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GEOMETRIC INVARIANT THEORY FOR GRADED UNIPOTENT GROUPS AND
APPLICATIONS

GERGELY BÈRCZI, BRENT DORAN, THOMAS HAWES, FRANCES KIRWAN

Abstract. Let U be a graded unipotent group over the complex numbers, in the sense that it has
an extensionÛ by the multiplicative group such that the action of the multiplicative group by
conjugation on the Lie algebra ofU has all its weights strictly positive. Given any action ofU
on a projective varietyX extending to an action of̂U which is linear with respect to an ample
line bundle onX, then provided that one is willing to replace the line bundlewith a tensor power
and to twist the linearisation of the action ofÛ by a suitable (rational) character, and provided
an additional condition is satisfied which is the analogue ofthe condition in classical GIT that
there should be no strictly semistable points for the action, we show that thêU-invariants form a
finitely generated graded algebra; moreover the natural morphism from the semistable subset of
X to the enveloping quotient is surjective and expresses the enveloping quotient as a geometric
quotient of the semistable subset. Applying this result with X replaced by its product with the
projective line gives us a projective variety which is a geometric quotient byÛ of an invariant
open subset of the product ofX with the affine line and contains as an open subset a geometric
quotient of a U-invariant open subset ofX by the action ofU. Furthermore these open subsets
of X and its product with the affine line can be described using criteria similar to the Hilbert-
Mumford criteria in classical GIT.

Mumford’s geometric invariant theory (GIT) allows us to construct and study quotients of
algebraic varieties by linear actions of reductive groups [28, 30]. When a complex reductive
groupG acts linearly (with respect to an ample line bundleL) on a complex projective varietyX,
the associated GIT quotientX//G is the projective variety Proj(

⊕
k≥0 H0(X, L⊗k)G) associated to

the ring of invariants
⊕

k≥0 H0(X, L⊗k)G, which is a finitely generated graded complex algebra.
Geometrically the varietyX//G can be described as the image of a surjective morphism from
an open subsetXss of X, consisting of the semistable points for the action, or asXss modulo
the equivalence relation∼ such that ifx, y ∈ Xss then x ∼ y if and only if the closures of the
G-orbits of x andy meet inXss. The stable points for the action form a subsetXs of Xss which
has a geometric quotientXs/G which is an open subset ofX//G. Moreover the subsetsXs and
Xss can be described using the Hilbert–Mumford criteria for (semi)stability. The GIT quotient
X//G and its open subsetXs/G can also be described in terms of symplectic geometry and a
moment map [20, 29].

In suitable situations GIT can be generalised to allow us to construct GIT-like quotients for
linear actions of non-reductive groups [11, 12, 13, 15, 16, 22, 39]. However there is an immedi-
ate difficulty in extending GIT to non-reductive group actions, since now the ring of invariants
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is not necessarily finitely generated as a graded algebra, and when it is not finitely generated
there is no associated projective variety.

Every affine algebraic groupH has a unipotent radicalU EH such thatR= H/U is reductive
(and overC we have a semi-direct product decompositionH � R ⋉ U), and understanding
GIT-theoretic questions about the action – such as whether invariants are finitely generated
– often follows from understanding the action of the unipotent groupU. In some cases the
U-invariants happen to be finitely generated. For example, ifU is the unipotent radical of
a parabolic subgroupP of a complex reductive groupG and an action ofU on a complex
projective varietyX, which is linear with respect to an ample line bundleL, extends to a linear
action ofG, then the ring of invariants

⊕
k≥0 H0(X, L⊗k)U is finitely generated [17, 23]. In this

case the ‘enveloping quotient’X ≈U (in the sense of [11] but using the notation of [3]) is the
projective variety Proj(

⊕
k≥0 H0(X, L⊗k)U) associated to the ring of invariants, and it contains as

an open subset a geometric quotientXs/U whereXs is aU-invariant open subset ofX. However
there is still no analogue forX ≈U of the geometric description ofX//G whenG is reductive
asXss modulo an equivalence relation, since the natural morphismfrom Xss to X ≈U is not in
general surjective, although there are alternative geometric descriptions [23].

In this paper we consider a more general situation. Instead of taking U to be the unipotent
radical of a parabolic subgroup of a complex reductive groupG which acts linearly onX, we
assume thatU is a unipotent group overC with an extensionÛ = U ⋊ C∗ by C∗ such that the
action ofC∗ by conjugation on the Lie algebra ofU has all its weights strictly positive; we
call such aU a graded unipotent group. (The unipotent radical of a parabolic subgroup of a
complex reductive groupG always has such an extension contained in the parabolic subgroup).
We are interested in linear actions ofU on projective varietiesX which extend to linear actions
of Û. Given any action ofU on a projective varietyX extending to an action of̂U which is
linear with respect to an ample line bundle onX, thenprovidedthat we are willing to replace
the line bundle with a tensor power and to twist the linearisation of the action ofÛ by a suitable
(rational) character of̂U, and provided an additional condition is satisfied which is the analogue
of the condition in classical GIT that there should be no strictly semistable points for the action
(that is, ‘semistability coincides with stability’), we find that theÛ-invariants form a finitely
generated algebra; moreover the natural morphismφ : Xss,Û → X ≈Û is surjective and indeed
expressesX ≈Û as a geometric quotient ofXss,Û , so thatφ satisfiesφ(x) = φ(y) if and only if
theÛ-orbits of x andy coincide inXss,Û . Applying this result withX replaced byX × P1 gives
us a projective variety (X × P1) ≈Û which is a geometric quotient bŷU of a Û-invariant open
subset ofX×C and contains as an open subset a geometric quotient of aU-invariant open subset
Xŝ,U of X by U. Furthermore the subsetsXs,Û = Xss,Û andXŝ,U of X can be described using
Hilbert–Mumford-like criteria.

This situation arises even for the Nagata counterexamples to Hilbert’s 14th problem, which
provide examples of linear actions of unipotent groupsU on projective space such that the
correspondingU-invariants are not finitely generated. In these cases the linear action extends to
a linear action of an extension̂U = U⋊C∗ byC∗ such that the action ofC∗ by conjugation on the
Lie algebra ofU has all its weights strictly positive. Thus when the condition that semistability
coincides with stability is satisfied, we obtain open subsets Xs,Û = Xss,Û andXŝ,U of X, which
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are determined by analogues of the Hilbert–Mumford criteria, with geometric quotientsXs,Û/Û
and Xŝ,U/U, such thatXs,Û/Û is projective andXŝ,U/U is quasi-projective with a projective
completion in which the complement ofXŝ,U/U is Xs,Û/Û.

A related situation is studied in [4], where it is assumed that the linear action of the graded
unipotent groupU extends to a linear action of a general linear group GL(n). HereU andÛ
are embedded in GL(n) as subgroups ‘generated along the first row’ in the sense that there are
integers 1= ω1 < ω2 ≤ ω3 ≤ · · · ≤ ωn and polynomialspi, j(α1, . . . , αn) in α1, . . . , αn with
complex coefficients for 1< i < j ≤ n such that

(1) Û =





α1 α2 α3 . . . αn

0 α
ω2
1 p2,3(α) . . . p2,n(α)

0 0 α
ω3
1 . . . p3,n(α)

· · · · ·

0 0 0 0 α
ωn
1


: α = (α1, . . . , αn) ∈ C

∗ × Cn−1



andU is the unipotent radical of̂U, defined byα1 = 1. The main results of [4] also involve
the subgroupŨ of SL(n) which is the intersection of SL(n) with the productÛZ(GL(n)) of Ĥ
with the central one-parameter subgroupZ(GL(n)) � C∗ of GL(n). Like Û, the subgroupŨ
of GL(n) is a semi-direct product̃U = U ⋊ C∗ whereC∗ acts on the Lie algebra ofU with
all weights strictly positive. When GL(n) acts linearly on a projective varietyX with respect
to an ample line bundleL on X, and the linearisation of the action ofŨ on X is twisted by a
suitable rational characterχ (which is ‘well adapted’ to the action in the sense of [4]), then it is
shown in [4] Theorem 1.1 that the corresponding algebra ofŨ-invariants is finitely generated,
and the projective varietyX ≈Ũ associated to this algebra of invariants is a categorical quotient
of an open subsetXss,Ũ of X by Ũ and contains as an open subset a geometric quotient of an
open subsetXs,Ũ of X. Applying a similar argument after replacingX with X × P1 provides a
projective variety (X×P1) ≈Ũ which is a categorical quotient bỹU of a Ũ-invariant open subset
of X × C and contains as an open subset a geometric quotient of aU-invariant open subsetXŝ,U

of X by U.
The results of this paper are more general than those of [4] inthat the linear action of the

unipotent groupU is only required to extent to a linear action ofÛ rather than a general linear
group in whichU and Û are embedded in a very special way. On the other hand in [4] the
additional condition that ‘semistability coincides with stability’ is not required. We will ad-
dress the removal of this additional condition in future work, using a partial desingularisation
construction analogous to that of [21].

Let χ : Û → C∗ be a character of̂U with kernel containingU; we will identify such charac-
tersχ with integers so that the integer 1 corresponds to the character which fits into the exact
sequenceU → Û → C∗. Suppose thatωmin < ωmin+1 < · · · < ωmax are the weights with
which the one-parameter subgroupC∗ ≤ Û acts on the fibres of the tautological line bundle
OP((H0(X,L)∗)(−1) over points of the connected components of the fixed point set P((H0(X, L)∗)C

∗

for the action ofC∗ onP((H0(X, L)∗); whenL is very ampleX embeds inP((H0(X, L)∗) and the
line bundleL extends to the dualOP((H0(X,L)∗)(1) of the tautological line bundleOP((H0(X,L)∗)(−1).
We will assume that there exist at least two distinct such weights since otherwise the action of
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U on X is trivial. Let c be a positive integer such that
χ

c
= ωmin + ǫ

whereǫ > 0 is sufficiently small; we will call rational charactersχ/c with this propertywell
adapted to the linear action of̂U, and we will call the linearisation well adapted ifωmin < 0 ≤
ωmin+ǫ for sufficiently smallǫ > 0. The linearisation of the action of̂U onX with respect to the
ample line bundleL⊗c can be twisted by the characterχ so that the weightsω j are replaced with
ω jc− χ; let L⊗c

χ denote this twisted linearisation. LetXs,C∗

min+ denote the stable subset ofX for the
linear action ofC∗ with respect to the linearisationL⊗c

χ ; by the theory of variation of (classical)
GIT [10, 38], if L is very ample thenXs,C∗

min+ is the stable set for the action ofC∗ with respect to
any rational characterχ/c such thatωmin < χ/c < ωmin+1. We set

Xs,Û
min+ = X \ Û(X \ Xs,C∗

min+) =
⋂

u∈U

uXs,C∗

min+

to be the complement of thêU-sweep (or equivalently theU-sweep) of the complement of
Xs,C∗

min+.
The main theorem of this paper concerns a linear action ofÛ on a projective varietyX which

is well adapted in the sense above and satisfies an additionalcondition to which we will refer as
the condition that ‘semistability coincides with stability’. More precisely, any elementξ of the
Lie algebra ofU defines a derivationδξ : H0(X, L) → H0(X, L), and we require that whenever
U′ is a subgroup ofU andξ belongs to the Lie algebra ofU but not the Lie algebra ofU′, then
the weight space with weight−ωmin for the action ofC∗ on H0(X, L) is contained in the image
δξ(H0(X, L)U′) of H0(X, L)U′ under the derivationδξ.

Theorem 0.1. Let U be a unipotent group overC and letÛ = U ⋊ C∗ be a semidirect product
of U byC∗ where the conjugation action ofC∗ on U is such that all the weights of the induced
C∗-action on the Lie algebra of U are strictly positive. Suppose that Û acts linearly on a
projective variety X with respect to an ample line bundle L, and thatχ : Û → C∗ is a character
of Û with kernel containing U and c is a positive integer such that the rational characterχ/c
is well adapted for the linear action of̂U. Suppose also that the linear action ofÛ on X
satisfies the condition that ‘semistability coincides withstability’ as above. Then the algebra of
invariants⊕∞m=0H0(X, L⊗cm

mχ )Û is finitely generated for any well-adapted rational character χ/c
of Û. Moreover the enveloping quotient X≈Û is the projective variety associated to this algebra
of invariants and is a geometric quotient of the open subset Xs,Û

min+ of X byÛ.

