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GEOMETRIC INVARIANT THEORY FOR GRADED UNIPOTENT GROUPS AND
APPLICATIONS

GERGELY BERCZI, BRENT DORAN, THOMAS HAWES, FRANCES KIRWAN

AsstracT. LetU be a graded unipotent group over the complex numbers, iretieeghat it has
an extensior) by the multiplicative group such that the action of the nplitiative group by
conjugation on the Lie algebra &f has all its weights strictly positive. Given any actionlbf
on a projective varieti)X extending to an action dfi which is linear with respect to an ample
line bundle onX, then provided that one is willing to replace the line bunwiihh a tensor power
and to twist the linearisation of the action Gfby a suitable (rational) character, and provided
an additional condition is satisfied which is the analogughefcondition in classical GIT that
there should be no strictly semistable points for the acti@nshow that th&)-invariants form a
finitely generated graded algebra; moreover the naturgbimsm from the semistable subset of
X to the enveloping quotient is surjective and expressesihel@ing quotient as a geometric
quotient of the semistable subset. Applying this resulhwitreplaced by its product with the
projective line gives us a projective variety which is a getric quotient byJ of an invariant
open subset of the product Efwith the dfine line and contains as an open subset a geometric
quotient of a U-invariant open subsetXfby the action olU. Furthermore these open subsets
of X and its product with thefine line can be described using criteria similar to the Hitber
Mumford criteria in classical GIT.

Mumford’s geometric invariant theory (GIT) allows us to stmuct and study quotients of
algebraic varieties by linear actions of reductive grol@& [B0]. When a complex reductive
groupG acts linearly (with respect to an ample line bunid)®n a complex projective variety,
the associated GIT quotieKf/G is the projective variety ProfB, _, HO(X, L®)¢) associated to
the ring of invariantgP, , H(X, L*)®, which is a finitely generated graded complex algebra.
Geometrically the varietX//G can be described as the image of a surjective morphism from
an open subsexX®s of X, consisting of the semistable points for the action, oX&smodulo
the equivalence relation such that ifx,y € X%sthenx ~ y if and only if the closures of the
G-orbits of x andy meet inX®S, The stable points for the action form a sub¥&bf X3S which
has a geometric quotiedt/G which is an open subset &f//G. Moreover the subseb$® and
X33 can be described using the Hilbert—-Mumford criteria for{gstability. The GIT quotient
X//G and its open subset®*/G can also be described in terms of symplectic geometry and a
moment mapl[20, 29].

In suitable situations GIT can be generalised to allow usottstruct GIT-like quotients for
linear actions of non-reductive groups [11] 12,13/ 15| P5.3®]. However there is an immedi-
ate dificulty in extending GIT to non-reductive group actions, sinow the ring of invariants
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is not necessarily finitely generated as a graded algebdawaen it is not finitely generated
there is no associated projective variety.

Every dfine algebraic groupl has a unipotent radicél <H such thaR = H/U is reductive
(and overC we have a semi-direct product decomposittdn= R < U), and understanding
GIT-theoretic questions about the action — such as whetivariants are finitely generated
— often follows from understanding the action of the unipbtgroupU. In some cases the
U-invariants happen to be finitely generated. For examplé) i the unipotent radical of
a parabolic subgroup of a complex reductive grou@ and an action ofJ on a complex
projective varietyX, which is linear with respect to an ample line bunt]esxtends to a linear
action ofG, then the ring of invariantéB, ., H°(X, L)Y is finitely generated [17, 23]. In this
case the ‘enveloping quotienK2U (in the sense of [11] but using the notation of [3]) is the
projective variety Proﬂ}k20 HO(X, L&)Y) associated to the ring of invariants, and it contains as
an open subset a geometric quotigitU whereX® is aU-invariant open subset &f. However
there is still no analogue fox2U of the geometric description of//G whenG is reductive
as X**modulo an equivalence relation, since the natural morpliem X%%to X»U is not in
general surjective, although there are alternative gewerascriptions [23].

In this paper we consider a more general situation. Instésakong U to be the unipotent
radical of a parabolic subgroup of a complex reductive grGuphich acts linearly orX, we
assume that) is a unipotent group ovet with an extensiotd = U =< C* by C* such that the
action of C* by conjugation on the Lie algebra &f has all its weights strictly positive; we
call such aU a graded unipotent group. (The unipotent radical of a pdiasabgroup of a
complex reductive grou always has such an extension contained in the paraboliccuibg
We are interested in linear actionsldfon projective varietieX which extend to linear actions
of U. Given any action ofJ on a projective varietyX extending to an action dff which is
linear with respect to an ample line bundle X¥nthenprovidedthat we are willing to replace
the line bundle with a tensor power and to twist the linedieseof the action ofJ by a suitable
(rational) character dfl, and provided an additional condition is satisfied whiclheadnalogue
of the condition in classical GIT that there should be natrisemistable points for the action
(that is, ‘semistability coincides with stability’), we finthat theU-invariants form a finitely
generated algebra moreover the natural morplzyisrr)(ssU — XU is surjective and indeed
expresseX »U as a geometric quotient ofssV| so thatg satisfiesp(x) = ¢(y) if and only if
the U-orbits ofx andy coincide inxssy. Applying this result withX replaced byX x P! gives
us a projective varietyX x P1)»U which is a geometric quotient By of a U-invariant open
subset oXx C and contains as an open subset a geometric quotiertd ehgariant open subset
X3V of X by U. Furthermore the subsex$¥ = X5V and X%V of X can be described using
Hilbert—Mumford-like criteria.

This situation arises even for the Nagata counterexamglellibert’'s 14th problem, which
provide examples of linear actions of unipotent grolp®n projective space such that the
correspondindJ-invariants are not finitely generated. In these casesttaliaction extends to
a linear action of an extensidh = U>C* by C* such that the action @* by conjugation on the
Lie algebra olJ has all its weights strictly positive. Thus when the corditthat semistability
coincides with stability is satisfied, we obtain open subX&t = X5V and X%V of X, which
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are determined by analogues of the Hilbert—-Mumford catexiith geometric quotientss¥ /U
and X3Y/U, such thatxsY/U is projective andxX>Y/U is quasi-projective with a projective
completion in which the complement 8fY /U is XsY/U.

A related situation is studied inl[4], where it is assumed tha linear action of the graded
unipotent grougJ extends to a linear action of a general linear grouprLHereU andU
are embedded in Ghf as subgroups ‘generated along the first row’ in the sengdttbee are
integers 1= w1 < wy < w3 < -+ < w, and polynomialsy; j(a, ..., an) IN @, ..., a, with
complex cofficients for 1< i < j < nsuch that

a1 Q2 as3 cen n
~ 0 af? pas(@) ... pzn(@)
(1) U={ 0 0 ® ... pan(@) [:@=(1,...,an)eC" xC™?

0O O 0 0 af
andU is the unipotent radical dfl, defined bya; = 1. The main results of [4] also involve
the subgroup) of SL(n) which is the intersection of Shj with the produclUZ(GL(n)) of H
with the central one-parameter subgraZ(&L(n)) = C* of GL(n). Like U, the subgroupJ
of GL(n) is a semi-direct produdl = U = C* whereC* acts on the Lie algebra df with
all weights strictly positive. When Ghj acts linearly on a projective variety with respect
to an ample line bundlé on X, and the linearisation of the action 0f on X is twisted by a
suitable rational charactgr(which is ‘well adapted’ to the action in the senselof [4]enht is
shown in [4] Theorem 1.1 that the corresponding algebrd-afvariants is finitely generated,
and the projective variety »U associated to this algebra of invariants is a categorioatiept
of an open subsexssY of X by U and contains as an open subset a geometric quotient of an
open subsexsY of X. Applying a similar argument after replacingwith X x P! provides a
projective variety X x P1)»U which is a categorical quotient ty of a U-invariant open subset
of X x C and contains as an open subset a geometric quotient/ehgariant open subset>V
of X by U.

The results of this paper are more general than those! of [#{anthe linear action of the
unipotent groupJ is only required to extent to a linear actiondfrather than a general linear
group in whichU andU are embedded in a very special way. On the other hand in [4] the
additional condition that ‘semistability coincides wittability’ is not required. We will ad-
dress the removal of this additional condition in future kyarsing a partial desingularisation
construction analogous to that of [21].

Lety : U - C* be a character dfl with kernel containindJ; we will identify such charac-
tersy with integers so that the integer 1 corresponds to the ctaradich fits into the exact
sequencd) — U — c. Suppose thabmin < wWmins1 < -+ < wmax are the weights with
which the one-parameter subgroGp < U acts on the fibres of the tautological line bundle
Op(Hox.Ly(—1) over points of the connected components of the fixed peiri(@§H (X, L)*)~
for the action ofC* onP((H°(X, L)*); whenL is very ampleX embeds irP((H°(X, L)) and the
line bundleL extends to the duazo(x 1)) (1) of the tautological line bundi@gox 1)) (—1).

We will assume that there exist at least two distinct suclgiisisince otherwise the action of
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U on X is trivial. Letc be a positive integer such that

X

E = Wmin t €

wheree > 0 is suficiently small; we will call rational charactejs/c with this propertywell
adaptedto the linear action ob), and we will call the linearisation well adapteduf,i, < 0 <
wmin + € for suficiently smalle > 0. The linearisation of the action of on X with respect to the
ample line bundl&-®*° can be twisted by the characjeso that the weights; are replaced with
wiC— x; let L% denote this twisted linearisation. L&, denote the stable subsetX%for the
Ilnear action ofC* with respect to the IlnearlsatldrfC by the theory of variation of (classical)

GIT [10,[3€8], if L is very ample thelil(mln+ is the stable set for the action Gf with respect to
any rational character/c such thatwnin < x/C < Wmin+1. We set

Xaime = XVOO\ X)) = (X,
ueU

to be the complement of the-sweep (or equivalently thel-sweep) of the complement of

sC*

min +* ~

The main theorem of this paper concerns a linear actidsh of a projective variet which
is well adapted in the sense above and satisfies an additiondition to which we will refer as
the condition that ‘semistability coincides with stalyilitMore precisely, any elemegtof the
Lie algebra ofU defines a derivatios; : H°(X, L) — H°(X, L), and we require that whenever
U’ is a subgroup o) andé¢ belongs to the Lie algebra &f but not the Lie algebra dfi’, then
the weight space with weightw,i, for the action ofC* on HO(X, L) is contained in the image
5:(HO(X, L)V") of HO(X, L)Y under the derivatios;.

Theorem 0.1.Let U be a unipotent group ovet and letU = U = C* be a semidirect product
of U byC* where the conjugation action @ on U is such that all the weights of the induced
C*-action on the Lie algebra of U are strictly positive. Suppdbkat U acts linearly on a
projective variety X with respect to an ample line bundlend éhaty : U — C*is a character

of U with kernel containing U and c is a positive integer suchttifie rational charactey/c

is well adapted for the linear action df. Suppose also that the linear action Gf on X
satisfies the condition that ‘semistability coincides veithbility’ as above. Then the algebra of
invariantse_HO(X, L&MV is finitely generated for any well-adapted rational chaeck/c

of U. Moreover the enveloping quotien& is the projective variety associated to this algebra
of invariants and is a geometric quotient of the open sub%ﬁg)ﬁf X byU.

Applying this result after replacing with X x P* we obtain geometric information about the
action of the unipotent groug on X:

Corollary 0.2. In the situation above lédl act diagonally on Xx P* where the action oi#* is
via

O-[x:y] = Dea(@x:y]
wherey; : U — C* is the character otJ with kernel U which fits into the extensi¢h} —
U - U — C" — {1}, and linearise this action using the tensor product pfith Op:(M) for
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suitable M> 1. Then(X X PY U is a projective variety which is a geometric quotientlbyf
a U-invariant open subset of X C and contains as an open subset a geometric quotient of a
U-invariant open subset3¥ of X by U.

