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TWISTED FILTRATIONS OF SOERGEL BIMODULES AND

LINEAR ROUQUIER COMPLEXES

THOMAS GOBET

Abstract. We consider twisted standard filtrations of Soergel bimod-
ules associated to arbitrary Coxeter groups and show that the graded
multiplicities in these filtrations can be interpreted as structure con-
stants in the Hecke algebra. This corresponds to the positivity of the
polynomials occurring when expressing an element of the canonical basis
in a generalized standard basis twisted by a biclosed set of roots in the
sense of Dyer, and comes as a corollary of Soergel’s conjecture. We then
show the positivity of the corresponding inverse polynomials in case the
biclosed set is an inversion set of an element or its complement by gener-
alizing a result of Elias and Williamson on the linearity of the Rouquier
complexes associated to lifts of these basis elements in the Artin-Tits
group. These lifts turn out to be generalizations of Mikado braids as
introduced in a joint work with Digne. This second positivity property
generalizes a result of Dyer and Lehrer from finite to arbitrary Coxeter
groups.
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1. Introduction

Let (W,S) be a Coxeter system with |S| < ∞. Let H be the corresponding
Iwahori-Hecke algebra over the ring Z[v, v−1] with standard basis {Tw}w∈W

and costandard basis {T−1
w−1}w∈W . Denote by T the set of conjugates of the

elements of S. In their seminal paper of 1979 [20], Kazhdan and Lusztig
introduced two canonical bases {Cw}w∈W and {C ′

w}w∈W of H and related
them to the representation theory of H and W. In case W is a finite Weyl
group, the canonical bases are closely related to the geometry of Schubert
varieties. Kazhdan and Lusztig conjectured that when writing an element
C ′
w as a linear combination of elements of the standard basis, the coefficients

are polynomials with nonnegative coefficients. These polynomials became
known as Kazhdan-Lusztig polynomials and are broadly studied in Lie the-
ory, representation theory and combinatorics (see for instance [2] or [18] for
introductions to the topic).

While Kazhdan and Lusztig proved their positivity conjecture in 1980
in case W is a finite or affine Weyl group [21] using geometric methods,
the general case remained mysterious until recently. Soergel proposed [28],
[29] an approach allowing one to replace the geometry involved in the Weyl
group case by a remarkable additive monoidal Krull-Schmidt category B
of graded bimodules over a polynomial ring. These bimodules, nowadays
called Soergel bimodules, can be defined for an arbitrary Coxeter system
and provide a categorification of (the canonical basis {C ′

w}w∈W of) H. In
this framework, Soergel formulated a purely algebraic conjecture implying
Kazhdan-Lusztig’s positivity conjecture in full generality [29] and proved it
for finite Weyl groups, using again geometry but suggesting the existence of
an algebraic proof. Soergel’s conjecture was proven by Elias and Williamson
in [15]. See also [32] and the references therein for an overview of the topic.

More precisely, indecomposable Soergel bimodules are indexed (up to
graduation shifts and isomorphism) by the elements of W. Denote by {Bw}w∈W

the family of (unshifted) indecomposable Soergel bimodules up to isomor-
phism. Soergel showed [29] that the split Grothendieck ring 〈B〉 of his cate-
gory is isomorphic to the Hecke algebra and conjectured that the class 〈Bw〉
of the bimodule Bw corresponds exactly to the element C ′

w under this iso-
morphism. He explicitly described the isomorphism and its inverse, called
the character map. More precisely, the class 〈B〉 of a bimodule B ∈ B
corresponds to the element of H given by

〈B〉 7→
∑

x∈W

∑

iZ

[B : ∆x(i)]v
i+ℓ(x)Tx,

where [B : ∆x(i)] denotes the multiplicity of a graded bimodule ∆x (not lying
in B if x 6= e) in some canonical filtration of B called standard filtration. Such
a filtration requires one to fix a total order on the group which refines the
Bruhat order. As a consequence, since the coefficients of the polynomials
occurring on the right hand side are multiplicities, they are nonnegative.
Hence Soergel’s conjecture implies Kazhdan-Lusztig’s positivity conjecture.

As mentioned, the definition of the above filtration requires one to have
fixed a linear extension of the Bruhat order on W. Reversing the Bruhat or-
der, Soergel shows that one also has a second filtration which can be thought
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of as a dual version of the standard filtration and can be related to structure
constants in the costandard basis. More precisely, the character map can
also be described via

〈B〉 7→
∑

x∈W

∑

i∈Z

[B : ∇x(i)]v
i−ℓ(x)T−1

x−1 ,

where [B : ∇x(i)] denotes the multiplicity of a graded bimodule ∇x in this
second canonical filtration of B ∈ B, called the costandard filtration of B.

Dyer considered [6] the following positivity statements:

(1) T−1
x Ty ∈

∑

w∈W

Z≥0[v
±1]Cw, ∀x, y ∈ W,

(2) C ′
xTy ∈

∑

w∈W

Z≥0[v
±1]Tw, ∀x, y ∈ W.

He gave a combinatorial proof that, for finite Coxeter groups, the con-
ditions (1) and (2) are equivalent and proved both for universal Coxeter
systems. Dyer and Lehrer [13] then proved condition (2) for finite Weyl
groups using the fact that Kazhdan-Lusztig’s positivity conjecture (i.e. (2)
for y = e) is known for these groups and a geometrical argument in categories
of perverse sheaves. Dyer later showed [10] (relying on partially unpublished
results) that (2) would hold for finite Coxeter groups as a consequence of
Soergel’s conjecture. Grojnowski and Haiman [16] generalized (2) to affine
Weyl groups also using geometric techniques.

The aim of this paper is to provide general proofs of these two statements,
without the finiteness assumption. Thanks to work of Elias and Williamson
[15], (2) for y = e is known for arbitrary Coxeter systems, hence for proving
(2) it remains to understand how one can find a replacement for Dyer and
Lehrer’s argument in the framework of Soergel’s approach. Rewriting (2) as

(3) C ′
x ∈

∑

w∈W

Z≥0[v
±1]TwT

−1
y , ∀x, y ∈ W,

it is tempting to try to generalize Soergel’s standard and costandard filtra-
tions. Indeed, for y = e above one has the expansion of C ′

w in the standard
basis, while in case the group is finite one has the expansion in the costan-
dard basis for y = w0, the longest element in W. Since we want to consider
arbitrary Coxeter systems, this shows that considering bases of the form
{TwT

−1
y }w∈W for various y may not be sufficient since the costandard basis

is in general not caught.
In case W is finite, elements of the form TwT

−1
y appearing in the above

paragraph or of the form T−1
x Ty as appearing in (1) turn out to be images

of so-called Mikado braids as introduced in a joint work with Digne [4]. In
finite type, denoting by w the canonical lift of w in the Artin-Tits group BW

attached to the Coxeter system, these braids can be defined as the elements
which can be written in the form u−1v for u, v canonical lifts of elements
u, v ∈ W (we call such an element a right Mikado braid), and these also turn
out to be exactly the braids which can be written in the form wy−1 for some
w, y ∈ W (we call such an element a left Mikado braid). Hence in finite type,
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for any w, y ∈ W, there exist u, v ∈ W such that TwT
−1
y = T−1

u Tv . Also,
one can think of (1) as of a positivity of generalized inverse Kazhdan-Lusztig
polynomials.

For infinite groups however, it is false in general that left Mikado braids
and right Mikado braids coincide. Nevertheless, Dyer proposed in [5] a re-
markable general definition which yields exactly the left (or right) Mikado
braids for finite W but which strictly contain both sets in general. Dyer’s
definition relies on the theory of biclosed sets of roots or reflections ([11]),
that is, sets of positive roots which are closed under positive real linear
combinations, and whose complement is also closed.

More precisely, to any biclosed set A ⊆ T and any x ∈ W, Dyer associated
[5] a canonical lift xA of x in BW obtained by lifting any reduced expression
s1 · · · sk of x in the braid represented by the word sε11 · · · sεkk , where εi =
−1 if sk · · · si · · · sk lies in A and εi = 1 otherwise. He showed that xA is
independent of the chosen reduced expression for x and that one can pass
from any lifted reduced expression to any other by applying mixed braid
relations, that is, braid relations possibly involving inverses of the Artin
generators.

Denoting by Tx,A the image of xA in the Hecke algebra, the set {Tx,A}x∈W
yields a basis of H. For A = ∅ it is the standard basis, while for A = T
it is the costandard basis. Dyer [8] and Edgar [14] attached to any biclosed
set A a Bruhat-like order <A and a Z-valued length function ℓA. We use
these orders to generalize Soergel’s standard filtration and interpret structure
constants of the canonical basis in the basis {Tx,A} as graded multiplicities
(Theorem 4.10):

Theorem 1.1 (Three-parameter Kazhdan-Lusztig positivity). Let w ∈ W,
A ⊆ T be biclosed. Write C ′

w =
∑

x∈W hAx,wTx,A. Then

hAx,w =
∑

i∈Z

[Bw : ∆A
x (i)]Av

i+ℓA(x).

In particular the generalized Kazhdan-Lusztig polynomials hAx,w ∈ Z[v, v−1]
have nonnegative coefficients.

In the above theorem, [B : ∆A
x (i)]A denotes the multiplicity of a graded bi-

module ∆A
x in some canonical filtration of B analogous to Soergel’s standard

filtration, but defined using the "twisted" order <A. In case the biclosed
set A is given by an inversion set N(y) of an element y ∈ W, one then has
Txy−1,N(y) = TxT

−1
y , hence the above Theorem implies condition (3). In fact,

a finite set A is biclosed if and only if A = N(y) for some element y ∈ W,
hence in case W is finite the positivity statement

(4) C ′
w ∈

∑

x∈W

Z≥0[v
±1]Tx,A, ∀w ∈ W, ∀A biclosed,

implied by Theorem 1.1 is exactly equivalent to (3).
Notice that this approach is very similar to (generalizations of) that of [10]

but that Dyer’s approach might be more adapted for further generalizations
involving biclosed sets.
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Note that for infinite groups, there are in general biclosed sets which are
neither inversion sets of elements or their complements, hence the positivity
statement that we get is more general than (3) in that case.

The analogue of the positivity of inverse generalized Kazhdan-Lusztig
polynomials in that setting would be

(5) Tx,A ∈
∑

w∈W

Z≥0[v
±1]Cw, ∀x ∈ W, ∀A biclosed,

which Dyer conjectures [12]. We are not able to prove (5) in such a level
of generality, but we prove it in case A = N(y) or A = T \N(y) for y ∈ W
(Theorem 6.8):

Theorem 1.2. Let x, y ∈ W. Then

T−1
x Ty ∈

∑

w∈W

Z≥0[v
±1]Cw.