Applying this result after replacingX with X× P1 we obtain geometric information about the
action of the unipotent groupU on X:

Corollary 0.2. In the situation above let̂U act diagonally on X× P1 where the action onP1 is
via

û · [x : y] = [χ1(û)x : y]

whereχ1 : Û → C∗ is the character ofÛ with kernel U which fits into the extension{1} →
U → Û → C∗ → {1}, and linearise this action using the tensor product of Lχ with OP1(M) for
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suitable M≥ 1. Then(X × P1) ≈Û is a projective variety which is a geometric quotient byÛ of
a Û-invariant open subset of X× C and contains as an open subset a geometric quotient of a
U-invariant open subset X̂s,U of X by U.

Remark 0.3. We can also deduce that the algebraA = ⊕∞m=0H0(X × P1, L⊗cm
mχ ⊗ OP1(M))Û of

Û-invariants onX×P1 is finitely generated for a well-adapted rational characterχ/c of Û when
c is a sufficiently divisible positive integer. This graded algebraA can be identified with the
subalgebra of the algebra ofU-invariants⊕∞m=0H0(X, L⊗cm)U on X generated by theU-invariants
in ⊕∞m=0H

0(X, L⊗cm)U which are weight vectors with non-positive weights for the action ofC∗ ≤
Û after twisting by the well-adapted rational characterχ/c. The sectionsσ of L which are
weight vectors with weight−ωmin are allU-invariant, and after twisting byχ/c these are the
only weight vectors inH0(X, L) which have non-positive (in fact strictly negative) weights. If
we localise theU-invariants at any suchσ then we get a finitely generated algebra of invariants
O(Xσ)U , since this algebra can be identified with the localisation of A atσ.

This theorem has another immediate corollary:

Corollary 0.4. Let H � R ⋉ U be a complex linear algebraic group with unipotent radical
U and R� H/U reductive, and suppose that R contains a central subgroup isomorphic toC∗

which acts by conjugation on the Lie algebra of U with all weights strictly positive. Let̂U be
the subgroup of H which is the semidirect product of U and thisone-parameter subgroupC∗ of
R. Suppose that H acts linearly on a projective variety X withrespect to an ample line bundle
L, and thatχ : H → C∗ is a character of H, that c is a sufficiently divisible positive integer
such that the restriction tôU of the rational characterχ/c is well adapted for the linear action
of Û on X, and that the linear action of̂U on X satisfies the condition that ‘semistability co-
incides with stability’ as above. Then the algebra of H-invariants⊕∞m=0H0(X, L⊗cm

mχ )H is finitely
generated, and the projective variety X≈H associated to this algebra of invariants is a cate-
gorical quotient of an open subset Xss,H of X by H, and the canonical H-invariant morphism
φ : Xss,H → X ≈H is surjective withφ(x) = φ(y) if and only if the closures of the H-orbits of x
and y meet in Xss,H.

Example: Consider the weighted projective planeP(1, 1, 2) which isC3 \ {0}modulo the action
of C∗ with weights 1, 1, 2. The automorphism group ofP(1, 1, 2) is

Aut(P(1, 1, 2)) � R⋉ U

with R � GL(2) reductive andU � (C+)3 unipotent; here (λ, µ, ν) ∈ (C+)3
� U acts on the

weighted projective planeP(1, 1, 2) as [x, y, z] 7→ [x, y, z+ λx2 + µxy+ νy2]. The central one-
parameter subgroupC∗ of R� GL(2) acts onLie(U) with all positive weights, and the associated
extensionÛ = U ⋊ C∗ can be identified with a subgroup of Aut(P(1, 1, 2)). Thus Corollary 0.4
applies to every linear action of Aut(P(1, 1, 2)) on a projective varietyX with respect to an ample
line bundleL after twisting by a well adapted rational character.

The weighted projective planeP(1, 1, 2) is a simple example of a toric variety; in fact as we
shall see in§4 below, the automorphism group of any complete simplicial toric variety satisfies
the conditions of Corollary 0.4.
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Remark 0.5. Popov [31] has shown that ifH is any non-reductive group then there is an affine
varietyY on whichH acts such that the algebra of invariantsO(Y)H is not finitely generated.

Our main motivation for considering linear actions of groups of the formÛ in this arti-
cle and in [4] came from the study of jet differentials. The groupsGk of k-jets of holomor-
phic reparametrizations of (C, 0) (and more generally the groupsGk,p of k-jets of holomorphic
reparametrizations of (Cp, 0) for p ≥ 1) play an important role in the strategy of Demailly, Siu
and others [1, 5, 7, 8, 9, 14, 24, 26, 34, 35, 36] towards the Green-Griffiths conjecture on entire
holomorphic curves in hypersurfaces of large degree in projective spaces. HereGk is a non-
reductive complex linear algebraic group which is a semi-direct productGk = Uk ⋊ C

∗ of its
unipotent radicalUk by C∗ acting with weights 1, 2, 3, . . . , k on the Lie algebra ofUk, while if
p > 1 thenGk,p = Uk,p ⋊GL(p;C) where all the weights of the central one-parameter subgroup
C∗ of GL(p;C) on the Lie algebra of the unipotent radicalUk,p of Gk,p are strictly positive. So
the results above apply to linear actions of the reparametrization groupGk and its generaliza-
tionsGk,p for p ≥ 1). In particular the reparametrization groupGk acts fibrewise in a natural
way on the Semple jet bundleJk(T∗X) → X over a complex manifoldX of dimensionn with
fibre

Jk,x �

k⊕

j=1

Symj(Cn)

at x consisting of thek-jets of holomorphic curves atx. There is an induced action ofGk on the
polynomial ringO(Jk,x), which can be identified with the algebra⊕∞m=0H0(P(Jk,x),OP(Jk,x)(1)⊗m)
of sections of powers of the hyperplane line bundle on the associated projective spaceP(Jk,x),
and the bundleEk → X of Demailly-Semple invariant jet differentials of orderk has fibre atx
given by (Ek)x = O(Jk,x)Uk.

The layout of the paper is as follows.§1 reviews the results of [11] and [3] on non-reductive
GIT, and§2 considers the case when dim(U) = 1 and proves Theorem 0.1 in this case.§3
uses these results to prove Theorem 0.1 and Corollaries 0.2 and 0.4. In§4 we observe that
Corollary 0.4 applies to the automorphism groups of all complete simplicial toric varieties,
while §5 discusses applications to Demailly-Semple jet differentials and their generalisations to
mapsCp → X.

1. Classical and non-reductive geometric invariant theory

Let X be a complex quasi-projective variety and letG be a complex reductive group acting
on X. To apply (classical) geometric invariant theory (GIT) we require a linearisation of the
action; that is, a line bundleL on X and a liftL of the action ofG to L.

Remark 1.1. UsuallyL is assumed to be ample, and it makes no difference for classical GIT if
we replaceL with L⊗k for any integerk > 0, so then we lose little generality in supposing that
for some projective embeddingX ⊆ Pn the action ofG on X extends to an action onPn given by
a representation

ρ : G→ GL(n+ 1),

and taking forL the hyperplane line bundle onPn.
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Definition 1.2. Let X be a quasi-projective complex variety with an action of a complex reduc-
tive groupG and linearisationL with respect to a line bundleL on X. Theny ∈ X is semistable
for this linear action if there exists somem > 0 and f ∈ H0(X, L⊗m)G not vanishing aty such
that the open subset

Xf := {x ∈ X | f (x) , 0}

is affine, andy is stableif also the action ofG on Xf is closed with all stabilisers finite.

Remark 1.3. This definition comes from [28], although in [28] the terminology ‘properly sta-
ble’ is used instead of stable. WhenX is projective andL is ample andf ∈ H0(X, L⊗m)G for
m > 0, thenXf is affine if and only if f is nonzero. The reason for introducing the require-
ment thatXf must be affine in Definition 1.2 above is to ensure thatXss has a quasi-projective
categorical quotientXss→ X//G, which restricts to a geometric quotientXs→ Xs/G (see [28]
Theorem 1.10).

From now on in this section we will assume thatX is projective andL is ample. We have an
induced action ofG on the homogeneous coordinate ring

ÔL(X) =
⊕

k≥0

H0(X, L⊗k)

of X. The subringÔL(X)G consisting of the elements of̂OL(X) left invariant byG is a finitely
generated graded complex algebra becauseG is reductive, and the GIT quotientX//G is the
projective variety Proj(̂OL(X)G). The subsetsXss andXs of X are characterised by the following
properties (see [28, Chapter 2] or [30]).

Proposition 1.4. (Hilbert-Mumford criteria) (i) A point x∈ X is semistable (respectively stable)
for the action of G on X if and only if for every g∈ G the point gx is semistable (respectively
stable) for the action of a fixed maximal torus of G.
(ii) A point x ∈ X with homogeneous coordinates[x0 : . . . : xn] in some coordinate system on
Pn is semistable (respectively stable) for the action of a maximal torus of G acting diagonally
onPn with weightsα0, . . . , αn if and only if the convex hull

Conv{αi : xi , 0}

contains0 (respectively contains0 in its interior).

Now let H be any affine algebraic group, with unipotent radicalU, acting linearly on a com-
plex projective varietyX with respect to an ample line bundleL. Then the ring of invariants

ÔL(X)H =
⊕

k≥0

H0(X, L⊗k)H

is not necessarily finitely generated as a graded complex algebra, so that Proj(̂OL(X)H) is not
well-defined as a projective variety, although Proj(ÔL(X)H) does make sense as a scheme, and
the inclusion ofÔL(X)H in ÔL(X) gives us a rational map of schemesq from X to Proj(ÔL(X)H),
whose image is a constructible subset of Proj(ÔL(X)H) (that is, a finite union of locally closed
subschemes). The action onX of the unipotent radicalU of H is studied in [11] following
earlier work [12, 13, 15, 16, 39].
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Definition 1.5. (See [11]§4). Let I =
⋃

m>0 H0(X, L⊗m)U and for f ∈ I let Xf be theU-invariant
affine open subset ofX where f does not vanish, withO(Xf ) its coordinate ring. A pointx ∈ X
is callednaively semistableif there exists somef ∈ I which does not vanish atx, and the set of
naively semistable points is denotedXnss=

⋃
f∈I Xf . Thefinitely generated semistable setof X

is Xss, f g =
⋃

f∈I f g Xf where

I f g = { f ∈ I | O(Xf )
U is finitely generated}.

The set ofnaively stablepoints ofX is Xns =
⋃

f∈Ins Xf where

Ins = { f ∈ I f g | q : Xf −→ Spec(O(Xf )
U) is a geometric quotient},

and the set oflocally trivial stablepoints isXlts =
⋃

f∈I lts Xf where

I lts = { f ∈ I f g | q : Xf −→ Spec(O(Xf )
U) is a locally trivial geometric quotient}.

Theenveloped quotientof Xss, f g is q : Xss, f g → q(Xss, f g), whereq : Xss, f g → Proj(ÔL(X)U ) is
the natural morphism of schemes andq(Xss, f g) is a dense constructible subset of theenveloping
quotient

X ≈U =
⋃

f∈I ss, f g

Spec(O(Xf )
U)

of Xss, f g.

Remark 1.6. Because of Theorem 1.13 below, we also call a pointx ∈ X stablefor the linear
U-action if x ∈ Xlts andsemistableif x ∈ Xss, f g. We writeXs (or Xs,U ) for Xlts, and we writeXss

(or Xss,U) for Xss, f g (cf. [11] 5.3.7).

Remark 1.7. q(Xss) is not necessarily a subvariety ofX ≈U (see for example [11]§6).

Proposition 1.8. If ÔL(X)U is finitely generated then X≈U is the projective varietyProj(ÔL(X)U ).