Remark 0.3. We can also deduce that the algera= & (H(X X P, Ly-™ ® Opi(M))Y of
U-invariants orX x P! is finitely generated for a well-adapted rational charagterof U when

c is a stuficiently divisible positive integer. This graded algeBraan be identified with the
subalgebra of the algebra Ofinvariantsa;,_,H°(X, L**™Y on X generated by thg-invariants

in e HO(X, L= which are weight vectors with non-positive weights for tiei@n of C* <

U after twisting by the well-adapted rational charagi¢c. The sectionsr of L which are
weight vectors with weight-wn,, are allU-invariant, and after twisting by/c these are the
only weight vectors irH°(X, L) which have non-positive (in fact strictly negative) wetigihlf

we localise théJ-invariants at any such then we get a finitely generated algebra of invariants
O(X,)Y, since this algebra can be identified with the localisatibA ato-.

This theorem has another immediate corollary:

Corollary 0.4. Let H = R U be a complex linear algebraic group with unipotent radical
U and R= H/U reductive, and suppose that R contains a central subgrsomerphic toC*
which acts by conjugation on the Lie algebra of U with all wegystrictly positive. Let be
the subgroup of H which is the semidirect product of U and dmis-parameter subgrou* of

R. Suppose that H acts linearly on a projective variety X wegpect to an ample line bundle
L, and thaty : H — C* is a character of H, that c is a gfciently divisible positive integer
such that the restriction tt) of the rational characte/c is well adapted for the linear action
of U on X, and that the linear action df on X satisfies the condition that ‘semistability co-
incides with stability’ as above. Then the algebra of H-imamats &  HO(X, L™ is finitely
generated, and the projective variety?Xl associated to this algebra of invariants is a cate-
gorical quotient of an open subsefX of X by H, and the canonical H-invariant morphism
¢ . X3SH — X&H is surjective withp(x) = #(y) if and only if the closures of the H-orbits of x
and y meet in 3",

Example: Consider the weighted projective plabg, 1, 2) which isC2\ {0} modulo the action
of C* with weights 11, 2. The automorphism group 81, 1, 2) is

AUt(P(1,1,2)) = R= U

with R = GL(2) reductive andJ = (C*)® unipotent; hereA,u,v) € (C*)® = U acts on the
weighted projective planB(1, 1,2) as K, Y, 7] — [X,Y,Z+ Ax% + uxy + vy?]. The central one-
parameter subgroup’ of R = GL(2) acts orLie(U) with all positive weights, and the associated
extensionJ = U x C* can be identified with a subgroup of AB{(, 1, 2)). Thus Corollary 04
applies to every linear action of Al(1, 1, 2)) on a projective variet with respect to an ample
line bundleL after twisting by a well adapted rational character.

The weighted projective plari®g1, 1, 2) is a simple example of a toric variety; in fact as we
shall see ir§4 below, the automorphism group of any complete simplicattvariety satisfies
the conditions of Corollary 014.
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Remark 0.5. Popov [31] has shown thatH is any non-reductive group then there is @fine
variety Y on whichH acts such that the algebra of invaria@&)" is not finitely generated.

Our main motivation for considering linear actions of greugf the formU in this arti-
cle and in [4] came from the study of jetftérentials. The group8y of k-jets of holomor-
phic reparametrizations of(0) (and more generally the groufdg , of k-jets of holomorphic
reparametrizations ofdf, 0) for p > 1) play an important role in the strategy of Demailly, Siu
and others [1,15,/7,8) 9, 14,124,126] 34| 135, 36] towards theiG&ritiths conjecture on entire
holomorphic curves in hypersurfaces of large degree ineptve spaces. Her@ is a non-
reductive complex linear algebraic group which is a semeatiproduciGy, = Uy < C* of its
unipotent radically, by C* acting with weights 12, 3,...,k on the Lie algebra ofJy, while if
p > 1 thenGy = Uy, > GL(p; C) where all the weights of the central one-parameter sulpgrou
C* of GL(p; C) on the Lie algebra of the unipotent radiéal, of Gy, are strictly positive. So
the results above apply to linear actions of the reparamatioin groupGy and its generaliza-
tions Gy, for p > 1). In particular the reparametrization groGp acts fibrewise in a natural
way on the Semple jet bund®(T*X) — X over a complex manifolk of dimensionn with
fibre

k
Jex = P symi(c™)
j=1

at x consisting of thé-jets of holomorphic curves at There is an induced action @ on the
polynomial ringO(Jxx), which can be identified with the algeb&g_,HO(P(Jx), Orae0(1)*™)
of sections of powers of the hyperplane line bundle on thea@ated projective spad®&(Jx ),
and the bundl&, — X of Demailly-Semple invariant jet @ferentials of ordek has fibre aix
given by Ex)x = O(Jk,x)Uk'

The layout of the paper is as follow$l reviews the results of [11] and/[3] on non-reductive
GIT, and§2 considers the case when dld)(= 1 and proves Theorem 0.1 in this casi3
uses these results to prove Theoilen 0.1 and Corollariésnd.®4d. In§4 we observe that
Corollary[0.4 applies to the automorphism groups of all catgsimplicial toric varieties,
while §5 discusses applications to Demailly-Semple jdedentials and their generalisations to
mapsCP — X.

1. CLASSICAL AND NON-REDUCTIVE GEOMETRIC INVARIANT THEORY

Let X be a complex quasi-projective variety andGbe a complex reductive group acting
on X. To apply (classical) geometric invariant theory (GIT) veguire a linearisation of the
action; that is, a line bundle on X and a lift £ of the action ofG to L.

Remark 1.1. UsuallyL is assumed to be ample, and it makes ritedence for classical GIT if
we replacel with L% for any integek > 0, so then we lose little generality in supposing that
for some projective embeddinC P" the action ofG on X extends to an action drf' given by
a representation

p:G - GLN+1),

and taking for. the hyperplane line bundle d.
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Definition 1.2. Let X be a quasi-projective complex variety with an action of a ptaxreduc-
tive groupG and linearisatiory with respect to a line bundle on X. Theny € X is semistable
for this linear action if there exists somme> 0 andf € H°(X, L®™)€ not vanishing ay such
that the open subset

Xi = {xe X| f(x) # 0}
is afine, andy is stableif also the action ofs on X; is closed with all stabilisers finite.

Remark 1.3. This definition comes from [28], although in [28] the termiogy ‘properly sta-
ble’ is used instead of stable. Whehis projective and. is ample andf € HO(X, L)€ for

m > 0, thenX;s is afine if and only if f is nonzero. The reason for introducing the require-
ment thatX; must be &ine in Definition 1.2 above is to ensure thé&f has a quasi-projective
categorical quotienkss — X//G, which restricts to a geometric quotiext — X5/G (see[28]
Theorem 1.10).

From now on in this section we will assume thats projective and. is ample. We have an
induced action o6 on the homogeneous coordinate ring

OL(X) = P HO(X. L
k>0
of X. The subringd, (X)® consisting of the elements 6f_(X) left invariant byG is a finitely
generated graded complex algebra becdtise reductive, and the GIT quotied//G is the
projective variety Prof, (X)®). The subsetXssandXs of X are characterised by the following
properties (see [28, Chapter 2] or [30]).

Proposition 1.4. (Hilbert-Mumford criteria) (i) A point xe X is semistable (respectively stable)
for the action of G on X if and only if for everyg G the point gx is semistable (respectively
stable) for the action of a fixed maximal torus of G.

(i) A point x € X with homogeneous coordinatpg : ... : X,;] in some coordinate system on
P" is semistable (respectively stable) for the action of a makitorus of G acting diagonally
on P" with weightsay, . . ., a,, if and only if the convex hull

Cona; : % # 0}
containsO (respectively contain@ in its interior).

Now letH be any &ine algebraic group, with unipotent radi¢#) acting linearly on a com-

plex projective varietyX with respect to an ample line bundle Then the ring of invariants
éL(X)H — @ HO(X, L®k)H
k>0

is not necessarily finitely generated as a graded complebedg so that PrcﬁiL(X)H) IS not
well-defined as a projective variety, although PEpj(X)") does make sense as a scheme, and
the inclusion oD (X)" in O_(X) gives us a rational map of schengsom X to ProjO.(X)™),
whose image is a constructible subset of RPp{K)") (that is, a finite union of locally closed

subschemes). The action ¢hof the unipotent radical of H is studied in[[11] following
earlier work [12[ 18, 15, 16, 39].
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Definition 1.5. (See[11]§4). Letl = Um0 H°(X, L°™MY and forf € | let X; be theU-invariant
affine open subset of wheref does not vanish, wit®(X;) its coordinate ring. A poink € X
is callednaively semistabld there exists somé < | which does not vanish at and the set of
naively semistable points is denot&tfs = | J;., X¢. Thefinitely generated semistable s#tX
iS X379 = | ¢ 1e X; Where

119 = (f e 1| O(X;)V is finitely generated.
The set oihaively stablgoints of X is X" = [ Jns X¢ Where
I"S={f €179 q: X; — SpecO(X;)V) is a geometric quotieht
and the set ofocally trivial stablepoints isX"s = | ;s X; where
I"s = {fel'9q:X; — SpecO(X;)") is a locally trivial geometric quotieht

Theenveloped quotierdf X559 is g : X819 — q(X5s19), whereq : X55'9 — ProjO,(X)Y) is
the natural morphism of schemes ay{¥ss79) is a dense constructible subset of émveloping
guotient
XeU = | | SpecO(X:)")
felssfg

of Xssf9,

Remark 1.6. Because of Theorem_1]13 below, we also call a priatX stablefor the linear
U-action if x € XS andsemistabléf x € X579, We write X (or XsV) for X"'s, and we writeXss
(or XssY) for Xss19 (cf. [11] 5.3.7).

Remark 1.7. q(X®®) is not necessarily a subvariety ¥f°U (see for example [11§6).
Proposition 1.8. If O, (X)V is finitely generated thern’X is the projective varietProjO (X)V).

Remark 1.9. In [11] 4.2.9 and 4.2.10 it is claimed that the envelopingtegrd XU is a quasi-
projective variety with an ample line bundle; — XU which pulls back to a positive tensor
power ofL under the natural mag : X% — X&»U. The argument given there fails in general
since the morphism¥; — SpecQ(X;)V) for f € 15579 are not necessarily surjective. However
it is still true that the enveloping quotieXt?U has quasi-projective open subvarieties (‘inner
enveloping quotientsX/¢ H) which contain the enveloped quotieg{X*?) and have ample line
bundles pulling back to positive tensor powerd.afnder the natural mag: X% — X&U (see

[3] for details).

