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Abstract

In this paper we present an equivalent statement to the Jacobian
conjecture. For a polynomial map F' on an affine space of dimension
n, we define recursively n finite sequences of polynomials. We give an
equivalent condition to the invertibility of F' as well as a formula for
F~1in terms of these finite sequences of polynomials. Some examples
illustrate the effective aspects of our approach.


http://arxiv.org/abs/1601.00332v1

1 Introduction

The Jacobian Conjecture originated in the question raised by Keller in [§] on
the invertibility of polynomial maps with Jacobian determinant equal to 1.
The question is still open in spite of the efforts of many mathematicians.
We recall in the sequel the precise statement of the Jacobian Conjecture,
some reduction theorems and other results we shall use. We refer to [5] for
a detailed account of the research on the Jacobian Conjecture and related
topics.

Let K be a field and K[X] = K[X;,...,X,] the polynomial ring in the
variables X1, ..., X, over K. A polynomial map is a map F = (Fy,..., F,) :
K™ — K™ of the form

(Xl, . ,Xn) — (Fl(Xl, .. .,Xn), .. .,Fn(Xl, . ,Xn)>,

where F; € K[X],1 < ¢ < n. The polynomial map F' is invertible if there
exists a polynomial map G = (Gy,...,G,) : K" — K™ such that X; =
Gi(Fy,...,F,),1 < i < n. We shall call F a Keller map if the Jacobian

matrix
OF;
J =
<0Xj> 1<i<n

1<5<n

has determinant equal to 1. Clearly an invertible polynomial map F' has
a Jacobian matrix J with non zero determinant and may be transformed
into a Keller map by composition with the linear automorphism with matrix

J(0)~L.

Jacobian Conjecture. Let K be a field of characteristic zero. A Keller
map F : K™ — K" is invertible.

In the sequel, K will always denote a field of characteristic 0. For F' =
(Fy,...,F,) € K[X]", we define the degree of F' as deg I’ = max{deg F; :
1 <i < n}. It is known that if F'is a polynomial automorphism of K", then
deg 7! < (deg F)"! (see [1] or [9]).

The Jacobian conjecture for quadratic maps was proved by Wang in [10].
We state now the reduction of the Jacobian conjecture to the case of maps
of third degree (see [1], [11], [2] and [3]).



Proposition 1. a) (Bass-Connell- Wright- Yagzhev) Given a Keller map F -
K" — K", there exists a Keller map F : K¥ — KV, N > n of the form

F = 1d+ H, where H(X) is a cubic homogeneous map and having the
following property: if F' is invertible, then F' is invertible too.

b) (Druikowski) The cubic part H may be chosen of the form

((Z a; X;)°, (Z aNij)g)

and with the matriz A = (a;j)1<i<n satisfying A* = 0.
1<j<N

Polynomial maps in the Druzkowski form are easier to handle than general
cubic homogeneous polynomial maps. However we note the following result.

Proposition 2 ([6] Proposition 2.9). Let r € N. If the Jacobian Conjecture
holds for all cubic homogeneous polynomial maps in r variables, then for all
n € N the Jacobian Congecture holds for all polynomial maps of the form

F =X+ (AX)®
with A € M,,(K) and rank A < r.

In [4] Druzkowski and Rusek give the following inversion formula for cubic
homogeneous polynomial maps.

Theorem 3 ([4], Theorem 2.1). Let H : K™ — K" be a cubic homogeneous
polynomial map, F' = Id — H and let G = 377 G;, where Gj : K" — K"
s a homogeneous polynomial map of degree j, be the formal inverse of F.
Then

G, = Id,
Goy1 = Zpﬂwzk_l ©r(Gopt1, Gogy1, Gargr), Ve > 1,
G2k = O> vk Z 1a

where g denotes the unique symmetric trilinear map such that oy (X, X, X) =
H(X).



As a corollary, they obtain that, if for some natural number k, we have

G3k+2 = = G3k+1 - 0, (1)

then F is a polynomial automorphism and deg F~! < 3. However, in [7],
Gorni and Zampieri present an example of a polynomial automorphism of
C* for which condition () is not satisfied for any k (see example [T below).