Remark 1.9. In [11] 4.2.9 and 4.2.10 it is claimed that the enveloping quotientX ≈U is a quasi-
projective variety with an ample line bundleLH → X ≈U which pulls back to a positive tensor
power ofL under the natural mapq : Xss→ X ≈U. The argument given there fails in general
since the morphismsXf → Spec(O(Xf )U) for f ∈ I ss, f g are not necessarily surjective. However
it is still true that the enveloping quotientX ≈U has quasi-projective open subvarieties (‘inner
enveloping quotients’X/ ∼H) which contain the enveloped quotientq(Xss) and have ample line
bundles pulling back to positive tensor powers ofL under the natural mapq : Xss→ X ≈U (see
[3] for details).

Now let G be a complex reductive group with the unipotent groupU as a closed subgroup,
and letG×U X denote the quotient ofG×X by the free action ofU defined byu(g, x) = (gu−1, ux)
for u ∈ U, which is a quasi-projective variety by [32] Theorem 4.19. Then there is an induced
G-action onG ×U X given by left multiplication ofG on itself. In cases where the action ofU
on X extends to an action ofG there is an isomorphism ofG-varieties

(2) G×U X � (G/U) × X

given by [g, x] 7→ (gU, gx). If U acts linearly onX with respect to a very ample line bundleL
and linearisationL inducing aU-equivariant embedding ofX in Pn, and ifG is a subgroup of
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SL(n+1;C), then we get a very ampleG-linearisation (by abuse of notation also denoted byL)
onG×U X using the inclusions

G×U X ֒→ G×U P
n
� (G/U) × Pn,

and the trivial bundle on the quasi-affine varietyG/U. We can choose aG-equivariant embed-
ding of G/U in an affine spaceAm with a linearG-action to get aG-equivariant embedding of
G ×U X in Am × Pn and thus inPm × Pn embedded inPnm+m+n, and theG-invariants onG ×U X
are given by

(3)
⊕

m≥0

H0(G×U X, L⊗m)G
�

⊕

m≥0

H0(X, L⊗m)U = ÔL(X)U .

Definition 1.10. (See [11]§5). The sets ofMumford stable pointsandMumford semistable
pointsin X areXms = i−1((G ×U X)s) andXmss= i−1((G ×U X)ss) wherei : X → G ×U X is the
inclusion given byx 7→ [e, x] for e the identity element ofG. Here (G ×U X)s and (G ×U X)ss

are defined as in Definition 1.2 for the induced linear action of G on the quasi-projective variety
G ×U X. (In fact Xms andXmssare equal and are independent of the choice ofG: see Theorem
1.13 below). Afinite separating set of invariantsfor the linear action ofU on X is a collection
of invariant sections{ f1, . . . , fn} of positive tensor powers ofL such that, ifx, y are any two
points ofX then f (x) = f (y) for all invariant sectionsf of L⊗k and allk > 0 if and only if

fi(x) = fi(y) ∀i = 1, . . . , n.

If G is any reductive group containingU, a finite separating setS of invariant sections of positive
tensor powers ofL is afinite fully separating set of invariantsfor the linearU-action onX if

(i) for everyx ∈ Xms there existsf ∈ S with associatedG-invariantF overG×U X (under the
isomorphism (3)) such thatx ∈ (G×U X)F and (G×U X)F is affine; and

(ii) for every x ∈ Xss there existsf ∈ S such thatx ∈ Xf andS is a generating set forO(Xf )U .
(This definition is in fact independent of the choice ofG: see [11] Remark 5.2.3).

Definition 1.11. (See [11]§5). Let X be a quasi-projective variety with a linearU-action with
respect to an ample line bundleL on X, and letG be a complex reductive group containingU
as a closed subgroup. AG-equivariant projective completionG×U X of G ×U X, together with
aG-linearisation with respect to a line bundleL which restricts to the givenU-linearisation on
X, is areductive envelopeof the linearU-action onX if everyU-invariant f in some finite fully
separating set of invariantsS for theU-action onX extends to aG-invariant section of a tensor
power ofL overG×U X. If moreover there exists such anS for which everyf ∈ S extends to
a G-invariant sectionF overG×U X such that (G×U X)F is affine, then (G ×U X, L′) is a fine
reductive envelope, and if L is ample (in which case (G×U X)F is always affine) it is anample
reductive envelope. If every f ∈ S extends to aG-invariantF overG ×U X which vanishes on
each codimension 1 component of the boundary ofG×U X in G×U X, then a reductive envelope
for the linearU-action onX is called astrongreductive envelope.

Definition 1.12. (See [11]§5 and [22]§3). LetX be a projective variety with a linearU-action
and a reductive envelopeG×U X. The set ofcompletely stable pointsof X with respect to the
reductive envelope is

Xs = ( j ◦ i)−1(G×U X
s
)
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and the set ofcompletely semistable pointsis

Xss= ( j ◦ i)−1(G×U X
ss

),

wherei : X ֒→ G×U X and j : G×U X ֒→ G×U X are the inclusions, andG×U X
s
andG×U X

ss

are the stable and semistable sets for the linearG-action onG×U X. In addition we set

Xnss= ( j ◦ i)−1(G×U X
nss

)

wherey ∈ G×U X belongs toG×U X
nss

(and is said to benaively semistablefor the linear
action ofG) if there exists somem> 0 and f ∈ H0(X, L⊗m)G not vanishing aty; thenXnss= Xss

when the reductive envelope is ample, but not in general otherwise (cf. Remark 1.3).

Theorem 1.13. ([11] 5.3.1 and 5.3.5).Let X be a normal projective variety with a linear U-
action, for U a connected unipotent group, and let(G×U X, L) be any fine reductive envelope.
Then

Xs ⊆ Xs = Xms= Xmss⊆ Xns ⊆ Xss⊆ Xss= Xnss⊆ Xnss.

The stable sets Xs, Xs = Xms = Xmssand Xns admit quasi-projective geometric quotients, given
by restrictions of the quotient map q= π ◦ j ◦ i where

π : (G×U X)ss→ G×U X//G

is the classical GIT quotient map for the reductive envelopeand i, j are as in Definition 1.12.
The quotient map q restricted to the open subvariety Xss is an enveloped quotient with q: Xss→

X ≈U an enveloping quotient, and there is an open subvariety X/ ∼U of G×U X//G which is an
inner enveloping quotient of X by the linear action of U. Moreover there is an ample line bundle
LU on X/ ∼U which pulls back to a tensor power L⊗k of the line bundle L for some k> 0 and
extends to an ample line bundle onG×U X//G.

If furthermoreG×U X is normal and provides a fine strong reductive envelope for the linear
U-action on X, then Xs = Xs and Xss= Xnss.

Thus we have a diagram of quasi-projective varieties

Xs ⊆ Xs ⊆ Xns ⊆ Xss ⊆ Xss= Xnss

↓ ↓ ↓ ↓ ↓

Xs/U ⊆ Xs/U ⊆ Xns/U ⊆ X/ ∼U ⊆ G×U X//G

where all the inclusions are open and all the vertical morphisms are restrictions of the GIT
quotient mapπ : (G×U X)ss→ G×U X//G, and each except the last is a restriction of the map
of schemesq : Xnss→ Proj(ÔL(X)U)) associated to the inclusion̂OL(X)U ⊆ ÔL(X). Note here
thatX/ ∼U is not always projective, and (even if the ring of invariantsÔL(X)U is finitely generated
andX/ ∼U = Proj(ÔL(X)U ) is projective) the morphismXss→ X/ ∼U is not in general surjective.

There always exists an ample, and hence fine, but not necessarily strong, reductive envelope
for any linearU-action on a projective varietyX, at least if we replace the line bundleL with
a suitable positive tensor power of itself, by [11] Proposition 5.2.8. By Theorem 1.13 above a
choice of fine reductive envelopeG×U X provides a projective completion

X/ ∼U = G×U X//G
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of the inner enveloping quotientX/ ∼U. This projective completion in general depends on the
choice of reductive envelope, but whenÔL(X)U is finitely generated thenX ≈U = Proj(ÔL(X)U )
is itself projective, and if (G×U X, L) is a fine reductive envelope with respect to a finite fully
separating set of invariantsS containing generators of̂OL(X)U thenX ≈U = G×U X//G (note
such a (G×U X, L) always exists when̂OL(X)U is finitely generated).

[11] also gives a geometric criteria (Theorem 1.14 below) for the graded algebra of invariants⊕
k≥0 H0(X, L⊗k)U to be finitely generated. A slight modification of this geometric criteria will

be used in the proof of our results.

Theorem 1.14.([11] 5.3.19). Let X be a nonsingular complex projective variety on which U
acts linearly with respect to an ample line bundle L. LetG×U X be a nonsingular G-equivariant
completion of G×U X, with a G-linearisationL′ of the G-action on a line bundle L′ which ex-
tends the given linearisationL. Let D1, . . . ,Dr be the codimension1 components of the bound-
ary of G×U X inG×U X, and letL′N be the induced G-linearisation on L′N = L′[N

∑r
j=1 D j] when

N is such that NDj is Cartier for 1 ≤ j ≤ r. Then the algebra of invariants
⊕

k≥0 H0(X, L⊗k)U

is finitely generated if there exists N0 such that, for all N> N0 for which L′N is defined, L′N is
ample and every codimension 1 component Dj in the boundary of G×U X in G×U X is unstable
for the G-action with the linearizationL′N.

Remark 1.15. Note that there is an error in the proof of [11] Theorem 5.3.18, which should
include as an additional hypothesis that the algebra

A =
⊕

k≥0

H0(G×U X, (L′N)⊗k)

is finitely generated, although its corollary [11] 5.3.19 iscorrect since thereL′N is assumed
ample forN large enough.

We also have the following result, which allows us to study the geometry ofX ≈U when
G×U X has a nonsingularG-equivariant completionG×U X.

Proposition 1.16. ([11] 5.3.10). Let G×U X be a nonsingular G-equivariant completion of
G ×U X, with a G-linearisationL′ of the G-action on a line bundle L′ which extends the given
linearisationL. Let D1, . . . ,Dr be the codimension1 components of the boundary of G×U X
in G×U X, and letL′N be the induced G-linearisation on L′[N

∑r
j=1 D j] when N is such that

ND j is Cartier for 1 ≤ j ≤ r. Given a finite fully separating set S of invariants on X, then
(G×U X, L′N) is a strong reductive envelope with respect to S for suitablesufficiently large N.

If moreover(G ×U X, L′) is an ample (or more generally a fine) reductive envelope withre-
spect to S then(G ×H X, L′N) is a fine strong reductive envelope with respect to S . In this
situation Theorem 1.13 applies, and Xs̄ = Xs and Xss= Xss.

These results can be generalised to allow us to studyH-invariants for linear algebraic groups
H which are neither unipotent nor reductive [3, 4]. OverC any linear algebraic groupH is a
semi-direct productH = Hu⋊RwhereHu ⊂ H is the unipotent radical ofH (its maximal unipo-
tent normal subgroup) andR≃ Hr = H/Hu is a reductive subgroup ofH. WhenH acts linearly
on a projective varietyX with respect to an ample line bundleL, the naively semistable and
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(finitely generated) semistable setsXnss andXss = Xss, f g, enveloped and enveloping quotients
and inner enveloping quotients

q : Xss→ q(Xss) ⊆ X/ ∼H ⊆ X ≈H

are defined in [3] as for the unipotent case in Definition 1.5 and Remark 1.9. However the
definition of the stable setXs combines the unipotent and reductive cases as follows.

Definition 1.17. Let H be a linear algebraic group acting on an irreducible varietyX andL→ X
a linearisation for the action. Thestable locusis the open subset

Xs =
⋃

f∈Is

Xf

of Xss, whereI s ⊆
⋃

r>0 H0(X, L⊗r )H is the subset ofH-invariant sections satisfying the following
conditions:

(1) the open setXf is affine;
(2) the action ofH on Xf is closed with all stabilisers finite groups; and
(3) the restriction of theHu-enveloping quotient map

qHu : Xf → Spec((SHu)( f ))

is a principalHu-bundle for the action ofHu on Xf .

If it is necessary to indicate the groupH we will write Xs,H andXss,H for Xs andXss.