Similarly, TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.

This corresponds to the case where Tx,A comes from a left or right Mikado
braid. In particular, (1) and the analogue version for left Mikado braids hold
for arbitrary Coxeter groups.

The strategy for the proof of the above theorem reproduces that of Elias
and Williamson to prove the positivity of inverse Kazhdan Lusztig polyno-
mials [15]. More precisely, we prove that any minimal Rouquier complex
(i.e., a complex associated to a left or right Mikado braid in the bounded
homotopy category of Soergel bimodules with no contractible direct sum-
mand) is "linear", that is, that any direct summand in homological degree
i of a miminal complex is isomorphic to Bw(i) for some w ∈ W (Theorem
6.7). Moreover, proving by induction that some Bw cannot appear in certain
degrees depending on parity conditions, we can conclude that (5) holds for
left and right Mikado braids (Theorem 6.8). The key steps in the proof of
Elias and Williamson are to use an explicit formula of Libedinsky-Williamson
[22] which gives the standard filtration of a Rouquier complex of a positive
permutation braid and then to use properties of the standard filtration to
control the shifts. Libedinsky-Williamson’s formula generalizes to the level
of arbitrary Mikado braids (Proposition 5.1; Libedinsky-Williamson’s proof
adapts mutatis mutandis), but unfortunately the used properties of the stan-
dard filtrations fail in general. The linearity of minimal complexes associated
to left and right Mikado braids (Theorem 6.7) is proven by combining Elias
and Williamson’s linearity statement and a dual version of it for negative
canonical lifts of element of the Coxeter group in the Artin-Tits group.

Acknowledgements. I thank Geordie Williamson and Wolfgang Soergel for
discussions which initiated this work during the Darstellungstheorie Schw-
erpunkttagung in Bad Honnef in March 2015; the stay in Bad Honnef was
funded by the DFG Schwerpunktprogramm Darstellungstheorie 1388 which
I also thank. Special thanks go to Matthew Dyer for discussions and com-
ments on a preliminary version, for making me aware of Corollary 4.16 and
for kindly detailing me some generalizations of his results of [10].
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2. Bruhat-like orders on a Coxeter group

In this section, we introduce the Coxeter group terminology and twisted
Bruhat orders on Coxeter groups.

2.1. Coxeter groups terminology. Let (W,S) be a Coxeter system with
S finite. We denote by T the set of reflections of W, that is, the set
⋃

w∈W wSw−1. Let ℓ : W → Z≥0 be the length function with respect to
S. Let ≤ denote the Bruhat order on W. Recall its definition: for u, v ∈ W,
one has u ≤ v if and only if there exists a sequence u = u0, u1, . . . , uk = v,
ui ∈ W such that for any i = 0, . . . , k − 1, ℓ(ui+1) > ℓ(ui) and ui+1 = uiti
for some ti ∈ T . For more on the general theory of Coxeter groups we refer
the reader to [3], [18].

The power set P(T ) may be seen as an abelian group under symmetric
difference which we denote by +. Dyer characterized Coxeter groups as
follows [6, Lemmas 1.2 and 1.3]:

Proposition 2.1 (Dyer). Let W be a group generated by a set S of invo-
lutions and T be the set of conjugates of elements of S. Then the following
are equivalent

(1) (W,S) is a Coxeter system,
(2) There exists a function N : W −→ P(T ) satisfying

(a) N(s) = {s} for any s ∈ S,
(b) N(xy) = N(x) + xN(y)x−1 for all x, y ∈ W.

Moreover, if such a function N exists, then it is unique and for any w ∈ W
we have

N(w) = {t ∈ T | ℓ(tw) < ℓ(w)}.

Starting from a Coxeter system (W,S) and w ∈ W the set N(w) as
defined in the above Proposition is the (left) inversion set of w. One has
|N(w)| = ℓ(w).

2.2. Twisted Bruhat orders. We recall from [8], [9] some facts about the
twisted Bruhat orders on W. Let y ∈ W. One defines the y-twisted Bruhat
order ≤y by

u ≤y v ⇔ uy ≤ vy.

There are several equivalent characterizations of such an order, see [[9], 1.11].
For instance, it can be characterized as follows: define a Z-valued length
function ℓy : W → Z by

ℓy(w) = ℓ(w) − 2|N(w−1) ∩N(y)|.

Then by [9, 1.11-1.12] we have u ≤y v if and only if there exists a sequence
u = u0, u1, . . . , uk = v, ui ∈ W such that for any i = 0, . . . , k− 1, ℓy(ui+1) >
ℓy(ui) and ui+1 = uiti for some ti ∈ T .

Note that ℓy(e) = 0 for any y ∈ W. The order ≤y has a unique minimal
element given by y−1.

Remark 2.2. If W is finite and u, v ∈ W, then u ≤w0
v if and only if v ≤ u

(see [2, Proposition 2.3.4]). Hence ≤w0
is the reverse Bruhat order. In that

case ℓw0
(u) = −ℓ(u) for any u ∈ W. In case W is not finite, the reverse

Bruhat order is not caught by a twisted order. This is one of the reasons for
introducing a more general version of these orders in the next subsection.



TWISTED FILTRATIONS OF SOERGEL BIMODULES 7

2.3. Order attached to a biclosed set of roots. Dyer introduced more
general versions of the twisted Bruhat orders as defined in Subsection 2.2
(see for instance [8, Section 1]). Given a Coxeter system (W,S), denote by
V its reflection representation over R and by Φ the associated root system
with positive system Φ+ ⊆ Φ.

A subset A ⊆ T is closed if the set ΦA ⊆ Φ+ of roots corresponding to A
has the following property: given α, β ∈ ΦA, then any positive root lying in
R>0α + R>0β lies again in ΦA. A subset A ⊆ T is biclosed if A and T \A
are closed. Using [7, Remark 3.2], this is equivalent to saying that for any
dihedral reflection subgroup W ′ ⊆ W, the set A ∩W ′ is an initial section of
a reflection order (we refer to [8] and the references therein for definitions).
We denote by B(Φ+) the set of biclosed sets of roots.

The following definition is given by Dyer [8] for sets A ⊆ T which are initial
sections of reflection orders and was extended to biclosed sets by Edgar [14].
Initial sections of reflection orders turn out to be biclosed (see [11, 2.1]) and
Dyer furthermore conjectures that these should be exactly the biclosed sets
(see [11, 2.2]).

To any set A ⊆ T of reflections, associate a preorder ≤A on W as follows:
u ≤A v if and only if there exist t1, . . . , tn ∈ T with v = ut1 · · · tn such that
ti /∈ (N((ut1 · · · t

−1
i−1) +A) for all i = 1, . . . , n. One has as in Subsection 2.2

a corresponding length function ℓA : W → Z defined by

ℓA(w) := ℓ(w) − |N(w−1) ∩A|.

Edgar then showed [14, Theorem 2.3]

Theorem 2.3 (Edgar). Let A ⊆ T . The following are equivalent

(1) ≤A is a partial order,
(2) A ∈ B(Φ+),
(3) ℓA(xt) < ℓA(x) for all x ∈ W, t ∈ (N(x−1) +A).

Note that Edgar gives additional characterizations involving an analogue
of the Bruhat graph – we do not state them here since we will not require
them.

For A ∈ B(Φ+), using Edgar’s Theorem we may define ≤A by u ≤A v if
and only if there exists a sequence u = u0, u1, . . . , uk = v, ui ∈ W such that
for any i = 0, . . . , k − 1, ℓA(ui+1) > ℓA(ui) and ui+1 = uiti for some ti ∈ T .

This generalizes the twisted Bruhat order because finite biclosed sets turn
out to be exactly inversion sets of elements (see [11, 2.3]). Hence it follows
from the above description that the y-twisted Bruhat order ≤y from Subsec-
tion 2.2 coincides with ≤N(y) for any y ∈ W. In particular for finite Coxeter
groups, we get nothing new. However for infinite groups one gets additional
orders which may look very different from the twisted Bruhat orders as the
following example shows

Example 2.4. Let W = 〈s, t〉 be an infinite dihedral group with S = {s, t}.
Then the set A := {s, sts, ststs, . . . } lies in B(Φ+). One then has

. . . <A tsts <A sts <A ts <A s <A e <A t <A st <A tst <A stst <A . . . ,

that is, <A is a total order in that case.
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The set B(Φ+) can be much bigger in general than {N(w) | w ∈ W} in
the case where W is infinite. For more on the combinatorics of B(Φ+) we
refer to [11], [17].

We can summarize the characterizations of the cover relations in ≤A as
follows:

Lemma 2.5. Let A ∈ B(Φ+), x ∈ W, t ∈ T . The following are equivalent

(1) xt <A x,
(2) ℓA(xt) < ℓA(x),
(3) t ∈ (N(x−1) +A).

Remark 2.6. Given x ∈ W, t ∈ T , by definition of ℓA we have that ℓA(x)
and ℓA(tx) have distinct parities. By Lemma 2.5 it follows that either tx <A

x or tx >A x.

Remark 2.7. For later use we shall mention that if x ∈ W, s ∈ S, then
sx <A x if and only if ℓA(sx) = ℓA(x)− 1.

Notice that the property in the above remark fails in general if me multiply
x by s on the right (see Example 2.4). The following well-known property
of the Bruhat order will turn out to be crucial when introducing twisted
filtrations of Soergel bimodules in Section 4:

Proposition 2.8 (Deodhar’s "Z"-property). Let A ∈ B(Φ+). Let x, y ∈ W,
s ∈ S such that sx ≤A x, sy ≤A y. Then x ≤A y iff sx ≤A y iff sx ≤A sy.

Notice that the above Proposition is shown by Dyer for sets which are ini-
tial sections of reflection orders (see [8, Proposition 1.9]) which as mentioned
at the beginning of the subsection are conjectured to be exactly the biclosed
sets. The proof below is similar to Dyer’s one, which generalizes to ≤A.

Proof. Assume that x ≤A y. Then sx ≤A y. Conversely, assume that
sx ≤A y. By definition of ≤A and Lemma 2.5, there exist t1, . . . , tn ∈ T
such that

sx = yt1 · · · tn <A · · · <A yt1 <A y.

Setting si := ytiy
−1 we get

sx = s1 · · · sny <A · · · <A s1y <A y.

