arXiv:1601.00335v1 [cs.CC] 3 Jan 2016

Asymptotic Intrinsic Universality and
Reprogrammability by Behavioural Emulation®

Hector Zenil'
Unit of Computational Medicine, SciliifeLab, Department of
Medicine Solna, Karolinska Institute, Stockholm, Sweden;

Department of Computer Science, University of Oxford, UK; and
Algorithmic Nature Group, LABORES, Paris, France.

Jiirgen Riedel?
Institut fiir Physik, Universitat Oldenburg, Germany; and
Algorithmic Nature Group, Laboratoire de Recherche
Scientifique LABORES, Paris, France.

Abstract

We advance a Bayesian concept of intrinsic asymptotic universality,
taking to its final conclusions previous conceptual and numerical work
based upon a concept of a reprogrammability test and an investigation of
the complex qualitative behaviour of computer programs. Our method
may quantify the trust and confidence of the computing capabilities of
natural and classical systems, and quantify computers by their degree of
reprogrammability. We test the method to provide evidence in favour of a
conjecture concerning the computing capabilities of Busy Beaver Turing
machines as candidates for Turing universality. The method has recently
been used to quantify the number of intrinsically universal cellular au-
tomata, with results that point towards the pervasiveness of universality
due to a widespread capacity for emulation. Our method represents an
unconventional approach to the classical and seminal concept of Turing
universality, and it may be extended and applied in a broader context to
natural computation, by (in something like the spirit of the Turing test)
observing the behaviour of a system under circumstances where formal
proofs of universality are difficult, if not impossible to come by.

Keywords: computer simulation/emulation; Busy Beaver Turing ma-
chines; intrinsic universality; Turing-completeness; dynamical systems;
reprogrammability; behavioural methods

*Invited chapter contribution to Advances in Unconventional Computation by Andrew
Adamatzky (ed.), Springer Verlag (forthcoming)

TCorresponding author: hector.zenil AT algorithmicnaturelab.org

tjurgen.riedel AT labores.eu

1 Introduction

Attempts to answer even the simplest questions about the behaviour of com-
puter programs are bedevilled by uncomputability. The concept of asymptotic
intrinsic universality introduced here is based upon a Bayesian approach to emu-
lation by computer programs of other computer programs. The method provides
a means to quantify their reprogramming capabilities, associating them with a
deciding procedure that asymptotically recognizes computation with a confi-
dence value and sets forth a hierarchy of reprogrammability (see [2I]) based
upon the likelihood of a system being, in one degree or another, close to (or
removed from) Turing universality.

In [18], a related conjecture concerning other kinds of simply defined pro-
grams was presented, suggesting that all Busy Beaver Turing machines may
be capable of universal computation, as they seem to share some of the infor-
mational and complex properties of systems known to be capable of universal
computational behaviour.

We have recently found that most computer programs can be reprogrammed
to emulate an increasing number of other (different) computer programs of the
same size [7] under a similar block emulation transformation or set of compil-
ers of increasing size. We also previously advanced a conceptual framework for
reprogrammability based upon the display of different qualitative output be-
haviours [20] and modelled as a type of Turing test to determine computational
capabilities [2I]. This has been used in connection with an instance of natu-
ral computation—in an in-silico simulation of Porphyrin molecules [12] in the
context of spatial computing.

Here we advance a Bayesian method, namely asymptotic intrinsic univer-
sality, that draws everything together and translates the seminal concept of
computation universality to degrees of belief and confidence based upon emula-
tion and reprogrammability capabilities applicable to natural computation. We
test the method with a case study of the set of Turing machines defined by the
Busy Beaver functions.

2 Methods

2.1 The classical Turing machine model

A Turing machine consists of a finite alphabet set with symbols Y = {0,1,..., %}
and states {1,2,...n'}J{0}, with O the “halting state”. The Turing machine
“runs” on an one-way unbounded tape and for each pair:

e the machine’s current “state” n; and
e the tape symbol k the machine’s head is “reading”.

there is an instruction corresponding to each (n, k) for:

e a unique symbol to write (the machine can overwrite a 1 on a 0, a 0 on a
l,alonal,and a0 on a0);

e a direction to move in: —1 (left), 1 (right) or 0 (none, when halting); and

e a state to transition into (which may be the same as the one it was in). If
0 it halts.