In this paper we present an algorithm providing a new characterization of
the invertibility of polynomial maps. Given a polynomial map F' : K" — K"
of the form F = Id 4+ H, where H(X) has lower degree > 2, we define
recursively, for 1 < i < n, a sequence P} of polynomials in K[X] with P} = X;
such that F is invertible if and only if the alternating sum ZT:_Ol(—l)j Pl(X)
satisfies a certain relation with P! for all i = 1,...,n, where m is an integer
given explicitly and depending on the degrees of the components of H. When
F is invertible, its inverse F'~! is given in terms of these alternating sums of
polynomials. In the last section, we apply the algorithm to several examples
of polynomial maps, including the one of Gorni and Zampieri.

2 A sufficient condition for invertibility

Let us consider a polynomial map F : K" — K". Given a polynomial
P(Xy,...,X,) € K[X] = K[Xy,...,X,], we define the following sequence of
polynomials in K[X],

Po(Xl,...,Xn) — P(Xl,...,Xn>,
Pi(Xy,...,X,) = B(F,...,F,)— BP(Xy,...,X,),

and, assuming Py is defined,
Pu(Xy,..., X)) = Pa(Fr, .. Fy) — P (X, X)),
The following lemma is easy to prove.

Lemma 4. For a positive integer m, we have

[y

P(Xy,.... X)) =Y (-D)'A(F, ..., E) + (=1)™Pu(X1,. .., X,).

3
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o



In particular, if we assume that for some integer m, P, (Xi,...,X,) =0,
then

Corollary 5. Let F': K™ — K" be a polynomial map. Let us consider the
polynomial sequence (P}) constructed with P = X;, i = 1,...,n. Let us
assume that for alli =1,...,n, there exists an integer m; such that P,’n =0.
Then the inverse map G of F is given by

m;—1
Gi(V1,Ya,....Yo) = Y (-1)'P/(Y1,Ys,...,Y,), 1<i<n.
1=0
The condition Pf;% = 0, for some integer m; for all ©+ = 1,...,n, is not

necessary for the invertibility of F' (see example [7]). However we give in
theorem [ an equivalent condition to the invertibility of F' using a finite
number of terms of the polynomial sequences (P}). The following lemma
gives a precise description of the polynomials Py.

Lemma 6. Let F': K™ — K" be a polynomial map of the form

Fu(X1, . X)) = X1+ Hi(Xq,. .., X,)

F.(Xy,...,X,) =X+ Ho(Xq,..., X,),

where Hi(Xq,...,X,) is a polynomial in X, ..., X, of degree D; and lower
degree d;, with d; > 2, fori =1,...,n. Let d = mind;, D = max D;. Then
for the polynomial sequence (P}) constructed with P = X; we have that P} is
a polynomial of degree < D¥"1D; and lower degree > (k —1)(d — 1) + d;.

In particular, if each H; is a homogeneous polynomial of degree d, we have

(dF—1)/(d—1)—k+1

P = > Qs

J=1

where Qy; is a homogeneous polynomial in Xy,..., X, of degree (k+ j —
1)(d—1)+1.



Proof. Let us consider, for a fixed i, the polynomial sequence

PiXy,..., X)) = X,
Pll(Xl,,Xn> - E(Xl,,Xn>—XZ:HZ(X1,,Xn),
P%(Xl,,XrJ = Hi(Fla---aFn>_Hi(Xlu---aXn)a

We write the Taylor series for the polynomial H;(Fi,...,F,) = H;(X; +
H,,..., X, + H,) and obtain

P%(Xl, e ,Xn) - Hz(Fla . ,Fn) - Hi<X1, e ,Xn)
= Oy +Qun+...+Qp,

where
. ", OH;
[ ZH'
21 J
i 0X;
. 1 i 0% H,
D DL
21 < 0X;,0X;,
; 1 . oPi H;
Go=n Y o, m,.

Jrrionip, =1 (%7]-1 e 8a7jDi

The polynomial P} has lower degree equal to the lower degree of %, which
is > d+ d; — 1, and degree equal to the degree of Q5 p,» Which is < D - D;.
Let us prove by induction that P} is a polynomial of degree < D*~'D; and
lower degree > (k — 1)(d — 1) + d;. We have already seen it for k = 2.
Let us assume P}, is a polynomial of degree < D*~2D; and lower degree
> (k—2)(d—1) +d;. We want to prove the property for P{. We have

Pi(Xy,...,X,) =P _(F,...,F,) — Pl_(X1,...,X,)
If Q(Xy,...,X,) is a polynomial of degree S and lower degree s,

Q(Flu"'an)_Q(Xl,...,Xn):
oQ

n _ 1N _9%Q g1 .
> anH] ST D DI I H; ... Hjg



is a polynomial of degree < S - D and lower degree > s — 1 + d. Hence
P (Fy,...,F,) — Pl (Xy,...,X,) is a polynomial of degree < D*-1D,
and lower degree > (k—1)(d — 1) + d;.