Now let G be a complex reductive group with the unipotent gralps a closed subgroup,
and letGxy X denote the quotient @&x X by the free action of) defined byu(g, X) = (gu™?, ux)
for u € U, which is a quasi-projective variety by [32] Theorem 4.19eih there is an induced
G-action onG xy X given by left multiplication ofG on itself. In cases where the actionldf
on X extends to an action @ there is an isomorphism @-varieties

(2) G xy X = (G/U) x X

given by g, X] — (gU, gXx). If U acts linearly onX with respect to a very ample line bundle
and linearisation inducing aU-equivariant embedding of in P", and if G is a subgroup of
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SL(n+ 1;C), then we get a very ampl@-linearisation (by abuse of notation also denoted®y
on G xy X using the inclusions

Gxy X—= GxyP"=(G/U) xP",

and the trivial bundle on the quadifae varietyG/U. We can choose @-equivariant embed-
ding of G/U in an dfine space\™ with a linearG-action to get &-equivariant embedding of
G xy Xin A™x P" and thus irP™ x P" embedded i?"™™" and theG-invariants onG xy X
are given by

(3) B HOG xu X LM = H HO(X, LM = O, (X)".
m>0 m>0

Definition 1.10. (See [11]§5). The sets oMumford stable pointeand Mumford semistable
pointsin X areX™s = i~1((G xy X)%) andX™Mss = i71((G xy X)) wherei : X — G xy X is the
inclusion given byx — [e, x] for e the identity element o. Here G xy X)® and G xy X)®°
are defined as in Definitidn 1.2 for the induced linear actib® on the quasi-projective variety
G xy X. (In fact XM and X™**are equal and are independent of the choic&:o$ee Theorem
[1.13 below). Afinite separating set of invarianfsr the linear action otJ on X is a collection

of invariant sectiongfy, ..., f,} of positive tensor powers df such that, ifx,y are any two
points ofX then f(x) = f(y) for all invariant sectiond of L% and allk > 0 if and only if
fi(x) = fi(y) Yi=1,...,n

If Gis any reductive group containirdy a finite separating s&of invariant sections of positive
tensor powers of is afinite fully separating set of invarianter the linearU-action onX if

(i) for everyx e X™there existd € S with associate-invariantF overG xy X (under the
isomorphism[(B)) such thate (G xy X)r and G xy X)¢ is afine; and

(i) for every x € X5Sthere exists € S such thaix € X; andS is a generating set fa?(X;)V.
(This definition is in fact independent of the choiceGfsee[11] Remark 5.2.3).

Definition 1.11. (See [11]§5). Let X be a quasi-projective variety with a lineldraction with
respect to an ample line bundleon X, and letG be a complex reductive group containidg
as a closed subgroup. @-equivariant projective completidd xy X of G xy X, together with
a G-linearisation with respect to a line bundlevhich restricts to the givel-linearisation on
X, is areductive envelopef the linearU-action onX if every U-invariantf in some finite fully
separating set of invariang&for the U-action onX extends to &-invariant section of a tensor
power ofL overG xy X. If moreover there exists such &for which everyf € S extends to
a G-invariant sectiorF overG xy X such that G xy X)g is dfine, then G xy X, L’) is afine
reductive envelopand ifL is ample (in which cased xy X)g is always &#ine) it is anample
reductive envelopdf every f € S extends to &-invariantF overG xy X which vanishes on
each codimension 1 component of the bounda@ gf; X in G xy X, then a reductive envelope
for the linearU-action onX is called astrongreductive envelope.

Definition 1.12. (See[[11]§5 and [22]§3). Let X be a projective variety with a line&f-action
and a reductive envelofig xy X. The set ofcompletely stable pointsf X with respect to the
reductive envelope is

X5=(joi) (G xy X)
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and the set ofompletely semistable points

XS = (joi) ' Cxu X ),
wherei : X — Gxy Xandj : Gxy X — G xy X are the inclusions, ar@ x X andG xy X
are the stable and semistable sets for the liGeaction onG xy X. In addition we set

XSS = (] oi) G xy X

wherey € G xy X belongs toG xy X (and is said to beaively semistabléor the linear
action ofG) if there exists somen > 0 andf € HO(X, L™ not vanishing ay; thenX"ss = X33
when the reductive envelope is ample, but not in generaheaibe (cf. Remark 1]3).

Theorem 1.13.([11] 5.3.1 and 5.3.5)Let X be a normal projective variety with a linear U-
action, for U a connected unipotent group, and(@txy X, L) be any fine reductive envelope.
Then

XS C XS Xms XmSSC an XSS XSS XnSSC an
The stable setsXX® = XM = XMsSand X'S admit quasi-projective geometric quotients, given
by restrictions of the quotient map=gr o j o i where

T (G Xu X)SS—> G xy X//G

is the classical GIT quotient map for the reductive envelape i, j are as in Definitior_1.12.
The quotient map q restricted to the open subvariéfysan enveloped quotient with:g<®® —
X&U an enveloping quotient, and there is an open subvarig¢tyjJXof G xy X//G which is an
inner enveloping quotient of X by the linear action of U. Mwrer there is an ample line bundle
Ly on X/ U which pulls back to a tensor powef'Lof the line bundle L for some % 0 and
extends to an ample line bundle Gnxy X//G.

If furthermoreG x X is normal and provides a fine strong reductive envelopehfelihear
U-action on X, then X= XS and X5 = X"sS

Thus we have a diagram of quasi-projective varieties
X§ C X8 C Xns C XSS C Xs_s: Xnss

] ) ] ) )
X3/U € XS/U c X"/U c X/U c GxyX//G

where all the inclusions are open and all the vertical mapisi are restrictions of the GIT
quotient mapr : (G xy X)3% — G xy X//G, and each except the last is a restriction of the map
of schemeg) : X" — PI’OJ(OL(X)U)) associated to the mclusmmL(X)U C OL(X) Note here
thatX,U is not always projective, and (even if the ring of |nvar|aﬁ[$X)U is finitely generated
andX/eU = Proj(@L(X)U) is projective) the morphisrK®* — X/°U is not in general surjective.
There always exists an ample, and hence fine, but not netgssaong, reductive envelope
for any linearU-action on a projective variety, at least if we replace the line bundlewith
a suitable positive tensor power of itself, by [11] Propiosit5.2.8. By Theorern 1.13 above a
choice of fine reductive envelojigx X provides a projective completion

X/?U =G Xu X//G
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of the inner enveloping quotiet/? U. This projective completion in general depends on the
choice of reductive envelope, but wh@n(X)U is finitely generated theK U = PrOj(OL(X)U)
is itself projective, and if @ xy X, L) is a fine reductive envelope with respect to a finite fully
separating set of invariang& containing generators «ﬁL(X)U thenX®U = G xy X//G (note
such aG xy X, L) always exists Whe(ﬁL(X)U is finitely generated).

[11] also gives a geometric criteria (Theorem 1.14 below}tie graded algebra of invariants
B0 HA(X, L=V to be finitely generated. A slight modification of this georiwetriteria will
be used in the proof of our results.

Theorem 1.14.([11] 5.3.19) Let X be a nonsingular complex projective variety on which U
acts linearly with respect to an ample line bundle L. Gety X be a nonsingular G-equivariant
completion of Gy X, with a G-linearisation/’ of the G-action on a line bundlée which ex-
tends the given linearisatiafi. Let Dy, ..., D, be the codimensiohcomponents of the bound-
ary of Gxy X inG xy X, and let£}, be the induced G-linearisation orjl= L’[N >'_; D;] when

N is such that NRis Cartier for 1 < j < r. Then the algebra of invariant®, , H(X, L=)Y

is finitely generated if there exists Nuch that, for all N> Ny for which L is defined, [ is
ample and every codimension 1 componeninhe boundary of Gy X in G xy X is unstable
for the G-action with the linearizatiod’y,.

Remark 1.15. Note that there is an error in the proof 6f [11] Theorem 5.3wWRBich should
include as an additional hypothesis that the algebra

A= P HG xu X, (Ly)™)
k>0

is finitely generated, although its corollary [11] 5.3.19c@rect since theréy is assumed
ample forN large enough.

We also have the following result, which allows us to study geometry ofiX *U when
G xy X has a nonsinguld-equivariant completio® xy X.

Proposition 1.16. ([11] 5.3.10). Let G xy X be a nonsingular G-equivariant completion of
G xy X, with a G-linearisationf’ of the G-action on a line bundle’ which extends the given
linearisation£. Let Dy, ..., D, be the codimensioh components of the boundary ofxXg X
in G xy X, and letL}, be the induced G-linearisation on[IN 25:1 Dj] when N is such that
ND; is Cartier forl < j < r. Given a finite fully separating set S of invariants on X,rthe
(G xy X, Ly) is a strong reductive envelope with respect to S for suitabgfeciently large N.

If moreover(G xy X, L’) is an ample (or more generally a fine) reductive envelope weith
spect to S therfG xy X, Ly) is a fine strong reductive envelope with respect to S. In this
situation Theore 1.13 applies, and X X and X = X5,

These results can be generalised to allow us to stixtyvariants for linear algebraic groups
H which are neither unipotent nor reductive [3, 4]. O@any linear algebraic groud is a
semi-direct produdt = H,<~RwhereH, c H is the unipotent radical dfl (its maximal unipo-
tent normal subgroup) ari®l~ H, = H/H, is a reductive subgroup ¢f. WhenH acts linearly
on a projective varietX with respect to an ample line bundlg the naively semistable and
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(finitely generated) semistable s&%s and XSS = X539, enveloped and enveloping quotients
and inner enveloping quotients

g: X% - q(X®) c X/eH C X&H

are defined in[[3] as for the unipotent case in Definifiod 1.8 BRemarkK_1.0. However the
definition of the stable se€® combines the unipotent and reductive cases as follows.

Definition 1.17. LetH be a linear algebraic group acting on an irreducible vaketndL — X
a linearisation for the action. Thatable locuss the open subset

xe = )X
fels
of XS, wherels C | J,.o H(X, L®)H is the subset dfi-invariant sections satisfying the following
conditions:
(1) the open seX; is dfine;
(2) the action oH on X; is closed with all stabilisers finite groups; and
(3) the restriction of théd,-enveloping quotient map

O, © Xt — Spec(8™)))
is a principalH,-bundle for the action ofl, on Xs.
If it is necessary to indicate the grottpwe will write X537 andXss" for XS and XS,

Remark 1.18. This definition of stability extends the definition of statyiin [11] for unipotent
groups, and in the case wherkis reductive, therH, is trivial and the definition reduces to
Mumford’s notion of properly stable points in [28]. Note tha

(i) if Ris a reductive subgroup ¢f then it follows straight from the definition thasR ¢
XsH:

(i) if N is a normal subgroup dfi such that the canonical projectidh, — H,/N, splits,
and if W is anH-invariant open subvariety ofSN with a geometric quotientV/N which is an
H/N-invariant open subvariety o¢SN/N c X/¢ N, whereX/’ N is an inner enveloping quotient
of X by N such that a tensor pow&f™ of L induces a very ample line bundle &%, N and
hence an embedding &/ N in the corresponding projective space with closdfeN, and if
W/N C (X/eN)SHN thenw c XsH.

The following result which we will need is proved in [3] Corl320.

Proposition 1.19. Suppose H is a linear algebraic group, X an irreducible Hiesy and

L — X alinearisation. If the enveloping quotient>d is quasi-compact and complete, then
for suitably divisible integers & 0 the algebra of invariant§p,_, H(X, L®")" is finitely gen-
erated and the enveloping quotien®M is the associated projective variety; moreover the line
bundle I*" induces an ample line bundl?’g‘lT on X&H such that the natural structure map

B HoXx L) - @D HO(XH, Lk

k=0 k=0
is an isomorphism.
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If a linear algebraic groupl is a subgroup of a reductive gro@then there is an induced
right action ofR on G/H, which commutes with the left action @. Similarly if H acts on
a projective varietyX then there is an induced action Gfx R on G xy, X with an induced
G x R-linearisation. The same is true if we replace the requirdrtieatH is a subgroup o6
with the existence of a group homomorphisim— G whose restriction tdd, is injective.

Definition 1.20. A group homomorphism H> G from a linear algebraic group H to a reductive
group G will be called H-faithful if its restriction to the unipotent radical Hof H is injective.