There are (4n+2)?" Turing machines with n states and 2 symbols according
to the formalism. The output string is taken from the number of contiguous
cells on the tape the head of the halting n-state machine has gone through.

Definition 2.1. We denote by (n,2) the set (or space) of all n-state 2-symbol
Turing machines (with the halting state not included among the n states) and
by T'(n, k) a specific Turing machine with n states and k symbols.

2.2 The Busy Beaver functions

A Busy Beaver Turing machine [10] is a Turing machine that, when provided
with a blank tape, does a lot of work. Formally, it is an n-state k-symbol Turing
machine started on an initially blank tape that writes a maximum number of
1s or moves the head a maximum number of times upon halting. An online
computer program showing the behaviour of these computer programs can be
found in [I6].

Most Turing machines never halt, yet Busy Beavers do halt (by definition
over the empty tape). We know from algorithmic information theory that among
those Turing machines that do halt, most will halt quickly or will perform very
little work, yet by definition Busy Beavers are those that perform the greatest
amount of work. In a recent investigation [7] focused on cellular automata (CA),
we have also shown that most computer programs are candidates for intrinsic
universality, and thus for Turing universality.

There are known values for all 2-symbol Busy Beavers up to 4-state Turing
machines, and explicit constructions give exact or lower bounds for other state
and symbol pairs.

Definition 2.2. If o is the number of 1s on the tape of a Turing machine T’
upon halting, then: Y (n) = max{or : T € (n,2) T(n) halts}.

Definition 2.3. If ¢ is the number of steps that a machine T takes upon
halting, then S(n) = max {¢tr : T € (n,2) T(n) halts}.

>>(n) and S(n) are noncomputable functions by reduction to the halting
problem. Yet values are known for (n,2) with n < 4.

Bennett’s logical depth [I], as the computation time needed to produce an
object from its shortest computer program description, is relevant in character-
izing the complexity of an n-state Busy Beaver machine, both in terms of size
(fixed among all n-state machines) and in terms of the behaviour that charac-
terizes this type of machine. This is so because it follows from Rado’s definitions
and Bennett’s concept of logical depth that Busy Beavers are the deepest ma-
chines, given that they are the ones with the longest history in the production
of their output. In other words, the Busy Beaver Turing machine is the shortest
Turing machine model that produces s, and the number of steps that T takes

is its logical depth. If T is the machine that does more work per the definition
of the Busy Beaver, then T is also the logically deepest Turing machine of size
(n,k). Yet a Busy Beaver is required to halt. When running for the longest
time or writing the largest number of non-blank symbols, bb(n) has to be clever
enough to make wise use of its resources and still save a rule to halt.

2.2.1 Busy Beaver conjectures

These facts suggest the following conjectures, which are also relevant to the
dynamic behaviour of a set of simply-described machines characterized by uni-
versal behaviour.

In previous work we explored these conjectures relating to Busy Beavers
with numerical approximations of their sensitivity to initial conditions [I8] and
the qualitative behaviour that initial conditions induce over space-time dia-
grams [I7]. Which was similar to work we did on a 2-dimensional cellular
automaton, the Game of Life [19].

Conjecture 2.1. The Busy Beaver conjecture(s) [I8] establish(es) that:

e (strong version): For all n > 2, bb(n) is Turing universal.

e (sparse version): For some n > 2, bb(n) is Turing universal.

e (weak version): For all n > 2, bb(n) is weak Turing universal.

o (weakest version): For some n > 2, bb(n) is (weak) Turing universal.

Here we provide evidence in favour of all conjectures in the form of an in-
creasingly monotonic asymptotic intrinsic universal behaviour.

It is known that among all 2-state 2-symbol Turing machines, none can be
universal. bb(n), as defined by Rado [10], is a Turing machine with n states plus
the halting state. bb(2) is thus actually bb(2,3), a 3-state 2-symbol machine in
which one state is specially reserved for halting only. If bb is unary, then it will
be assumed to be a 2-symbol Turing machine, otherwise it will be denoted by
bb(n, k).