Replacing si by s1s2 · · · si · · · s1 we can assume that

sx = sn · · · s1y <A · · · <A s1y <A y.

We claim that if s 6= si for i = 1, . . . , n, then ssi · · · s1y <A ssi−1 · · · s1y.
Indeed, assume that ssi · · · s1y >A ssi−1 · · · s1y. Set q := si−1 · · · s1y, t :=
q−1siq. Then the above condition becomes sqt >A sq. By Lemma 2.5, it
implies that t /∈ (N(q−1s)+A). Firstly, assume that t /∈ N(q−1s) and t /∈ A.
By Lemma 2.1 (2b), it follows that

(6) t /∈ N(q−1) + q−1{s}q.

But we have siq = qt <A q by the above sequence, hence t ∈ (N(q−1)+A) by
Lemma 2.5. Since t /∈ A it follows that t ∈ N(q−1). Together with condition
6 it forces t ∈ q−1{s}q, hence t = q−1sq, hence si = s. If t ∈ N(q−1s) ∩ A
we similarly show that s = si.
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It follows that if s 6= si for all i, then

sx <A x = ssn · · · s1y <A · · · <A ss1y <A sy <A y,

hence x ≤A y. Hence assume that s = si for some i, and take i to be maximal
with s = si. Then

x = ssn · · · s1y <A · · · <A ssi+1 · · · s1y <A ssi · · · s1y = si−1 · · · s1y <A y,

hence x ≤A y. Similarly we have sx ≤A y if and only if sx ≤A sy.
�

For s ∈ S, we set

R↑
A,s := {x ∈ W | sx >A x}, R↓

A,s := {x ∈ W | sx <A x}.

Note that R↑
A,s = sR↓

A,s, W = R↑
A,s

·
∪R↓

A,s.

Corollary 2.9. Let A ∈ B(Φ+), s ∈ S. There exists an interval I in Z and

a total order {wi}i∈I on W which refines <A and such that R↑
A,s = {wi | i ∈

I, i even}, and swi = wi+1 for i ∈ I even.

Proof. Let . . . , ui, ui+1, . . . be a linear extension of (R↑
A,s, <A) and for any

i ∈ Z such that ui is an element of W, set w2i := ui. Then set w2i+1 :=

sw2i. This gives en enumeration . . . , wi, wi+1, . . . of the group with R↑
A,s =

{wi | i even}, and swi = wi+1 for i even. It remains to check that it is
compatible with <A.

Hence let wi <A wj . We must show that i < j. If both i and j are even,

then it follows from the fact that we enumerated the elements of (R↑
A,s, <A) in

way compatible with <A. If both i and j are odd, then we have swi <A wi,
swj <A wj , and wi <A wj. Proposition 2.8 implies that wi−1 = swi <A

swj = wj−1, hence that i− 1 < j − 1 since both wi−1 and wj−1 lie in R↑
A,s.

If i is even and j is odd, then wi <A wi+1 = swi, swj = wj−1 <A wj , hence

by Proposition 2.8 we have wi <A wj−1, hence since both lie in R↑
A,s we have

i < j−1 < j. If i is odd and j is even, then wi−1 = swi <A wi <A wj <A swj ,

hence i − 1 < j since wi−1, wj ∈ R↑
A,s, but since both i − 1 and j are even

we get i < j. �

By shifting the indices by one we of course get a total order with R↑
A,s in

odd positions.

Definition 2.10. Let A ∈ B(Φ+), s ∈ S. A total order on W as in Corollary
2.9 is called (A, s)-compatible.

3. Mikado braids and generalized standard bases

3.1. Standard and canonical bases of Hecke algebras.

Definition 3.1. Let (W,S) be a Coxeter system. For s, t ∈ S, denote
by mst the order of st in W. Recall that mst = mts. The Iwahori-Hecke
algebra H = H(W,S) of (W,S) is the associative, unital Z[v, v−1]-algebra
with generators (as algebra) given by {Ts | s ∈ S} with relations
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T 2
s = (v−2 − 1)Ts + v−2 ∀s ∈ S,
TsTt · · ·
︸ ︷︷ ︸

mst factors

= TtTs · · ·
︸ ︷︷ ︸

mts factors

, ∀s, t ∈ S.

Let s1 · · · sk be a reduced expression of w ∈ W. Then the element
Ts1 · · ·Tsk is independent of the chosen reduced expression, and is there-
fore denoted by Tw. The algebra H turns out to be a free Z[v, v−1]-module
and {Tw}w∈W is a basis of it, usually called standard basis of H. Thanks to
the first defining relation of H, any of the Ts, and therefore any of the Tw is
invertible in H. The set {Tw−1}w∈W is the costandard basis of H.

There is a unique semilinear involution ¯ : H → H such that v = v−1,
Tw = (Tw−1)−1. Set Hw := vℓ(w)Tw. Then Kazhdan and Lusztig prove [20,
Theorem 1.1]

Theorem 3.2 (Kazhdan-Lusztig). Let (W,S) be any Coxeter system.

(1) For any w ∈ W, there is a unique element C ′
w ∈ H such that C ′

w =
C ′
w and C ′

w ∈ Hw +
∑

y<w vZ[v]Hy.

(2) For any w ∈ W, there is a unique element Cw ∈ H such that Cw =
Cw and Cw ∈ Hw +

∑

y<w v−1
Z[v−1]Hy.

It follows that {Cw}w∈W and {C ′
w}w∈W are bases of H, called canonical

bases. The coefficients of C ′
w of Cw when expressed in the standard ba-

sis became known as Kazhdan-Lusztig polynomials. Kazhdan and Lusztig
conjectured that these polynomials have nonnegative coefficients, which was
proven recently in full generality by Elias and Williamson [15] as a corollary
of Soergel’s conjecture. It corresponds to the positivity statement (2) from
the Introduction with y = e.

The algebra H has a unique semilinear involution jH such that jH(v) =
v−1 and jH(Ts) = −v2Ts for all s ∈ S. The bases {Cw} and {C ′

w} are then
related by the equalities

(7) Cw = (−1)ℓ(w)jH(C
′
w), ∀w ∈ W.

A reference for this material is [18, Section 7.9].
In Subsection 3.3 we introduce a family of bases of H indexed by elements

of B(Φ+), such that the biclosed set ∅ corresponds to the standard basis
while T corresponds to the costandard basis.

3.2. Artin-Tits group and Mikado braids. Let BW = B(W,S) denote
the Artin-Tits group attached to the Coxeter system (W,S). Recall that
BW is generated by a set {s | s ∈ S} subject only to the braid relations.
Denote by w the positive canonical lift of w ∈ W in BW , that is, the element
s1s2 · · · sk ∈ BW where s1s2 · · · sk is a reduced expression of w. By Tits-
Matsumoto’s lemma it is independent of the choice of the reduced expression.
There is a canonical surjection p : BW ։ W defined by p(s) = s for each
s ∈ S. Notice that p(w) = w. In case W is finite, the set {w | w ∈ W}
is the set of prefixes of the Garside element ∆ = w0 also known as set of
simple elements.

Given A ∈ B(Φ+) and x ∈ W, Dyer defines [5, Proof of Lemma 9.1] an
element xA ∈ BW as follows. Let s1s2 · · · sk be a reduced expression of x.
Then set

xA := s
ε1
1 s

ε2
2 · · · sεkk ∈ BW ,
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where for all i = 1, . . . , k,

εi =

{
−1 if sksk−1 · · · si · · · sk ∈ A
1 otherwise.

Notice that
∑k

i=1 εi = ℓA(x). Lifted reduced expressions as above might be
considered as reduced expressions associated to a biclosed set A. In case
A = ∅, all the exponents are positive and x∅ is the positive canonical lift
x of x in BW , in which case we recover the classical reduced expressions of
elements of the Coxeter group.

Properties of these elements are given in the following lemma [5, Sections
9.1 and 9.4]

Lemma 3.3 (Dyer). Let A ∈ B(Φ+), x, y ∈ W. Then

(1) The element xA is independent of the chosen reduced expression for
x.

(2) One has x∅ = x, (x−1)T = x−1.
(3) One has (xy−1)N(y) = xy−1.

(4) One has (x−1y)T \N(y−1) = x−1y.

Proof. Point (1) is [5, Lemma 9.1]. Point (2) follows directly from the defini-
tion, since in case A = ∅ (resp. A = T ) all the exponents in the definition of
xA are positive (resp. negative). The property of point (3) is mentioned by
Dyer in [5, Section 9.4] and (4) is the analogue for complements of inversion
sets. We provide a proof of (3) here for completeness. We argue by induction
on ℓ(xy−1). The claim is clearly true if xy−1 = e. Now let s ∈ S such that
sxy−1 < xy−1. Then

(xy−1)N(y) = sε(sxy−1)N(y) = sε(sx)∅y
−1
∅ ,

where ε = 1 if yx−1sxy−1 /∈ N(y) and ε = −1 otherwise and the last equality
above holds by induction. Assume that ε = 1. Then x−1sx /∈ N(y−1).
But since sxy−1 < xy−1, we have s ∈ N(xy−1) = N(x) + xN(y−1)x−1.
This forces s ∈ N(x), hence sx < x, hence s(sx)∅ = x∅. It follows that
(xy−1)N(y) = x∅y

−1
∅ and the claim holds. Now assume that ε = −1. It

follows that x−1sx ∈ N(y−1) and together with s ∈ N(xy−1) = N(x) +
xN(y−1)x−1 we get that s /∈ N(x), hence sx > x. We therefore have (sx)∅ =
sx∅ and it follows that (xy−1)N(y) = x∅y

−1
∅ again.

�

Lemma 3.4. Let w ∈ W, s ∈ S , A ∈ B(Φ+) such that sw >A w. Then

s(wA) = (sw)A.

Proof. By assumption we have that

(8) w−1sw /∈ (N(w−1) +A).