The homogeneous case is proved analogously using induction. O

Example 7. We shall consider the polynomial automorphism of C* given
in [7] to prove that the condition P}, = 0, for some m;, for all 7, is not a

necessary condition to the invertibility of F'.
Let p := X1 X3+ XX, and define F' by

F = Xi+pXy

F, = Xo—pXs

F3 = X3+ X}

Fy = X4
Clearly P! =0 and Py = 0. But P} and P? are not zero for any j. In order
to prove that le # 0, we shall prove by induction that the homogeneous

summand of lowest degree le-l of le has the following form depending on
the parity of j, for all j > 2.

Q%m = XlXi‘k
Q%k—i—l,l = X XX 4 XX

By calculation we obtain Q3, = X; X§, Q4 = X1 X3 X7+ X, X?. Now, Q%m =
XX = Qg = XiFHy + 46X X Hy, = XM(X X5 + X X)Xy =
XiXa X+ XXM and Qb = XaXa XM + XXM = Q0 =
X XM H A+ X2 Ho+ X0 XM H+ ((4h+1) X Xa X HF 4 (4k42) Xo XF T HYy
= XXX + XoXg) Xy — XX X5 + XoX0) X3 + X XFH =

Analogously, in order to prove that sz # 0, we shall prove by induction
that the homogeneous summand of lowest degree Q?l of Pj2 has the following
form depending on the parity of j, for all j > 2.

Q% = —2kXiXa XM — (26— 1) X, X{E

Q%k-{-l,l = X1 X2XF - Xo Xa XM — 2k X, X2
By calculation we obtain Q3, = —2X, X3X? — Xo X, Q) = — X, X2X] —
XoXs X — 2X, X5, Now Q3 = —2kX, Xs X1 = (2 — )X, X =

Q%1 = —2k X3 X"V H — (2k — 1) X{*Hy — 2k X, X" Hy = — X1 XX 3% —
XoXs XM =2k X0 XM and Q3,1 | = — X1 XEX{F— X0 Xy XFH =2k X X442
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= Q%01 = (= X2X 2k X2 H) — Xy X P Hy— (2X X X PP+ X X (T Hy =
—(2k 4+ 2) X1 X3 XJF3 — (2K 4 1) X, X+,

3 An equivalent condition to invertibility

The following theorem gives an equivalent condition to the invertibility of F
using a finite number of terms in the polynomial sequences (P}).

Theorem 8. Let F : K™ — K" be a polynomial map of the form

Fl(Xl,...,Xn) == X1—|—H1(X1,...,Xn>

F.(Xy,...,.X,) = Xo+H,(Xy,..., X,),
where H; (X1, ..., X,) is a polynomial in X1, ..., X, of degree D; and lower
degree d;, with d; > 2, fori =1,....,n. Let d = mind;, D = maxD;. The

following conditions are equivalent:

1) F is invertible.
2) Fori=1,...,n and every m > mgfll_cb+1, we have

3

(1Y Pi(X) = Gi(X) + R, (X).

<.
Il
o

where G;(X) is a polynomial of degree < D"~ 1, independent of m, and
R! (X) 1s a polynomial satisfying R (F) = (=1)™"™ P! (X)) (with lower
degree > (m —1)(d — 1) +d; > D" !).

3) Fori=1,...,n and m = LDn%l_dileJle, we have

—_

3

(1Y Pj(X) = Gi(X) + R,,,(X).

Il
=)

J

where G;(X) is a polynomial of degree < D"™'  and R (X) is a polyno-
mial satisfying R (F) = (—=1)""' P! (X).



Moreover the inverse G of F' is given by

—_

Gi(Y1,....,Y,) =) (-1)'F(Vi,....Y,),i=1,...,n,
1=0
where P} is the sum of homogeneous summands of P! of degree < D"™' and

. . n—1_,4.
m is an integer > 2 ) %11,

Proof. 1) = 2): If F is invertible, then G = F~! has degree < D",
Applying lemma [l we obtain, for any positive integer m,

X, =Y (-D)'P(F,...,F)+ (—=1)"P,(Xy,...,X,).