Definition 2.4. A weak universal Turing machine is a machine that allows
its initial tape configuration to be regular or periodic with more than a single
“blank” symbol (an “empty” tape is a period 1 tape with only one symbol).

In other words, if bb(n) is weak universal, then it is allowed to start either
from a periodic tape configuration or an infinite sequence produced by a regular
language.

2.3 Block emulation and intrinsic universality

The notion of intrinsic computational universality used for cellular automata
was an adaptation of classical Turing-universality [5]. A stronger notion, in-
trinsic universality, was proposed in [8, [9]. The concept can be extended and
adapted to any computer program.

s GO [l

Figure 1: Typical space-time evolution/behaviour of Busy Beaver Turing ma-
chines. The first 6 figures from left to right correspond to Busy Beaver machines
with 2-symbols and 2 to 6 states (for illustration purposes only those < 4 were
ploted with a background mesh) for which the first 3 have exact (S(n)) runtime
values (6, 21, 107). For the rest a cutoff value was arbitrarily chosen, so as to
provide an optimally effective illustration. The behaviour of a Busy Beaver can-
not be a trivial repetition because it does have to avoid getting into an infinite
cycle in order to halt.

Definition 2.5. A computer program of a given size is intrinsically universal
if it is able to simulate any other computer program under a coarse-graining
compiler [g].

The exploration of the computing capabilities of a computer program can
then proceed by block emulation, whereby the scale of space-time diagrams of
CA are found and then coarse-grained, as in [15] and [I1].

Definition 2.6. (emulation/simulation): Let A and B be two computer pro-
grams. Then A emulates/simulates B if there exists a rescaling/projection P of
A such that f§ = fp, where f4 and fp are the computed functions of A and
B.

Our emulations are related to an even stronger form of intrinsic universality,
namely linear-time intrinsic universality [8], which implies that all emulations
carry only a linear overhead as a result of our brute force exploration of the
compiler and rule space.

Following these ideas, one can try out different possible compilers and see
what type of computer programs a specific computer program is able to emulate.
The linear block transformation was suggested in [14] [13].

emulating TM

block transformation (b)

e) |

back transformation

Figure 2: Illustration of the process of one Turing machine emulating another
via a block transformation. In this case (a) shows a bb(2,3) with initial tape
OOMOMO after 2 steps. By performing the block transformation of length 3 (b)
on the initial condition of (a), after 6 steps using the same bb(2, 3) rule one gets
(c). If the output of every 3rd step is taken and the back transformation (d)
performed on these outputs, one gets the output (e). This is identical with the
output of TM (2, 3) with rule number 2797 435 run on the same initial condition
as in (a) for 2 steps. In other words, (e) is the coarse-grained version of the block
transformed bb(4, 2) (a) which in turn produces the same output as T'M (4, 2) of
rule number 2797 435. In this picture one cannot see the compiler directly as it
is encoded within the internal states of the bb(4, 2).

2.4 Turing machine emulation

The exploration of the emulating space of Turing machines (TM) is more com-
plicated than for Cellular Automata because the space-time diagram does not
contain the head configuration state of the Turing machine.

We ran the random TMs and the Busy Beaver Turing machines for the
number of steps given by S(n). For example, for n = 4 states, S(n) = 107,
given by the Busy Beaver bb(4). We looked for all transformations which allow
a back transformation for block sizes 2 to 4 and only considered (2-symbol,
4-state) and 3-symbol, 2-state) Busy Beaver Turing machines and a sample of
random Turing machines of the same size.

To ascertain which TM from the same rule space corresponded to the emu-
lated Busy Beaver or TM, we adopted the following algorithm:

remove all TMs within
the set of Bs which are
identical to the trivial

remove all outcome of
B which are idenfical i
trivial TM

choose TM rule

select random initial tape outof B
and st block size (n), cempare oulput of

e.9.n=2 with the trivial TM atrivial TM is defined as
the output which is
collect remaining Ths the same as initial tapes
repeated n imes

create all possitle
L |transformations for given fe———
block size, states and
color

for block size n and color k
one finds k"2n possible
transformatons

match output of A
with B

a random tape is perlorm block draw random sample in this step the goal is to

on T™ (A) of TMs (B) from same find a TM of the same rule

selected not the usual o given i) tape and nle space and let the space with has a matching

empty tape et evolve for n steps TMs evolve with same output not considering the
P initial tape for n steps internal states

increment block size
until set maximum
block size reached

loop

Figure 3: Flow diagram of emulation of TMs.