Remark 1.18.This definition of stability extends the definition of stability in [11] for unipotent
groups, and in the case whereH is reductive, thenHu is trivial and the definition reduces to
Mumford’s notion of properly stable points in [28]. Note that

(i) if R is a reductive subgroup ofH then it follows straight from the definition thatXs,R ⊆

Xs,H;
(ii) if N is a normal subgroup ofH such that the canonical projectionHu → Hu/Nu splits,

and if W is anH-invariant open subvariety ofXs,N with a geometric quotientW/N which is an
H/N-invariant open subvariety ofXs,N/N ⊆ X/ ∼N, whereX/ ∼N is an inner enveloping quotient
of X by N such that a tensor powerL⊗m of L induces a very ample line bundle onX/ ∼N and
hence an embedding ofX/ ∼N in the corresponding projective space with closureX/ ∼N, and if
W/N ⊆ (X/ ∼N)s,H/N, thenW ⊆ Xs,H.

The following result which we will need is proved in [3] Cor 3.1.20.

Proposition 1.19. Suppose H is a linear algebraic group, X an irreducible H-variety and
L → X a linearisation. If the enveloping quotient X≈H is quasi-compact and complete, then
for suitably divisible integers r> 0 the algebra of invariants

⊕
k≥0 H0(X, L⊗kr)H is finitely gen-

erated and the enveloping quotient X≈H is the associated projective variety; moreover the line
bundle L⊗r induces an ample line bundle L⊗r

[H] on X ≈H such that the natural structure map
⊕

k≥0

H0(X, L⊗kr)H →
⊕

k≥0

H0(X ≈H, L
⊗kr
[H] )

H

is an isomorphism.
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If a linear algebraic groupH is a subgroup of a reductive groupG then there is an induced
right action ofR on G/Hu which commutes with the left action ofG. Similarly if H acts on
a projective varietyX then there is an induced action ofG × R on G ×Hu X with an induced
G × R-linearisation. The same is true if we replace the requirement thatH is a subgroup ofG
with the existence of a group homomorphismH → G whose restriction toHu is injective.

Definition 1.20. A group homomorphism H→ G from a linear algebraic group H to a reductive
group G will be called Hu-faithful if its restriction to the unipotent radical Hu of H is injective.

As noted in [4] the proof of [11] Theorem 5.1.18 gives us

Theorem 1.21.Let X be a nonsingular complex projective variety acted on bya linear alge-
braic group H = Hu ⋊ R where Hu is the unipotent radical of H and let L be a very ample
linearisation of the H action defining an embedding X⊆ Pn. Let H→ G be an Hu-faithful ho-
momorphism into a reductive subgroup G ofSL(n+ 1;C) with respect to an ample line bundle
L. Let L′ be a G×R-linearisation over a nonsingular projective completionG×Hu X of G×Hu X
extending the G× R linearisation over G×Hu X induced by L. Let D1, . . . ,Dr be the codimen-
sion one components of the boundary of G×Hu X in G×Hu X, and suppose for all sufficiently
divisible N that L′N = L′[N

∑r
j=1 D j] is an ample line bundle onG×Hu X. Then the algebra of

invariants
⊕

k≥0 H0(X, L⊗k)H is finitely generated if and only if for all sufficiently divisible N
any G×R-invariant section of a positive tensor power of L′

N vanishes on every codimension one
component Dj.

Remark 1.22.The proof of Theorem 1.21 tells us that when the hypotheses hold and the algebra
of invariants

⊕
k≥0 H0(X, L⊗k)H is finitely generated then the enveloping quotient

(4) X ≈H = Proj(⊕k≥0H0(X, L⊗k)H) ≃ G×Hu X//L′N(G× R)

for sufficiently divisibleN.

In general even when the algebra of invariants
⊕

k≥0 H0(X, L⊗k)H on X is finitely generated
and (4) is true, the morphismX → X ≈H is not surjective and in order to study the geometry
of X ≈H by identifying it with G×Hu X//L′N(G × R) we need information about the boundary

G×Hu X \ G ×Hu X of G×Hu X. If, however, we are lucky enough to find aG × R-equivariant
projective completionG×Hu X with a linearisationL such that for sufficiently divisibleN the
line bundleL′N is ample and the boundaryG×Hu X \G×Hu X is unstable forL′N, then we have a
situation which is almost as well behaved as for reductive group actions on projective varieties
with ample linearisations, as follows.

Definition 1.23. Let Xss= X ∩G×Hu X
ss,G×R

and Xs = X ∩G×Hu X
s,G×R

where X is embedded
in G×Hu X in the obvious way as x7→ [1, x].

Theorem 1.24. ([4] Thm 2.9). Let X be a complex projective variety acted on by a linear
algebraic group H= Hu ⋊ R where Hu is the unipotent radical of H and let L be a very ample
linearisation of the H action defining an embedding X⊆ Pn. Let H → G be an Hu-faithful
homomorphism into a reductive subgroup G ofSL(n + 1;C) with respect to an ample line
bundle L. Let L′ be a G× R-linearisation over a projective completionG×Hu X of G×Hu X
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extending the G×R linearisation over G×Hu X induced by L. Let D1, . . . ,Dr be the codimension
1 components of the boundary of G×Hu X in G×Hu X, and suppose that L′N = L′[N

∑r
j=1 D j] is

an ample line bundle onG×Hu X for all sufficiently divisible N. If for all sufficiently divisible
N any G× R-invariant section of a positive tensor power of L′

N vanishes on the boundary of
G×Hu X in G ×Hu X, then

(1) the algebra of invariants
⊕

k≥0 H0(X, L⊗k)H is finitely generated;

(2) the enveloping quotient X≈H � G×Hu X//L′N(G × R) � Proj(⊕k≥0H0(X, L⊗k)H) for suffi-
ciently divisible N;

(3) G×Hu X
ss,G×R,L′N

⊆ G×Hu X and therefore the morphism

φ : Xss→ X ≈H

is surjective and X≈H is a categorical quotient of Xss;
(4) if x, y ∈ Xss thenφ(x) = φ(y) if and only if the closures of the H-orbits of x and y meet

in Xss;
(5) φ restricts to a geometric quotient Xs→ Xs/H ⊆ X ≈H.

Remark 1.25. As in Proposition 1.16 we haveXs̄ = Xs andXss = Xss here. This is a conse-
quence of the following generalisation of Theorem 1.13.

Theorem 1.26. ([11] 5.3.1 and 5.3.5).Let X be a normal projective variety acted on by a
linear algebraic group H= Hu ⋊ R where Hu is the unipotent radical of H and let L be a very
ample linearisation of the H action defining an embedding X⊆ Pn. Let H → G be an Hu-
faithful homomorphism into a reductive subgroup G ofSL(n + 1;C) with respect to an ample
line bundle L. Let(G×U X, L) be any fine G× R-equivariant reductive envelope. Then

Xs ⊆ Xs ⊆ Xss⊆ Xss= Xnss.

The stable sets Xs and Xs admit quasi-projective geometric quotients by the action of H. The
quotient map q restricted to the open subvariety Xss is an enveloped quotient with q: Xss →

X ≈H an enveloping quotient. There is an open subvariety X/ ∼H of G×U X//(G × R) which is
an inner enveloping quotient of X by the linear action of H. Moreover there is an ample line
bundle LU on X/ ∼H which pulls back to a tensor power L⊗k of the line bundle L for some k> 0
and extends to an ample line bundle onG×U X//(G × R).

If furthermoreG×U X is normal and provides a fine strong G× R-equivariant reductive
envelope, then Xs = Xs and Xss= Xnss.

2. Actions of C+ ⋊ C∗

We will prove Theorem 0.1 by induction on the dimension ofU. In this section we will study
the case when dim(U) = 1 so thatU � C+.

Definition 2.1. Let X be a complex projective variety equipped with a linear action (with respect
to an ample line bundleL) of a semi-direct product̂U = C∗⋉C+, where the weight of the induced
C∗ action on the Lie algebra ofU = C+ is strictly positive. Letξ be a non-zero element of the
Lie algebra ofU = C+ and letδξ : H0(X, L) → H0(X, L) be the corresponding derivation. We
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say thatsemistability coincides with stability for the linear action ofÛ if the weight space with
minimum weight−ωmin for the action ofC∗ on H0(X, L) is contained in the imageδξ(H0(X, L))
of H0(X, L) under the derivationδξ.

Definition 2.2. Let χ : Û → C∗ be a character of the semi-direct productÛ = C∗ ⋉ C+ acting
linearly onX as above. Suppose thatωmin < ωmin+1 < · · · < ωmax are the weights with which
the one-parameter subgroupC∗ ≤ Û acts on the fibres of the line bundleOP((H0(X,L)∗)(1) over
points of the connected components of the fixed point setP((H0(X, L)∗)C

∗

for the action ofC∗ on
P((H0(X, L)∗); whenL is very ampleX embeds inP((H0(X, L)∗) and the line bundleL extends
toOP((H0(X,L)∗)(1). Letc be a positive integer such that

χ

c
= ωmin + ǫ

whereǫ > 0 is a sufficiently small rational number; we will call rational charactersχ/c with this
propertywell adaptedto the linear action of̂U, and we will call the linearisation well adapted if
the trivial character 0 is well adapted. The linearisation of the action ofÛ on X with respect to
the ample line bundleL⊗c can be twisted by the characterχ so that the weightsω j are replaced
with ω jc − χ; let L⊗c

χ denote this twisted linearisation. Note that the unipotentgroupU = C+

is contained in the kernel ofχ and so the restriction of the linearisation to the action ofU is
unaffected by this twisting.

Let Xs,C∗

min+ denote the stable subset ofX for the linear action ofC∗ with respect to the lineari-
sationL⊗c

χ for any well adapted rational characterχ/c. Let

Xs,Û
min+ = X \ Û(X \ Xs,C∗

min+) =
⋂

u∈U

uXs,C∗

min+

be the complement of thêU-sweep (or equivalently theU-sweep) of the complement ofXs,C∗

min+,

and letXs,Û
L⊗c
χ

andXss,Û
L⊗c
χ

denote the stable and semistable subsets for the action ofÛ on X with

respect to the linearisationL⊗c
χ . Let X ≈L⊗c

χ
Û be the corresponding enveloping quotient. LetXs,U

denote the stable subset for the action ofU on X with respect to the linearisationL.

The aim of this section is to prove the following theorem, which we will use for our inductive
proof of Theorem 0.1.

Theorem 2.3.Let X be a complex projective variety equipped with a linear action (with respect
to an ample line bundle L) of a semi-direct productÛ = C∗⋉C+, where the weight of the induced
C∗ action on the Lie algebra of U= C+ is strictly positive. Suppose that the linear action ofÛ on
X satisfies the condition that ‘semistability coincides with stability’ as above. Ifχ : Û → C∗ is
a character ofÛ and c is a sufficiently divisible positive integer such that the rational character
χ/c is well adapted for the linear action of̂U with respect to L, then after twisting this linear
action byχ/c we have

(1) theÛ-invariant open subset Xs,Ûmin+ of X has a geometric quotientπ : Xs,Û
min+ → Xs,Û

min+/Û
by the action ofÛ;

(2) this geometric quotient Xs,Ûmin+/Û is a projective variety and the tensor power L⊗c of L

descends to a very ample line bundle L(c,Û) on Xs,Û
min+/Û;
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(3) Xs,Û
L⊗c
χ
= Xss,Û

L⊗c
χ
= Xs,Û

min+;

(4) the geometric quotient Xs,Ûmin+/Û is the enveloping quotient X≈L⊗c
χ

Û;

(5) the algebra of invariants
⊕

k≥0 H0(X, L⊗ck
kχ )Û is finitely generated and the enveloping

quotient X ≈L⊗c
χ

Û � Proj(⊕k≥0H0(X, L⊗ck
kχ )Û) is the associated projective variety;

(6) the tensor power L⊗c of L induces a very ample line bundle on an inner enveloping
quotient X/ ∼U for the action of U on X with aC∗-equivariant embedding

X/ ∼U → P((H
0(X, L⊗c)U)∗)

as a quasi-projective subvariety, containing the geometric quotient Xs,U/U as an open
subvariety, with closureX/ ∼U in P((H0(X, L⊗c)U)∗);

(7) Xs,Û
min+ is a U-invariant open subset of Xs,U and has a geometric quotient Xs,Û

min+/U
which is aC∗-invariant open subset of Xs,U/U and coincides with both the stable and
semistable sets(X/ ∼U)s,C∗ = (X/ ∼U)ss,C∗ for theC∗ action with respect to the linearisa-
tion onOP((H0(X,L⊗c)U )∗)(1) induced by L⊗c

χ , so that the associated GIT quotient ofX/ ∼U
byC∗ is given by

X/ ∼U//C
∗
� (Xs,Û

min+/U)/C∗ � Xs,Û
min+/Û = X ≈L⊗c

χ
Û.

