poincaré group(1,3) as a semi-direct product:
P(1,3) =T(4) x SQ1,3). This is the group of motion in the Minkowski space of
special relativity, see3[1].

Accordingly, if one desires to understand gravity from tloénp of view of the
gauge principle, th& (4) is an indispensable part of these considerations. However,
being onlyonepiece of theP(1,3), it is suggestive to gauge the compl&, 3).
This is exactly what Sciama and Kibble did during the begigni960s, see/[],

[9, Chap.4], and14].

1.3 Einstein-Cartan gravity: the additional spin current

This gauging of theP(1,3) extends the geometrical framework of gravity. The
4 translational potentialg® and the 6 Lorentz potential§?? = —;#% span a
Riemann-Cartan spacetime, enriching the Riemannian specef GR by the pres-
ence of Cartan’s torsion; hem, 8 = 0,1,2,3 are (anholonomic) frame indices.
Whereas the translational potentials couple to the caabarergy-momentum ten-

2 We skip here the plethora etalar mesons,

™, 10, n, fo(500), n'(958), fo(980),20(980), ...,
K*, K% KQ KQ,Ks(1430,D*,D°, D5(2400°,DF, ....;

they are all composed of two quarks. Thus, the scalar mesmm®idbelong to the fundamental
particles.
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sor of matterZ,', the Lorentz potentials couple to the canonical spin cureén
mattertyp' = —Tgq'.

The simplest version of the emerging Poincaré gauge maslele Einstein-
Cartan theory (EC), a viable gravitational theory competifith GR if highest mat-
ter densities are involved. lifjanckdenotes the Planck length ahsmptonthe Comp-
ton wave length of a particle, then deviations of the Eimsteéartan from Einstein’s
theory are expected at length scales of betoW3,,,qAcompton™/>; for protons,
prevalent in the early cosmos, it is about #®meter. According to Mukhanowf],
it is exactly this order of magnitude down to which, accogdio recent cosmologi-
cal data, GR is known to be valid.

From a gauge theoretical point of view, the EC-theory looksarreasonable
than GR since the Einsteinian principles of how to heurdiijcderive a gravi-
tational theory were followed closely: they were just apglio fermionic matter
instead of to macroscopic point particles or Euler fluidsooclassical electromag-
netism, as Einstein did.

Incidentally, in the EC-theory and, more generally, in tlognearé gauge theory,
the Poincaré and, in particular, the Lorentz covarianeevalid locally by construc-
tion, similar as in aSU(2) Yang-Mills theory, the gauge field strength $J(2)
covariant. Therefore, it is a misinterpretation if somedit is claimed that torsion
violates Lorentz invariance, seéq.

If, for theoretical reasons, one wants to evade the emeegehthe Riemann-
Cartan spacetime, then one can manipulate, in the undgriinkowski space,
the intrinsic or spin part of the total angular momentum ottarain such a way
that it vanishes on the cost of increasing the orbital pait by the correspond-
ing amount, seef[3]. This procedure is called Belinfante-Rosenfeld symraatri
tion of the canonical energy-momentum current, which, inegal, is defined as an
asymmetric tensor by the Noether procedure. Accordinghgymmetrization the
energy-momentum current is made fit to act as a source of thetd field equa-
tion. In this way, one can effectively sweep the spin and ¢insion under the rug
and can live happily forever in the paradise of the Riemamsacetime of GR.

Of course, in the end observations and/or experiments wdldk which of the
two theories, GR or EC, will survive. We opt for the latter.

1.4 Dilaton field and dilation current

The dilaton fieldp entered life as a Nambu-Goldstone boson of broken scale-inva
ance, see Fujii ing0. Thus,@ s related to dilat[at]ions or scale transformations in
space and time. But the dilaton also occurs in theories e@ityr@BD) and in string
theory, see Di Vecchia et al{]. TheP(1,3), if multiplied (semi-directly) with the
scale group, becomes the Weyl grotfl, 3). This 11-parameter group is an invari-
ance group for massless particles in special relativitg ffainslations, via Noether’s
theorem, generate the conserved energy-momentum t&fstire Lorentz transfor-
mations the conserved total angular momentum te.ﬂ;#b:r: Tijk + X Z”k = —ink,
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and the dilation the conserved total dilation currght= Ak +x 5k,

k=0, (1)
aJi* = oTij*— Zjj =0, (2
Y= als*+ k=0, (3)

see |9, 47] particularly for YX. Thus, if a universal coupling is assumed, thgn
should have the intrinsic dilation currefif as its source; for theories in Weyl spaces
in which Ak doesnotplay a role, see Schol3§, 87].