For a n-state and k-symbol Turing machine (TM), we enumerated all possible
block transformations P(n, k) of given block size n (n-tuples), e.g. P(2,3) =
00— HE H — B0, B — BN for a 3-symbol, 2 state TM. We found a total of
k2™ possible transformations. We applied each member of the set of possible
transformations to a TM of the corresponding rule space, in this paper that of a
Busy Beaver (bb) or a randomly selected TM given a randomly initialized tape.
We then let the TM evolve for n steps. Then we took every n output line of
the TM and performed a back transformation on the output, e.g. P(2,3)"! =
HE — 080 — B EE — B At the same time we drew a TM of the same
rule space out of a random sample and let it evolve for n steps using the same
initial tape. If the output was a valid output of a TM, we tried to match it
with the output of the Busy Beaver or random TM described above. In order
to exclude trivial emulations, we filtered out all those emulated TMs which are
just a m-time repetition of the initial tape. It is important to note that we are
not taking the initial states of the TMs into account. We are just focusing on
the output of TMs when performing the block transformations.

3 Results

3.1 A Bayesian approach to Turing universality

We looked into the number of compilers up to a certain size for which a computer
program can emulate other computer programs of the same size (e.g. in number
of states for TMs, number neighbours for CAs, or description bits in general).
Given all the unknown priors and the uncertainty in the degree of belief, we
need a basic function that:

e Is increasingly monotonic. Normalizing by total number of explored com-
pilers should provide a measure for comparison, but the function itself
should only count the number of emulations.

e f(z) > 0 when z > 0. Evidently any emulation should amount to a
non-zero value.

e Nonlinearly converges to 1. We want a function that “slowly” converges
to a positive value and

e Incorporates a degree of belief weighting the number of emulations found.

Because intrinsic universality implies Turing universality [g], this approach
is of relevance in finding the reprogramming capabilities of classical and uncon-
ventional computing systems.

T 10 Full reprogrammability = intrinsic & Turing universality
g
;g 0.8 Busy Beaver TMs
c
8
2 06 — Intrinsic universality limit/
=3 Turing universali
g 0.4 9 ty
g — Triviality/non—universal lower bound
5 02
<) . . .
S — Asymptotic universality curve
2 00
14 Trivial non-programmable and non-universal systems
0 50 100 150 200

Number of non-trivial different emulations
as a function of compiler size

Figure 4: Asymptotic intrinsic universality curve (ax/(axz+1), made continuous
for illustration purposes) is the Bayesian approach to the otherwise seminal but
abstract concept of computation universality applicable to both abstract and
natural /unconventional computation. For example, we found evidence in favour
of a conjecture postulating that Busy Beaver Turing machines are somewhere
on the asymptotic universality curve, highly so if the degree of belief according
to a assigns it a higher confidence every time that such a machine in question
is able to emulate some other.

The exact shape of the function has no essential meaning as long as it is
concave and complies with the above requirements. A canonical function is
az/(ax + 1), where x € NT is the number of different non-trivial emulations of
a system under evaluation and a € (0, 1] the degree of belief modifying the rate
of convergence, in this case a = 1 (see Fig. . We then define the asymptotic
intrinsic universality value of a computing system s as,

Definition 3.1. (asymptotic intrinsic universality) A(s) = az/(az + 1)

3.2 Case study: Busy Beaver functions

Here we provide evidence in favour of the Busy Beaver conjectures by way of
the different qualitative behavioural properties they display and their intrinsic
universality capabilities.