As noted in[4] the proof of [11] Theorem 5.1.18 gives us

Theorem 1.21.Let X be a nonsingular complex projective variety acted om lipear alge-
braic group H = H, < R where H is the unipotent radical of H and let L be a very ample
linearisation of the H action defining an embedding>®". Let H — G be an H-faithful ho-
momorphism into a reductive subgroup GSif(n + 1;C) with respect to an ample line bundle
L. Let L’ be a Gx R-linearisation over a nonsingular projective complet®rxy, X of Gxy, X
extending the Gk R linearisation over Gxy, X induced by L. Let R..., D, be the codimen-
sion one components of the boundary okf@ X in G xy, X, and suppose for all giciently
divisible N that i, = L’[N ZLl D;] is an ample line bundle 06 x, X. Then the algebra of
invariants @, , H(X, L*)" is finitely generated if and only if for all giciently divisible N
any Gx R-invariant section of a positive tensor power gf¥anishes on every codimension one
component [

Remark 1.22. The proof of Theorerm 1.21 tells us that when the hypothedesamal the algebra
of invariants@,, H°(X, L*)" is finitely generated then the enveloping quotient

(4) X@H = Proj@coH’(X, L*)") ~ G xu, X//11 (G x R)
for suficiently divisibleN.

In general even when the algebra of invariaffis_, H(X, L*)" on X is finitely generated
and (3) is true, the morphistd — X #H is not surjective and in order to study the geometry
of X®H by identifying it with G xy, X//1; (G x R) we need information about the boundary

G xpy, X\ G xu, X of G xy, X. If, however, we are lucky enough to findGax R-equivariant
projective completiors xy, X with a linearisatiorL such that for sfiiciently divisibleN the
line bundlely, is ample and the bounda@yxy, X\ G x, X is unstable fot;, then we have a
situation which is almost as well behaved as for reductie@igractions on projective varieties
with ample linearisations, as follows.

Definition 1.23. Let X = X NG xp, X rand X = XN G xp, X where X is embedded
in G xu, X in the obvious way as# [1, X].

Theorem 1.24.([4] Thm 2.9) Let X be a complex projective variety acted on by a linear
algebraic group H= H, =< R where H is the unipotent radical of H and let L be a very ample
linearisation of the H action defining an embeddingcXP". Let H — G be an H-faithful
homomorphism into a reductive subgroup GSif(n + 1;C) with respect to an ample line
bundle L. Let L be a Gx R-linearisation over a projective completi@xy, X of Gxy, X
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extending the &R linearisation over Gey, X induced by L. LetR.. ., D, be the codimension
1 components of the boundary ofiG, X in G xu, X, and suppose that .= L'[N 3_; D] is
an ample line bundle o x4, X for all syficiently divisible N. If for all sfficiently divisible
N any Gx R-invariant section of a positive tensor power @f Lanishes on the boundary of
G Xn, X inG xp, X, then
(1) the algebra of invariantgp, , H°(X, L¥)" is finitely generated;
(2) the enveloping quotientXH = G xu, X//1. (G x R) = Proj@coH(X, L*)") for syfi-
ciently divisible N;
——SSGxR L .
(3) Gxp, X N C G xy, X and therefore the morphism
o X5 5 X»H

is surjective and X¥H is a categorical quotient of %,

(4) if x,y € X33theng(X) = ¢(y) if and only if the closures of the H-orbits of x and y meet
in X5,

(5) ¢ restricts to a geometric quotientt- X5/H C X¢H.

Remark 1.25. As in Propositio L.16 we havws® = XS and XSS = X here. This is a conse-
guence of the following generalisation of Theorlem 1..13.

Theorem 1.26.([11] 5.3.1 and 5.3.5).Let X be a normal projective variety acted on by a
linear algebraic group H= H, < R where H is the unipotent radical of H and let L be a very
ample linearisation of the H action defining an embedding X". Let H - G be an H-
faithful homomorphism into a reductive subgroup GSafn + 1;C) with respect to an ample
line bundle L. Le{G xy X, L) be any fine G« R-equivariant reductive envelope. Then

X§ C Xs C Xss C Xs_s — ans.

The stable sets >and X* admit quasi-projective geometric quotients by the actibhio The
guotient map q restricted to the open subvariety iX an enveloped quotient with :gXs° —
X&#H an enveloping quotient. There is an open subvarigitXof G xy X//(G x R) which is
an inner enveloping quotient of X by the linear action of H. rdtwer there is an ample line
bundle Ly on X/ H which pulls back to a tensor powef!Lof the line bundle L for somex 0
and extends to an ample line bundle®rxy X//(G x R).

If furthermoreG xy X is normal and provides a fine strong xGR-equivariant reductive
envelope, then %= XS and X5 = X"sS

2. ActioNs oF Ct < C*

We will prove Theorern 01 by induction on the dimensiotJofin this section we will study
the case when dinl) = 1 so thatU = C*.

Definition 2.1. Let X be a complex projective variety equipped with a linear acfwith respect

to an ample line bundle) of a semi-direct produdll = C*<C*, where the weight of the induced
C* action on the Lie algebra & = C* is strictly positive. Let be a non-zero element of the
Lie algebra ofU = C* and lets, : H(X,L) — H°(X, L) be the corresponding derivation. We
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say thatsemistability coincides with stability for the linear amti of U if the weight space with
minimum weight-wmi, for the action ofc* on H(X, L) is contained in the imag&(H°(X, L))
of HO(X, L) under the derivatiod;.

Definition 2.2. Let y : U — C* be a character of the semi-direct prodUct C* =< C* acting
linearly onX as above. Suppose thatin < wmini1 < -+ < wWmax are the weights with which
the one-parameter subgro@ < U acts on the fibres of the line bund®o(x)(1) over
points of the connected components of the fixed poinP&et°(X, L)*)¢ for the action ofC* on
P((HO(X, L)*); whenL is very ampleX embeds irfP((H°(X, L)*) and the line bundl& extends
to Op(Hox 1)) (1). Letc be a positive integer such that

)_é = Wmin t €

wheree > 0 is a stfficiently small rational number; we will call rational chararsy /c with this
propertywell adaptedo the linear action of), and we will call the linearisation well adapted if
the trivial character O is well adapted. The linearisatibthe action ofJ on X with respect to
the ample line bundl&®® can be twisted by the characteso that the weights; are replaced
with wjc — x; let L¥° denote this twisted linearisation. Note that the unipoggotupU = C*
is contained in the kernel gf and so the restriction of the linearisation to the actiotJof
unafected by this twisting.

Let X3° denote the stable subsetXffor the linear action of* with respect to the lineari-

min +

sationL}® for any well adapted rational characjgfc. Let

X:’\::]+ = X\U(X\Xm|n+) ﬂu S(i%:

ueU
be the complement of tHe-sweep (or equivalently the-sweep) of the complement a@m,
and letx®Y and XY denote the stable and semistable subsets for the actiBnosfX with

L@C L®C
respect to the IlnearlsatlclrfC LetX?eLﬁcU be the corresponding enveloping quotient. K&
denote the stable subset for the actiotabn X with respect to the linearisatidn

The aim of this section is to prove the following theorem, ethive will use for our inductive
proof of Theoreni QJ1.

Theorem 2.3.Let X be a complex projective variety equipped with a lineziaan (with respect
to an ample line bundle L) of a semi-direct product C*<C*, where the weight of the induced
C* action onthe Lie algebra of & C* is strictly positive. Suppose that the linear qctiorlﬂocbn

X satisfies the condition that ‘semistability coincideswatability’ as above. If : U — C* is

a character oU and c is a sfficiently divisible positive integer such that the rationabcacter
x/c is well adapted for the linear action &f with respect to L, then after twisting this linear
action byy/c we have

(1) theU-invariant open subsetx of X has a geometric quotient: an+ — X;L/U
by the action ofJ; )

(2) this geometric quotient?ﬁ/ﬂ IS a projective variety and the tensor poweilof L
descends to a very ample line bund|gg, on )ﬁ“ /U:

In+
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(3) X2 = x50 = x30

min +’
(4) the geometric quotient¥ /U is the enveloping quotientX e<U;
(5) the algebra ofAinvariant@kZO HO(X, LE’;")U is finitely generated and the enveloping
quotient X ecU = Proj@.oH(X, LEXCK)U) is the associated projective variety;

(6) the tensor power ¥ of L induces a very ample line bundle on an inner enveloping
quotient XU for the action of U on X with &*-equivariant embedding

X/eU — P((H(X, L*)Y)")

as a quasi-projective subvariety, containing the geornefuiotient XY /U as an open
subvariety, with closur&/eU in P((HO(X, L*9)Y)*);

(7) Xﬁ;}ﬂw is a U-invariant open subset of*X and has a geometric quotlentm}{ /U
which is aC*-invariant open subset of X /U and coincides with both the stable and
semistable sets</eU)S¢ = (X/2U)SS® for theC* action with respect to the linearisa-
tion on Op(rogx Lsv) (1) induced by E°, so that the associated GIT quotientXf U
by C* is given by

XU //Ct = (XY ju)/ct = x3Y /0 = Xz,

min+ min+

In order to prove Theorem 2.3, we will first prove the theorartihie case wherg = P(V) and
L = Opv)(1), for a finite dimensiondl -representatiol. This is done by explicit calculation:
we construct a strong ample reductive envelope for the é@ishearisatiorO(c),), and use
the Hilbert-Mumford criteria to compute stability and setability for this reductive envelope.
Through the choice of twist, stability and semistability tbe reductive envelope will turn
out to be equivalent conditions. We can then deduce thattti#esand finitely generated
semistable loci are equal for the linear actiotofvith this linearisation, and that the associated
enveloping quotient is projective. An explicit descrlpmof the stable locus is used to prove
that the enveloping quotient m@pﬁV)SSu — P(V)»U is a geometric quotient for thd-action
on P(V)SsU Theorem 2B will then follow by embedding into a projective space and using
the fact that stability behaves well under closed immesion

2.1. The Case(X, L) = (P(V),0(1)). LetV be a finite-dimensional representation of
U=U¥=uUxc

whereU = C* andC* acts on Lie{J) with weight¢ > 1, and letX = P(V), withU ~ L =
0(1) — P(V) the canonical linearisation. As usual we write pointsP({v) as equivalence
classes\]] of nonzero vectors € V under the scaling action @ onV.

Definition 2.4. Let Vi, be theC*-weight space iV of minimal weightwmin, and letP(V)2

U,0(1)
be the open subset of points flowingR®/nin) under the action df e C*, ast — 0.

Remark 2.5. In this situation the condition that semistability coinesdwith stability given in
Definition[2.1 is equivalent to saying th¥f,, does not contain any fixed points for tiie-
action onV; moreoverxsY = =P(V)? o \ (U B(Vin)-

min +
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We wish to prove the following proposition.

Proposition 2.6. If V,, does not contain any fixed points for tldg-action on V, and the
linearisation is twisted by a well adapted rational charact/c, then

(1) there are equalitie®(V)sY = P(V)ssY = PV)S oy \ (U - B(Viin);

(2) the enveloping quotieniV)» U andP(V)?U are projective varieties, and for suitably
divisible integers r> Othe algebras of invariantéB, _, H(X, L)Y andP, _, H(X, L)V
are finitely generated; and )

(3) the enveloping quotient map(V)$sY — P(V)»U is a geometric quotient for the-
action onP(V)3ssY.

In order to study the linear action &f = U1 onO(1) — P(V) we shall use the following
trick. Consider the surjective homomorphism

ne ORI 0 (1) - (u;td).

We can pull back the linear action bf = Ul to a linear action ofJ?9 viaz,. The (finitely
generated) semistable loci for the linear action&)8f andU4 then coincide, and the same
. . . . [2¢ 04

is true for the enveloping quotients. Moreover the stabté ¥V @) and xs0.0W)
coincide.