There are numerous field theoretical models under way whistale or dilation
invariance is implemented, have conformal invariance asaequence; for a more
recent review see Nakayam@af]. Hence, jumping to conformal invariance, before
one understood scale invariance, is probably not a very gwatkgy. For this reason
we confine ourselves here to scale invariance, to the dilatahto the 11-parametric
Weyl group. But it should be understood that the light conglse invariant under
the 15-parametric conformal group, see Barut & Raczkafd Blagojevic §] and,
for a historical account, Kastrug .

Both currents, the intrinsic dilation currefif and the energy-momentum current
>k are related texternalgroups, to the dilation (scale) and to the translation gspup
respectively. This is the reason for their universality.

1.5 The Weyl-Cartan spacetime as a natural habitat of theadiin
field

We only tried to make a strong case in favor of the EC-theorgriter to repeat
the corresponding arguments for the dilation group. Gautiie Weyl group yields
a Weyl-Cartan spacetime. The classical paper in that réspére one of Charap
and Tait, seeq, Chap.8]. A universally coupled massless scalar field indabVey!
covector Q as the corresponding dilation potential willy nilly. This the type of
spacetime Weyl used (with vanishing torsion) for his failetfied theory of 1918.
Here the Weyl space with the connectifi is resurrected for the dilation current,
instead of for the electric current, sed:[

w 1
Oigjk = —Qigik, i = ik + E(Qigjk‘i‘ngki — QYij); (4)

RCr is the connection of the Riemann-Cartan space. Again, dseirtase of the
Lorentz group, one can manipulate the total dilation curkénand can transform
its intrinsic part into an orbital part by modifying in thisse therace 5 of the
energy-momentum current. Then, again, one can stay witleimealm of the Rie-
mannian space of GR, see Callan, Coleman, and Jadkiw [
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As we mentioned already, the gauge theoretical answer was gy Charap and
Tait [15]. Again, which approach will succeed is eventually a questo experi-
mental verification.

We see, if the JBD-scalar is interpreted as a dilaton, thewadd expect that
the Weyl-Cartan spacetime is its arena. Clearly this dogspmrovide the kinemat-
ics of the theory. The dynamics would depend on the exacicehoi the dilaton
Lagrangian.

Recently, Lasenby and Hobsoh3 wrote an in-depth review of gauging the
Weyl group and, moreover, formulated an “extended Weyl gatingory.” Also
within their framework, the Weyl-Cartan space, and a shtiagward extension of
it, play an important role, see also Haghani et ai][ Definite progress has also
been achieved in the study of equations of motion within ttedes tensor theories
of gravity, see Obukhov and Puetzfeldd[ 81, 87]. The breaking of scale invari-
ance in the more general approach of metric-affine gravity stadied in 4], for
example; for somewhat analogous breaking mechanisms;sg&l] 67].

1.6 Axion field

Dicke did not only introduce in 1961, together with Brang][ a scalar field into
gravity, but he also discussed, in 1964, and pseudoscatadalrscalar fieldp? in
the context of gravitational theory, seé&)[ Appendix 4, p.51, Eq.(7)].

Subsequently, in the early 1970s, Ni] investigated matter coupled to the grav-
itational field and to electromagnetism and looked for cetesicy with the equiv-
alence principle. He found it possible to introduce in thismitext a new neutral
pseudscalar field accompanying the metric field, see a&§ 9, 4, 70]. Later,
in the context of the vacuum structure of quantum chromonyos, a light neu-
tral psedoscalar, subsequently dubbed “axion” was hygited, see Weinber§§,
pp.458-461]. Similar as Ni's field, the axion couples alsdh® electromagnetic
field, see Wilczek’s papePp] on “axion electrodynamics”.