3.2.1 Qualitative behaviour analysis

Among the intuitions suggesting the truth of one of these conjectures, is that
it is easier to find a machine capable of halting and performing unbounded
computations for a Turing machine if the machine already halts after performing
a sophisticated calculation, than it is to find a machine showing sophisticated
behaviour whose previous characteristic was simply to halt. This claim can
actually be quantified, given that the number of Turing machines that halt
after ¢ = n for increasing values of n decreases exponentially [2] [4 22]. In
other words, if a machine capable of halting is chosen by chance, there is an
exponentially increasing chance of finding that it will halt sooner rather than
later, meaning that most of these machines will behave trivially because they
will not have enough time to do anything interesting before halting.

Fig. |p| provides a summation of the behavioural investigation of Busy Beaver
machines. Histograms show the different qualitative behaviour in bimodal and
multimodal discrete distributions. The multimodality is not an effect of the
size of the initial condition that grows smoothly by log(n), nor of the stepwise
behaviour of the lossless compression algorithm (Compress based upon Deflate).
If it were an effect of the length of the initial condition, then Subfigs. B-D would
look like Subfig. A, which is not the case. They display genuinely different
behaviours (see Fig. [6[right)).

The state diagram in Fig. @(left) suggests how to choose an initial config-
uration for the machine to enter into an infinite loop (e.g. connected cycle on
the left), and therefore how to enter into a never-halting computation, a re-
quirement for (weak) Turing universality. Fig. @(right) shows the behaviour of
bb(4,3) for 2 different initial conditions, one for which it halts (or “computes”
the identity) and another for which the computation goes on in a rather complex
head movement fashion.

300

250 200

200

150

100

50

110 120 130 140 150 400 600 800 1000 1200 1400

400
300 200F
200

100 |

b | |

0 2000 4000 6000 8000 10000 12000 110 120 130 140 150

1x10%
5x10%F

1210t
5000

1000
500

0 20 40 60 80 100

Figure 5: A-D: Histograms of the compressed lengths (z axis using Compress)
of the space-time diagrams of bb(n) for n =3 to 6 for 1 x 10? steps each, showing
accumulation of different qualitative behaviours. E: A right-left compressed be-
haviour of a Busy Beaver runnning for 1.5 x 103. Only rows for which the head
has moved further to the right or left than ever before are kept, a method sug-
gested in [I5]. F: Function computed by the Busy Beaver b(5, 2) for consecutive
initial conditions 1 to 100 in binary.

3.2.2 Reprogrammability of Busy Beavers by block emulation

Fig. [7] shows that Busy Beavers are much more capable of emulating the be-
haviour of other (non-trivial) Turing machines than the control case, a sample
of random Turing machines from the same rule space size (i.e. all machines are
of the same size). This is consonant with theoretical expectations [2].

10

|

Figure 6: Left: State diagram after 20 steps (state 1 is a down-tick, state 2
is an up-tick). Right: Two runs from different “random” initial conditions of
length 100 bits showing (left) a quick halting (computation of the identity) and
(right) an apparently random movement of the head for another initial condition
running on the same 4-state 3-symbol Busy Beaver Turing machine.

3.2.3 Busy Beavers are candidates for Turing universality

The capacity for universal behaviour implies that a system is capable of being
reprogrammed and is therefore reactive to external input. It is no surprise that
universal systems should be capable of responding to their input and doing so
succinctly, if the systems in question are efficient universal systems. If the system
is incapable of reacting to any input or if the output is predictable (decidable)
for any input, the system cannot be universal.

We have here provided evidence that Busy Beavers comply with all the
requirements for Turing universality and must therefore be considered a very
interesting non-trivial set of Turing machines that are candidates for Turing
universality.

Evidence in favour of the conjectures is based upon the following observa-
tions:

e Busy beavers produce space-time diagrams of the highest complexity com-
pared to the space-time diagrams of other rules in the same rule space.

e Busy beavers show qualitatively different behaviour for different initial
conditions; they can halt and it is not difficult to devise ways to perform
non-halting computations based upon infinite loops, especially for non-
empty inputs.

e The small set of Busy Beavers investigated emulate a larger number of
other (non-trivial) Turing machines on average compared to random Tur-
ing machines of the same size. In other words, we found evidence indicat-
ing that A(bb(n, k)) > A(RndT' M (n,k)), where RndT' M (n,k) € bb° is a
random Turing machine in the complement set of the Busy Beavers bb¢,
and the confidence level a is fixed.

e Thus the measure of asymptotic intrinsic universality that we defined
A(bb(n, k)) converges to 1 much faster than A(RndT M (n, k)).