1=0
Since X; = G;(F1,..., F,), we obtain the following equality of polynomials
in the variables Yi,...,Y,,.

Gi(V1,....Y,) = Y (-D'R(Y,.. LY,
+(=1D)" P (G1(Y1, ..., Yn),....Gu(Y1, ..., Y2)),

which implies

S EDIR(Y, LY, =GV YY)
—(=1)" P (G1(Yi, ..., Yy), ..., Gu(Ye, ..., Y2)),

Hence, writing

R (YVi,..,Y,) o= —(—1)"Po(Gy (Vi . Vo), Gu(Yis ., Y)),s

we obtain 2). Now, Gj is a polynomial of degree at most D"t in Yy,...,Y,.
For an integer m such that m > 2 nc:l_ 4 41, P, is a polynomial in the
variables X1, ..., X, of lower degree bigger than D"~!, hence the lower degree
of P(G1(Y1,...,Y,),...,G,(Y1,...,Y,)) in the variables Y1, ..., Y, is bigger
than D"~!. Therefore, the sum of homogeneous summands of degrees not
bigger than D"~ ! in the righthand side of the equality above is precisely

lrial(_]')lﬁll(y'b )67 cee aYn)




2) = 3) is obvious.
3) = 1): Let us assume that for m = Lm%l_d" + 1| + 1, we have

mz 1Y PI(X) = Gi(X) + By (X),

=0

where G;(X) is a polynomlal of degree < D"! and R! (X) is a polynomial
satisfying R, (F) = (—1)™"' P.(X). By lemma 4, we have

X; = Z YPHE, ..., F) + (—1)"Pi(Xy,..., X,).

We obtain then

Xi = Gi(F)+ R, (F)+ (-1)"P,(X)
Gi(F) + (=1 P (X) + (1) P (X)
— Gi(F).

Hence F' is invertible with inverse G = (Gy,...,G,). O

4 Examples

4.1

We consider the following nonhomogeneous Keller map in dimension 2.

Fi = X1+ (Xo+ X})?
F2 == X2 + X%

Let us write Hy := (Xy + X3})?, Hy := X}. With the notations in theorem [§]

we have d; = 2,dy, = 3,d = 2, D = 6 and we obtain

5
D (F)PHX) = Xi = X3+ Ri(X),
i=0
where R{(X) is a polynomial of degree 6° and lower degree 9 satisfying
Rg(F) = —P(X), and

10



4
> (-1)'PHX) = Xo — X} 4+ 3X7X3 - 3X, X5 + XJ + R2(X),

=0

where R%(X) is a polynomial of degree 3 - 63 and lower degree 8 satisfying
R:(F) = P?(X). Hence the inverse of F' is given by

Gl - Xl—X22
Gy = Xo— X?+3X2X2—3X, X!+ X§

4.2

We consider the following Keller map F' in dimension 5.

( 2
&205X2X 20,305X2X4X5
Fi = Xi+aX}+ ariXs + a3 Xy X? + agzd + 14
C2 C2
+3(L4C5X2X§ CL2€2X3X42 2&362X3X4X5 3&462X3X52
C2 C2 C2 C2
+a30§X22X4 + 3a4c§X22X5 2&30562X2X3X4 6CL4C5GQX2X3X5
3 3 3 3
2 2 2 2
aze3X2X,  3a4e3X3Xs  aseiXd 3asciea X3Xj
c c ‘ ‘3
3ascsei Xy X2 B ases X3
c c

F2 = X2 +b1X2
F3 = X3 + C5X2X§ + ClXZE + CQXEX5 - 62X3X2
F4 - X4

csea X0 X2 e2X3X? bics — cr1e0) X3
F5:X5—|—62X2X5—|— 5224_234_(15 12)4
\ C2 C2 C2

with parameters aq, as, as, as, b1, c1, o, c5, 5. By applying the algorithm we
obtain Pi = 0, for i = 1,...,5, hence F is a quasi-translation, i.e. F~! =
2Id— F.