The axion field is of a similar universality as the gravitatbfield. In other
words, the axion belongs to the universally coupled scaddddi Let in electrody-
namics, ! = (D,H) = - andF;j = (E,B) = —Fj denote the excitation and
the field strength, respectively. The constitutive relataharacterizing the axion
field a(x) (in elementary particle terminology it is calléd) reads B3],

D2 = aB?,

5
Ha:_aEa, ( )

L1
A = éore”"' Fq or {
see also §7] for the corresponding formalism; heeeis the totally antisymmet-
ric Levi-Civita symbol withe'®' = +1, moreovera = 1,2,3. Clearly, the axion
embodies the magnetoelectric effect par excellence. Itgseaudoscalar under 4-
dimensional diffeomorphisms.
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In electrotechnical terms, the axion behaves like the @aprocal Tellegen)
gyrator of network analysis, se€d]; also the perfect electromagnetic conduc-
tor (PEMC) of Lindell & Sihvola (8, 93] represents an analogous structure.
Metaphorically speaking, as we see frof),(the axion “rotates” the voltages
(B,E) into the currents(D,H). In SI, we have the unit$B] = Vs/n?,[E] =
V/m; [D] = As/n?,[H] = A/m. Thus,[a] = 1/ohm= 1/Q carries the physical
dimension of an admittance. Now, in the Maxwell Lagrangveafind an additional
piece~ a(x)e'M FjRg ~ a(x)E - B, a term, which was perhaps first discussed by
Schradinger §9, pp.25 to 26]. Ifa were a constant, the field equations would not
change.

As we already remarked; is a 4-dimensional pseudoscalar. The same is true for
the von Klitzing constanR« ~ 25813Q. And this covariance is a prerequisite for
its universal meaning. Phenomenologically, the quantuihdffect (QHE) can also
be described by a constitutive law of the typg Gee B5, Eq.(B.4.60)].

It is possible to apply the constitutive relatioB) (directly to a solid, too. By
the evaluation of experiments we have showri| that in the multiferroic CsO3
(chromium sesquioxide) we have a nonvanishing axion piéagdo ~ 10 3),,
whereAq is the vacuum admittance of aboyt3r 7Q. This fact demonstrates that
there exist materials with a nonvanishing, if small, (pseEadlar) axion piece. This
may be considered as a plausibility argument in favor of dlairstructure emerging
in fundamental physics. If th&® were found, it wouldnot be an unprecedented
structure, see in this context also Ni et alZJ.

In matter-coupleds” = 2 supergravity models, there are examples in which a
dilaton and an axion are contained simultaneously in ttoevaltl particle spectrum,
see Freeman and Van Proeyer,[p.451]. However, in the next section we will
demonstrate that in a fairly simple classical model of actedenagnetic universe,
the axion can emerge jointly with a dilaton and the metric.

More recently, there have been attempts to relate the aeétahthh the torsion
of spacetime, see, for example Mielke et &l][and Castillo-Felisola et al.1[].

To us, this assumed link between the internal symmiéttd) of the axion with the
external translation symmetiiy(4) related to the torsion appears to be artificial and
not supported by physical arguments.

2 An electromagnetic model universe

2.1 The premetric Maxwell equations

We consider a 4-dimensional differentiable manifold. Thecttomagnetic field is
specified by its excitation#’'l, a 2nd rank antisymmetric contravariant tensor den-
sity, and by its field strengthij, a 2nd rank antisymmetric covariant tensor; the
electric current/k is a contravariant vector density, see Pasi.[On this mani-
fold, the Maxwell equations read
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o™= 7%, 9iF=0; (6)

the brackets; denote antisymmetrization of the corresponding indicek di3! as
a factor, seeqd]; for the Tonti-diagram of), compare §5, p.315].

In none of these equations the metric tengpmor the connectiorfi;j* are in-
volved. Still, these equations are valid and are generaligigant in the Minkowski
space of special relativity, in the Riemann space of gemetativity, and in the
Riemann-Cartan or Weyl-Cartan space of gravitational galugories. The Maxwell
equations®) as such, apart from a historical episode up to 1916, 3&8e’f], have
no specific relation to the Poincaré or the Lorentz group.

Perlick [78] has shown that the initial value problem in electrodynarien
be particularly conveniently implemented by means of thergatric form of the
Maxwell equations.

In contrast to most textbook representations, no “comma gmsemicolon rule”
is required. The Maxwell equation§)(are just universally valid for all forms of
electrically charged matter. Incidentally, this repraseaaiso a simplifying feature
for numerical implementations. The price one has to payiisttoduce, as Maxwell
did, the excitations#l, besidesHj, as an independent field quantity and to note
that it is a tensor density. From a phenomenological poinvie#, this is desirable
anyway, since the excitation has an operational definitibiisoown, namely as
charge/length(D) and current/lengthH), respectively, which is independent from
the definition of the field strength as force/charg¢ &nd force/currentR). For a
rendition in the calculus of exterior differentiable forneme can compare with the
axiomatic scheme in3[] and [18], see also19)].

