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Gravity with background fields and diffeomorphism breaking
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Abstract

Effective gravitational field theories with background fields break local Lorentz symmetry and

diffeomorphism invariance. Examples include Chern-Simons gravity, massive gravity, and the

Standard-Model Extension (SME). The physical properties and behavior of these theories depend

greatly on whether the spacetime symmetry breaking is explicit or spontaneous. With explicit

breaking, the background fields are fixed and nondynamical, and the resulting theories are funda-

mentally different from Einstein’s General Relativity (GR). However, when the symmetry breaking

is spontaneous, the background fields are dynamical in origin, and many of the usual features of

Einstein’s GR still apply.

1

http://arxiv.org/abs/1601.00331v1


I. INTRODUCTION

Ideas originating out of quantum gravity and string theory suggest that Lorentz symmetry

and diffeomorphism invariance might not hold as exact symmetries in nature across all energy

scales. At the same time, searches for alternative theories that could explain dark energy

and dark matter consider the possibility of modifications to Einstein’s General Relativity

(GR).

Together these types of ideas have led to a number of effective gravitational field theories

being proposed in which Lorentz symmetry and diffeomorphism invariance are broken. Typ-

ically, it is the presence of fixed background fields introduced at the level of effective field

theory that indicates breaking of spacetime symmetry. These backgrounds are associated

with either explicit breaking or spontaneous breaking of diffeomorphism invariance.

This brief review looks at both of these types of diffeomorphism breaking and compares

the properties and features of the resulting theories to Einstein’s GR.

II. EINSTEIN’S GR AND BACKGROUND FIELDS

Consider Einstein’s GR with an action containing an Einstein-Hilbert term and minimally

coupled matter fields,

S =
∫

d4x
√
−g

(

1

16πG
R + LM(gµν , f

ψ)
)

. (1)

Here, fψ denotes generic matter fields with spacetime labels written collectively as ψ. The

Einstein equations obtained by varying with respect to the metric are Gµν = 8πGT µνM .

Standard properties of GR include the following: The theory is invariant under diffeomor-

phisms involving a vector ξµ, and physical solutions for the metric form equivalence classes

related by these transformations. The contracted Bianchi identity, DµG
µν = 0, reduces the

ten Einstein equations to six dynamically independent equations for the metric tensor. Of

the six possible dynamical metric modes, four are eliminated as diffeomorphism gauge de-

grees of freedom. The equations DµT
µν
M = 0 that follow from the contracted Bianchi identity

and Einstein’s equations are satisfied by the dynamical degrees of freedom associated with

the matter fields fψ, not the metric. The result is that in GR the geometry described by

the metric is influenced by the dynamics of the matter fields and vice versa.
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When fixed background fields are added to GR diffeomorphism invariance is broken, and

the linkage between spacetime geometry and the dynamics of the nongravitational fields in

the theory is disturbed. Background fields must be treated differently from conventional

matter fields. Previous studies refer to them as “absolute objects,” which cannot have

backreactions.[1]

When background fields are included in a gravitational theory at the level of effective

field theory, there is, however, an important distinction that must be made between whether

diffeomorphisms are broken explicitly versus spontaneously.[2, 3]

To examine this distinction and for concreteness, consider the modified action,

S =
∫

d4x
√−g

(

1

16πG
R + LM(gµν , f

ψ) + LLV(gµν , f
ψ, k̄χ)

)

, (2)

where an additional Lorentz- and diffeomorphism-violating term, LLV, has been added. The

extra term depends on a fixed background field written here as k̄χ, with spacetime indices

denoted collectively as χ. The Einstein equations,Gµν = 8πG (T µνM + T
µν
LV), acquire an extra

contribution as well from the additional term.

Under diffeomorphisms, the metric and conventional matter fields, fψ, transform with

changes given by their Lie derivatives. For example,

gµν → gµν + Lξgµν = gµν +Dµξν +Dνξµ. (3)

However, the background k̄χ remains fixed under diffeomorphisms and does not transform.

It is because of this behavior that the action S is not invariant under diffeomorphisms, and

(δS)diffs 6= 0.

At the same time, to maintain observer invariance, the action S must be invariant under

general coordinate transformations. These includes coordinate transformations given as

xµ → xµ
′

(x). By choosing xµ
′

(x) as an infinitesimal coordinate transformation to xµ −
ξµ, using an opposite sign for ξµ, and by performing Taylor expansions in the Lagrangian

density, a set of general coordinate transformations that mathematically have the same

form as the diffeomorphisms can be found. For example, under these transformations the

metric again transforms as in (3). However, here the difference is that under these observer

transformations the background does transform, and it obeys k̄χ → k̄χ+Lξk̄χ. Therefore, in
this case, the action S is invariant under these observer transformations, and (δS)GCTs = 0.