In order to prove Theorem 2.3, we will first prove the theorem in the case whereX = P(V) and
L = OP(V)(1), for a finite dimensional̂U-representationV. This is done by explicit calculation:
we construct a strong ample reductive envelope for the twisted linearisationO(c)(χ), and use
the Hilbert-Mumford criteria to compute stability and semistability for this reductive envelope.
Through the choice of twist, stability and semistability for the reductive envelope will turn
out to be equivalent conditions. We can then deduce that the stable and finitely generated
semistable loci are equal for the linear action ofÛ with this linearisation, and that the associated
enveloping quotient is projective. An explicit description of the stable locus is used to prove
that the enveloping quotient mapP(V)ss,Û → P(V) ≈Û is a geometric quotient for thêU-action
on P(V)ss,Û . Theorem 2.3 will then follow by embeddingX into a projective space and using
the fact that stability behaves well under closed immersions.

2.1. The Case(X, L) = (P(V),O(1)). Let V be a finite-dimensional representation of

Û = Û [ℓ] = U ⋊ C∗

whereU = C+ andC∗ acts on Lie(U) with weight ℓ ≥ 1, and letX = P(V), with Û y L =
O(1) → P(V) the canonical linearisation. As usual we write points inP(V) as equivalence
classes [v] of nonzero vectorsv ∈ V under the scaling action ofC∗ onV.

Definition 2.4. Let Vmin be theC∗-weight space inV of minimal weightωmin, and letP(V)0
Û ,O(1)

be the open subset of points flowing toP(Vmin) under the action oft ∈ C∗, ast → 0.

Remark 2.5. In this situation the condition that semistability coincides with stability given in
Definition 2.1 is equivalent to saying thatVmin does not contain any fixed points for theC+-
action onV; moreoverXs,Û

min+ = P(V)0
Û,O(1)

\ (U · P(Vmin)).
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We wish to prove the following proposition.

Proposition 2.6. If Vmin does not contain any fixed points for theC+-action on V, and the
linearisation is twisted by a well adapted rational character χ/c, then

(1) there are equalitiesP(V)s,Û = P(V)ss,Û = P(V)0
Û ,O(1)

\ (U · P(Vmin));

(2) the enveloping quotientsP(V) ≈Û andP(V) ≈U are projective varieties, and for suitably
divisible integers r> 0 the algebras of invariants

⊕
k≥0 H0(X, L⊗kr)Û and

⊕
k≥0 H0(X, L⊗kr)U

are finitely generated; and
(3) the enveloping quotient mapP(V)ss,Û → P(V) ≈Û is a geometric quotient for thêU-

action onP(V)ss,Û.

In order to study the linear action of̂U = Û [ℓ] onO(1) → P(V) we shall use the following
trick. Consider the surjective homomorphism

ηℓ : Û [2ℓ] → Û [ℓ] , (u; t) 7→ (u; t2).

We can pull back the linear action of̂U = Û [ℓ] to a linear action ofÛ [2ℓ] via ηℓ. The (finitely
generated) semistable loci for the linear actions ofÛ [ℓ] andÛ [2ℓ] then coincide, and the same
is true for the enveloping quotients. Moreover the stable loci Xs(Û [2ℓ] ,O(c)(χ[2] )) and Xs(Û [ℓ] ,O(1)(χ))

coincide.

Lemma 2.7. Xs(Û [2ℓ] ,O(c)(χ[2] )) = Xs(Û [ℓ] ,O(1)(χ)).

Proof. The algebras of invariants for the linear actionsÛ [2ℓ] y O(c)(χ[2] ) → P(V) andÛ [ℓ] y

O(c)(χ) are equal. Letf be an invariant section withXf affine. Becauseηℓ : Û [2ℓ] → Û [ℓ] has
finite kernel, the action of̂U [ℓ] on Xf is closed with all stabilisers finite if and only if the same
is true for the action ofÛ [2ℓ] , and becauseηℓ restricts to identify the unipotent radicals ofÛ [ℓ]

andÛ [2ℓ] , the natural morphismXf → Spec(O(Xf )Û [ℓ]
) = Spec(O(Xf )Û [2ℓ]

) is a principal (Û [ℓ])u-
bundle if and only if it is a principal (̂U [2ℓ])u-bundle. Thus, by Definition 1.17, the stable loci
are equal. �

In order to prove Proposition 2.6 we may therefore work with the linear actionÛ [2ℓ] y

O(c)(χ[2] ) → P(V), without loss of generality.
Now theÛ [2ℓ]-representationV defined byηℓ admits a decomposition

(5) V
Û [2ℓ]

�

q⊕

i=1

C(ai ) ⊗ SymliC2,

of Û [2ℓ]-modules, where

• C(ai ) is the one dimensional representation ofÛ [2ℓ] defined by the character̂U [2ℓ] → C∗

of weightai ∈ Z;
• SymliC2 is the standard irreducible representation ofG := SL(2,C) of highest weight

l i ≥ 0, upon whichÛ [2ℓ] acts via the surjective homomorphism

ρℓ : Û [2ℓ] → Û [2] , (u; t) 7→ (u; tℓ)
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and the identification of̂U [2] with the Borel subgroupB ⊆ G of upper triangular matrices
given by

Û [2] = C+ ⋊ C∗ → B, (u; t) 7→
(

t tu
0 t−1

)
;

and
• because the action of̂U [2ℓ] factors throughηℓ : Û [2ℓ] → Û [ℓ] , we haveai ≡ ℓ l i mod 2

for eachi = 1, . . . , q.

We wish to produce a strong reductive envelope for the linearactionÛ [2ℓ] y O(c)(χ[2] ) →

P(V) twisted by the pullback ofχ/c. Observe thatρℓ : Û [2ℓ] → Û [2]
� B ⊆ G restricts to

give the standard inclusion of the unipotent radicalU = C+ = (Û [2ℓ])u of Û [2ℓ] insideG as the
subgroup of strictly upper triangular matrices, soρℓ is an (Û [2ℓ])u-faithful homomorphism, in
the sense of Definition 1.20. The linear action of (Û [2ℓ])u on V extends to a linear action ofG
by demanding thatG act on SymliC2 in the usual manner and trivially onC(ai ), for eachi.

There is therefore an isomorphism ofG× (Û [2ℓ])r-spaces (where (̂U [2ℓ])r = Û [2ℓ]/(Û [2ℓ])u)

G×U P(V) � (G/U) × P(V)

which lifts to an isomorphism of linearisations. A straightforward examination of the corre-
spondingG× (Û [2ℓ])r-actions and linearisations on (G/U) × P(V) yields

Lemma 2.8. LetP denote the G× (Û [2ℓ])r-linearisation onO(1) induced by the action·
G

of G

on V and the following action of(Û [2ℓ])r = C
∗:

t · v =
∑

i(t
ai zi) ⊗ si, v ∈ V, t ∈ C∗,(6)

v =
∑

izi ⊗ si ∈
⊕q

i=1C
(ai ) ⊗ SymliC2

via (5).

Then the linearisation of G× (Û [2ℓ])r on (G/U) × (O(c)(χ[2] )) → (G/U) × P(V) is equal to the
product of the twisted linearisation(P(χ[2ℓ]))⊗c with the G× (Û [2ℓ])r-action on G/U given by left
multiplication by G and right multiplication by(Û [2ℓ])r = C

∗.

The homomorphismρℓ embedsU = (Û [2ℓ])u into G = SL(2;C) as a Grosshans subgroup,
since there is an isomorphismG/U � C2 \ {0} given by considering the orbit of

( 1
0

)
∈ C2 under

the defining representation ofG. The inclusionC2 \ {0} ֒→ C2 defines a nonsingular affine

completionG/Hu
aff

which containsG/U with codimension 2 complement. We may therefore
construct a strong ample reductive envelope as aG × Û [2ℓ]-equivariant nonsingular projective
completion ofG/U by regarding elements ofC3 as column vectors, and adding a hyperplane at

infinity to G/U
aff
= C2: if P2 = {[v0 : v1 : v2] | 0 , (v0, v1, v2)t ∈ C3} with the hyperplane at

infinity defined byv0 = 0 then the action ofG × (Û [2ℓ])r = G × C∗ on P2 = P(C3) is the one
defined by the representation given in block form

(g, t) 7→

(
1 0
0 g

(
t−ℓ 0
0 t−ℓ

)
)
∈ GL(3;C), g ∈ G, t ∈ C∗,
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where GL(3;C) acts onC3 by left multiplication. For any integerN > 0, this representation
canonically defines aG× (Û [2ℓ])r-linearisation onOP2(N) → P2 which restricts to the canonical
linearisation onOG/U → G/U.

Let β : G ×U P(V) � (C2 \ {0}) × P(V) ֒→ P2 × P(V) be the induced open immersion and for
N > 0 let

P′N := OP2(N) ⊠ P(χ[2]) → P2 × P(V)

equipped with its natural rationalG× (Û [2ℓ])r-linearisation, where theG× (Û [2ℓ])r-linearisation
P(χ[2]) → P(V) is defined as in Lemma 2.8. Then the triple

(P2 × P(V), β,P′N)

defines a strong ample reductive envelope forÛ [2ℓ] y O(c)(χ[2] ) → P(V), when N > 0 is
sufficiently large. Moreover, becauseU is a Grosshans subgroup ofG, both the algebras of
U-invariants andÛ-invariants of any positive tensor power of the linearisationO(c)(χ[2] ) → P(V)
are finitely generatedC-algebras, and the enveloping quotients

P(V) ≈U � (P2 × P(V))//P′NG, P(V) ≈Û
[2ℓ]
� (P2 × P(V))//P′N(G× (Û [2ℓ])r)

are projective varieties.
By Theorem 1.26 the stable lociP(V)s,U andP(V)s,Û and finitely generated semi-stable loci

P(V)ss,U andP(V)ss,U for the linearisationO(c)(χ[2] ) → P(V) may be computed as the completely
stable and completely semistable loci associated to theG or G× (Û [2ℓ])r-linearisationP′N, using
the Hilbert-Mumford criteria. Note that under the isomorphism (5), the minimalC∗-weight for
theÛ [ℓ]-action onV is

ωmin = min{(ai − ℓ l i)/2 | i = 1, . . . , q}.

Let us temporarily call an indexi ∈ {0, . . . , q} exceptionalif ωmin = (ai − ℓ l i)/2.

Lemma 2.9. Stability and semistability are equivalent for the linear action G× (Û [2ℓ])r y

P′N → P
2 × P(V). Moreover a point p= ([1 : w1 : w2], [v]) ∈ P2 × P(V) is stable if and only if

p ∈ (C2 \ {0}) × P(V) and, when(5) is used to write v=
∑

i zi ⊗ si ∈
⊕

i C
(ai ) ⊗ SymliC2 with

each si , 0, the following two conditions hold:

• there is an exceptional i such that zi , 0 and si is not divisible by(w1,w2) ∈ C2 \ {0};
and
• either there is a non-exceptional i such that zi , 0, or for each(w̃1, w̃2) ∈ C2 \ {0} with

[w̃1 : w̃2] , [w1 : w2] as points inP1 there is an exceptional i such that zi , 0 and
si , (w̃1, w̃2)li ∈ SymliC2.