Let us stress additionally tha#', Fj, and_#* can be defined in a background
independent way.

The Maxwell equationsd) are based on the conservation laws of electric charge
Q:= [da' gy _#' (unitin Sl “coulomb”) and magnetic flu® := [ do' Fj (unit
in Sl “weber”). ChargeQ and flux @ are 4-dimensional scalars. They induce the
structure of the excitation#j and the field strength;. In this context, the field
strength is operationally defined via the Lorentz force tgrfs=F; ¢!, the cur-
rent being directly observable and the force and its measemeéknown from me-
chanics.

The charge and its conservation is the anchor of electradigsalts c:urrent/k
defines, by means of the Lorentz force dengityhe field strengtlf;, which allows
to define the magnetic fluge. Faraday’s induction law is an incarnation of magnetic
flux conservation.

Some people have no intuition about the conservation of atgudhat is de-
fined in 3 dimensions by integration over a 2-dimensionahavel do?B,, since
we usually associate conservation with a quantity won byn3edsional volume
integration, namely- [dVp. Some mathematics education about dimensions will
enable us to understand the induction law as a “continuitxaggn.”

Summing up: the premetric Maxwell equations are a closéstnicture, the 4-
dimensional diffeomorphisms covariance holds it all thget Clearly, a metric as
well as a connection are alien to the Maxwell equations.
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2.2 Alocal and linear electromagnetic response

In order to fill the Maxwell equations with life, one has toatF; to /7
AN = A0 (Fa) (7)

If we assume this functional to be local, thati]l (x) depends only off (x), and
linear homogeneously, then we find

A — %Xijkl F with ik — ik — ikl ®)
here the field('/*' (x) represents the electromagnetic response tensor densitglof
4 and weight+1, with the physical dimensidix| = 1/resistance. An antisymmetric
pair of indices corresponds, in 4 dimensions, to 6 indepenctemponents. Thus,
X' can be understood as a@ matrix with 36 independent components.

We want to characterize the electromagnetic model spaediinthis response
tensor fieldy'K (x) with 36 independent componeritShis is the tensor density
defining thestructureof spacetime. It transcends the metric and/or the connectio

We decompose thex66 matrix into its 3 irreducible pieces. On the levehdi!
this induces§5, 17]

YK Z (D30 (@)l (3)yiik )
36= 20 & 15 & 1.
The third part, theaxion part, is totally antisymmetri€®) x'I¥ = x[iK] — g glikl

with the pseudoscalar, see also §3]. The skewonpart is defined according to
(2) x1IKl = 1(x1IK — xKily " Under reversible conditionsg) can be derived from
a Lagrangian, thef? x'I' = 0. Theprincipal part D x/I¥ fulfills the symmetries
(1) ikl — (1) yKiij gng(D) yliki] — g,

The local and linear response relation now reads

o — % ((1)Xijkl n (Z)Xijkl n agijkl) R, (10)
and, split in space and timé', 37],

D?= (63 — £®°no)Ey + (VP + % — 33sE)BP + a B?, (11)
Ha = (U;bl - £abcmc)Bb + (_Vba+ Sab - 5akl)scc)Eb — 0 Eq; (12)

3 Schuller et al. §0] took the x'' —tensor density, which arises so naturally in electrodyingm
called the tensor proportional to it “area metric”, and gatieed it ton dimensions and to string
theory. For reconstructing a volume element, they havegmi#ipg on the circumstances, two dif-
ferent recipes, like, for example, taking thiethroot of a determinant. From the point of view of
4-dimensional electrodynamics, the procedure of Schatlet. looks contrived to us.
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hereg??® = g, = 41,0 are the 3-dimensional Levi-Civita symbols. The 6 permit-
tivities £2° = €2 the 6 permeabilitiepia = Hpa Were already known to Maxwell.
The 8 magnetoelectric piecg, (its trace vanishegt. = 0) were found since 1961,
see Astrov P]. Eventually, the hypothetical skewon piec&] carries 3 permittiv-
ities na, the 3 permeabilities?, and the 9 magnetoelectric piece8. Equivalent
response relations were formulated by Serdyukov et%l. p.86] and studied in
quite some detall, see also de Lange and Raap [

Suppose we have apecial casa vacuum spacetime described by a Riemannian
metricg;j. Then the response tensor turns out to be

XM = WX = 220=gg gl and T =dovgFl. (13)

with the vacuum admittancle ~ 1/377Q. Thus, we recover known structures, and
we recognize that the relatioB)(represents a natural generalization of the vacuum
case. The metrigh can be considered as some kind of a square root of the electro-
magnetic response tensp'.