Firstly, assume that w < sw. It follows that w−1sw /∈ N(w−1), hence by (8)
that w−1sw /∈ A. Choosing a reduced expression s1 · · · sk for w, we have that
ss1 · · · sk is a reduced expression for sw. It follows by definition of (sw)A
that (sw)A = sεswA where εs = −1 if w−1sw ∈ A and εs = 1 otherwise.
But w−1sw /∈ A, hence εs = 1.
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Now assume that sw < w. It follows that w−1sw ∈ N(w−1), hence by (8)
that w−1sw ∈ A. Choosing a reduced expression s1 · · · sk for sw, we have
that ss1 · · · sk is a reduced expression for w. It follows by definition of wA

that wA = sεs(sw)A where εs = −1 if w−1sw ∈ A and εs = 1 otherwise.
But w−1sw ∈ A, hence εs = −1. �

If A is finite, then there exists y ∈ W such that A = N(y). Hence in that
case we have xN(y) = (xyy−1)N(y) = (xy)∅(y∅)

−1. In particular for finite

W, any xA for x ∈ W and A ∈ B(Φ+) can be written in the form zy−1

for y, z ∈ W. Moreover, if W is finite we have T \N(y−1) = N(y−1w0),
hence in that case any xA can also be written in the form u−1v (see also
[4, Proposition 4.3] where a Garside theoretic interpretation is also given).
Conversely elements of the form zy−1 or u−1v may be written in the form
xA by the above lemma (without assumption on W). Hence if W is finite
and β ∈ BW the three following conditions are equivalent

(9) ∃A ∈ B(Φ+), x ∈ W s.t. β = xA,

(10) ∃z, y ∈ W s.t. β = zy−1,

(11) ∃u, v ∈ W s.t. β = u−1v.

For arbitrary Coxeter groups, condition (9) is weaker than both (10) and
(11) in general. Moreover (10) and (11) are not equivalent in general (see
Example 3.6 below).

Definition 3.5. We say that β ∈ BW is a Mikado braid if it satisfies Con-
dition (9). We say that β ∈ BW is a left Mikado braid (resp. right Mikado
braid) if it satisfies Condition (10) (resp. (11)). This generalizes the defini-
tion given in [4] in case W is finite. The terminology comes from a geometric
characterization of these braids in type An in terms of Artin braids (see [4,
Definition 5.4]).

Example 3.6. Let W = 〈r, s, t〉 be a universal Coxeter system with S =
{r, s, t}. Then BW is the free group on the three generators r, s, t. Hence
the right Mikado braid r−1s cannot be written on the form zy−1 with z, y ∈
W. The following example was pointed out by M. Dyer. Consider the
hyperplane H in V spanned by the positive root αr of r and the positive
root 2αr +2αs+αt of rstsr. Consider the open half space defined by H and
containing αs, namely

H+ := H +R>0αs,

and define A := H+ ∩ Φ+. Then A ∈ B(Φ+). Let x = tsr. Then

xA = ts−1r.

Indeed, both positive roots of r and rstsr lie in H while the positive root
2αr +αs of rsr lies in H+. But since BW is a free group xA is neither a left
nor a right Mikado braid.
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3.3. Generalized standard bases of Hecke algebras. The aim of this
subsection is to generalize the standard basis by adding a dependency in a
biclosed set A ∈ B(Φ+), namely to define a basis {Tw,A}w∈W of H for any
A ∈ B(Φ+).

Since the generators Ts, s ∈ S of H satisfy the braid relations, there is a
surjective homomorphism

h : Z[v, v−1][BW ] → H

such that h(s) = Ts for any s ∈ S. Let A ∈ B(Φ+), x ∈ W and define
Tx,A := h(xA). In other words, we associate to any reduced expression
x = s1 · · · sk of x ∈ W the element

Tx,A := T ε1
s1 T

ε2
s2 · · ·T εk

sk
∈ H,

where for all i = 1, . . . , k,

εi =

{
−1 if sksk−1 · · · si · · · sk ∈ A
1 otherwise.

Lemma 3.7. Let A ∈ B(Φ+).

(1) The set {Tw,A}w∈W is a basis of H.

(2) For x ∈ W he have Tx,∅ = Tx, Tx,T = T−1
x−1. Hence for A = ∅,

{Tw,A}w∈W is the standard basis while for A = T it is the costandard
basis.

(3) For x, y ∈ W we have TxT
−1
y = Txy−1,N(y).

(4) For x, y ∈ W we have T−1
x Ty = Tx−1y,T \N(y−1).

Proof. Using that T−1
s = v2Ts + v2 − 1 for any s ∈ S and expanding Tw,A

in the standard basis, we get an upper triangular matrix with invertible
coefficients on the diagonal passing from {Tw}w∈W to {Tw,A}w∈W if we order
the common indexing set W by any linear extension of the Bruhat order on
W. This proves (1). The two other statements follow immediately from
Lemma 3.3 (2)-(4). �

The following follows immediately from Lemma 3.4

Lemma 3.8. Let w ∈ W, s ∈ S , A ∈ B(Φ+) such that sw >A w. Then

TsTw,A = Tsw,A.

4. Twisted filtrations of Soergel bimodules

4.1. Soergel bimodules. Let (W,S) be a Coxeter system and V a reflec-
tion faithful representation over R in the sense of [29, Definition 1.5]. Let
R := O(V ) ∼= S(V ∗) be the coordinate ring of V . In particular R comes
equipped with a Z-graduation with the convention that deg(V ∗) = 2.

Let R denote the category of Z-graded R⊗RR-modules which are finitely
generated from the left and from the right. The category R is a monoidal
category via ⊗R. It satisfies the Krull-Schmidt property (see [29, Remark
1.3]). For M ∈ R and i ∈ Z denote by Mi the homogeneous component of
degree i of M . Given M ∈ R and i ∈ Z, we denote by M(i) the element
of R equal to M as R ⊗R R-module with shifted graduation, that is, such
that M(i)j = Mi+j for any j ∈ Z. Here Mi, i ∈ Z denotes the subspace
of homogeneous elements of degree i of M . We define the graded rank of
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a finitely generated graded right R-module M as the element of Z[v, v−1]
given by rkM := dim(M/MR>0), where for a finite-dimensional Z-graded
vector space U we denote by dim(U) the graded dimension

∑

i∈Z(dimUi)v
i ∈

Z[v, v−1] of U . We denote by rkM the graded rank of M after substitution
of v by v−1.

Given B,B′ ∈ R, we denote by Hom(B,B′) the morphisms in the category
R, that is, the homomorphisms of bimodules B → B′ which are homogeneous
of degree zero. We furthermore set

Hom•(B,B′) :=
⊕

i∈Z

Hom(B,B′(i)).

Notice that it comes equipped with a structure of graded right R-module.
To any s ∈ S we associate the bimodule Bs := R ⊗Rs R(1) ∈ R, where

Rs ⊆ R is the graded subring of s-invariant functions. For x ∈ W , we denote
by Rx the element of R equal to R as left R-module but with right action
twisted by x. Denote by 〈R,⊗R〉 the split Grothendieck ring of R, endowed
with a Z[v, v−1]-algebra structure via v · 〈M〉 = 〈M(1)〉 for M ∈ R. Soergel
shows [29, Theorems 1.10 and 5.3]

Theorem 4.1 (Soergel’s categorification theorem). Let (W,S) be a Coxeter
system.

(1) There is a unique homomorphism of Z[v, v−1]-algebras

E : H → 〈R,⊗R〉

such that E(v) = 〈R[1]〉 and E(vTs + v) = 〈Bs〉 for any s ∈ S.
(2) The homomorphism E has a left inverse

ch : 〈R,⊗R〉 → H

given by ch(〈B〉) =
∑

x∈W rk(Hom(B,Rx))Tx, for B ∈ R.

It implies that H is isomorphic to the split Grothendieck ring 〈B〉 of the
additive monoidal category B generated by tensor products Bs ⊗ Bt · · · ⊗
Bu (called Bott-Samelson bimodules; here st · · · u is any finite word in the
elements of S) and stable by direct sums, direct summands and graduation
shifts (so that 〈B〉 is a Z[v, v−1]-algebra). By definition an object of B is a
Soergel bimodule. Hence indecomposable Soergel bimodules are (shifts of)
indecomposable direct summands of tensor products Bs⊗Bt⊗· · ·⊗Bu. For
simplicity we may write tensor products over R by juxtaposition.

Soergel shows that indecomposable Soergel bimodules are (up to shifts
and isomorphism) indexed by elements of W (see [29, Theorem 6.16]). The
indecomposable bimodule Bw indexed by w ∈ W may be described as fol-
lows: let st · · ·u be a reduced expression for w. Then there is a unique
indecomposable direct summand Bw of BsBt · · ·Bu which does not occur as
a direct summand of such a tensor product for elements y with ℓ(y) < ℓ(w).
The Bott-Samelson bimodule BsBt · · ·Bu depends on the reduced expression
chosen for w, but it turns out that the direct summand Bw does not.

Remark 4.2. As the notation suggests, the indecomposable bimodule in-
dexed by s ∈ S should be the bimodule Bs = R ⊗Rs R(1) already de-
fined before. Indecomposability may be seen in this specific case as follows:
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the ring R is nonnegatively graded with R0 = R. Hence R ⊗Rs R is non-
negatively graded with a one-dimensional degree zero component, namely
(R⊗Rs R)0 = R(1⊗ 1). Hence in any decomposition R⊗Rs R = M ⊕N as
graded bimodule, 1⊗1 must lie either in M or in N . But since 1⊗1 generates
R⊗Rs R as bimodule either M = 0 or N = 0, hence Bs is indecomposable.

Soergel’s conjecture was proven by Elias and Williamson [15]:

Theorem 4.3 (Soergel’s conjecture). For any w ∈ W, we have E(C ′
w) =

〈Bw〉.

4.2. Twisted support filtrations. Let B denote the category of Soergel
bimodules attached to the Coxeter system (W,S). Recall that V denotes a
reflection faithful representation of (W,S) over R.

Since R⊗RR ∼= O(V )⊗RO(V ) ∼= O(V ×V ), a (finitely generated) R⊗RR-
module is the same as a (quasi-)coherent sheaf on V × V .

For any subset U ⊆ W and any B ∈ R we consider as in [29] the sub-
bimodule ΓU (B) of B containing those elements whose support (i.e., the
support of the coherent sheaf corresponding to the subbimodule generated
by the element) is included in Gr(U) =

⋃

w∈uGr(w), where

Gr(w) := {(wv, v) | v ∈ V } ⊆ V × V.

For i ∈ Z, A ∈ B(Φ+), we set

ΓA
≥i(B) := Γ{w∈W|ℓA(w)≥i}(B).

We are interested in the bimodules B ∈ R supported in some Gr(U) for
U ⊆ W, U finite, such that for each i the subquotient

ΓA
≥i/>i(B) := ΓA

≥i(B)/ΓA
≥i+1(B)

is isomorphic to a finite direct sum of shifted copies of Rx for various x ∈ W
such that ℓA(x) = i. We denote by FA

∆ the full subcategory of R having
these bimodules as objects. In the sequel we also introduce the notation
∆A

x := Rx(−ℓA(x)). The aim is to show that any object of B lies in FA
∆ .