11



4.3

We consider the following Keller map F' in dimension 6

( F1 = X1 + CL5€1(X1 + X2)3/a4 + CL4X2X4X6 + CL5X4X5X6
By, = X5 —asei(X1 4+ X2)?/ay
F3 = X3—|—01X?—|—CQ(X1 +X5)3—|—03(X1 —I—X2)3—|—C4(X1 —I—X4)3—|—C5Xg
F4 = X4 + d4X2X62 + a5d4X5X§/a4
F5 = X5—|—61(X1 +X2)3
\ F6 - X6

with parameters a4, as, ¢1, 2, 3, €4, C5, da, e1. Denoting G = F~! and taking
variables (Y7, ...,Ys) for G, we obtain P{ =0, P =0 and

Gi1 = —(20@%61}%9(12}/23}/53@2 — 6a‘5"611%4Y4Y53d4Y2a£ + a5elagY69Y26di + 3Y63a561Y24d4a3
+3a5e1a3YEYPd] — ase1a§YSY Y + aiYaYaYs — YPaidiYi + ale Yo d3Yd

+ase1aiY + aze1alYs — Yiai — 3a2e1alYSYYPYs — 6ase1 1YY Ysad

+3a2e1 YOY1daiYdas + 12a3e1 YEYRd3Y3a5 — 6aze YY1 YadaY2a3 + 3aseral Y1 Yy
—6ase1alYgtY1 Y3 Yady + 3Ydase Y2Y2dyat + 3ase1al Y1 YEY2YE — 30ade, Y{ Yad3 Y5 Viiad
-|—6Y63a561Y1Y2‘°’d4ajll + 15a§61Y69diY24Y52aj + 6a§elaZY69Y25diY5 — 18a§61§%4Y23§Qd4Y},a3
+12a§61aZY65Y23Y42d4Y5 - 15a§elaZY67Y24Y4d£Y5 + 12@%61%65/1}/23(12}/5(13 - 18@%61Y64Y1Y22Y4d4Y5ajll
—3ase1aSY{ Yo Yyd3 + 3ase1alY2Ys + 18a3e YO Y2d, Y2Y2ah + 12a2e, YIS Y d2Ysa)
+3a5€1a3YEY1 Y5 d2 + 3ase1aSYP Y5 Y 2dy — 6azer Ytal Vs Yady + a5YaYsYsad
+15a2e1 YR d3Y2Y a3 + 6aSe Y YadiYPay — 18aie Yt Y2Yyd,Yiia3 + 18ade YEY1d3 Y2V 2ad
—3agelY'67nY55dia4 - 18a§61Y64Y1§Qd4Y2Y52a3 + 6a§elY63Y1d4Y52Y2aﬁ - 30a‘5161§/'67§qd421Y22Y53a2
+12a3e1 Y Yo Y2d Y303 + 12a2e1 YY1 1d7Ya Y203 + 3a2e1 YO ATV Yaay + 3ade YPY2d Y2 a3
+18a3e1 YEY3diYiad + 6ake1 V1Yo Y2YEY5ah — 3ase1Ys Yy Ysai — 2V Yaasd,Ysal
+3a?)61}/65n2)@)4d4a?1 - 30‘%61}/2}/43}/63}/520‘3 - 30,561}/12}/2}/4}/6&3 + 30‘5610’2}/23}/42}/62
—I—GCL?)61Y22Y42Y(32Y5afll — 3a§elY4Y5Y6Y22ai — a?)Y63d4Y52a2 — 3a§61Y12Y4Y5Yﬁaf’l

+3a3e1 YAY2YEYoa3 + 6YPa2e1 Y2 YadyYsad — 15ale1 Yy YaYad3Y a] + 12Yaze V1Y dy Ysad
+6Y63a§61Y23d4Y5ai + 3a§elYﬁ3d4Y52Y22ai + 3a§elY1YfY52§%2ai — 6a§elY1nY},Y6Y2ai

—ase Y5 Yga3) /ai;

12



Gy = (2Oa‘51€11%9d2Y23Y53ai — 6a§61§/'64nY53d4Y'2ai + a5elag§%9Y26di + 33/'63a561§/'24d4a3
+3a5€1a3YSY > d5 — ase1a§YSYPYE + ale Y d3YE + aseralYs?