We should keep in mind that a local and homogeneous electnoetia response
like (8) can be, if the circumstances require it, generalized tdawah and/or to
nonlinear laws. Examples abnlocallaws have been proposed by Bopp and Podol-
sky* and by Mashhoo#.Nonlinearlaws are due to Heisenberg and Edd@prn
and Infeld/ and PlebansKi.Fresnel surfaces for the nonlinear case were found by
Obukhov and Rubilar{7], for example. More recently, Lammerzahl et &1 and
Itin et al. [44] investigated electrodynamics in Finsler spacetimeshinpgremet-
ric framework, this corresponds to a nonlocal constitutawe, see {4, Eq.(3.29)],
somewhat reminiscent of the Bopp-Podolsky scheme.

2.3 Propagation of electromagnetic disturbances

The obvious next step in evaluating the physics of our mofigpacetime is to
look how electromagnetic disturbances propagate in théeegime. One can ei-
ther consider the short wave-length limit of the electronetig theory, the WKB-
approximation, or one can study, as we will do here, the gyapan of electromag-
netic disturbances with a technique developed by Hadanfard; general outline,
see P6, Chap. C].

Hadamard describes an elementary wave as a process thatdavave surface.
Across this surface, the electromagnetic field is contisubut the derivative of
the field has a jump. The direction of a jump is given by the waweector. The
subsequent integration produces the rays, with the wauvengeas tangents to rays,

4 See P8, Sec.28-8].
5 See p5, Sec.E.2.2].
6 See p5, Sec.E.2.3].
7 See B5, Sec.E.2.4].
8 See p5, Sec.E.2.5].
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see for our caself, 74, 35, 40. In the meantime, our methods have been improved,
see P4, 3, 27].

Out of the electromagnetic response tensor density we damedeith the help
of the covariant Levi-Civita symba i = +1,0, the premetric “diamond” (single)
dual and the diamond double dual, respectively:
ijed

1 1
ki,  Xij = §€ijabX°abk| = ZfijabXadefcdkl- (14)

i 1
ol . =
X k= 2X
The covariant Levi-Civita symbol carries weight andy2%dweight+1. Thus, the
double dual has weight1, too. Performing the double dual apparently corresponds
to a lowering of all four indices gf2d—and this is achieved without having access
to a metric of spacetime.
After this preparation, it is straightforward to define thpgmetric) 4th rank
Kummer tensor densitwhich is cubic iny, as [3]

HMX] = XX onaX . (15)

It has weight}-1 and obeys the symmetgy 1K = 77Kl

At each point in spacetime, the wave covectgrs- (w, k) of the electromag-
netic waves span the Fresnel wave surfaces, which are ¢jirettiie wave covectors
according to

M x]agzaar = ) [x] gigjaa = 0. (16)

The Tamm-Rubilar (TR) tensor density4, 35], with the conventional factor /6,
is defined by

. 1 . 1 aiilbo. o
G ] = 5 ) = SxXP X Gopax (17)

It is totally symmetric and carries 35 independent comptaéy straightforward
algebra it can be shown that the axion field drops out from Reénsor:

G [x] =™ [Dx 4 @x]; (18)

see in this connection als@J] and the references given there. The effect of the
skewon piece on light propagation has been studied'ih Ni [68] was the first

to understand that the axion field doesn’t influence the lgbpagation in the ge-
ometrical optics limit. Note thatly + (?)x has 20+ 15 independent components,
exactly asg—probably not by chance.

Accordingly, the totally symmetric TR-tensef X! [x], with its 35 independent
components, can, up to a factor, be observed by optical méaasis, the TR-
tensor—in contrast to the Kummer tensor, as far as we knovs-ahdirect opera-
tional interpretation.
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2.4 Fresnel wave surface

The (generalized) Fresnel equation

G [x]gigjaq =0, (19)

determines a Fresnel wave surface. A trivial test for chregitie correctness o1 )

is to substitute the response tensor for the Maxwell-Largatuum electrodynam-
ics (13)1 into the TR-tensor of{9). One finds straightforwardlfg'} qiqj)2 =0, that
is, two light cones that collapse onto each other. The deositipn of (19) into
space and time can be found B[ (D.2.44)].