Lemma 2.7. XS9"00@y) — xs01.00)0)

Proof. The algebras of invariants for the linear actiah8? ~ O(c)yzy — P(V) andUld ~
0(c), are equal. Let be an invariant section witK; affine. Becausg, : U? — Ul has
finite kernel, the action ofll on X; is closed with all stabilisers finite if and only if the same
is true for the action 08124, and becausg, restricts to identify the unipotent radicals Gf/
andU[24, the natural morphisit; — SpecO(X;)?"") = SpecO(X;)?*") is a principal 019),-
bundle if and only if it is a principal[?1),-bundle. Thus, by Definition 1.17, the stable loci
are equal. O

In order to prove Proposition 2.6 we may therefore work whh tinear actionJ®24 ~
O(¢)1y — P(V), without loss of generality.
Now theU[-representatioV defined byy, admits a decomposition

021 N |
(5) V= (Hc®gsynlc?,
i=1

of UR-modules, where

e C@) js the one dimensional representation ¥ defined by the charact&f?d — C*
of weighta, € Z;

e Synt'C? is the standard irreducible representatiorGof= SL(2, C) of highest weight
i > 0, upon whichJ[24 acts via the surjective homomorphism

A

pe  URD 0B (uit) - (u; th)
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and the identification 0f!? with the Borel subgroup C G of upper triangular matrices
given by
0[2]:C+>“C*_>B, (u;t)|—>((t)tt_u1);
and A A A
e because the action &f? factors throughy, : U9 — U, we havea; = ¢1; mod 2
foreachi=1,...,q.

We wish to produce a strong reductive envelope for the limetionUR1 ~, O(C) 21y —
P(V) twisted by the pullback of/c. Observe thap, : U1 — UFl = B ¢ G restricts to
give the standard inclusion of the unipotent radida: C* = (U%4), of U1 insideG as the
subgroup of strictly upper triangular matrices,gds an U2, -faithful homomorphism, in
the sense of Definition 1.20. The linear action 0f(!), onV extends to a linear action &
by demanding tha® act on SymiC? in the usual manner and trivially @), for eachi.

There is therefore an isomorphism®fx (U1),-spaces (whered?d), = U4 /(ul2d))

G xy P(V) = (G/U) x P(V)

which lifts to an isomorphism of linearisations. A straifgimvard examination of the corre-
spondingG x (U?4),-actions and linearisations 06 (U) x P(V) yields

Lemma 2.8. Let® denote the G< (U[?1),-linearisation onO(1) induced by the actiog of G
on V and the following action ¢fJ[?1), = C*:

(6) t-v=2,(t"z)®s, velV,teC,
v=Yz®s € P, C® @ SynlC?
via (8).

Then the linearisation of & (U27), on (G/U) x (O(c)m)) — (G/U) x P(V) is equal to the
product of the twisted linearisatiofP,iza))® with the Gx (U?1),-action on GU given by left
multiplication by G and right multiplication bgu?1), = C*.

The homomorphistp, embedsU = (U24), into G = SL(2;C) as a Grosshans subgroup,
since there is an isomorphisByU = C? \ {0} given by considering the orbit ¢f) € C? under
the defining representation &. The inclusionC? \ {0} — C? defines a nonsingularftine

completionmaﬁ which contaings/U with codimension 2 complement. We may therefore
construct a strong ample reductive envelope &>aUPd-equivariant nonsingular projective
completion ofG/U by regarding elements @f as column vectors, and adding a hyperplane at
infinity to G/U" = C2: if B2 = {[Vo : Vi : V5] | O # (Vo, V1, V2)' € C3} with the hyperplane at
infinity defined byv, = 0 then the action o6 x (U1), = G x C* onP? = P(C®) is the one
defined by the representation given in block form

1 0
(g,t)|—>( 0 g(re 0) )eGL(B;C), geG,teC,

0t
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where GL(3C) acts onC? by left multiplication. For any integeN > 0, this representation
canonically defines & x (U21),-linearisation or0p2(N) — P2 which restricts to the canonical
linearisation orOg,y — G/U.
Lets : G xy P(V) = (C?\ {0}) x P(V) — P? x P(V) be the induced open immersion and for
N > 0 let
(= Ope(N) ® PY) - P2 x P(V)

equipped with its natural ration@l x (U[249),-linearisation, where th& x (U[249),-linearisation
P2y — P(V) is defined as in Lemnia2.8. Then the triple

(P* x B(V), 5, PY)

defines a strong ample reductive envelope B&¥! ~ O(Q) iy — P(V), whenN > 0 is
suficiently large. Moreover, becaue is a Grosshans subgroup Gf both the algebras of
U-invariants andJ -invariants of any positive tensor power of the linearsad)(c), =y — P(V)
are finitely generate@-algebras, and the enveloping quotients

P(V)eU = (B2 x P(V))/, G, P(V)UPT = (B2 x B(V))/,,(G x (UEY),)

are projective varieties. )

By Theoreni_1.26 the stable log{V)3Y andP(V)sY and finitely generated semi-stable loci
P(V)*sY andP(V)ss for the linearisatior0(c),zy — P(V) may be computed as the completely
stable and completely semistable loci associated tGtheG x (U[Zf])r-linearisatiorﬂ’;\,, using
the Hilbert-Mumford criteria. Note that under the isomadgph (3), the minimalC*-weight for
theUl4-action onV is

Wmin = min{(ai - fli)/z | i=1,.. ,Q}
Let us temporarily call an indexe {0, ..., g} exceptionalf wmin = (g — €1;)/2.

Lemma 2.9. Stability and semistability are equivalent for the lineattian G x (U1), ~
P1, — P2 x P(V). Moreover a point p= ([1 : w; : Wo],[V]) € P2 x P(V) is stable if and only if
p € (C2\ {0}) x P(V) and, when(®) is used to write \= Y,z ® 5 € ), C& ® Synl'C? with
each s # 0, the following two conditions hold:
e there is an exceptional i such that# 0 and s is not divisible by(w;, w,) € C?\ {0};
and
e either there is a non-exceptional i such thattz0, or for each(Wy, W,) € C? \ {0} with
[y : W] # [wi : W,] as points inP! there is an exceptional i such that 2 0 and
S # (\TVl,\TVZ)Ii S Syrﬁ'Cz

Proof of Lemma 219We shall deduce this by using the Hilbert-Mumford critergagaven in

Proposition Ll using the maximal torlis x T, € G x (U2d),, whereT; is the subgroup
of diagonal matrices it andT, = C* = (U24),. The group of characters df, x T, is

identified withZ x Z in the natural way. Introduce the following notation: fot 1,...,qlet

e1=(3).e2=(9) be the standard basis 6f, so that

li | i l |2
€1 €165 6, € SymC
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is a basis off ;-weight vectors in Syt"rcz, and consider the basis
l®e|l’]__Je|J’2, j:o,...,li, i:l,___,q

of weight vectors for th@; x T,-action onV. Without loss of generality, we may apply the
Hilbert-Mumford criteria by using the projective spacedinthichP? x P(V) is embedded via
P, and computing rational weights. The fixed point®fnx P(V) for theT; x T,-action, along
with the corresponding rational weights with respect toeibedding defined g}, are given
in Table1.

Fixed point Rational weight in
(j:O,...,li,i:l,...,q) Hom(r]_XTz,C*)@ZQ:QXQ
(L:0:0L[1®e,&,]) (2 — li, & — 2wmin — 2€)

(0:1:0L[1@e ;') | (2j-li.a - 2wmn — 2¢) + (N, ~¢N)
[0:0:1}[1@€e ;D) | (2] 1lia — 2wmin — 2€) + (-N, ~(N)

TasLe 1. Rational weights of the fixed points ©fx T, ~ P?xP(V) with respect
to the linearisatiorPy.

Consider the rational weight = (2j - |;,a — 2wmin — 2¢) for the fixed point ([1 : O :
OL[l® el{le:‘,;‘]). Note that eithet} is contained in the interior of the cone

C:={(c,c) € Qo0 X Qsp | fC1+C,=0and—¢cy + ¢, > 0},

or ¢ lies outsideC andi, j satisfywmin = (& —£1;)/2 andj € {0, |;}: because & € < 1/2 we see
that
. =-2¢<0 iff j =0andwmin,= (& - li)/2
(2] - | i — 2Wmin — 2
(2) = 1) + (& = 2wmin - 2€) {> 0 otherwise

while
=-2¢<0 Iﬂ:J = Ii andwmin = (a, —fl,)/2

—£0(2j - |, i — 2wmin — 2€){
(2] =1) + (& = 2wmin 6){>0 otherwise

We also claim thad; — 2wnmin—2e > O foralli = 1,...,q. Indeed, suppos& — 2wmin—2¢ < 0 for
somei = 1,...,0. Because & 2¢ < 1 anda; — 2wnmin € Z, this is equivalent t@, — 2wmin < 0.
But 2wnmin < & — £l;, sofl; < a — 2wyin < 0. Because > 0 we must have, = 0, and by
examining the above possible cases for the valug2if— |;) + (& — 2wmin — 2¢) we see that
wmin = &/2 andi is exceptional. This implies there is a li@&m) = Cln) @ SynPC? C Viin
fixed by U, which contradicts the assumption th4t, does not contain a point fixed by the
U-action. This verifies the claim.

We thus see that for fliciently largeN > 0 the weights for the rationdl, x T,-linearisation
P, — P2 x P(V) are arranged in the fashion of Figlife 1. (Notice that thg emights that lie
outside the chambers are the extremal weights for rows sjmoreding to exceptional indices.
This makes calculating semistability and stability for tbeusT; x T, easy.) In particular, the
weight polytopeA, € Hom (T X T,, C*) ® Q for a pointp = ([wo : Wy : W], [V]) € P2 x P(V)
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Q= Hom(T,C") &z Q

)

Q= Hom(T,C) ez Q

Ficure 1. Example of distribution of rational weights f& x T, ~ Py, — P2 X P(V).

contains the origin precisely when the interigydoes and so semistability and stability for the
rational linearisatiof; x T, ~ P}, — P? x P(V) coincide. Using the isomorphisiil (5), write

V= Ziqzlzi ®S, Z¢€ C(ai), 0+ S = lei:()vi,jeilelzi’i_j, Vij € C.
Then one finds thap is T; x T,.-unstableprecisely wherp ¢ (C2 \ {0}) x P(V) (i.e. wo = 0 or
w; = W, = 0) or else by satisfying one of the following criteria, sjhito three cases:
Casewgww, # 0:
0¢ A, < Eithervi; #0 = (i exceptional ang = 0),
orv,j #0 = (i exceptional ang = [;).
Casewgw; # 0, w, = O:

0¢ A, < Eitheri exceptional= vig =0,
orvi; # 0 = (i exceptional and = 0).
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Casewgw, # 0, w; = O:

0¢ A, < Eitheri exceptional= v;, =0,
orvi; # 0 = (i exceptional ang = I;).

By the Hilbert-Mumford criteria, the poinp is (semi)stable for th& x (U121),-linearisation
if and only if (g,t) - p is T; x T,-(semi)stable for eachg(t) € G x (U4),. Thus stability
and semistability are equivalent f@& x (U21), ~ P, — P2 x P(V), and becaus& acts
transitively on pairs of distinct points iPt it follows thatp € P2 xP(V) is stable precisely when
p € (C?\ {0}) x P(V) and the two conditions in the statement of Lemima 2.9 ardladfi O

We are now in a position to complete the proof of Propositigh 2emmd 2.0 tells us that
for the linearisatiorPy we have

(P? x P(V))S"W = (P? x P(V))SSW) C (C2?\ {0}) x P(V) = G xy P(V),

so we have
G xy (B(V)?) = G xu (P(V)™) = (P? x P(V))*¢W),
whereP(V)® andP(V)S®are the completely stable and completely semistable loespgectively,
for the reductive envelop@t x P(V), 8, Py). The GIT quotient maph@ x P(V))stW — (P2 x
P(V)) /¢, (Gx(URT),) is a geometric quotient with the inclusiBae : P(V)® < (P2xP(V))ssW
inducing an isomorphism
P(V)%/ 0B = (G xy (B(V)))/(G x (UPD),) = (B? x B(V))*™W /(G x (02),).
Becausel? x P(V), 3, P}) is strong, by Theoreim 1.26, Theorém1.24 and Propositioé we
have
(V)R = BV)® = B(V)™ = B(V)*0™,

and

(P? x B(V)) [, (G x (URT)) = P(V) 2UB]
while the enveloping quotient map

P(V)*SO = p(v)sO > (V) 20121

is a geometric quotient for tHe[2-action onP(V)SSoW] onto a projective variety.
Proposition 2.6(2) and3) now follow, and to complete thegbof the proposition it remains
to show that

PV)*™ = BOV)J gy \ (U - B(Vini).