11

Frequency
a
3
N
8
8

Frequency

=)
=]

0- 0- G

TM type
] EdBB
B3 RndTM
= *ﬁ -

3 2
Block size Block size

+>

N
S
N
=3
S

‘:" [TM type
qé . s EdBB
] g B3 RndTM
*20- * 100-
i == ——
0- * == 0- —s —t—

Blocli size ¢ ? Block size

Figure 7: Top: Boxplots showing the differences in the emulation power of (left)
bb(4,2) versus a set of randomly selected TMs in (4,2), and (right) bb(2,3)
versus a set of randomly selected TMs in (2,3). The data show how many
emulations on average a set of Busy Beavers of a given rule space and a set
of random TMs selected from the same rule space can produce for given block
sizes. The data shows a variance for both TM types, since the output of valid
block transformations is compared with the output of a TM sample taken from
the same rule space. Trivial TMs (c.f. flow chart in Fig |3 are excluded. Each
emulation is counted, even if it corresponds to the same TM. The diamond
shapes represent the mean of the data points. Bottom: Same plots, but only
TM evolutions with different hash values (from their evolution) are counted, i.e.
only distinct TMs are counted, rendering the difference between Busy Beavers
and random Turing machines even more prominent.

Asymptotic intrinsic universality is strictly stronger than Turing univer-
sality. Fig. [} Random TM statistics serve as a control because we know
that the set of machines that either quickly halt or never halt are of density
measure 1, and will therefore end up dominating the average emulation with
A(RndT M (n,k))/nk ~ 0 for n,k — oo. So if we find, as we in fact did, that
A(bb(n, k))/nk grows faster than A(RndT M (n,k))/nk, we would be demon-

12

strating with a high level of confidence that Busy Beaver Turing machines have
greater reprogramming capabilities and are candidates for intrinsic universality,
and therefore Turing universality.

4 Discussion

4.1 Universality versus reprogrammability in natural com-
putation

We have brought together several concepts that are relevant and applicable to
natural computation where, e.g., resources are often scarce and computation oc-
curs independently of the substrate, making for concepts that are disembodied,
independent not only of specific hardware but of models and formalisms (e.g.
whether one can define a halting configuration).

On the one hand, there is the use of the concept of intrinsic universality,
which our definition of asymptotic universality relies upon. Intrinsic universal-
ity as originally formulated for cellular automata does not require a halting con-
figuration. This makes it applicable to natural computation, because a halting
state is an arbitrary choice—the option to design a state as a halting one—which
is meaningless in natural computation. Furthermore, the coarse-graining only
takes into consideration the output configuration rather than the state configu-
ration, which is consistent with recent extensions for membrane computing or P
systems [6], where a computation with only one possible output can be reached
through many different paths, regardless of the internal states transited through
en route. Indeed, since we are not looking ‘inside’ the TM (its internal states),
we are treating it as a black box (see Fig. [2)) on which we perform an external
observer test. The compiler used to look at the internal states is a behaviourally
shallow one. Interestingly, the transformed TM (in Fig. [2| a Busy Beaver) does
lock immediately into the same pattern. Again, one would need to visualize the
internal states to see a difference between other emulations producing the same
output.

On the other hand, in a world where “emptiness” or simple/completely reg-
ular initial conditions cannot be guaranteed, weak universality is more realistic.
The concept of asymptotic universality is based upon and adapted to deal with
these situations in the context of natural computation where a system may be a
black box but its behaviour can be reinterpreted (by emulation) and exploited.
Of course one difficulty is to identify different behaviours in order to undertake
a behavioural comparison, and this is why we have also introduced complexity
indices that can serve as tools to quantify the space-time evolutions of systems
or their representations.