For illustration, following B5, 3], see also41], we will display a classical ex-
ample of such a surface. In Edslf and (L2), we choose an anisotropic permittivity
tensor with three different principal values and assuméatrivacuum permeabil-
ity, whereas all magnetoelectric moduli—with the possiateeption of the axion
a—vanish,

00 100
(=10 5203 and (ugl)=pe* 0 1 0]. (20)
0 O0¢ 001

Substitution into the Fresnel equation yield the quartiypomial

(@ +B?Y2 +y°Z) (¢ + Y+ 7)
—[a®(B*+ )¢+ B2V + a®)y + y¥(a® + BA)Z] +a®BPP =0, (21)

with the 3 parametefsa = c¢/\/e1, B := ¢/\/&, Y := ¢/ /&3, and withc =
1/./€Ho as the vacuum speed of light.

The corresponding surface is drawn in Fig.1. As an exampderoesnel surface
for a more exotic material, we provide one for the so-call@drRedium of Lindell
[5€]. It may turn out that this response tensor can only be redlizith the help
of a suitable metamaterial, s€&’]. Corresponding investigations are underway by
Favaro pP5].

Let us shortly look back on what we have achieved so far: We fienmulated
the Maxwell equation in a premetric way. For the responssaennly local and
linear notions are used, no distances or angles were meqtioor implemented.
Under such circumstances, electromagnetic disturbamopsagate in a birefringent
way in accordance with the Fresnel wave surfaces, such asmissl in Figs.1 and
2.

How can we now bring in distances and angles, which are casioepnipresent
in everyday life? The answer is obvious, we have to suppliesihgence.

9 Here, in this contexty is notthe axion field!
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Fig. 1 Fresnel wave surface for the permittivities and the periligab of Eq.@0). It had been
drawn by Jaumann for an optically biaxial crystal, see S¢ba¢35, p.485]. This crystal has
the property of birefringence (or double refraction). Thegm at x =y =z = 0 is the point in
3-dimensional space from where the wave covedtogsiginate. They end on the Fresnel wave
surface. Their modulus is proportional to the reciprocatteé phase velocity/k. In other words,
up to a sign, we have usually in one direction two differerggghvelocities. This is an expression
of the birefringence. Only along the optical axeand 1l , we have only one wave covector. The
upper half depicts the exterior shell with the funnel shagiedularities, the lower half the inner
shell. The two shells cross each other at four points fornsimgps.
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Fig. 2 Fresnel wave surface for a PQ-medium of Lindefi,[57]. Using Lindell’'s dyadic version of
the Fresnel equationsf4, 55], Sihvola [94] drew the Fresnel wave surface by using Mathematica.
Our image was later created by FavarGd] in a similar way, again with Mathematica. For the
wave covector, we have & (w, ki, kz,ks).

2.5 Suppression of birefringence: the light cone

Looking at the figures, it is clear that we have to take carelibth shells in each
Fresnel wave surface become identical spheres. Then lightgates like in vac-
uum. For this purpose, we can solve the quartic Fresnel eou@td) with respect

to the frequencyyy, keeping the 3—covectay, fixed. One finds four solutions, for
the details please compare&]] 36]. To suppress birefringence, one has to demand
two conditionslin turn, the quartic equation splits into a product of two dyadic
equations proportional to each other. Thus, we find a lighteg) (x) gig; =0 at
each point of spacetime.

Perhaps surprisingly, we derived also tlogentz signaturesee B5, 43, 42]. This
can be traced back to the Lenz rule, which determines théuelsign of the two
terms in the induction law, as compared to the relative sighe Ampére-Maxwell
law. The Lorentz signature can be understood on the levelaskical electrody-
namics, no appeal to quantum field theory, which is widespiehe literature, is
necessary.

Globally in the cosmos, birefringence is excluded with hagituracy, see the
observations of Polarbeat][and the discussion of Ni/[].
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2.6 Axion, dilaton, metric

Atthe premetric level of our framework, besides the priatfmece, first the skewon
and the axion fields emerged. Only subsequently the light @e@s brought up. The
skewon field was phased out by our insistence of the vanidiiiefringence in the
vacuum. Accordingly, the axion field and the light cone sugdithe suppression of
the birefringence.