Proof of Lemma 2.9.We shall deduce this by using the Hilbert-Mumford criteria as given in
Proposition 1.4 using the maximal torusT1 × T2 ⊆ G × (Û [2ℓ])r , whereT1 is the subgroup
of diagonal matrices inG and T2 = C

∗ = (Û [2ℓ])r . The group of characters ofT1 × T2 is
identified withZ × Z in the natural way. Introduce the following notation: fori = 1, . . . , q let
ei,1 =

( 1
0

)
, ei,2 =

( 0
1

)
be the standard basis ofC2, so that

eli
i,1, . . . , e

j
i,1e

li− j
i,2 , . . . , e

li
i,2 ∈ SymliC2
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is a basis ofT1-weight vectors in SymliC2, and consider the basis

1⊗ eli− j
i,1 ej

i,2, j = 0, . . . , l i, i = 1, . . . , q

of weight vectors for theT1 × T2-action onV. Without loss of generality, we may apply the
Hilbert-Mumford criteria by using the projective space into whichP2 × P(V) is embedded via
P′N and computing rational weights. The fixed points inP2 × P(V) for theT1 × T2-action, along
with the corresponding rational weights with respect to theembedding defined byP′N, are given
in Table 1.

Fixed point Rational weight in
( j = 0, . . . , l i, i = 1, . . . , q) Hom (T1 × T2,C

∗) ⊗Z Q = Q × Q
([1 : 0 : 0], [1 ⊗ ej

i,1e
li− j
i,2 ]) (2 j − l i, ai − 2ωmin − 2ǫ)

([0 : 1 : 0], [1 ⊗ ej
i,1e

li− j
i,2 ]) (2 j − l i, ai − 2ωmin − 2ǫ) + (N,−ℓN)

([0 : 0 : 1], [1 ⊗ ej
i,1e

li− j
i,2 ]) (2 j − l i, ai − 2ωmin − 2ǫ) + (−N,−ℓN)

Table 1. Rational weights of the fixed points ofT1×T2y P
2×P(V) with respect

to the linearisationP′N.

Consider the rational weightϑ := (2 j − l i, ai − 2ωmin − 2ǫ) for the fixed point ([1 : 0 :
0], [1 ⊗ ej

i,1e
li− j
i,2 ]). Note that eitherϑ is contained in the interior of the cone

C := {(c1, c2) ∈ Q≥0 × Q≥0 | ℓ c1 + c2 ≥ 0 and − ℓ c1 + c2 ≥ 0},

orϑ lies outsideC andi, j satisfyωmin = (ai − ℓ l i)/2 and j ∈ {0, l i}: because 0< ǫ < 1/2 we see
that

ℓ(2 j − l i) + (ai − 2ωmin − 2ǫ)


= −2ǫ < 0 iff j = 0 andωmin = (ai − ℓ l i)/2

> 0 otherwise

while

−ℓ(2 j − l i) + (ai − 2ωmin − 2ǫ)


= −2ǫ < 0 iff j = l i andωmin = (ai − ℓ l i)/2

> 0 otherwise.
.

We also claim thatai−2ωmin−2ǫ > 0 for all i = 1, . . . , q. Indeed, supposeai−2ωmin−2ǫ ≤ 0 for
somei = 1, . . . , q. Because 0< 2ǫ < 1 andai − 2ωmin ∈ Z, this is equivalent toai − 2ωmin ≤ 0.
But 2ωmin ≤ ai − ℓ l i, soℓ l i ≤ ai − 2ωmin ≤ 0. Becauseℓ > 0 we must havel i = 0, and by
examining the above possible cases for the value ofℓ(2 j − l i) + (ai − 2ωmin − 2ǫ) we see that
ωmin = ai/2 andi is exceptional. This implies there is a lineC(ωmin) = C(ωmin) ⊗ Sym0C2 ⊆ Vmin

fixed by U, which contradicts the assumption thatVmin does not contain a point fixed by the
U-action. This verifies the claim.

We thus see that for sufficiently largeN > 0 the weights for the rationalT1 × T2-linearisation
P′N → P

2 × P(V) are arranged in the fashion of Figure 1. (Notice that the only weights that lie
outside the chambers are the extremal weights for rows corresponding to exceptional indices.
This makes calculating semistability and stability for thetorusT1 × T2 easy.) In particular, the
weight polytope∆p ⊆ Hom (T1 × T2,C

∗) ⊗Z Q for a pointp = ([w0 : w1 : w2], [v]) ∈ P2 × P(V)
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Q � Hom (T2,C
∗) ⊗Z Q

Q � Hom (T1,C
∗) ⊗Z Q

( 1
ℓ

)(
−1
ℓ

)

(−N,−ℓN) (N,−ℓN)

Figure 1. Example of distribution of rational weights forT1 × T2y P
′
N → P

2 × P(V).

contains the origin precisely when the interior∆◦p does and so semistability and stability for the
rational linearisationT1 × T2y P

′
N → P

2 × P(V) coincide. Using the isomorphism (5), write

v =
∑q

i=1zi ⊗ si, zi ∈ C
(ai ), 0 , si =

∑li
j=0vi, je

j
i,1e

li− j
2,i , vi, j ∈ C.

Then one finds thatp is T1 × T2-unstableprecisely whenp < (C2 \ {0}) × P(V) (i.e. w0 = 0 or
w1 = w2 = 0) or else by satisfying one of the following criteria, splitinto three cases:

Casew0w1w2 , 0:

0 < ∆p ⇐⇒ Eithervi, j , 0 =⇒ (i exceptional andj = 0),
or vi, j , 0 =⇒ (i exceptional andj = l i).

Casew0w1 , 0, w2 = 0:

0 < ∆p ⇐⇒ Either i exceptional=⇒ vi,0 = 0,
or vi, j , 0 =⇒ (i exceptional andj = 0).
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Casew0w2 , 0, w1 = 0:

0 < ∆p ⇐⇒ Either i exceptional=⇒ vi,li = 0,
or vi, j , 0 =⇒ (i exceptional andj = l i).

By the Hilbert-Mumford criteria, the pointp is (semi)stable for theG × (Û [2ℓ])r-linearisation
if and only if (g, t) · p is T1 × T2-(semi)stable for each (g, t) ∈ G × (Û [2ℓ])r . Thus stability
and semistability are equivalent forG × (Û [2ℓ])r y P′N → P

2 × P(V), and becauseG acts
transitively on pairs of distinct points inP1 it follows thatp ∈ P2×P(V) is stable precisely when
p ∈ (C2 \ {0}) × P(V) and the two conditions in the statement of Lemma 2.9 are fulfilled. �

We are now in a position to complete the proof of Proposition 2.6. Lemma 2.9 tells us that
for the linearisationP′N we have

(P2 × P(V))s,(P′N) = (P2 × P(V))ss(P′N) ⊆ (C2 \ {0}) × P(V) � G×U P(V),

so we have
G×U (P(V)s) = G×U (P(V)ss) = (P2 × P(V))ss(P′N),

whereP(V)s andP(V)ssare the completely stable and completely semistable locus,respectively,
for the reductive envelope (P2 × P(V), β,P′N). The GIT quotient map (P2 × P(V))ss(P′N) → (P2 ×

P(V))//P′N(G×(Û [2ℓ])r) is a geometric quotient with the inclusionβ◦α : P(V)s ֒→ (P2×P(V))ss(P′N)

inducing an isomorphism

P(V)s/Û [2ℓ]
� (G×U (P(V)s))/(G× (Û [2ℓ])r) = (P2 × P(V))ss(P′N)/(G × (Û [2ℓ])r).

Because (P2 × P(V), β,P′N) is strong, by Theorem 1.26, Theorem 1.24 and Proposition 1.19 we
have

P(V)s,Û [2ℓ]
= P(V)s = P(V)ss= P(V)ss,Û [2ℓ]

,

and
(P2 × P(V))//P′N(G× (Û [2ℓ])r) � P(V) ≈Û

[2ℓ]

while the enveloping quotient map

P(V)ss,Û [2ℓ]
= P(V)s,Û [2ℓ]

→ P(V) ≈Û
[2ℓ]

is a geometric quotient for thêU [2ℓ]-action onP(V)ss,Û [2ℓ]
onto a projective variety.

Proposition 2.6 (2) and (3) now follow, and to complete the proof of the proposition it remains
to show that

P(V)s,Û [ℓ] , = P(V)0
Û ,O(1)

\ (U · P(Vmin)).

Recall thatP(V)s,Û [ℓ]
= P(V)s is equal to the intersection ofP(V) with (P2 × P(V))s(P′N) under the

inclusion
P(V) ֒→ P2 × P(V), [v] 7→ ([1 : 1 : 0], [v]).

According to Lemma 2.9 we therefore have [v] ∈ P(V)s(Û [ℓ] ,O(1)(χ)) if, and only if, when one uses
(5) to writev =

∑
i zi ⊗ si ∈

⊕
i C

(ai ) ⊗ SymliC2 with eachsi , 0, the following two conditions
are satisfied:

• there is an exceptionali such thatzi , 0 andsi is not divisible by (1, 0) ∈ C2; and
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• either there is a non-exceptionali such thatzi , 0, or for each (w1,w2) ∈ C2 \ {0}
with [w1 : w2] , [1 : 0] as points inP1 there is an exceptionali such thatzi , 0 and
si , (w1,w2)li ∈ SymliC2.

We can interpret each of these conditions geometrically, asfollows. Under the isomorphism of
vector spacesV �

⊕q
i=1C

(ai ) ⊗ SymliC2 the weight vectors for the inducedC∗ ⊆ Û [ℓ]-action on
V take the form 1⊗ ej

1,ie
li− j
2,i , where 1≤ i ≤ q and 0≤ j ≤ l i, with the weight of 1⊗ ej

1,ie
li− j
2,i equal

to (ai − ℓ l i + 2 j)/2 ∈ Z. Moreover, the weight spaceVmin of minimal weightωmin is spanned
by all 1⊗ eli

2,i with i an exceptional index, and theU-sweepU · Vmin of Vmin is contained in the
Û [ℓ]-subspace ⊕

i exceptional

C(ai ) ⊗ SymliC2 ⊆ V.

Now, if v =
∑

i zi ⊗ si with eachsi , 0, then the existence of an exceptionali with zi , 0 and
si not divisible by (1, 0) is equivalent to limt→0 t · [v] ∈ P(Vmin) (where we taket ∈ C∗ ⊆ Û [ℓ]

in the limit). So the first of the above conditions is equivalent to requiring that [v] ∈ P(V)0
Û ,O(1)

.
Now consider the second condition. The existence of a non-exceptionali such thatzi , 0
is equivalent tov <

⊕
i exceptionalC

(ai ) ⊗ SymliC2, which itself implies [v] < U · P(Vmin). On
the other hand, because of the transitivity of theU-action onC = P1 \ {[1 : 0]} and the fact
thatVmin is spanned by 1⊗ eli

i,2 with i exceptional, we see that [v] ∈ U · P(Vmin) if and only if
v ∈

⊕
i exceptionalC

(ai )⊗SymliC2 and there is some (w1,w2) ∈ C2\{0}with [w1 : w2] , [1 : 0] ∈ P1

such thatsi = (w1,w2)li ∈ SymliC2 for all exceptionali. Thus, the second condition is equivalent
to demanding [v] < U · P(Vmin). It follows that

P(V)s,Û [ℓ]
= P(V)0

Û ,O(1)
\ (U · P(Vmin)),

as required.
This completes the proof of Proposition 2.6, and of Theorem 2.3 in the special case when

(X, L) = (P(V),O(1)).

2.2. Proof of Theorem 2.3 for general(X, L). Suppose now thatL → X is a very ample line
bundle over an irreducible projective variety equipped with a Û-linearisation, whereÛ is a
positive extension ofU = C+, let V = H0(X, L)∗ and letγ : X ֒→ P(V) be the canonical closed
immersion. Letωmin be the minimal weight for the inducedC∗-action onV and suppose the
associated weight spaceVmin does not contain any fixed points for theU-action onV. Finally,
let χ/c be a well adapted rational character.

By Proposition 2.6 the twisted linearisation̂U y OP(V)(1)(χ) → P(V) has an enveloping
quotient

q : P(V)ss,Û = P(V)s,Û → P(V) ≈Û

which is a geometric quotient for thêU-action onP(V)ss,Û , and the quotientP(V) ≈OP(V)(1)(χ)Û is
a projective variety. Furthermore,

P(V)s,Û = P(V)0
Û ,O(1)

\ (U · P(Vmin)),
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from which it follows that
γ−1(P(V)s,Û) = X0

Û ,L
\ (U · ZÛ ,L).