For B ∈ FA
∆, we denote by [B : ∆A

x (i)]A the multiplicity of ∆A
x (i) in the

filtration.

Proposition 4.4. Let B ∈ B, s ∈ S. If B ∈ FA
∆, then Bs ⊗ B also lies

in FA
∆, and for x ∈ W such that sx >A x and i ∈ Z we have the following

equalities

[Bs ⊗B : ∆A
sx(i)]A = [B : ∆A

sx(i+ 1)]A + [B : ∆A
x (i)]A.

[Bs ⊗B : ∆A
x (i)]A = [B : ∆A

sx(i)]A + [B : ∆A
x (i− 1)]A.

Proof. Since by Proposition 2.8 the order <A satisfies Deodhar’s property Z
of Coxeter groups, one can argue exactly as in the proof of [29, Proposition
5.7] using also Remarks 2.7 and 2.6. �

Remark 4.5. Let us say a bit more on the importance of these filtrations
in Soergel’s approach. The above filtration generalizes Soergel’s standard
filtration [29, Proposition 5.7], which corresponds to the case where A = ∅.
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Soergel showed that B ⊆ F∅
∆ and that given B ∈ B, the map ch from

Theorem 4.1 may be described as

(12) ch(〈B〉) =
∑

x∈W

∑

i∈Z

[B : ∆∅
x(i)]∅v

i+ℓ(x)Tx.

Soergel also introduced a costandard filtration corresponding to the case
where A = T , and furthermore showed that the map ch from Theorem
4.1 may be described as

(13) ch(〈B〉) =
∑

x∈W

∑

i∈Z

[B : ∆T
x (i)]T v

i−ℓ(x)T−1
x−1 .

Hence if Soergel’s conjecture holds, i.e. setting B = Bw and C ′
w = ch(〈Bw〉),

the Kazhdan-Lusztig polynomials can be interpreted as graded multiplicities
in these filtrations (hence in particular they are nonnegative).

Corollary 4.6. We have B ⊆ FA
∆.

Proof. The functor B 7→ ΓA
≥i(B)/ΓA

≥i+1(B) preserves direct sums since both

ΓA
≥i(−) and ΓA

≥i+1(−) do. Together with the fact that the Krull-Schmidt

property is satisfied in R, it follows that any direct summand of B ∈ FA
∆

also lies in FA
∆ . Using Proposition 4.4 inductively we have that any Bott-

Samelson bimodule lies in FA
∆ . But indecomposable objects in B are up to

isomorphism all (shifts of) direct summands of Bott-Samelson bimodules.
�

Definition 4.7. For A ∈ B(Φ+), B ∈ B, we call the filtration of B by
support twisted by A as introduced above the A-filtration of B.

Remark 4.8 (Refining the A-filtration). Arguing as in [29, Lemma 6.3], we
can refine our filtration as follows. Let {wi}i∈I be a linear extension of <A,
where I is an interval in Z. Writing ΓA

≥wj
for ΓA

{wi∈W|i≥j} we then consider

for B ∈ B the subbimodule Bj := ΓA
≥wj

B. We then get a filtration

· · · ⊆ Bj+1 ⊆ Bj ⊆ Bj−1 ⊆ · · ·

such that ΓA
≥wj/>wj

(B) := Bj/Bj+1 ∼=
⊕

k ∆
A
wj
(nk) and the graded multi-

plicities turn out to be the same as in the A-filtration of B. In particular
this is independent of the chosen linear extension of <A. The key point is
that there is no nontrivial extension between Rx and Ry for incomparable x
and y in <A; indeed Soergel showed that one can have a nontrivial exten-
sion only if x and y differ by a reflection (use [29, Lemma 5.8] together with
the isomorphism Rx

∼= O(Gr(x))), which by Remark 2.6 cannot happen for
incomparable elements in <A.

For later use we need to understand how the support of a bimodule in
FA
∆ behaves when tensoring with a Bs, s ∈ S. The proof of the following is

similar to [29, Proof of 5.7] and [31, Proposition 6.5] for the Bruhat order.

Proposition 4.9. Let A ∈ B(Φ+), s ∈ S. Let {wi}i∈I be an (A, s)-
compatible total order on W for some interval I ⊆ Z. For B ∈ FA

∆ and
m even we have the following isomorphisms of graded bimodules

(1) ΓA
≥wm

(BsB) ∼= Bs(Γ
A
≥wm

B),
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(2) ΓA
≥wm/>wm+1

(BsB) ∼= Bs(Γ
A
≥wm/>wm+1

B).

Proof. Consider the short exact sequence

0 −→ ΓA
≥wm

B −→ B −→ B/ΓA
≥wm

B −→ 0.

Since B ∈ FA
∆ , we have that ΓA

≥wm
B (resp. B/ΓA

≥wm
B) has an A-filtration

with subquotients given by shifts of ∆A
wj

for j ≥ m (resp. j < m). Note

that both {wm, wm+1, . . . } and {. . . wm−2, wm−1} are s-stable since our total
order is (A, s)-compatible and m is even. Now since R is a free right Rs-
module of rank two we have that the functor Bs ⊗ − : R → R is exact
hence tensoring the short exact sequence above we get another short exact
sequence

(14) 0 −→ Bs(Γ
A
≥wm

B) −→ BsB −→ Bs(B/ΓA
≥wm

B) −→ 0.

Now R ⊗Rs Rwj
is indecomposable and is a nontrivial extension of Rswj

and Rwj
as can be seen by tensoring the short exact sequence

0 −→ Rs(−2) −→ R⊗Rs R −→ R −→ 0

on the right by Rwj
(which defines an invertible functor). Hence Bs(Γ

A
≥wm

B)
has a filtration with subquotients given by (shifts) of Rwj

for j ≥ m, while

Bs(B/ΓA
≥wm

B) has a filtration with subquotients given by (shifts) of Rwj

for j < m. But since BsB ∈ FA
∆ and any nonzero element in Rwj

generates
a subbimodule isomorphic to Rwj

as ungraded bimodule, hence has support

Gr(wj), it follows that Bs(Γ
A
≥wm

B) is exactly the subbimodule of BsB con-

taining the elements whose support is included in
⋃

j≥mGr(wj). The short

exact sequence (14) can therefore be rewritten as

0 −→ ΓA
≥wm

(BsB) −→ BsB −→ BsB/ΓA
≥wm

(BsB) −→ 0,

and ΓA
≥wm

(BsB) ∼= Bs(Γ
A
≥wm

B) which proves (1). Now considering the exact
sequence

0 −→ Bs(Γ
A
≥wm+2

B) −→ Bs(Γ
A
≥wm

B) −→ Bs(Γ≥wm/>wm+1
B) −→ 0,

we get (2) using the isomorphisms

ΓA
≥m(BsB) ∼= Bs(Γ

A
≥wm

B), ΓA
≥wm+2

(BsB) ∼= Bs(Γ
A
≥wm+2

B).

�

4.3. Three-parameter Kazhdan-Lusztig positivity. The aim of this
subsection is to prove:

Theorem 4.10 (Three-parameter Kazhdan-Lusztig positivity). Let w ∈ W,
A ∈ B(Φ+). Write C ′

w =
∑

x∈W hAx,wTx,A. Then

hAx,w =
∑

i∈Z

[Bw : ∆A
x (i)]Av

i+ℓA(x).

In particular the generalized Kazhdan-Lusztig polynomials hAx,w ∈ Z[v, v−1]
have nonnegative coefficients.
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The proof of the theorem will occupy the remainder of the section. Theo-
rem 4.10 was proven by Dyer and Lehrer for finite Weyl groups [13, Theorem
2.8]. Dyer then showed [10, Conjecture 7(b)] (relying on partially unpub-
lished result) that the theorem would hold for finite Coxeter groups if So-
ergel’s conjecture holds. Dyer and Lehrer and Dyer proved the theorem in
the following form:

Corollary 4.11. Let w, y ∈ W. Then

C ′
wTy ∈

∑

z∈W

Z≥0[v
±1]Tz.

Proof. For any x ∈ W, we have that TxyT
−1
y = Tx,N(y) by Lemma 3.7 (3),

hence this comes here as a particular case of Theorem 4.10. �

Remark 4.12. Let ϕ : H → Z[W] denote the specialization morphism v 7→
1. For any x ∈ W, A ∈ B(Φ+) we have ϕ(Tx,A) = x. For A,B ∈ B(Φ+),
x,w ∈ W specializing C ′

w in Theorem 4.10 we get the equality
∑

i∈Z

[Bw : ∆A
x (i)]A =

∑

i∈Z

[Bw : ∆B
x (i)]B .

In particular, forgetting the grading we have that the ungraded multiplicites
of the bimodule twisted by x coincide in all twisted filtrations. This should
remain the reader about twisted Verma modules: in the finite Weyl group
case, our modules ∆x might be thought of as corresponding to the twisted
Verma modules (see [1]) which have the same character as their correspond-
ing untwisted Verma module but different module structure, while Bw is the
analogue of a projective module. The suitable category in which to have
an analogue of a twisted standard module is rather the bounded homotopy
category Kb(B) of Soergel’s category in which one has a Rouquier complex
associated to Tx,A (see Section 5).

As a consequence of the remark above (set B = ∅) or by using the
fact that a Bott-Samelson bimodule BsBt · · ·Bu has support included in
Gr({e, s}{e, t} · · · {e, u}) we have:

Lemma 4.13. Let w ∈ W, A ∈ B(Φ+). We have

[Bw : ∆A
x (i)] 6= 0 ⇒ x ≤ w.

We first prove:

Proposition 4.14. Let st · · ·u be a reduced expression of w ∈ W, A ∈
B(Φ+). Write C ′

sC
′
t · · ·C

′
u =

∑

x∈W qAx,st···uTx,A. Then

qAx,st···u =
∑

i∈Z

[BsBt · · ·Bu : ∆A
x (i)]Av

i+ℓA(x).

Proof. The proof is by induction on ℓ(w). If w = e, then the linear expansion
of 1 = Te = Te,A in the basis {Tx,A}x∈W is simply given by 1 = Te,A. For
x 6= e we have [R : Rx(i)]A = 0 for any i ∈ Z. In case x = e we have
[R : R(i)]A 6= 0 if and only if i = 0 in which case the multiplicity is equal to
1. Since ℓA(e) = 0 the claimed formula holds in that case.