No amount of evidence will ever provide full confidence of Turing universality,
but the larger the number of emulations the greater the level of confidence (see
Fig. . A non-universal system, however, may also be located on the asymptotic
curve and can even continue to grow in unbounded fashion if no proper definition
of equivalent computation is possible (this would be needed for purposes such as

13

normalization, for example), underscoring a possible limitation of this approach.
For example, it may not be effective with systems that keep emulating be-
haviour produced by finite automata, which may present an infinite number
of qualitatively different evolutions, yet are restricted to a sub-universal lan-
guage set. The chief advantage of this approach, however, is the amenability
to non-formal evidence of the reprogrammability of less conventional systems,
where formal proofs of universality are difficult, if not impossible to come by.
In other words, while the method does disclose universal systems at the limit,
it does not rule out non-universal ones, thus producing possible false positives.
However limited, any false positive is still a reprogrammable system, thereby
providing a more natural/pragmatic definition of natural universality.

4.2 The Busy Beaver conjectures

It would not have been possible to anticipate that the behaviour displayed would
have been that of Busy Beavers, despite their complexity for empty inputs.
Nor could the low emulation capabilities of all other trivial and non-trivial
machines in the complement set of the Busy Beavers bb® have been anticipated,
because they are no longer being tested and quantified over the full set of possible
initial conditions but over the subset that allow the emulation of other computer
programs (Turing machines) of the same (growing) size. In other words, what
we are exploring is the Cartesian product P x C of the pairs (p, ¢), where p € P
is a computer program (e.g. a Turing machine) and ¢ € C a compiler that maps
p onto p’ € P of size |p’| = |p| (in this case the number of states, but in the
general the number of bits, i.e. its Kolmogorov complexity [3]).

Here we explored the reprogrammable space, a subset of the the space of
all computer programs for either a specific input or, equivalently (per Turing
universality), for all inputs. This also means that most of the machines that
either halt almost immediately and therefore do nothing interesting, or else never
halt, can actually be effectively reprogrammed, and the results obtained here
and in [T [7] strongly suggest that they may even be candidates for intrinsic
universality (i.e. the ability to emulate any other computer program under a
coarse-graining compiler), a stronger concept than that of Turing universality.

5 Conclusion

The set of Busy Beaver machines describes an (enumerable) infinite set of Tur-
ing machines characterized by a particular specific behaviour. If the conjectures
are true according to the evidence we have provided, the result is more surpris-
ing, because a describable property determines the computational power of this
non-trivial infinite set of Turing machines. Here we have taken these ideas a
step further in the direction of an empirical proposal for considering statistical
computational evidence of computational universality. Because of the undecid-
ability of the halting problem we may never obtain stronger evidence of the
computational capabilities of these computer programs.

14

We have introduced a novel experimental and methodological Bayesian ap-
proach to theoretical computing challenges that circumvents traditional limi-
tations imposed by classical definitions, in particular related to undecidability,
unreachability and universality and deals with pragmatic unconventional repro-
gramming by behavioural emulation rather than through attempting producing
formal analytical proofs, which are not only difficult, but impossible in general,
specially in the realm of natural computation where we think these new concepts
and methods are more relevant.

Acknowledgments

HZ is grateful to the Foundational Questions Institute (FXQi) for its grant in
support of “The Nature of Computation and the Physics of Information” (FQXi-
MGA-1316), and to the John Templeton Foundation for its grant awarded for
“Habitable Zones of Entropy and Complexity in Simulated Universes” (grant
ID 52709). HZ and JR are grateful to the Algorithmic Nature Group and
LABORES.

References

[1] Bennett, C.H., Logical depth and physical complexity. The Universal Tur-
ing Machine A Half-Century Survey, pp.207-235, 1995.

[2] Calude C.S. and Stay M.A., Most programs stop quickly or never halt,
Advances in Applied Mathematics, vol. 40(3), pp. 295-308, 2008.

[3] Chaitin G.J., Computing the Busy Beaver Function, Open Problems in
Communication and Computation, Springer New York, pp. 108112, 1987.

[4] Delahaye J.-P. and Zenil H., Numerical Evaluation of the Complexity of
Short Strings: A Glance Into the Innermost Structure of Algorithmic Ran-
domness, Applied Mathematics and Computation, 219, pp. 63-77, 2012.

[5] von Neumann J., Theory of self-reproducing automata, University of Illinois
Press, Urbana, I1l., Burks A.W. (ed), 1966.