ThusX0
Û ,L
\ (U · ZÛ ,L) is an open subset ofXs(L(χ)) whose image under the enveloping quotient

q : Xss,Û → X ≈Û

is a geometric quotient for thêU-action onX0
Û ,L
\ (U · ZÛ ,L) that embeds naturally as a closed

subvariety ofP(V)s,Û/Û = P(V) ≈OP(V)(1)(χ)Û. Henceq(X0
Û ,L
\ (U · ZÛ ,L)) is itself a projective

variety. In particular it is complete, and sinceX ≈L(χ)Û is separated over SpecC it follows that
the inclusionq(X0

Û ,L
\ (U ·ZÛ ,L)) ֒→ X ≈L(χ)Û is a closed map [37, Tag 01W0]. On the other hand,

becauseX is irreducibleq(X0
Û ,L
\ (U · ZÛ ,L)) is a dense open subset ofX ≈Û, hence

q(X0
Û ,L
\ (U · ZÛ,L)) = X ≈Û.

In particularX ≈Û is a projective variety, and Theorem 2.3 now follows from Theorem 1.26, The-
orem 1.24 and Proposition 1.19, together with the case when (X, L) = (P(V),OP(V)(1)) already
proved.

3. Actions of C∗-extensions of unipotent groups

Now letU be any graded unipotent group; that is,U is a unipotent group with a one-parameter
group of automorphismsλ : C∗ → Aut(U) such that the weights of the inducedC∗ action on
the Lie algebrau of U are all strictly positive. Then we can form the semidirect product

Û = C∗ ⋉ U

given byC∗ × U with group multiplication

(z1, u1).(z2, u2) = (z1z2, (λ(z
−1
2 )(u1))u2).

Definition 3.1. Let χ : Û → C∗ be a character of̂U. Note that its kernel must containU; we
will identify such charactersχ with integers so that the integer 1 corresponds to the character
which fits into the exact sequence{1} → U → Û → C∗ → {1}. Suppose thatωmin < ωmin+1 <

· · · < ωmax are the weights with which the one-parameter subgroupC∗ ≤ Û acts on the fibres
of the line bundleOP((H0(X,L)∗)(1) over points of the connected components of the fixed point
setP((H0(X, L)∗)C

∗

for the action ofC∗ on P((H0(X, L)∗); whenL is very ampleX embeds in
P((H0(X, L)∗) and the line bundleL extends toOP((H0(X,L)∗)(1). We will assume that there exist at
least two distinct such weights since otherwise the action of U onX is trivial. Letc be a positive
integer such that

χ

c
= ωmin + ǫ

whereǫ > 0 is a sufficiently small rational number; we will call rational charactersχ/c with this
propertywell adaptedto the linear action of̂U, and we will call the linearisation well adapted if
the trivial character 0 is well adapted. The linearisation of the action ofÛ on X with respect to
the ample line bundleL⊗c can be twisted by the characterχ so that the weightsω j are replaced
with ω jc− χ; let L⊗c

χ denote this twisted linearisation.
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Let Xs,C∗

min+ denote the stable subset ofX for the linear action ofC∗ with respect to the linearisa-
tion L⊗c

χ for any well adapted rational characterχ/c; more precisely by VGIT (variation of GIT)
[10, 38] if L is very ample we can take any rational characterχ/c such thatωmin < χ/c < ωmin+1

here. Let
Xs,Û

min+ = X \ Û(X \ Xs,C∗

min+) =
⋂

u∈U

uXs,C∗

min+

be the complement of thêU-sweep (or equivalently theU-sweep) of the complement ofXs,C∗

min+,

and letXs,Û
L⊗c
χ

andXss,Û
L⊗c
χ

denote the stable and semistable subsets for the action ofÛ on X with

respect to the linearisationL⊗c
χ . Let X ≈L⊗c

χ
Û be the corresponding enveloping quotient.

Recall that the main theorem of this paper concerns a linear action ofÛ on a projective variety
X which is well adapted in the sense above and satisfies an additional condition to which we
will refer as the condition that ‘semistability coincides with stability’.

Definition 3.2. Any elementξ of the Lie algebra ofU defines a derivationδξ : H0(X, L) →
H0(X, L). We say thatsemistability coincides with stability for the linear action ofÛ if whenever
U′ is a subgroup ofU normalised byC∗ andξ belongs to the Lie algebra ofU but not the Lie
algebra ofU′ andξ is a weight vector for the action ofC∗, then the weight space with weight
−ωmin for the action ofC∗ on H0(X, L) is contained in the imageδξ(H0(X, L)U′) of H0(X, L)U′

under the derivationδξ.
We will say that the linear action of̂U on X is very well adaptedif it is well adapted and

semistability coincides with stability in this sense.

Lemma 3.3.Suppose that a linear action ofÛ on a projective variety X with respect to an ample
line bundle L satisfies the condition that semistability equals stability. If U† is a subgroup of
U which is normal inÛ and Û† = C∗ ⋉ U† is the subgroup ofÛ generated by U† and the
one-parameter subgroupC∗, then

(1) the linear action ofÛ on X with respect to any positive tensor power L⊗m of L satisfies
the condition that semistability equals stability;

(2) the restriction toÛ† of the linear action ofÛ on X with respect to any positive tensor
power L⊗m of L satisfies the condition that semistability equals stability;

(3) if c† is a sufficiently divisible positive integer then the induced linearaction ofÛ/U† on
the closureX/ ∼U† in P((H0(X, L⊗c† )U†)∗) of an inner enveloping quotient X/ ∼U† for the
action of U† on X satisfies the condition that semistability equals stability with respect
to the ample line bundle determined by L⊗c.

Proof: (1) Suppose thatU′ is a subgroup ofU normalised byC∗ and that aC∗-weight vectorξ
with weighta belongs to the Lie algebra ofU but not the Lie algebra ofU′, with corresponding
derivationδξ = δ : H0(X, L) → H0(X, L). By abuse of notation letδ also denote the induced
derivation onH0(X, L⊗m). As X is C∗-invariant, the minimum weightωL⊗m

min with which the one-
parameter subgroupC∗ ≤ Û acts on the fibres of the line bundleOP((H0(X,L⊗m)∗)(1) over points
of the connected components of the fixed point setP((H0(X, L⊗m)∗)C

∗

for the action ofC∗ on
P((H0(X, L⊗m)∗) is mωmin. Suppose thats ∈ H0(X, L⊗c)U′ is a weight vector with weightωL⊗m

min
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for the action ofC∗. We want to show that there is some sections′ ∈ H0(X, L⊗m)U′ such that
δ(s′) = s. SinceωL⊗m

min = mωmin we can writes as a linear combination of monomialss1 · · · sm

wheresj ∈ H0(X, L) is a weight vector with weightωmin for theC∗ action, which implies that
δ(sj) = 0 for j = 1, . . . ,m. As the linear action of̂U onX with respect toL satisfies the condition
that semistability equals stability, there iss′1 ∈ H0(X, L)U′ such thatδ(s′1) = s1. It follows that

δ(s′1s2 · · · sm) = s1 · · · sm

wheres′1s2 · · · sm ∈ H0(X, L⊗m)U′ as required.
(2) By (1) we can assume thatm= 1 and then this follows straight from the definition of well

adaptedness (Definition 3.2).
(3) A subgroup ofU/U† normalised byC∗ has the formU′/U† whereU′ is a subgroup ofU

containingU† and normalised byC∗. A weight vector in the Lie algebra ofU/U† which does
not lie in the Lie algebra ofU′/U† can be represented by a weight vectorξ in the Lie algebra of
U not lying in the Lie algebra ofU′, and the corresponding derivation onH0(X, L⊗c† )U† is the
restriction of the derivation onH0(X, L⊗cdagger) determined byξ, so (3) follows from (1). �

Our aim is to prove the following theorem, from which Theorem0.1 and Corollary 0.4 will
follow.

Theorem 3.4.Let X be a complex projective variety equipped with a linear action (with respect
to an ample line bundle L) of a unipotent group U with a one-parameter group of automor-
phisms such that the weights of the inducedC∗ action on the Lie algebra of U are all strictly
positive. Suppose that the linear action of U on X extends to alinear action of the semi-direct
productÛ = C∗ ⋉ U. Suppose also that the linear action ofÛ on X satisfies the condition that
‘semistability coincides with stability’ as above. Ifχ : Û → C∗ is a character ofÛ and c is a
sufficiently divisible positive integer such that the rational characterχ/c is well adapted for the
linear action ofÛ with respect to L, then after twisting this linear action byχ/c we have

(1) theÛ-invariant open subset Xs,Ûmin+ of X has a geometric quotientπ : Xs,Û
min+ → Xs,Û

min+/Û
by the action ofÛ;

(2) this geometric quotient Xs,Ûmin+/Û is a projective variety and the tensor power L⊗c of L

descends to an ample line bundle L(c,Û) on Xs,Û
min+/Û;

(3) Xs,Û
L⊗c
χ
= Xss,Û

L⊗c
χ
= Xs,Û

min+;

(4) the geometric quotient Xs,Ûmin+/Û is the enveloping quotient X≈L⊗c
χ

Û;

(5) the algebra of invariants
⊕

k≥0 H0(X, L⊗ck
kχ )Û is finitely generated and the enveloping

quotient X ≈L⊗c
χ

Û � Proj(⊕k≥0H0(X, L⊗ck
kχ )Û) is the associated projective variety.

Remark 3.5. Note that, for any positive integerm, Theorem 3.4 holds for a linear action ofÛ on
X with respect to an ample line bundleL if it holds for the induced linearisation of the action of
Û with respect to the line bundleL⊗m. To see this, we use Lemma 3.3 and observe that almost all
the ingredients of the theorem are unchanged whenL is replaced withL⊗m. The only ingredients
over which we still need to take care are the concept of well adaptedness and the definition of
Xs,Û

min+, which both depend on the weights of the action ofC∗ on H0(X, L). However sinceX is
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C∗-invariant the minimum weightωL⊗m

min with which the one-parameter subgroupC∗ ≤ Û acts
on the fibres of the line bundleOP((H0(X,L⊗m)∗)(1) over points of the connected components of
the fixed point setP((H0(X, L⊗m)∗)C

∗

for the action ofC∗ on P((H0(X, L⊗m)∗) is mωmin, and by
variation of GIT for the reductive groupC∗ we know that ifωmin < χ/c < ωmin+1 then the stable
setXs,C∗

min+ for the linear action ofC∗ with respect to the linearisationL⊗c
χ is the same as the stable

set for the linear action ofC∗ with respect to the linearisation (L⊗c
χ )⊗m = L⊗cm

mχ . So Xs,C∗

min+ and

Xs,Û
min+ = X \ Û(X \ Xs,C∗

min+) are unchanged by replacingL with L⊗m. Finally

χ/c = ωmin + ǫ iff mχ/c = mωmin +mǫ = ωL⊗m

min +mǫ

where (L⊗ck
kχ )⊗m = L⊗ckm

mkχ = (L⊗m)⊗ck
kmχ for anyk ≥ 0. Thusχ/c is well adapted for the linear action

of Û with respect toL if and only if mχ/c is well adapted for the linear action ofÛ with respect
to L⊗m. Note however that it is not always true that

ωmin < χ/c < ωmin+1 iff ωL⊗m

min < mχ/c < ωL⊗m

min+1

since in generalωL⊗m

min+1 < mωmin+1 althoughωL⊗m

min = mωmin.