Now let ℓ(w) > 0 and assume that the claimed formula holds for w′ = sw.
Let x ∈ W such that sx >A x. It implies that ℓA(sx) = ℓA(x) + 1 (see
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Remark 2.7). A direct computation using the equality C ′
s = vTs+v together

with Lemma 3.8 shows that the coefficient qAsx,st···u of Tsx,A in C ′
sC

′
t · · ·C

′
u is

equal to vqAx,t···u + v−1qAsx,t···u. For short we write B′ for Bt · · ·Bu and B for

BsB
′. Now by induction we have that vqAx,t···u + v−1qAsx,t···u is equal to

v
∑

i∈Z

[B′ : ∆A
x (i)]Av

i+ℓA(x) + v−1
∑

i∈Z

[B′ : ∆A
sx(i)]Av

i+ℓA(sx)

=
∑

i∈Z

[B′ : ∆A
x (i)]Av

i+ℓA(x)+1 + [B′ : ∆A
sx(i+ 1)]Av

i+1+ℓA(sx)−1

=
∑

i∈Z

([B′ : ∆A
x (i)]A + [B′ : ∆A

sx(i+ 1)]A)v
i+ℓA(sx),

And applying the first equality in Proposition 4.4 we get that

qAsx,st···u =
∑

i∈Z

[B : ∆A
sx(i)]Av

i+ℓA(sx),

as claimed. Similarly, the coefficient qAx,w of Tx,A in C ′
sC

′
t · · ·C

′
u is equal to

vqAx,t···u+v−1qAsx,t···u. As above we have by induction that vqAx,t···u + v−1qAsx,t···u
equals

v
∑

i∈Z

[B′ : ∆A
x (i)]Av

i+ℓA(x) + v−1
∑

i∈Z

[B′ : ∆A
sx(i)]Av

i+ℓA(sx)

=
∑

i∈Z

[B′ : ∆A
x (i− 1)]Av

i−1+ℓA(x)+1 + [B′ : ∆A
sx(i)]Av

i+ℓA(sx)−1

=
∑

i∈Z

([B′ : ∆A
x (i− 1)]A + [B′ : ∆A

sx(i)]A)v
i+ℓA(x),

And applying the second equality in Proposition 4.4 we get that

qAx,st···u =
∑

i∈Z

[B : ∆A
x (i)]Av

i+ℓA(x),

as claimed. �

Proof of Theorem 4.10. Let st · · ·u be a reduced expression for w. Let us
write a Krull-Schmidt decomposition of BsBt · · ·Bu as Bw ⊕

⊕

z<w Pz · Bz.

Here the Pz ∈ Z[v, v−1] are polynomials
∑

i∈Z niv
i with nonnegative coeffi-

cients and we use the notation
(∑

i∈Z niv
i
)
·B :=

⊕

i∈Z B(i)⊕ni for a graded
bimodule B. It follows from Soergel’s categorification theorem (Theorem
4.1) and Soergel’s conjecture (Theorem 4.3) that

C ′
sC

′
t · · ·C

′
u = C ′

w +
∑

z<w

PzC
′
z.

The proof is by induction on ℓ(w). The case where ℓ(w) = 0 or even
ℓ(w) = 1 is already contained in Proposition 4.14. Hence assume ℓ(w) >
1. Because the functor B 7→ ΓA

≥i(B)/ΓA
≥i+1(B) is additive we have that
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[−,∆A
x (i)] is additive, hence

C ′
sC

′
t · · ·C

′
u =

∑

x∈W

∑

i∈Z

[BsBt · · ·Bu : ∆A
x (i)]Av

i+ℓA(x)Tx,A

=
∑

x∈W

∑

i∈Z

(

[Bw : ∆A
x (i)]A +

∑

z<w

Pz[Bz : ∆A
x (i)]A

)

vi+ℓA(x)Tx,A

=
∑

x∈W

∑

i∈Z

[Bw : ∆A
x (i)]Av

i+ℓA(x)Tx,A +
∑

z<w

PzC
′
z,

Where the last equality holds by induction. But we also have that

C ′
sC

′
t · · ·C

′
u = C ′

w +
∑

z<w

PzC
′
z,

Hence comparing the two equalities we get that

C ′
w =

∑

x∈W

∑

i∈Z

[Bw : ∆A
x (i)]Av

i+ℓA(x)Tx,A.(15)

�

Corollary 4.15. Let w ∈ W, A ∈ B(Φ+). Then

[Bw : ∆A
w(i)]A =

{
1 if i = 0
0 otherwise.

Proof. By Theorem 3.2, the coefficient of Tw when C ′
w is expressed in the

standard basis is vℓ(w). By Lemma 4.13, the multiplicity [Bw : ∆A
x (i)]A can

be nonzero only if x ≤ w. Therefore in the expansion of C ′
w in the basis

{Tx,A}x∈W , the only element which can contribute a Tw is Tw,A since Tx,A is
a linear combination of Ty for y ≤ x. Expanding Tw,A in the standard basis,

we get that the coefficient of Tw is given by v2N , where N is the number
of negative exponents in the definition of wA. But by definition of wA, this
number N is precisely equal to |N(w−1)∩A|. Multipliying by the coefficient
hAw,w ∈ Z≥0[v, v

−1] of Tw,A in the expansion of C ′
w in the basis {Tx,A}x∈W ,

we therefore must have

hAw,wv
2|N(w−1)∩A| = vℓ(w),

hence hAw,w = vℓA(w). Hence by Theorem 4.10 we have

vℓA(w) = hAw,w =
∑

i∈Z

[Bw : ∆A
w(i)]Av

i+ℓA(w),

which implies the result. �

One can also combinatorially derive the more general positivity statement

Corollary 4.16. Let w, y ∈ W, A ∈ B(Φ+). Then

C ′
wTy,A ∈

∑

x∈W

Z≥0[v, v
−1]Tx,A.
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Proof. Arguing as in the proof of statement (3) of Lemma 3.3, one shows for
y, z ∈ W, A ∈ B(Φ+) the more general formula

(zy)A = zByA,

where B = N(y) + yAy−1. Notice that B ∈ B(Φ+) by [14, Proposition
3.6]. Taking the image in the Hecke algebra, the claimed property is hence
equivalent to the statement

C ′
w ∈

∑

z∈W

Z≥0[v, v
−1]Tz,B

which follows immediately from Theorem 4.10.
�

Remark 4.17. For y 6= e, the product C ′
wTy,A is not the class of an object

in B. It nevertheless appears as natural to try to interpret the coefficients
in Corollary 4.16 as multiplicities in a canonical filtration of a bimodule.
Dyer developped [10] an approach where he considers a category with more
objects including the ∆A

x . The Hecke algebra is then categorified not as an
algebra but as a left module over itself by considering the tensor product of
indecomposable Soergel bimodules with (twisted) standard modules. Such
an approach is similar to the categorification of the Hecke algebra of a finite
Weyl group by indecomposable projective functors acting on (a graded ver-
sion of) the principal block of the BGG category O (see [30], [23, Section
7.5] and the references therein). In Dyer’s framework, the above coefficients
should be the muliplicities of Bw⊗R∆y in an A-twisted filtration. Dyer’s ap-
proach appears as more natural for further generalizations involving biclosed
sets of roots. For our purposes, twisted filtrations of Soergel bimodules will
suffice. Alternatively, if one wants to have a canonical object for C ′

wTy,A

in a category keeping a monoidal structure, one can consider the bounded
homotopy category of B (see Sections 5 and 6 below).

5. Generalized Libedinsky-Williamson formula

The aim of this section is to compute the A-filtration of a Rouquier com-
plex for a Mikado braid xA where x ∈ W, A ∈ B(Φ+).

5.1. Rouquier complexes and minimal complexes. We denote by Kb(R)
(resp. Kb(B)) the homotopy category of bounded complexes of bimodules
in R (resp. B). The monoidal structure on R and B induces a monoidal
structure on the corresponding homotopy categories which we will simply
denote by juxtaposition. Given a complex

A : · · · → i−1A → iA → i+1A → . . . ∈ Kb(R),

We denote by A[j], where j ∈ Z, the complex A shifted in homological
degree by j, that is, such that iA[j] = j+iA. Let us consider the following
indecomposable complexes in Kb(B):

Fs = 0 → Bs
µs
→ R(1) → 0,

Es = 0 → R(−1)
ηs
→ Bs → 0 ,
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where Bs sits in both cases in homological degree zero. Here ηs(r) =
1
2(r ⊗

fs+rfs⊗1) for any r ∈ R and µs is the multiplication map. The functors Fs⊗
− and Es ⊗ − define mutually inverse equivalences of Kb(R), categorifying
the braid group of the Coxeter system in finite type (see [26], [25], [27],
[19] and the references therein). Given x ∈ W with reduced expression
st · · · u, we write Fx for the Rouquier complex corresponding to the positive
canonical lift x of x in the braid group, that is, Fx = FsFt · · ·Fu. We
set Ex := (Fx−1)−1 = EsEt · · ·Eu. Notice that these complexes do not
depend on the choice of reduced expression up to canonical isomorphism in
Kb(B) (see [26, Section 9.3.1]). We replace Fx by a minimal complex in
Kb(B), that is, a complex obtained from Fx by removing contractible direct
summands (see [15, Section 6.1]; a minimal complex is isomorphic to the
starting complex in Kb(B) and any two miminal complexes turn out to be
isomorphic as complexes of bimodules). In general we will always assume Fx

to be a miminal Rouquier complex.

5.2. Libedinsky-Williamson formula for Mikado braids. The aim of
this section of to prove

Proposition 5.1. Let (W,S) be a Coxeter system. Let x ∈ W, A ∈ B(Φ+).
Let β := xA ∈ BW and let Fβ ∈ Kb(B) be a minimal Rouquier complex for β.
Let I ⊆ Z be an interval such that {wi}i∈I is an enumeration of W refining
<A. There are isomorphisms in Kb(B)

ΓA
≥wi/>wi

(Fβ) ∼=

{
∆A

x if wi = x,
0 otherwise.

Proof. The proof is by induction on ℓ(x). If ℓ(x) = 1, then x ∈ S and Fβ is
either isomorphic to Fs to to Es depending on whether e <A s or s <A e.
Since the indecomposable Soergel bimodules occurring in these complexes
are supported only on Gr(e) and Gr(s), we can as well replace A by ∅ if
e <A s and A by T if s <A e, in which case we can compute it by hands or
refer to Libedinsky-Williamson’s formula [22, Proposition 3.10].