The fact that S is not invariant under diffeomorphisms, while it must be invariant under

the observer general coordinate transformations gives rise to a potential inconsistency.[2, 3]
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The next sections examine this potential conflict for the cases of when the diffeomorphism

breaking is explicit versus when it occurs as a result of spontaneous symmetry breaking.

III. EXPLICIT DIFFEOMORPHISM BREAKING

When diffeomorpsim breaking is explicit it is due to the fact that the background field

does not arise dynamically and does not have equations of motion. Instead, it is included

as an absolute object, which is not able to have backreactions.

As a result, mathematically, variations in the action with respect to the background k̄χ

in (2) need not vanish, and

∫

d4x
√−g δLLV

δk̄χ
δk̄χ 6= 0 (explicit breaking). (4)

At the same time, the theory must be invariant under the observer general coordinate

transformations described above. When these are performed, using integration by parts for

the terms involving Lξgµν = Dµξν +Dνξµ, and when the dynamical equations of motion for

the matter fields fψ are imposed, the result is

∫

d4x
√−g

[

Dµ (T
µν
M + T

µν
LV) ξν −

δLLV

δk̄χ
Lξk̄χ

]

= 0. (5)

Because of these results, a potential conflict arises when the symmetry breaking is explicit.

If the divergence of Einstein’s equations is taken and the contracted Bianchi identity is used,

then Dµ (T
µν
M

+ T
µν
LV
) = 0 holds on shell, and the first term in (5) vanishes. This leaves the

requirement that the integral in (4) must vanish on shell as well, which would appear to

contradict the statement that diffeomorphism invariance is broken and the background is

nondynamical.

There appear to be only three possibilities in the case with explicit breaking.[3] One is

that the theory is inconsistent and the fixed background k̄χ must therefore vanish. The

second is that the integrands in (4) and (5) vanish on shell despite the fact that k̄χ is not

dynamical. The third is that the integrand in (5) equals a total derivative, allowing the

integral to vanish off shell even when the integral in (4) does not vanish.

Which of these three possibilities comes into play depends in large part on the tensor

nature of the background k̄χ. The most restrictive cases occur when the background is a

fixed scalar function k̄. With a background scalar, the Lie derivative Lξk̄ = −ξµ∂µk̄, and an

4



overall factor of ξµ can be pulled out of the integrand in (5). Since the integral must then

vanish for all ξµ, the result is that

Dµ (T
µν
M

+ T
µν
LV
) = −δLLV

δk̄
∂µk̄. (6)

When the Einstein equations are put on shell, the left-hand side of this equation must vanish.

Assuming that k̄ is not a constant then it must be that the variation δLLV

δk̄
must vanish or

else the theory is inconsistent.

An example of an inconsistent model involving a scalar field is when an explicit time-

dependent cosmological constant Λ(t) is added to GR. In this case, with the scalar k̄ = Λ(t),

the variation δLLV

δΛ
6= 0, and the only option is that ∂µΛ(t) = 0. However, with explicit time

dependence in Λ(t) this does not hold, and the theory is therefore inconsistent.

A second example with a scalar background is Chern-Simons gravity,[4] where

√−gLLV =
1

64πG
θ ∗RR. (7)

Here, ∗RR is the gravitational Pontryagin density and θ is a fixed scalar background. With

k̄ = θ the variation δLLV

δk̄
is found to be directly proportional to the Pontryagin density ∗RR.

As a result, the inconsistency can be evaded by restricting the solutions for the metric to

spacetimes that have a vanishing Pontryagin density. In this example, δLLV

δk̄
= 0 holds on

shell despite the fact that k̄ = θ is not dynamical.

With scalar backgrounds it is also possible to construct models that evade the incon-

sistency by imposing constraints on other fields besides the metric. An example of this

technique is used to show that a tensor-vector theory with explicit diffeomorphism break-

ing can give rise to Einstein-Maxwell solutions, where the consistency condition effectively

imposes a gauge-fixing condition on the vector field.[5]

On the other hand, if the background k̄χ is a tensor field, there is an additional way to

evade the potential inconsistency. With a tensor background, the Lie derivative acting on

it includes contributions with derivatives acting on ξµ. Using integration by parts on these

contributions, it can be shown in general that the integrand appearing in (5) becomes a

total derivative. This permits evasion of the potential inconsistency because the integral in

(5) can then vanish even when the variations in (4) do not.

An example of a theory with a tensor background is massive gravity.[6] In these theories,

a background field that is a symmetric two-tensor, written here as k̄µν , is used to create
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mass terms for the metric. The explicit symmetry-breaking term, LLV, in this case is only

a function of the metric and the background k̄µν . With terms of this form, the energy-

momentum tensor can be shown to obey an off-shell relation of the form

(DµT
µν
LV)ξν +

δL
δk̄µν

Lξk̄µν = Dµ

(

2
δLLV

δgαβ
gµαξβ

)

. (8)

Assuming the energy-momentum tensor for the matter fields separately obeys DµT
µν
M = 0

on shell, it then follows as a result of (8) that the integrand appearing in (5) is a total

derivative. As a result, the integral (5) vanishes even though (4) need not vanish off shell.