Recall thatP(V)sY" = P(V)S is equal to the intersection &{V) with (P2 x P(V))S¢W) under the
inclusion

P(V) = P2 xP(V), [V~ ([1:1:0][v]).
According to Lemm&2]9 we therefore hawg £ P(V)sV') if and only if, when one uses
@) towritev = ¥,z ® 5 € D, C® @ Synl'C2 with eachs # 0, the following two conditions
are satisfied:

e there is an exceptionakuch thatz # 0 ands is not divisible by (10) € C?; and
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e either there is a non-exceptioniabuch thatz # 0, or for each \f, w,) € C? \ {0}
with [wy : w,] # [1 : 0] as points inP! there is an exceptionalsuch thatz, # 0 and
s # (W, Wy)' € SymliC2.
We can interpret each of these conditions geometricalliglimvs. Under the isomorphism of
vector spacey = EBq C("’“) ® Synl'C? the weight vectors for the inducett C OV] action on
V take the form ]xae’llez‘I , where 1< i < gand 0< j < I;, with the weight of 13 ] eziI equal
to (& — ¢1; + 2])/2 € Z. Moreover, the weight spadé,;, of minimal WEIghtwmm IS spanned
by all 1® %,. with i an exceptional index, and thé&-sweepU - Vy,in Of Viin IS contained in the

Ull-subspace
P c®esymcicv.

i exceptional
Now, if v = 3}z ® s with eachs # 0O, then the existence of an exceptionalith z # 0 and
s not divisible by (10) is equivalent to lim,ot - [V] € P(Vmin) (Where we takeé € C* c Ul
in the limit). So the first of the above conditions is equival® requiring thaty] IP(V)U o’
Now consider the second condition. The existence of a noegionali such thatz # 0
is equivalent tov ¢ B, xcepionaC® ® SynlC?, which itself implies §] ¢ U - P(Vimin). ON
the other hand, because of the transitivity of thection onC = P!\ {[1 : 0]} and the fact
thatVimin is spanned by ® €', with i exceptional, we see tha][€ U - P(Vmin) if and only if
ve P, excemional@““@SyniiCZ and there is somev, W,) € C?\ {0} with [wy : wy] # [1: 0] € P*
such thats = (W, w,)" € Synl C? for all exceptional. Thus, the second condition is equivalent
to demanding\] ¢ U - P(Vpin). It follows that

BV)**" = BV){ 50y \ (U - B(Vini),

as required.
This completes the proof of Propositibn2.6, and of Thedredir2 the special case when
(X, 1) = (B(V),0(1)).

2.2. Proof of Theorem[2.3 for general(X, L). Suppose now thdt — X is a very ample line
bundle over an irreducible projective variety equippechvétU-linearisation, wherdJ is a
positive extension of) = C*, letV = H(X, L)* and lety : X — P(V) be the canonical closed
immersion. Letwnin be the minimal weight for the induced*-action onV and suppose the
associated weight spat&,, does not contain any fixed points for thleaction onV. Finally,
let y/c be a well adapted rational character.

By Propositio{ 2.6 the twisted linearisatith ~ Oz)(1), — P(V) has an enveloping
guotient

q: P(V)*Y = P(V)3Y - P(V) 0

which is a geometric quotient for thé-action onP(V)SSo, and the quotiene(V) O is
a projective variety. Furthermore,

P(V)SU P(V)U 0(1) \ (U ’ P(Vmin)),
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from which it follows that )
YRV = X3\ (U - Zg).

ThusxfiJ N (U -Zy ) is an open subset o) whose image under the enveloping quotient

q: xssU 5 xoU
is a geometric quotient for thé-action onXS .\ (U -Zy) that embeds naturally as a closed
subvariety ofP(V)39/0 = B(V) @, U. Henceq(X3  \ (U - Zg))) is itself a projective

variety. In particular it is complete, and sinkeqwU is separated over Spécit follows that
the inclusiorq(xg A\ (U-Z5,)) — XewU is aclosed map [37, Tag 01WO0]. On the other hand,

because is irreducibleq(xg N (U -Z5,.)) is adense open subset¥®U, hence
X3\ (U -Zg,)) = Xed.

In particularXeA is a projective variety, and TheorémR.3 now follows from ditee{ 1.26, The-
orem[1.2#4 and Proposition 1119, together with the case wKdn) (= (P(V), Og)(1)) already
proved.

3. AcTIONS OF C*-EXTENSIONS OF UNIPOTENT GROUPS

Now letU be any graded unipotent group; thatlsis a unipotent group with a one-parameter
group of automorphisms : C* — Aut(U) such that the weights of the inducéd action on
the Lie algebrai of U are all strictly positive. Then we can form the semidirectdarct

U=C'xU
given byC* x U with group multiplication
(21, U1).(22, Up) = (2122, (A(Z,") (Un)) ).

Definition 3.1. Lety : U — C* be a character dfl. Note that its kernel must contait; we

will identify such characterg with integers so that the integer 1 corresponds to the cterac
which fits into the exact sequentg — U — U-cC - {1}. Suppose thabyin < Wmins1 <

.-+ < wmax are the weights with which the one-parameter subg@ug U acts on the fibres

of the line bundleOpox 1))(1) over points of the connected components of the fixed point
setP((HO(X, L))® for the action ofC* on P((H°(X, L)*); whenL is very ampleX embeds in
P((H°(X, L)*) and the line bundlé& extends t@xrox 1)) (1). We will assume that there exist at
least two distinct such weights since otherwise the actids on X is trivial. Letc be a positive
integer such that

— = Wmin + €

wheree > 0 is a stfficiently small rational number; we will call rational chararsy /c with this
propertywell adaptedo the linear action of), and we will call the linearisation well adapted if
the trivial character O is well adapted. The linearisatibthe action ofJ on X with respect to
the ample line bundl&®® can be twisted by the characteso that the weighte; are replaced
with wjc - y; let L7 denote this twisted linearisation.
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Let X" denote the stable subsetofor the linear action of* with respect to the linearisa-
tion L7° for any well adapted rational characjgic; more precisely by VGIT (variation of GIT)
[10, 38] if L is very ample we can take any rational charagtersuch thatuyin < x/C < Wmins1
here. Let

Xame = X\ O\ XEE) = (X,

ueU
be the complement of tHa-sweep (or equivalently thd-sweep) of the complement a@m,
and IetXf’;i and XESCU denote the stable and semistable subsets for the actignoof X with

respect to the IlnearlsaudlfC LetXReL;acU be the corresponding enveloping quotient.

Recall that the main theorem of this paper concerns a liretmeofU on a projective variety
X which is well adapted in the sense above and satisfies anadditondition to which we
will refer as the condition that ‘semistability coincideghvstability’.

Definition 3.2. Any element¢ of the Lie algebra ofJ defines a derivatiod; : H(X,L) —
HO(X, L). We say thasemistability coincides with stability for the linear amtiofU if whenever
U’ is a subgroup oU normalised byC* andé belongs to the Lie algebra &f but not the Lie
algebra ofU’ and¢ is a weight vector for the action @f*, then the weight space with weight
—wmin for the action ofC* on HO(X, L) is contained in the imagé(H°(X, L)V") of HO(X, L)V’
under the derivation.

We will say that the linear action df on X is very well adaptedf it is well adapted and
semistability coincides with stability in this sense.

Lemma 3.3. Suppose that a linear action bfon a projective variety X with respect to an ample
line bundle L satisfies the condition that semistabilityagstability. If U. is a subgroup of
U which is normal inU andU. = C* x U, is the subgroup of) generated by Uand the
one-parameter subgrou, then

(1) the linear action ofJ on X with respect to any positive tensor powér of L satisfies
the condition that semistability equals stability;

(2) the restriction toUT of the linear action ofJ on X with respect to any positive tensor
power L®™ of L satisfies the condition that semistability equals siighi

(3) if c; is a syficiently divisible positive integer then the induced linaation ofO/UT on
the closureX/eU; in P((HO(X, L*%)Y%)*) of an inner enveloping quotient/XU- for the
action of U. on X satisfies the condition that semistability equals $itghwith respect
to the ample line bundle determined b¥f L

Proof: (1) Suppose thdl’ is a subgroup ot normalised byC* and that aC*-weight vector¢
with weighta belongs to the Lie algebra &f but not the Lie algebra dfi’, with corresponding
derivations; = § : H°(X,L) — HO(X,L). By abuse of notation lef also denote the induced
derivation onH®(X, L®™). As X is C*-invariant, the minimum weight’." with which the one-
parameter subgrou@* < U acts on the fibres of the line bundi® 1o(x Lem+ (1) over points
of the connected components of the fixed pointB€H(X, L*™)*)* for the action ofC* on
P((HO(X, L®™)*) is Mwmin. Suppose thas € HO(X, L*¢)" is a weight vector with weightt ™
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for the action ofC*. We want to show that there is some sect®re HO(X, L*™Y" such that
§(s) = s. Sincew' " = Mwmin We can writes as a linear combination of monomiads: - - sy

wheres; € HO(X, L) is a weight vector with weighb,i, for the C* action, which implies that
5(sj) =0forj=1,...,m Asthelinear action afl on X with respect td_ satisfies the condition

that semistability equals stability, theregse H°(X, L)Y’ such tha®(s;) = s;. It follows that
(S + Sm) = St Sm

wheres,s; - - - sy € HO(X, L®™"" as required.

(2) By (1) we can assume thai= 1 and then this follows straight from the definition of well
adaptedness (Definition 3.2).

(3) A subgroup oJ/U; normalised byC* has the formJ’/U; whereU’ is a subgroup ot
containingU; and normalised b¢*. A weight vector in the Lie algebra &/U; which does
not lie in the Lie algebra o)’ /U: can be represented by a weight vectan the Lie algebra of
U not lying in the Lie algebra of)’, and the corresponding derivation Bf3(X, L%V is the
restriction of the derivation ohl®(X, L®%sseer) determined by, so (3) follows from (1). O

Our aim is to prove the following theorem, from which Theoi@di and Corollary Q14 will
follow.

Theorem 3.4.Let X be a complex projective variety equipped with a linezican (with respect
to an ample line bundle L) of a unipotent group U with a onegmaeter group of automor-
phisms such that the weights of the indu€daction on the Lie algebra of U are all strictly
positive. Suppose that the linear action of U on X extendslitwear action of the semi-direct
productU = C* < U. Suppose also that the linear actionldfon X satisfies the condition that
‘semistability coincides with stability’ as above.(f: U — C* is a character ofJ and c is a
syficiently divisible positive integer such that the rationhbcactery/c is well adapted for the
linear action ofU with respect to L, then after twisting this linear action pjc we have

(1) theU-invariant open subset¥ _of X has a geometric quotient: X3 ~— X3V /0
by the action ofJ;

(2) this geometric quotient%&/ﬂ is a projective variety and the tensor poweilof L
descends to an ample line bundlgd, on X3° /U;
(3) XS,O — XSSO — XS,O .