Hence assume that the claimed formula holds for x with ℓ(x) > 0. Let
s ∈ S such that sx < x. By induction the claim holds for β′ = (sx)A. By
Remark 4.8 we can replace our total order by any other total order refining
<A, hence assume that {wi}i∈I is an (A, s)-compatible order (see Corollary
2.9). Assume that sx <A x, the other case being similar. By Lemma 3.4, we
have that s(sx)A = xA. Hence

Fβ
∼= FsFβ′ in Kb(B).

By Proposition 4.9 for any i ∈ 2Z we have an isomorphism in Kb(B)

(16) Fs(Γ
A
≥wi/>wi+1

(Fβ′)) ∼= ΓA
≥wi/>wi+1

(Fβ).

We have sx = wk for some k ∈ 2Z and x = wk+1. In that specific case by
induction and (16) we have

ΓA
≥wk/>wk+1

(Fβ) ∼= Fs(· · · → 0 → ∆A
sx → 0 → . . . )

∼= · · · → 0 → Bs∆
A
sx → ∆A

sx(1) → 0 → . . .
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where in both complexes the smallest nonzero degree is homological degree
zero. Remembering the short exact sequence

0 → Rx(−1) → BsRsx → Rsx(1) → 0

we get that

ΓA
≥wk+1

(· · · → 0 → Bs∆
A
sx → ∆A

sx(1) → 0 → . . . ) ∼= Rx(−ℓA(sx)− 1) ∼= ∆A
x ,

where the last equality holds since sx >A x, hence ℓA(x) = ℓA(sx) + 1 (see
Remark 2.7). Setting i = k + 1 this implies the claim for wi = x since there
is an isomorphism of functors

ΓA
≥wk+1

(ΓA
≥wk/>wk+1

(−)) ∼= ΓA
≥wk+1/>wk+1

(−).

(The above isomorphism of functors holds for the (reverse) Bruhat order as
a Corollary of [22, Lemma 3.1], but this Lemma adapts mutatis mutandis if
we replace Bruhat order by <A). For wi = sx, applying ΓA

≥wk/>wk
(−) to the

complex (· · · → 0 → Bs∆
A
sx → ∆A

sx(1) → 0 → . . . ) yields

· · · → 0 → ∆A
sx(1)

id
→ ∆A

sx(1) → 0 → . . .

which is homotopic to zero, whence the result using the isomorphism of
functors

ΓA
≥wk/>wk

(ΓA
≥wk/>wk+1

(−)) ∼= ΓA
≥wk/>wk

(−).

Now let z ∈ W, x 6= z with sz <A z. Let j ∈ 2Z such that sz = wj ,
z = wj+1. One has an exact sequence of complexes

0 → ΓA
≥wj+1/>wj+1

(Fβ′) → ΓA
≥wj/>wj+1

(Fβ′) → ΓA
≥wj/>wj

(Fβ′) → 0.

Any indecomposable summand in the left (resp. in the right) term is iso-
morphic to a shift of Rz (resp. Rsz). But by [29, Lemma 5.8], any nontrivial
extension between two such modules is isomorphic to a shift of O(Gr(z) ∪
Gr(sz)) which splits as left Rs-module by [29, Lemma 4.5 (1)]. Hence tensor-
ing the above short exact sequence by Bs and viewing the resulting complex
in Kb(B) we get an exact triangle

BsΓ
A
≥wj+1/>wj+1

(Fβ′) → BsΓ
A
≥wj/>wj+1

(Fβ′) → BsΓ
A
≥wj/>wj

(Fβ′)
[1]
→,

and by induction the first and the third term of the complex are homotopic
to zero. Hence the middle term is also homotopic to zero. But this middle
term is isomorphic to ΓA

≥wj/>wj+1
(BsFβ′) by Proposition 4.9. Arguing as for

the case where wi = x or sx we conclude that

(17) ΓA
≥wj+1/>wj+1

(BsFβ′) ∼= 0 ∼= ΓA
≥wj/>wj

(BsFβ′).

The result now follow by applying ΓA
≥wj+1/>wj+1

(−) and ΓA
≥wj/>wj

(−) to the

distinguished triangle

FsFβ′ → BsFβ′ → Fβ′(1)
[1]
→ .

Indeed, we showed that applying them yields a complex homotopic to zero in
the middle position (see Equation (17)), and the same holds for the complex
on the right by induction. �
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6. Linearity of Rouquier complexes

The aim of this section is to show that minimal Rouquier complexes of left
and right Mikado braids are "linear", that is, that all the indecomposable
summands in homological degree i have the form Bx(i) for all i ∈ Z. Together
with a statement on the parity of the elements x such that Bx occurs in
homological degree i, this will allow us to generalize Property (1) and its
analogue for right Mikado braids to arbitrary Coxeter groups.

Following Elias and Williamson [15], denote by Kb(B)≥0 the full subcat-
egory of Kb(B) whose objects are those complexes with minimal complex
F satisfying the following property: for any i ∈ Z such that iF is nonzero
and any indecomposable summand B in iF , there exists x ∈ W, k ≤ i
such that B ∼= Bx(k). Similarly, denote by Kb(B)≤0 the full subcategory
of Kb(B) whose objects are those complexes with minimal complex satisfy-
ing the following property: for any i ∈ Z such that iF is nonzero and any
indecomposable summand B in iF , there exists x ∈ W, k ≥ i such that
B ∼= Bx(k). In other words, Kb(B) (resp. Kb(B)≤0) consists of those com-
plexes with minimal complex F having indecomposable Soergel bimodules
with shifts at most (resp. at least) i occurring in homological degree i.

We recall some results of Elias and Williamson.

Lemma 6.1. Let x ∈ W, s ∈ S. Let Bx be an indecomposable Soergel
bimodule viewed in Kb(B), in homological degree zero.

(1) Assume that xs < x. Then BxFs
∼= Bx(−1) and BxEs

∼= Bx(1) in
Kb(B).

(2) Assume that xs > x. Then BxFs, BxEs ∈ Kb(B)≥0 ∩Kb(B)≤0.

Similar statements hold if we multiply the Fs and Es on the left instead.

Proof. The statements involving the complex Fs are [15, Lemma 6.5]. The
proofs of the statements involving the Es are similar. �

Lemma 6.2. Let F ∈ Kb(B), s ∈ S.

(1) If F ∈ Kb(B)≥0, then FFs ∈ Kb(B)≥0.
(2) If F ∈ Kb(B)≤0, then FEs ∈ Kb(B)≤0.

The same conclusions hold if we multiply the Fs and Es on the left instead.

Proof. The statements involving the complex Fs are [15, Lemma 6.6]. The
proofs of the statements involving the Es are similar. �

The following result is [15, Corollary 6.7]

Corollary 6.3. Let w ∈ W. Then Fw ∈ Kb(B)≥0 and Ew ∈ Kb(B)≤0.

Notice that more generally, a Rouquier complex for any positive braid lies
in Kb(B)≥0. Elias and Williamson show in addition that Fw ∈ Kb(B)≤0.
More precisely, they show the following

Theorem 6.4 ([15, Theorem 6.9]). Let w ∈ W with minimal Rouquier
complex Fw. Then

(1) 0Fw = Bw.
(2) for i ≥ 1, iFw =

⊕
Bz(i)

⊕mz,i for z < w and mz,i ∈ Z≥0.

In particular, Fw ∈ Kb(B)≥0 ∩Kb(B)≤0.
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We can get an analogous result for the complexes Ew by dualizing Elias
and Williamson’s argument, which will allow us to derive the linearity of
Rouquier complexes of the braids mentioned at the beginning of the section:

Proposition 6.5. Let w ∈ W with minimal Rouquier complex Ew. Then

(1) 0Ew = Bw.
(2) for i ≤ −1, iEw =

⊕
Bz(i)

⊕mz,i for z < w and mz,i ∈ Z≥0.

In particular, Ew ∈ Kb(B)≥0 ∩Kb(B)≤0.

We give the proof for the sake of completeness. It relies on the following
Lemma (which is an analogue of [15, Lemma 6.11] for the complexes Ew):

Lemma 6.6. If iEw contains a summand isomorphic to Bz(j) for some
z < w, then i+1Ew contains a summand isomorphic to Bz′(j

′) with j′ > j,
z′ > z.

Proof. Notice that the ∇-character as defined in [15] corresponds to our A-
filtration for A = T . We have that [Bw : ∆T

w ]T = 1 while [Bw : ∆T
w(i)]T = 0

for i 6= 0 (see Corollary 4.15). It follows from Soergel’s conjecture 4.3 and
(13) that for z < w, [Bw : ∆T

z (i)]T 6= 0 implies that i < 0 (we will say that
the ∆T -character is "negative"). Indeed, one has that

C ′
w ∈ Hw +

∑

z<w

vZ≥0[v]Hz,

hence dualizing we get

C ′
w ∈ H−1

w−1 +
∑

z<w

v−1
Z≥0[v

−1]H−1
z−1 .

Comparing with Theorem 4.10 we get the statement (notice that H−1
x−1 =

v−ℓ(x)T−1
x−1 = v−ℓ(x)Tx,T = vℓT (x)Tx,T for any x ∈ W by Lemma 3.7 (2)).

Consider a summand Bz(j) of iFw. Arguing exactly as in the first para-
graph of the proof of [15, Lemma 6.11], we have that our summand Bz(j)
maps in the complex Ew to a sum of By(k) for k > j. Moreover, any non-
trivial map to our summand Bz(j) must come from a summand By(k) with
k < j.

We now fix a total order on W refining <A and apply the corresponding
subquotient functor ΓT

≥z/>z to the complex Ew for z ∈ W. The result-

ing complex has a summand in iΓT
≥z/>z(Ew) = ΓT

≥z/>z(
iEw) isomorphic to

∆T
z (j). It follows from Proposition 5.1 that this summand must map isomor-

phically to some ∆T
z (j) in ΓT

≥z/>z(
i+1Ew) or be mapped to isomorphically

from a summand ∆T
z (j) in ΓT

≥z/>z(
i−1Ew). Assume that the second holds.