The light cone does not define the metric uniquely. Ratherhitrary function
A(x) is left over:

A(x)g" (x) gig; = 0. (22)

The light cone is invariant under the 15-parametric congdrgnoup. The 4 proper
conformal transformation correspond to a reflection at thie eircle and, as such,
are of a nonlocal nature. As a consequence, if two frame®ked to each other by
a proper conformal transformation and one frame is ingttel other one is acceler-
ated with respect to the former one. Accordingly, there isperational distinction
possible between a proper conformal and a dilation or scatestormation. Thus,
only the 11 parameter Weyl subgroup of the 15 parameter cawallagyroup is based
onlocal transformations.

If we compare our result ir?¢) with vacuum response iig), we recognize, not
forgetting the axion field, that we find the following respersgjuation for vanishing
birefringence:

A= A(x) vV=99*x) 0" (x)+ a(x) €M R, (23)
~—~ ~
dilaton axion

Because of the presence of the dilation within the Weyl grdupnatural to identify
the functionA (x) with the dilaton field°

In the calculus of exterior differential forms, se&], the twisted excitation 2-
formH = 1 & 2 dx AdX and the untwisted field strength 2-fofn= 1 F;dxX A
dx), together with the twisted current 3-fortn= 4 &4 _7'dx A dx A dx, obey
the Maxwell equationdH = J anddF = 0. By means of the metric, we can intro-
duce the Hodge stdroperator. Then the response relati@f)(becomes even more
compact B6, 26]:

H=[AX"+a(xX)]F. (24)

Egs.23) and @4) represent the end result of investigating an electrontagne
spacetime model with local and linear response and withicefringence. The three
fields A (x), gl (x), anda(x) come up together with a reasonable interpretation. At
least in the way we defined them heddx), g/ (x), anda (x) are all threedescen-
dants of electromagnetism.

10 the early 1980s, Nif9] has shown the following: Suppressing the birefringence ieces-
sary and sufficient condition for a Lagrangian based caristé tensor to be decomposable into
metric+dilaton+axion in a weak gravitational field (weakleition of the Einstein equivalence prin-
ciple), a remarkable result. Note that Ni assumed the exdstef a metric. We, in43), derived the
metric from the electromagnetic response tensor depsity.
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As we have argued in Sec.1.5, the dilaton seems to be at haimeWeyl-Cartan
spacetime. Our result28) or (24) are consistent with this expectation, that is, we
believe that these equations are valid in a Weyl-Cartanetjvae.

What are we told by experiments and observations? The afdras not been
found so far, so we can provisionally pat= 0. Moreover, under normal circum-
stances, the dilaton seems to be a constant field and therety sertain scale, that
is, A (X) = Ap = const, wheré\ is the admittance of free space, the value of which
is, in Sl-units,~1/(377Q). Under these conditions, we are left with the response
relation of conventional Maxwell-Lorentz electrodynasjic

AN =Noy/—gF!  or  H=A*F. (25)

The possible generalizations are apparent.

3 Discussion

Gravity, coupling to all objects carrying energy-momentisra truly universal in-
teraction. Electromagnetism is only involved in electiticeaharged matter. What
is curious and what we still do not understand is that theigrtional potentiab'!
emerges in an electromagnetic context, that is, in studgiagtromagnetic distur-
bances, we can suppress birefringence, and then the ligiet @merges. And the
light cone is essentially involved in general relativity.dther words, we cannot for-
mulate a general-relativistic theory of gravity unless satectric charge is around:
electromagnetic waves are a necessary tool for constgugéneral relativity.

Perlick is not concerned about it. He observes tiig} |...the vacuum Maxwell
equations are but one example that have the light cones afpgheetime metric
for their characteristics. The same is true of the Dirac &gnathe Klein-Gordon
equation and others....” Yes, this is true. However, if arioés not prescribed, we
cannot even formulate Dirac’s theory. In contrast, in preinelectrodynamics, if
a local and linear response tensor density is assumed, weetce the metric, as
we discussed above. In this sense, electrodynamics inglisshed from Dirac’s
theory—and in this, and only in this sense the premetric Makequations are
more fundamental than the Dirac equation.

Accordingly, there seems to be a deep connection betweetn@igagnetism and
gravity, even though gravity is truly universal, in contrimselectrodynamics.
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