Lge L min +’ R
(4) the geometric quotientfgfw/u is the enveloping quotientX U ;
(5) the algebra ofAinvariant@kZO HO(X, L‘ik’;")Lj is finitely generated and the enveloping
quotient X s«<U = Proj@coH’(X, LEXCK)U) is the associated projective variety.

Remark 3.5. Note that, for any positive integer, Theoreni.34 holds for a linear actionldfon

X with respect to an ample line bundlef it holds for the induced linearisation of the action of

U with respect to the line bundle®™. To see this, we use Lemmal.3 and observe that almost all
the ingredients of the theorem are unchanged whismeplaced with.*™. The only ingredients
over which we still need to take care are the concept of welpsetiness and the definition of

XY which both depend on the weights of the actiorCofon H°(X, L). However sinceX is

min +?
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C*-invariant the minimum weight'"" with which the one-parameter subgroGp < U acts

on the fibres of the line bundi@po(x L<m)(1) over points of the connected components of
the fixed point seP((H°(X, L®™)*)¢ for the action ofC* on P((H°(X, L") is Mwmin, and by
variation of GIT for the reductive group* we know that ifwmin < x/C < wmins+1 then the stable
setX®" for the linear action of* with respect to the linearisatidif® is the same as the stable

set for the linear action of* with respect to the linearisatioh{?)*™ = L&™. SoX*_ . and
X8V = X\ U(X\ X% ) are unchanged by replacihgwith L®™. Finally

min + min +

Y/C=wmn+e€e iff My/C=Mwmin+ Me=w:, +Me

min

where (_@fk em — Lﬁ%“(’“ = (L®m)§’§; for anyk > 0. Thusy/c is well adapted for the linear action

of U with respect td_ if and only if my/c is well adapted for the linear action bfwith respect
to L*™. Note however that it is not always true that

. L@m L®m
Wmin <X/C < Wmin+1 I Wi < IT])(/C < Wpin+1

since in generab'’ . < Mwmins1 althoughw': = Mwmin.

min+1 min

Proof of Theorem[3.4: We will use induction on the dimension &f to prove a slightly
stronger result including

(6) the tensor powdr®® of L induces a very ample line bundle on an inner enveloping gobti
X/eU for the action ofU on X with a C*-equivariant embedding

X/eU — P((HO(X, L))"

as a quasi-projective subvariety, containing the geomgtrotientXxs" /U as an open subvari-
ety, with closureX/e U in P((H(X, L*%)V)"), and )
(7) XY is aU-invariant open subset 0fsY and has a geometric quotiext /U which
is aC*-invariant open subset of5Y /U and coincides with both the stable and semistable sets
(X/eU)sE = (X/2U)ss™ for theC* action with respect to the linearisation G o ey (1)
induced byL?*, so that the associated GIT quotient
XU/ = (X320 JU)/C = X352 /U = XU,

min + min +

When dim{U) = 1 so thatU = C*, this extended version of TheorémI3.4 including (6) and
(7) follows immediately from Theorem 2.3.

Now suppose that di{) > 1 and that the extended result is true for all strictly srmalle
values of dimy). We can assume without loss of generality tbais nontrivial. The centre
of U is then nontrivial and isomorphic to a product of copiestsfon which C* acts with
positive weights. S& has a normal subgroug, which is central inJ and normal inJ and
is isomorphic toC*, such that the given one-parameter graifp< U of automorphisms of
U preserved)y and acts on the Lie algebra bfy with positive weight. By induction on the
dimension olU, we can now find a subgrougp. of U which is normal inJ and such thalt)/U;
is one-dimensional and so isomorphic@d, while O/UT is a semidirect product dfi/U; by
C* whereC* acts on the Lie algebra &f/U, with strictly positive weight. Let); = C* = U, be
the subgroup of) generated byJ; and the one-parameter subgrdtip
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By Lemmal3.8 the linear action dfh on X satisfies the condition that semistability is the
same as stability. Thus by induction on the dimensiod @fe can assume that, for afBaiently
divisible positive integec;,

(i) the U;-invariant open subs
the action ofU;;

(i) this geometric quotienX

5,le
in+

of X has a geometric quotient: x3Ur _, x3Ys /U by

min+ min+

m.n+/UT is a projective variety and the tensor powef' of L

descends to an ample line bundg ., on X2 /0

(iii) the tensor poweL*“ of L mduces a very ample line bundle on an inner enveloping gobti
XU, for the action olJ; on X with aC*-equivariant embeddingeU, — P((H°(X, L**))*) as
a quasi-projective subvariety, containing the geometrimtigntXsY: /U. as an open subvariety,
with cIosureX/eUT in P((HO(X, L®)Y1)), and

(iv) X7 is aU;-invariant open subset €S+ and has a geometric quotle)@m/UT which

is a C*-invariant open subset 0fsY+/U; and, if the rational character/c; is well adapted

for the linear action ofJ; with respect td_, coincides with both the stable and semistable sets
(X/eU:)3% = (X/eUy)*s® for theC* action with respect to the linearisation 0.  =viy+ (1)
induced bnyfC*, so that the associated GIT quotient

X U-//C = (X397 JUy)/C = X3 /0, = Xe @cTur

min+ min+

Note thatxrf;ffw is a U-invariant open subset o{;m We have an induced linear action
of U/U; = C* = C* on P((HO(X, L®%)U*)*) which restricts to a linear action o/ U, and to
the induced linear action of the open subXQL/Ur of X3 /U; = (X/eU;)S®. We have

min +
X3V = M X35 so that

min+ min+

X0 /U= (1) uOG /U = (1) uRUN = (KU

uel/U; uel/U;

By Lemma[3.B we can apply Theordm12.3 to the actiorJgt). on the closureX/; U; in
P((HO(X L®e)Y1)*) of the inner enveloping quotiedt/e U; for the action ofU; on X. It follows

thatX30 /U, = (X/oUr)Y"" has a geometric quotient
(Xm|n+/UT)/(O/UT)

which is then a geometric quotient for the actionlbfon Xﬁ#H Furthermore by Theorem

[2.3 this geometric quotlenKﬁln+/UT)/(U/UT) xSV /U is a projective variety and for a

min+

suficiently divisible multlplec of c¢; the tensor powek®® of L descends to a very ample line
bundle L(CU) on Xmm/U; in addition if y/c = wmin + € Wheree > 0 is suficiently small
then X3V /U; is the stable set for the /U;-action onX/. U. with respect to the linearisation

min+

induced byL®*¢ and twisted by the rational characjefc, so

sU sU
Xm|n+ = x|_®C



GEOMETRIC INVARIANT THEORY FOR GRADED UNIPOTENT GROUPS ANBPPLICATIONS 29

by Remark1.T18(ii).
Conversely ife < wmin+1 — Wmin thenxsgﬂ is aU-invariant subset ok>~ = Xfofi by Remark
[1.18(i), so
X (uxs, =X,

ueU

min+"

and hence(f;i xsU

J
in+

Since the geometric quotieXf, /0 = XL®C/U is a projective variety with a very ample line

bundleL g, induced by the tensor powef* of L, it follows from Propositiof 1.19 tha(Lm =

x5 that this geometric quotient coincides with the envelgpquotlentxzeLmU and thatifcis

L@C 1

replaced with a sfticiently divisible multiple then the algebra of invariai$, ., H(X, L®°" 0

is finitely generated and the enveloping quotMra{Lch =~ Proj@wsoH(X, L®X°")U) is the asso-
ciated projective variety. A

It also follows by induction after applying Theorém12.3 te #iction ofU /U on the closure
X/eUs in P((HO(X, L®%)Y1)*) of the inner enveloping quotient/? U; for the action ofU; on
X, that after replacing with a suficiently divisible multiple if necessary, we can assume that
there is an inner enveloping quotiexife U for the linear action otJ on X with respect to the
linearisationL¥° obtained by considering the induced action of the subgtip; of U/U; on
X/eU:, and that the tensor pow&f* of L induces a very ample line bundle ofj¢ U so that
there is aC*-equivariant embedding

X/eU — P((HO(X, L*)"))

of X/¢U as a quasi-projective subvariety, containing the geomqtrbtientXSU/U as an open
subvariety, with closur&/; U in P((HO(X L*)Y)*), such thai)(f;“ﬁ’]+ is aU-invariant open subset
of X3V and has a geometric quotiexit’ . /U which is aC*-invariant open subset &V /U and

coincides with both the stable and semistable 9¢fsl{)s¢ = (X/0U)%s® for the C* action
with respect to the linearisation @ po(x vy (1) induced byL¥*. It then follows that the
associated GIT quotient

XjeUjjcr = (X

and this completes the inductive proof. O

JUy/cr = x39 /0 = X&pecU

min + min +

We have now proved Theordm D.1 and Corollary 0.3, which ¥ollomediately from Theo-
rem[3.4. Corollary 0]4 follows directly as well, since if anaplex linear algebraic groug with
unipotent radicall acts on a complex algebfain such a way that the algebra Gfinvariants
AV is finitely generated, then there is an induced actioAbnf the reductive grouR = H/U,
and the algebra dfl-invariants

H — (AU)R
is finitely generated sincR is reductive. In the situation of Corollafy 0.4 whénis the al-
gbra®soHO(X, fo‘:k then the associated projective variety is the envelopiraigot X ?H, and
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this enveloping quotient is the GIT quotient of the envetgpguotientX »U by the reductive
subgroup ofR which is its intersection with the kernel of the charagtemith respect to the
induced linearisation. The result follows from combininkyebreni 3.4 with classical GIT for
the action of this reductive subgroup Rf

4. AUTOMORPHISM GROUPS OF TORIC VARIETIES

In this section we will observe that ¥ is a complete simplicial toric variety then its au-
tomorphism groupAut(Y) satisfies the conditions of Corollary 0.4, so that everyl wdéapted
linear action ofAut(Y) on a projective varietX with respect to an ample line bundle for which
semistability coincides with stability has finitely gente@ invariants and its enveloping quo-
tient is a geometric quotient &€=,

For this we use the description 8ut(Y) given in [6]. LetY be a complete simplicial toric
variety overC of dimensiom, and letS be its homogeneous coordinate ring in the sensel of [6].
Thus

S =C[x, :peAQ)]

is a polynomial ring ind = |A(1)| variablesx,, one for each one-dimensional cqmen the fan
A determining the toric variety. The homogeneous coordinate rigs graded by setting the
degree of a monomidl], X to be the class of the corresponding Weil divi§tyra,D, in the
Chow groupA,_1(Y), giving us the decomposition

s= P s.
@eAn_1(Y)
whereS, is spanned by the monomials of degteel'hen we have
S.=S,®S,

whereS,, is spanned by the, of degreex andS,, is spanned by the remaining monomials in
S., each being a product of at least two variables.

Then by [6] Theorem 4.2 and Proposition 4834t(Y) is an dfine algebraic group fitting into
an exact sequence

1 — Homz(An1(Y), C*) = AULY) - Aut(Y) - 1

with Hom;(A,_1(Y), C*) isomorphic to a product of a finite group and a torGs)¢", and the
identity componen®ut (Y) of Aut(Y) satisfies

AUL(Y) = U =R
for

ﬁg[]eusg
and the unipotent radicél of KJtO(Y) is given by

U=1+N
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whereN is the ideal
N = @ Hom(S,, S;)

in End(S). The reductive groug = HQ GL(S ) acts in the obvious way 08 by identifyingS
with the symmetric algebra (@ S,,, sothat € Racts on Hom(S,, S, for eacha € A, 1(Y),
and thus onV, via pre-composition with the action ofon S, and post-composition with the

induced action of 1 on
+ € D SYM (D S.)