The summand isomorphic to ∆T
z (j) in homological degree i−1 of ΓT

≥z/>z(Ew)

mapping to our summand must be a subquotient of some summand By(j
′)

of i−1Ew. By negativity of the ∆T -character we must have j′ > j. Hence
our isomorphism

∆T
z (j)

∼
−→ ∆T

z (j)

in ΓT
≥z/>z(Ew) must be induced by a nontrivial map

By(j
′) −→ Bz(j)
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from the i− 1th homological degree to the ith with j′ > j, but we mentioned
above that this is impossible. Hence our summand ∆T

z (j) in ΓT
≥z/>z(

iEw)

must map isomorphically to a summand ∆T
z (j) in ΓT

≥z/>z(
i+1Ew). This last

summand comes as a subquotient of some summand Bz′(j
′) from i+1Ew. It

follows that z′ > z (because any subquotient of a twisted filtration of Bz′ is
indexed by some element which is lower than z′ in Bruhat order by Lemma
4.15) and our isomorphism is induced by a nontrivial map

Bz(j) −→ Bz′(j
′)

from the ith homological degree to the i+ 1th with j′ > j and z′ > z, which
concludes. �

Proof of Theorem 6.5. It follows from the above Lemma that any summand
of 0Ew is isomorphic to Bw since Ew = 0 for i > 0. Moreover, in fact
we have 0Ew = Bw because by applying ΓT

≥w/>w(Fw) we must get ∆T
w by

[22, Proposition 3.10]; hence such a summand must come from a Bw since
the indecomposable summands appearing in the homological degrees of Ew

are indexed by elements lower than or equal to w in Bruhat order, and
since no other summand Bw can appear in negative degrees it follows that
0Ew = Bw. Using the above lemma inductively we have that the shifts of
the summands in homological degree k ≤ 0 are at most equal to k, hence
that Ew ∈ Kb(B)≥0. But we already know that Ew ∈ Kb(B)≤0 by Corollary
6.3. �

Theorem 6.7. Let x, y ∈ W and β = x−1y ∈ BW . Let Fβ denote a minimal
Rouquier complex for β. Then

(1) 0Fβ has a unique summand isomorphic to Bw where w = x−1y. All
other summands of 0Fβ are isomorphic to Bz for z < w.

(2) For any i ∈ Z\{0}, we have iFβ =
⊕

Bz(i)
⊕mz,i for z < w and

mz,i ∈ Z≥0.

In particular, we have Fβ ∈ Kb(B)≤0∩Kb(B)≥0. One has a similar statement
for β = xy−1.

Proof. We only prove the statement for β = x−1y, the one for xy−1 is sim-
ilar. A Rouquier complex for x−1y is given by Ex−1Fy. By Theorem 6.4 we

have that Fy ∈ Kb(B)≥0 ∩Kb(B)≤0, in particular Fy ∈ Kb(B)≤0. Applying

Lemma 6.2 inductively we get that Ex−1Fy ∈ Kb(B)≤0. By Theorem 6.5,

we have that Ex−1 ∈ Kb(B)≥0 ∩ Kb(B)≤0, in particular Ex−1 ∈ Kb(B)≥0.
Applying Lemma 6.2 inductively we get that Ex−1Fy ∈ Kb(B)≥0. Hence

Ex−1Fy ∈ Kb(B)≤0 ∩Kb(B)≥0.
Now writing β as a lifted reduced expression of w = x−1y, say sε11 · · · sεkk

where s1 · · · sk is a reduced expression of w, we get that the corresponding
complex Ks1 ⊗ · · · ⊗ Ksk where Ksi = Fsi if εi = 1, respectively Ksi =
Esi if εi = −1 has exactly one summand isomorphic to Bw which sits in
homological degree zero, all other summands being indexed by elements lower
than w in Bruhat order (alternatively one can apply Theorem 5.1). This
summand can therefore not be suppressed when projecting to a minimal
complex, whence the result. �
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6.1. Proof of inverse positivity for left and right Mikado braids. Let
(W,S) be a Coxeter system. The aim of this section is to prove

Theorem 6.8. Let x, y ∈ W. Then

T−1
x Ty ∈

∑

w∈W

Z≥0[v
±1]Cw.

Similarly, TxT
−1
y ∈

∑

w∈W Z≥0[v
±1]Cw.

Proof. We will only prove the first statement, the proof of the second one is
similar. Using Relation (7) we can reformulate it as

(−1)ℓ(x)+ℓ(y)T−1
x Ty ∈

∑

w∈W

Z≥0[v
±1](−1)ℓ(w)C ′

w.

Denoting by
〈
Kb(B)

〉
the Grothendieck group of the triangulated category

Kb(B), one has an isomorphism of abelian groups (see [24])

cl : 〈Kb(B)〉
∼

−→ 〈B〉 , C 7→
∑

i∈Z

(−1)i
〈
iC
〉
,

where
〈
iC
〉

denotes the class of the bimodule iC ∈ B in 〈B〉. Moreover, the

map is compatible with graduation shifts (where a complex C(i) ∈ Kb(B)
is defined as the complex C where all summands of all homological degrees
are shifted by i) and with the monoidal structure on Kb(B) defined by the
total tensor product of complexes (induced by the tensor product ⊗R on B).
That is, denoting by ⊗ the total tensor product in Kb(B), it follows from
the definition of total tensor product that for C,D ∈ Kb(B) we have

cl(C ⊗D) =

(
∑

i∈Z

(−1)i〈iC〉

)


∑

j∈Z

(−1)j〈jD〉



 = cl(C)cl(D).

Hence cl is an isomorphism of Z[v, v−1]-algebras between 〈Kb(B)〉 and H.
In particular we have that

T−1
x Ty = vℓ(x)−ℓ(y)H−1

x Hy = vℓ(x)−ℓ(y)cl(Ex−1Fy).

Indeed, we have Hx = Hs1 · · ·Hsk for any reduced expression s1s2 · · · sk of
x ∈ W and

cl(Fsi) = 〈Bsi〉 − 〈R(1)〉 = C ′
si − v = vTsi + v − v = Hsi .

Since (−1)ℓ(x
−1y) = (−1)ℓ(x)+ℓ(y), Theorem 6.8 follows if in the notations

of Theorem 6.7 we prove that mz,i = 0 if i and ℓ(z)− ℓ(p(β)) have different
parity. Indeed, by definition of the map cl we have that the coefficient gz of
C ′
z in cl(Ex−1Fy) is given by

∑

i∈Z(−1)imz,iv
i. Our statement on the parity

then implies that

gz = (−1)ℓ(z)−ℓ(x)+ℓ(y)
∑

i∈Z

mz,iv
i,

which implies the result.
The statement is proven by induction on ℓ(p(β)). If it has length equal

to 1, then Fβ is equal to Fs or Es for some s ∈ S and the claim is true
in that case. Hence assume that the claim holds for right Mikado braids
β such that ℓ(p(β)) < k and let β = x−1y be such that ℓ(p(β)) = k. Let
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β = sε11 sε22 · · · sεkk , where s1 · · · sk is a reduced expression of x−1y and εi = −1
if sk · · · si · · · sk ∈ A and εi = 1 otherwise.

Set β′ := sε22 · · · sεkk . Notice that ℓ(p(β′)) = k−1 and β′ = (s1x
−1y)T \N(y−1),

in particular it is also a right Mikado braid. Assume that ε1 = 1, the other
case being similar. Then we have

i(FsFβ′) ∼= (Bs ⊗
iFβ′)⊕ (R(1)⊗ i−1Fβ′).

Notice that FsFβ′
∼= Fβ in Kb(B), but FsFβ′ may not be a minimal com-

plex. We analyze separately the two above summands and show that any
direct summand of them appearing in a miminal complex Fβ must be of the
form Bv(i) where ℓ(p(β))− ℓ(v) and i have the same parity. We have

R(1)⊗ i−1Fβ′
∼= R(1)⊗

(⊕

Bz(i− 1)⊕mz,i−1

)

∼=
⊕

Bz(i)
⊕mz,i−1 .

Now if ℓ(z)−ℓ(p(β)) and i have different parity, since ℓ(p(β)) = ℓ(p(β′))+1
we get that ℓ(z) − ℓ(p(β′)) and i − 1 also have different parity, hence that
mz,i−1 = 0, which concludes.

We have

Bs ⊗
iFβ′

∼= Bs ⊗
(⊕

Bz(i)
⊕mz,i

)

∼=
⊕

BsBz(i)
⊕mz,i .

In this situation let z such that mz,i 6= 0 If sz < z, then BsBz(i) ∼=
Bz(i+1)⊕Bz(i− 1). But by Theorem 6.7, these summands cannot survive
in a minimal complex for Fβ . Hence assume that sz > z. Then

BsBz(i) ∼= Bsz(i) ⊕
⊕

v<z

Bv(i)
⊕µ(v,z),

Where µ(v, z) ∈ Z≥0 and µ(v, z) 6= 0 implies that z and v have distinct parity
(see [18, Section 7.11]). Hence assuming that ℓ(p(β)) − ℓ(v) (or ℓ(p(β)) −
ℓ(sz)) and i have different parity, it follows that ℓ(p(β′))− ℓ(z) have distinct
parity, hence that mz,i = 0. It follows that the summands of BsBz(i) are
all of the form Bv(i) where ℓ(p(β)) − ℓ(v) and i have the same parity. This
concludes the proof.

�

6.2. Conjectures. As mentioned in the Introduction, the generalized ver-
sion of the positivity of the inverse Kazhdan-Lusztig polynomials involving
the bases {Tx,A}x∈W is the following statement [12]

Conjecture 6.9 (Dyer). Let x ∈ W, A ∈ B(Φ+). Then

Tx,A ∈
∑

w∈W

Z≥0[v
±1]Cw.

In Subsection 6.1, we prove it in case A = N(y) or A = T \N(y) for y ∈ W
(Theorem 6.8, see also Lemma 3.3), implying in particular that Property (1)
holds for arbitrary Coxeter groups. In that case, the result followed from
the linearity of the Rouquier complexes associated to left and right Mikado
braids (Theorem 6.7). We expect this last property to hold in general for
Mikado braids:

Conjecture 6.10. Let w ∈ W, A ∈ B(Φ+). Set β := wA. Let Fβ denote a
minimal Rouquier complex for β. Then
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(1) 0Fβ has a unique summand isomorphic to Bw. All other summands
of 0Fβ are isomorphic to Bz for z < w.

(2) For any i ∈ Z\{0}, we have iFβ =
⊕

Bz(i)
⊕mz,i for z < w and

mz,i ∈ Z≥0. In particular, we have Fβ ∈ Kb(B)≤0 ∩Kb(B)≥0.
(3) We have mz,i = 0 if i and ℓ(z)− ℓ(w) have different parity.

If one proves (1) and (2), one can then argue exactly as in Subsection 6.1
to prove (3) and derive Conjecture 6.9.
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