Although these examples with nondynamical backgrounds are able to evade the potential

inconsistency associated with explicit breaking, they nonetheless differ in some fundamental

ways from GR. For example, in GR, the four equations DµT
µν
M = 0 are satisfied by degrees of

freedom associated with the matter sector. However, in theories with explicit diffeomorphism

breaking DµT
µν
LV

= 0 does not result from the matter dynamics. It also cannot be imposed

by the background fields because they are fixed and do not allow backreactions. Instead, it

is the four additional degrees of freedom in the metric that appear due to the breaking of

diffeomorphisms that impose DµT
µν
LV = 0.

To see this at leading order, consider a paremetrization of the metric as gµν = g̃µν +

DµΞν +DνΞµ, where g̃µν consists of ten fields that obey four conditions. Essentially, g̃µν is

like a gauge-fixed form of the mertic and Ξµ are the degrees of freedom that would be gauge

except for the fact that the diffeomorphism invariance is explicitly broken. Inserting this

expression in the action, and using g̃µν in the connection and covariant derivatives, allows

field variations to be performed for the extra degrees of freedom Ξµ. The result is that

DµT
µν
LV = 0 then holds as the dynamical equations of motion for the extra metric fields Ξµ.

With explicit breaking there are no equivalence classes of solutions for the metric as there

are in GR. Instead, definite values of the four additional degrees of freedom Ξµ are required

so as to ensure that DµT
µν
LV = 0 holds on shell. The role of the extra degrees of freedom Ξµ

is clearly somewhat unusual. They do not appear to have any dynamics in their own right.

Instead they acts as buffers between the fixed background k̄χ and the remaining metric and

matter fields which can have backreactions. It is also found that the usual relation between

geometry and dynamics of the matter fields is no longer as clear as it is in GR when there

is explicit breaking, since the extra metric modes Ξµ must play a dynamical role as a buffer

with the fixed background.
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IV. SPONTANEOUS DIFFEOMORPHISM BREAKING

In gravitational effective field theories it is also possible for fixed background tensor

fields to emerge as vacuum expectation values in a process of spontaneous diffeomorphism

breaking. In this case, the background is a vacuum value k̄χ = 〈kχ〉 of a field kχ that is fully

dynamical.

At the level of effective field theory, some models truncate the field kχ to its vacuum

value k̄χ. However, it is important to keep in mind that k̄χ in this context is associated with

a dynamical field and that in addition to the vacuum solutions a complete treatment must

also account for the Nambu-Goldstone and massive-mode excitations about the vacuum

solution.[7] In particular, when these excitations are included, diffeomorphism invariance is

recovered in the full action.

It is also important to realize that even when a theory truncates the fields kχ to their

background values k̄χ, these are still vacuum solutions of the equations of motion. This

means that for the case of spontaneous diffeomorphism breaking the vacuum solution k̄χ

obeys
∫

d4x
√−g δLLV

δk̄χ
δk̄χ = 0 (spontaneous breaking). (9)

Note that this is in contrast to the result (4) for explicit breaking, where the background does

not have to be a solution. The vanishing of the integral in (9) for the case of sponteaneous

breaking eliminates the potential conflict with the condition in (5). Here, (9) holds on shell

and there is no conflict with covariant energy-momentum conservation.

With spontaneous diffeomorphism breaking, the properties of the resulting theory remain

similar to those in GR. The metric still has four gauge degrees of freedom, and DµT
µν
LV

= 0

holds as a vacuum solution for the dynamical field kχ. With spontaneous breaking, the

usual linkage between geometry and the dynamics of the matter fields is mainteined, and

the field kχ has backreactions in the form of Nambu-Goldstone and massive modes. The

main difference between theories with spontaneous diffeomorphism breaking and GR is that

with spontaneous breaking the vacuum solutions break local Lorentz invariance, while this

does not happen in GR.

An example of an effective field theory that incorporates spontaneous diffeomorphism

breaking is the SME.[8] It provides the phenomenological framework for investigations of

Lorentz violation in Minkowski spacetime and in the presence of gravity. In the gravity
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sector of the SME, it is assumed that the background coefficients arise from spontaneous

diffeomorphism breaking and when the Nambu-Goldstone and massive modes are included

the theory is therefore fully dynamical.

V. CONCLUSIONS

Gravitational effective field theories with explicit diffeomorphism breaking are found to

be fundamentally different from GR or theories with spontaneous diffeomorphism breaking.

With explicit breaking, the fixed backgrounds have no natural physical explanation and

cannot have backreactions. Instead, extra modes in the metric must act as a buffer with

the fixed background to ensure covariant energy-momentum conservation. In contrast, with

spontaneous diffeomorphism breaking, the background fields arise dynamically as vacuum

solutions, and the resulting theories otherwise share many of the usual properties of GR.
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