=2
It follows that if we embed™* in R =[], GL(S,) via

t (tlidg o

where id; is the identity in GLE,), then the weights of the action 6f on the Lie algebraV
of U are all of the form _
tstit

for somej > 2, so thatj — 1 > 0. Thus we obtain

Lemma 4.1.1f Y is a complete simplicial toric variety then AM) is of the form
Aut(Y) = U xR

where U is unipotent and R is reductive, and R contains a @rarpeter subgrou@* < R such
that the action ofC* on the Lie algebra of U induced by its conjugation action on &s lall
weights strictly positive.

As an immediate consequence of this lemma and Cordllaty 6.Have

Corollary 4.2. Any well adapted linear action of B Aut(Y) on a projective variety X with
respect to an ample line bundle L, for which semistabilityhcmles with stability for the ac-
tion of its unipotent radical U extended by the central oaegoeter subgroup of A(N)/U
described above, has finitely generated invariants whenrepkaced by a tensor power*t
for a syficiently divisible positive integer c. Furthermore its eloggng quotient X?H is the
associated projective variety and is a categorical qudt@nX®® by the action of H, while the
canonical morphismg : X% — X&H is surjective withp(x) = ¢(y) if and only if the closures of
the H-orbits of x and y meet insX

5. FET DIFFERENTIALS AND GENERALISED DEMAILLY—SEMPLE JET BUNDLES

Our remaining aim is to apply our results to a family of exa@sphvolving non-reductive
reparametrisation groups which arise in singularity tiiesord the study of jets of curves. We
borrow notation from([7].

Let X be a complexi-dimensional manifold. Green and @iths in [14] introduced a bundle
J« — X, the bundle ok-jets of germs of parametrised curvesinthat is, the fibre ovex € X
is the set of equivalence classes of holomorphic nfap$W, 0) — (X, X) whereW is an open
neighbourhood of 0 if€, with the equivalence relatioh ~ g if and only if the jth derivatives
f((0) = g(0) are equal for & j < k. If we choose local holomorphic coordinates (. ., z,)
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on an open neighbourho@ c X aroundx, the elements of the fibrd « are represented by the
Taylor expansions

t2

f(®) = f(0) +tF(0) + 5 ") +... + lt(—klf(k>(0) + O(tk+h)

up to orderk att = 0 of C"-valued holomorphic maps
f=(f,f,...,f):(C,0) - (C"X).
In these coordinates we have
Jox = {(F0). ... 190)/k)} = ("),

which we identify withC"™ . Note, however, thafl is not a vector bundle oveX, since the
transition functions are polynomial, but not in generagin
Let Gy be the group ok-jets of biholomorphisms

(C,0) - (C,0);
that is, thek-jets at the origin of local reparametrisations
te o) = at+aot’ + ...+t a1 €Cay,...,a€C,

in which the composition law is taken modulo terthgor j > k. This group acts fibrewise on
Ji by substitution. A short computation shows that the actiothe fibre is linear:

f”(0
fop(t) = f(0)- (ast + ant? + ... + art*) + 5 )'(alt+azt2+...+aktk)2+,,,
10 '
k|(0) (aat + aot? + ... + ayt)* (modulotth)

so the linear action of on thek-jet (f/(0),..., f®(0)/k!) is given by the following matrix
multiplication:

a1 a2 as tee (0474
0 ai 2010 -+ 1@t ...+ o1
(7 (f(0), f7(0)/2,...,f®O)ykH| 0 0O % .- 32k o+ ...
0 O o .- a‘i
with (i, j)th entry
Z As, - .- Ay
S1+...+§=]

fori, j <k
There is an exact sequence of groups:

0-Uy—>Gy—=C" -0,
whereGy — C* is the morphisny — ¢’(0) = @, in the notation used above, and
Gk = Uk < C*
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is a semi-direct product dfy by C*. With the above identificationC* is the subgroup of
diagonal matrices satisfying, = ... = o = 0 andUy is the unipotent radical oFy, i.e. the
subgroup of matrices witlhi; = 1. The action oft € C* onk-jets is described by

A-(£(0), £(0), ..., f%9(0)) = (A/(0), 2£"(0), ... ., A*F©(0)).

Let&y ,, denote the vector space qf polynomi@@iy, up, . . ., Uy), of weighted degrem, with
respect to thi€* action, wheray, = f®(0); that is, such that

Q(Auy, 22Uy, . .., AXU) = AMQ(Uy, Uy, . . ., Uy).
Elements of5;  have the form

Quy, Uy, ..., W) = Z ustug? .Uk,
|aq|+2|ag|+...+Klak|=m
whereay, ay, . . ., ax are multi-indices of length.

&R - can be identified with the fibre of the vector bunég® — X introduced by Green and
Griffiths in [14], whose fibres consist of polynomials on the fibreg.mf weighted degreen
with respect to the fibrewisé* action onJ.

The action ofGy naturally induces an action on the vector space

P =P & =00
m>0

of polynomial functions onJ . Following Demailly ([7]), we defineéﬂ’m C &, to be the
vector space obl-invariant polynomials of weighted degregi.e. those which satisfy

Qf o). (fog),....(Fo)) =g (O Q. f",..., f¥).
Thus& = P,.080m = O()™ consists of the polynomials functions d, which are
invariant under the induced action Gk onO(Jx). The corresponding bundle of invariants is
the Demailly-Semple bundle of algebra? = &mEy,, C ®nESS with fibres&l = P, ., Er, =
O(Jix)"x.

This bundle of graded algebr&s = @nE; has been an important object of study for a
long time. The invariant jet dlierentials play a crucial role in the strategy developed lge@y
Griffiths, Bloch, Ahlfors, Demailly, Siu and others to prove Koaslyi's 1970 hyperbolicity
conjecturel[l, 5,7,18,9, 14, 24,126,/ 34 35| 36].

We can now apply Theorem 0.1, Corollaryl0.2 and Rerhark O0.Bwéat action ofGy on the
projective variety associated th. In this case we can also apply the results of [4] siGge
is a subgroup of Gli; C) which is ‘generated along the first row’ in the sense of [4id @he
action ofGy extends to GLK; C).

We can also consider a generalised version of the Demadligge jet diferentials to which
the results of [4] do not apply. Instead of germs of holomarpmapsC — X, we now consider
higher dimensional holomorphic objectsXn and therefore we fix a parameteklp < n, and
study germs of holomorphic mag¥ — X.

Again we fix the degrek of these maps, and introduce the bunijlg — X of k-jets of germs
of holomorphic map€P — X. With respect to local holomorphic coordinates nea X the
fibre overx is identified with the set of equivalence classes of holom@rmapsf : (CP,0) —
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(C", x), with the equivalence relatioh ~ g if and only if all derivativesf()(0) = g)(0) are
equal for 0< j < k. Equivalently the elements of the fibdg, x are the Taylor expansions
2 k
f(U) = x+ uf’(0) + % F/0) + ... + %f(k)(O) + O(ufY)
aroundu = 0 up to ordek of C"-valued maps
f=(f, ..., 1) (CP,0) > (C", X).
Here _ _
f0(0) € Hom (SymCP,Cc"
so that in these coordinates the fibre is
Jepx = {(F0). ... 19(Q)/k)} = cn(5)-

which is a finite dimensional vector space.
Let Gy, be the group ok-jets of germs of biholomorphisms of¥, 0), that is, the group of
biholomorphic maps

(8) U— @U) = Oru + U + ...+ QUS = Z a,..i,u '1 u'|§

1<ip+--+ip<k
for which ®; € Hom (SymCP,CP) and®; € Hom (CP,CP) is non-degenerate. Thef,
admits a natural fibrewise right action dp,, which consist of reparametrizing tlkgets of
holomorphicp-discs. A similar computation to dfl(7) shows that

(0 f('>0
fo@(U) = (1O + (100, + ot v Y G O, ..o
i14.. 4=
This is a linear action on the fibreg , x with matrix given by
D O, D3 ... Dy
0 ¥ D,
9) 0O 0 @ ,
o

where®; is a p x dim( Sym'CP)-matrix, theith degree component of the mépand thep x
pmatrix @, is invertible. Hered;, ... ®; is the matrix of the map Syf-+1(CP) — Sym'CP,
which is induced by

D, ®-- -0, : (CP)*®---® (CP)® — (CP)®

The linear grou , is generated along its firptrows, in the sense that the parameters in the
first p rows are independent, and all the remaining entries arepaotjals in these parameters.
The only condition which the parameters must satisfy isttiatleterminant of the first diagonal
p x p block is nonzero. Note thal, , is an extension of its unipotent radidéy , (given by
®; =1 byGL(p; C) (given byd; = 0 fori > 1), so we have an exact sequence

0— Uk,p - GKP - GL(p, C) — 0.
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The centralC* of GL(p; C) corresponds to the diagonal matrices with entti¢g ..., t* for
t € C* wheret' occurs dim( Sym(CP)) times, and these act by conjugation on the Lie algebra
of Uy, with weightsi — 1 for 2 < i < k. Thus by Corollary 0J4 we have

Corollary 5.1. Any linear action ofGy , on a projective variety X with respect to an ample
line bundle L for which semistability coincides with statigifor the action ofUy , extended
by the central one-parameter subgroupGif(p; C) has finitely generated invariants when L is
replaced by a tensor poweftfor a syficiently divisible positive integer ¢ and the linearisation
is twisted by a well adapted rational character. Furthermats enveloping quotient &Gy,

is the associated projective variety and is a categoricadtegnt of X** by the action ofGyp,
while the canonical morphisg: X — X&Gy , is surjective withp(X) = ¢(y) if and only if the
closures of thé&, p-orbits of x and y meet in X

Definition 5.2. The generalized Demailly-Semple jet bundig & — X of invariant jet diferen-
tials of order k and weighted degrém, . . ., m) has fibre at x X consisting of complex-valued
polynomials @f’(0), f”(0)/2,..., f®(0)/k!) on the fibre J,x of J,, which transform under
any reparametrizatiog € Gy, of (CP,0) as

Q(f o ¢) = (35(0))"Q(f) o ¢,
where J(0) denotes the Jacobian at 0 ¢f that is, J(0) = det®; wheng is given as at[(9).
Thus the generalized Demailly-Semple bundlg E ©E,, of invariant jet dfferentials of
order k has fibre at x X given by the generalized Demailly-Semple algeB(d , x) "« P©).

We can apply Corollary 511 to the linear action@f, on the projective spac¥ = P(Jpx)
with respect to the line bundle = Oz, ,,)(1) satisfying

O(Jpx) = ®j20H(X, L®).

As at Remark0]3, by considering a diagonal actioXan P!, we can deduce that the algebra
®p_oHO(XXPY, Li"®@051 (M) “r of Gy p-invariants oniXxP* is finitely generated whekt >> 1
andc is a suficiently divisible positive integer and the linear actiorshzeen twisted by a
suitable rational charactgr/c. This finitely generated graded algebra can be identified wit
the subalgebra of the generalized Demailly-Semple alg@bliag, x)"»SYP© generated by the
Uyxp = S L(p; C)-invariants in@>_ HO(X, L&™)Uke=SUPO) which are weight vectors with non-
negative weights for the action of the central one-paransetegroup ofGL, after twisting by

a suitable charactgr. This twisting is such that the matrikl(9) is replaced withrtultiple by
(det@,)~¥/P=< for 0 < € << 1, so the only weight vectors € H(X,L) = @:‘Zl Syml(CP)
with non-negative weights are the sectiansn Sym'(CP) = CP, which have weighipe. It
therefore follows that the Iocalisatic(ﬂ(JKp,x)Ek’p”SL(p;c) of the generalized Demailly-Semple
algebra0(Jy px) S HPE) at any suchr is finitely generated (cf[]8, 26]).
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