[6] Pdun G., Introduction to Membrane Computing. Applications of Membrane
Computing. Springer Berlin Heidelberg, pp. 1-42, 2006.

[7] Riedel J., Zenil H., Cross-boundary Behavioural Reprogrammability
Reveals Evidence of Pervasive Turing Universality, ArXiv preprint,
arXiv:1510.01671

[8] Ollinger N., The quest for small universal cellular automata, International
Colloquium on Automata, languages and programming (ICALP’2002),
Widmayer P., Triguero F., Morales R, Hennessy M., Eidenbenz S. and
Conejo R. (eds), LNCS 2380, pp. 318-329, 2002.

15

http://arxiv.org/abs/1510.01671

[9]

Ollinger N., The intrinsic universality problem of one-dimensional cellu-
lar automata, Symposium on Theoretical Aspects of Computer Science
(STACS’2003), Alt H. and Habib M. (eds), LNCS 2607, pp. 632-641, 2003.

Rado T., On Noncomputable Functions. Bell System Technical Journal,
41(3), pp. 877-884, 1962

Rowland T., Two-dimensional Totalistic Code 52, Complex Systems 17, pp.
163-182, 2007.

Terrazas G., Zenil H., and Krasnogor N., Exploring Programmable Self-
Assembly in Non DNA-based Computing, Natural Computing, vol 12(4):
499-515, 2013.

Wolfram S., Table of Cellular Automaton Properties, Theory and Applica-
tions of Cellular Automata, World Scientific, pp. 485-557, 1986.

Wolfram S., Statistical Mechanics of Cellular Automata, Review of Modern
Physics, 55, 601-644, 1983.

Wolfram, S., A New Kind of Science, Wolfram Science, Chicago, Il., 2002.

Zenil H., Busy Beaver, Wolfram Demonstrations Project. http://
demonstrations.wolfram.com/BusyBeaver/

Zenil H. and Villarreal-Zapata, E., Asymptotic Behaviour and Ratios of
Complexity in Cellular Automata Rule Spaces, International Journal of
Bifurcation and Chaos, vol. 13, no. 9, 2013.

Zenil H., On the Dynamic Qualitative Behaviour of Universal Computation,
Complex Systems, 20-3, pp 265-277, 2012.

Zenil H., Algorithmicity and Programmability in Natural Computing with
the Game of Life as an In Silico Case Study, Journal of Experimental €
Theoretical Artificial Intelligence, Volume 27, Issue 1, pp. 109-121, 2015.

Zenil H., A Behavioural Foundation for Natural Computing and a Pro-
grammability Test. In G. Dodig-Crnkovic and R. Giovagnoli (eds), Com-
puting Nature: Turing Centenary Perspective, Springer SAPERE Series
vol. 7, pp. 87-113, 2013.

Zenil, H., What is Nature-like Computation? A Behavioural Approach
and a Notion of Programmability, Philosophy & Technology, vol 27(3), pp
399-421, 2014 (online: 2012).

Zenil, H. From Computer Runtimes to the Length of Proofs: With an Algo-
rithmic Probabilistic Application to Waiting Times in Automatic Theorem
Proving. In Dinneen, M.J. Khousainov, B. and Nies, A. (eds.), Computa-
tion, Physics and Beyond International Workshop on Theoretical Computer
Science, WTCS 2012, LNCS 7160, pp. 223-240, Springer, 2012.

16

http://demonstrations.wolfram.com/BusyBeaver/
http://demonstrations.wolfram.com/BusyBeaver/

	1 Introduction
	2 Methods
	2.1 The classical Turing machine model
	2.2 The Busy Beaver functions
	2.2.1 Busy Beaver conjectures

	2.3 Block emulation and intrinsic universality
	2.4 Turing machine emulation

	3 Results
	3.1 A Bayesian approach to Turing universality
	3.2 Case study: Busy Beaver functions
	3.2.1 Qualitative behaviour analysis
	3.2.2 Reprogrammability of Busy Beavers by block emulation
	3.2.3 Busy Beavers are candidates for Turing universality

	4 Discussion
	4.1 Universality versus reprogrammability in natural computation
	4.2 The Busy Beaver conjectures

	5 Conclusion