+ase1alYs — 3a2e1alYLYRYIYs — 6&561Y1Y22Y4Y6ai + 3a261Y66Y1d2Y54a4

+12&§61}/66)/22d?1)/530i — 60,%61}/64}/1}/4614}/530& + 30,5610,2}/1)/22 — 60561&2}/64}/1}/23)/4(14

+3Yase1 Y2Yidyas + 3ase1al 1YL YRYE — 30ade, Y YadiYYial + 6Ydase Y1 Y5 dya)
+15a3e1 Y d3Y5'Y2a} + 6a2e1alY Yo d3Ys — 18a2e1 YV Yyd,Ysad + 12a2e1alYP Y5 Y2 dy Vs
—15a¢e1a3Y{ Y5t YadaYs + 12a2e1 YEY1 Y5 daYsat — 18ake1 Y V1Y YydyYsal — 3ase1alYy Yo Yad3
+3ase1a3YYs + 18a3e  YPY2d Y2 YR a] + 12ake YV, d3Ysal + 3ase1al YY1 Ya'd]
+3a5e1a§YPY5 Y 2dy — 6aser Y alYs Yady + 15a3e1 Yy diY2 Y a% + 6ale 1 Y YodiYoay
—18ade1 Y Y2Yads Y203 + 18ade1 YEYV1d3YEY2 a3 — 3ale Y YaY2d3ay — 18ade YY1 Yad, Yo Yiias
+6a3e1YY1daY2Yoa] — 30ade Yy YadiY2Y a3 + 12ade YO Yo Y2ds Va3 + 12ake YY1 d3 Yo Y ad
+3a2e1 Y Y Yaay + 3ade ) YEY2dyY2a3 + 18ade YEVFATY a3 + 6ade V1Yo Y2 Y Y5ah
—3ase1YsYyYsah + 3a2e YO Y2YEdya? — 3ade YaYPYEY2a: — 3ase, Y2Ya Yy Yiad
+3ase1a3 Y3 YEYZ + 6a2e Y2V 2Y2Y5ah — 3ake1YaYsYsYia] — 3ae Y2Y,YsYsas

+3a2e1 Y2Y2Y2Yaa3 + 6Yda2e1 Y2 YadsYsal — 15a2e, Yy YaYad2Ya2 + 12Y¢a2e, Y1 Yid,Ysad
+6Y63a§61Y23d4Y5aZ + 3a§61Y63d4§g2Y22ai + 3a§elY1YfY})2§%2aZ — 6a§elY1§QY},Y6Y2aZ

—ale VPYIYZa} + Yaad)al

Now,
Ge = Y5
Gs = Ys—e(Gi+Go)?
G4 = Y;L — d4G2G% — CL5d4G5G§/CL4

Gg = YE}, — ClG? — CQ(Gl + G5)3 — Cg(Gl + G2)3 — C4(G1 + G4)3 + C5G%.

4.4

Let us consider again the polynomial automorphism of C* given in example
[[. We have p := X; X35+ XX, and F defined by

F = X1 +pXy

F, = X;—pX;
F3 = X3+ X}
F, = X4
We obtain
13 ’
S (1 PHX) = X — X1 X3Xy — Xo X7 + X1 X) + Ry, (X),
§=0

13



where

RL(X) = —35X1X3X38 — 10X X3X5 — X1 X5 X2 — 36X, X3 X4 — 6.X, X; X2
—B6X 1 X3 X5 — X1 X2 — 6X,X30 — 15X, X352 — 35X, X3
—35X1 X360 — 56X, X3 — 28X, X40 — 36X, X412 — 90X, XM
10X, X106 — X, X1 — X, X0

satisfies R}, (F)+ PL(X) =0. And

13
D (1Y PAX) = Xp—2X1 Xy X§+ X0 X3 Xy — Xo X+ X1 X§+ X1 X5+ R, (X),
=0

where

R3(X) = 14X X3X7 4+ 6XoX3X2 + 282X, X3 X3t + 6X, X2X 2 + 35X, X3 X358
+910X X3 X5 + 35X, X2 X532 + 56 Xo X3 X357 + 1064X, X3 X357 + 56X, X2 X356
+36 X5 X3 X1 + 558X X3 X% 4+ 36 X1 X2 X0 + 12X, X3 X1 + 13X, X8
77X X350 + 267X, X322 + 440X, X34 + 875X, X326 + 693X, X 38
+1036 X5 X {0 + 440X, X2 + 549X, X + 121X, X6 + 133X, X #
12X X0 + 12X, X352 + 10X X2 X4 + 134X, X3 X7 + 10X, X3 X1
+ X1 X2X B 4+ X X3 X0

satisfies R7,(F) + P%(X) = 0. Hence G = F~! is given by

G = Xi— X1 X3X; — XoX? 4+ X X}

Gy = Xo—2XX3X3 + XoXs Xy — Xo X + X1 X$ + X, X3
G3 == X3 - Xff
G4 - X4
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