Proof of Theorem 3.4: We will use induction on the dimension ofU to prove a slightly
stronger result including

(6) the tensor powerL⊗c of L induces a very ample line bundle on an inner enveloping quotient
X/ ∼U for the action ofU on X with aC∗-equivariant embedding

X/ ∼U → P((H
0(X, L⊗c)U)∗)

as a quasi-projective subvariety, containing the geometric quotientXs,U/U as an open subvari-
ety, with closureX/ ∼U in P((H0(X, L⊗c)U)∗), and

(7) Xs,Û
min+ is aU-invariant open subset ofXs,U and has a geometric quotientXs,Û

min+/U which
is aC∗-invariant open subset ofXs,U/U and coincides with both the stable and semistable sets
(X/ ∼U)s,C∗ = (X/ ∼U)ss,C∗ for theC∗ action with respect to the linearisation onOP((H0(X,L⊗c)U )∗)(1)
induced byL⊗c

χ , so that the associated GIT quotient

X/ ∼U//C
∗
� (Xs,Û

min+/U)/C∗ � Xs,Û
min+/Û = X ≈L⊗c

χ
Û.

When dim(U) = 1 so thatU = C+, this extended version of Theorem 3.4 including (6) and
(7) follows immediately from Theorem 2.3.

Now suppose that dim(U) > 1 and that the extended result is true for all strictly smaller
values of dim(U). We can assume without loss of generality thatU is nontrivial. The centre
of U is then nontrivial and isomorphic to a product of copies ofC+ on whichC∗ acts with
positive weights. SoU has a normal subgroupU0 which is central inU and normal inÛ and
is isomorphic toC+, such that the given one-parameter groupC∗ ≤ Û of automorphisms of
U preservesU0 and acts on the Lie algebra ofU0 with positive weight. By induction on the
dimension ofU, we can now find a subgroupU† of U which is normal inÛ and such thatU/U†
is one-dimensional and so isomorphic toC+, while Û/U† is a semidirect product ofU/U† by
C∗ whereC∗ acts on the Lie algebra ofU/U† with strictly positive weight. LetÛ† = C∗ ⋉U† be
the subgroup of̂U generated byU† and the one-parameter subgroupC∗.
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By Lemma 3.3 the linear action of̂U† on X satisfies the condition that semistability is the
same as stability. Thus by induction on the dimension ofU we can assume that, for a sufficiently
divisible positive integerc†,

(i) the Û†-invariant open subsetXs,Û†
min+ of X has a geometric quotientπ : Xs,Û†

min+ → Xs,Û†
min+/Û† by

the action ofÛ†;

(ii) this geometric quotientXs,Û†
min+/Û† is a projective variety and the tensor powerL⊗c† of L

descends to an ample line bundleL(c† ,Û†) on Xs,Û†
min+/Û†;

(iii) the tensor powerL⊗c† of L induces a very ample line bundle on an inner enveloping quotient
X/ ∼U† for the action ofU† onX with aC∗-equivariant embeddingX/ ∼U† → P((H

0(X, L⊗c† )U
†

)∗) as
a quasi-projective subvariety, containing the geometric quotientXs,U†/U† as an open subvariety,
with closureX/ ∼U† in P((H0(X, L⊗c† )U†)∗), and

(iv) Xs,Û†
min+ is aU†-invariant open subset ofXs,U† and has a geometric quotientXs,Û†

min+/U† which
is a C∗-invariant open subset ofXs,U†/U† and, if the rational characterχ/c† is well adapted
for the linear action ofÛ† with respect toL, coincides with both the stable and semistable sets
(X/ ∼U†)

s,C∗ = (X/ ∼U†)
ss,C∗ for theC∗ action with respect to the linearisation onO

P((H0(X,L⊗c† )U† )∗)(1)

induced byL⊗c†
χ , so that the associated GIT quotient

X/ ∼U†//C
∗
� (Xs,Û†

min+/U†)/C
∗
� Xs,Û†

min+/Û† = X ≈L⊗c†
χ

Û†.

Note thatXs,Û
min+ is a Û-invariant open subset ofXs,Û†

min+. We have an induced linear action
of Û/U† � C+ ⋊ C∗ on P((H0(X, L⊗c† )U†)∗) which restricts to a linear action onX/ ∼U† and to

the induced linear action of the open subsetXs,Û
min+/U† of Xs,Û†

min+/U† = (X/ ∼U†)
s,C∗ . We have

Xs,Û
min+ =

⋂
u∈U Xs,C∗

min+ so that

Xs,Û
min+/U† =

⋂

u∈U/U†

u (Xs,Û†
min+/U†) =

⋂

u∈U/U†

u (X/ ∼U†)
s,C∗ = (X/ ∼U†)

s,Û/U†
min+ .

By Lemma 3.3 we can apply Theorem 2.3 to the action ofÛ/U† on the closureX/ ∼U† in
P((H0(X, L⊗c† )U†)∗) of the inner enveloping quotientX/ ∼U† for the action ofU† on X. It follows

thatXs,Û
min+/U† = (X/ ∼U†)

s,Û/U†
min+ has a geometric quotient

(Xs,Û
min+/U†)/(Û/U†)

which is then a geometric quotient for the action ofÛ on Xs,Û
min+. Furthermore by Theorem

2.3 this geometric quotient (Xs,Û
min+/U†)/(Û/U†) = Xs,Û

min+/Û is a projective variety and for a
sufficiently divisible multiplec of c† the tensor powerL⊗c of L descends to a very ample line
bundleL(c,Û) on Xs,Û

min+/Û; in addition if χ/c = ωmin + ǫ whereǫ > 0 is sufficiently small

thenXs,Û
min+/U† is the stable set for thêU/U†-action onX/ ∼U† with respect to the linearisation

induced byL⊗c and twisted by the rational characterχ/c, so

Xs,Û
min+ ⊆ Xs,Û

L⊗c
χ



GEOMETRIC INVARIANT THEORY FOR GRADED UNIPOTENT GROUPS ANDAPPLICATIONS 29

by Remark 1.18(ii).
Conversely ifǫ < ωmin+1−ωmin thenXs,Û

L⊗c
χ

is aÛ-invariant subset ofXs,C∗

min+ = Xs,C∗

L⊗c
χ

by Remark

1.18(i), so
Xs,Û

L⊗c
χ
⊆

⋂

u∈U

u Xs,C∗

min+ = Xs,Û
min+

and henceXs,Û
L⊗c
χ
= Xs,Û

min+.

Since the geometric quotientXs,Û
min+/Û = Xs,Û

L⊗c
χ
/Û is a projective variety with a very ample line

bundleL(c,Û) induced by the tensor powerL⊗c of L, it follows from Proposition 1.19 thatXs,Û
L⊗c
χ
=

Xss,Û
L⊗c
χ

, that this geometric quotient coincides with the enveloping quotientX ≈L⊗c
χ

Û, and that ifc is

replaced with a sufficiently divisible multiple then the algebra of invariants
⊕

k≥0 H0(X, L⊗ck
kχ )Û

is finitely generated and the enveloping quotientX ≈L⊗c
χ

Û � Proj(⊕k≥0H0(X, L⊗ck
kχ )Û) is the asso-

ciated projective variety.
It also follows by induction after applying Theorem 2.3 to the action ofÛ/U† on the closure

X/ ∼U† in P((H0(X, L⊗c† )U†)∗) of the inner enveloping quotientX/ ∼U† for the action ofU† on
X, that after replacingc with a sufficiently divisible multiple if necessary, we can assume that
there is an inner enveloping quotientX/ ∼U for the linear action ofU on X with respect to the
linearisationL⊗c

χ obtained by considering the induced action of the subgroupU/U† of Û/U† on

X/ ∼U†, and that the tensor powerL⊗c of L induces a very ample line bundle onX/ ∼U so that
there is aC∗-equivariant embedding

X/ ∼U → P((H
0(X, L⊗c)U)∗)

of X/ ∼U as a quasi-projective subvariety, containing the geometric quotientXs,U/U as an open
subvariety, with closureX/ ∼U in P((H0(X, L⊗c)U)∗), such thatXs,Û

min+ is aU-invariant open subset

of Xs,U and has a geometric quotientXs,Û
min+/U which is aC∗-invariant open subset ofXs,U/U and

coincides with both the stable and semistable sets (X/ ∼U)s,C∗ = (X/ ∼U)ss,C∗ for theC∗ action
with respect to the linearisation onOP((H0(X,L⊗c)U )∗)(1) induced byL⊗c

χ . It then follows that the
associated GIT quotient

X/ ∼U//C
∗
� (Xs,Û

min+/U)/C∗ � Xs,Û
min+/Û = X ≈L⊗c

χ
Û

and this completes the inductive proof. �

We have now proved Theorem 0.1 and Corollary 0.3, which follow immediately from Theo-
rem 3.4. Corollary 0.4 follows directly as well, since if a complex linear algebraic groupH with
unipotent radicalU acts on a complex algebraA in such a way that the algebra ofU-invariants
AU is finitely generated, then there is an induced action onAU of the reductive groupR= H/U,
and the algebra ofH-invariants

AH = (AU)R

is finitely generated sinceR is reductive. In the situation of Corollary 0.4 whenA is the al-
gbra⊕k≥0H0(X, L⊗ck

kχ then the associated projective variety is the enveloping quotientX ≈H, and
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this enveloping quotient is the GIT quotient of the enveloping quotientX ≈Û by the reductive
subgroup ofR which is its intersection with the kernel of the characterχ, with respect to the
induced linearisation. The result follows from combining Theorem 3.4 with classical GIT for
the action of this reductive subgroup ofR.

4. Automorphism groups of toric varieties

In this section we will observe that ifY is a complete simplicial toric variety then its au-
tomorphism groupAut(Y) satisfies the conditions of Corollary 0.4, so that every well adapted
linear action ofAut(Y) on a projective varietyX with respect to an ample line bundle for which
semistability coincides with stability has finitely generated invariants and its enveloping quo-
tient is a geometric quotient ofXss.

For this we use the description ofAut(Y) given in [6]. LetY be a complete simplicial toric
variety overC of dimensionn, and letS be its homogeneous coordinate ring in the sense of [6].
Thus

S = C[xρ : ρ ∈ ∆(1)]

is a polynomial ring ind = |∆(1)| variablesxρ, one for each one-dimensional coneρ in the fan
∆ determining the toric varietyY. The homogeneous coordinate ringS is graded by setting the
degree of a monomial

∏
ρ x

aρ
ρ to be the class of the corresponding Weil divisor

∑
ρ aρDρ in the

Chow groupAn−1(Y), giving us the decomposition

S =
⊕

α∈An−1(Y)

Sα

whereSα is spanned by the monomials of degreeα. Then we have

Sα = S
′

α ⊕ S
′′

α

whereS
′

α is spanned by thexρ of degreeα andS
′′

α is spanned by the remaining monomials in
Sα, each being a product of at least two variables.

Then by [6] Theorem 4.2 and Proposition 4.3,Aut(Y) is an affine algebraic group fitting into
an exact sequence

1→ HomZ(An−1(Y),C∗)→ Ãut(Y)→ Aut(Y)→ 1

with HomZ(An−1(Y),C∗) isomorphic to a product of a finite group and a torus (C∗)d−n, and the

identity component̃Aut
0
(Y) of Ãut(Y) satisfies

Ãut
0
(Y) � U ⋊ R̃

for
R̃�

∏

α

GL(S
′

α)

and the unipotent radicalU of Ãut
0
(Y) is given by

U = 1+N
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whereN is the ideal
N =

⊕

α

HomC(S
′

α,S
′′

α)

in End(S). The reductive group̃R�
∏
αGL(S

′

α) acts in the obvious way onS by identifyingS
with the symmetric algebra on

⊕
α

S
′

α, so thatr ∈ R̃acts on HomC(S
′

α,S
′′

α for eachα ∈ An−1(Y),
and thus onN , via pre-composition with the action ofr on S

′

α and post-composition with the
induced action ofr−1 on

S
′′

α ⊆
⊕

j≥2

Sym j(
⊕

α

S
′

α).

It follows that if we embedC∗ in R̃=
∏
αGL(S

′

α) via

t 7→ (t−1idS
′
α
)α

where idS′α is the identity in GL(S
′

α), then the weights of the action ofC∗ on the Lie algebraN
of U are all of the form

t 7→ t j−1

for somej ≥ 2, so thatj − 1 > 0. Thus we obtain

Lemma 4.1. If Y is a complete simplicial toric variety then Aut(Y) is of the form

Aut(Y) � U ⋊ R

where U is unipotent and R is reductive, and R contains a one-parameter subgroupC∗ ≤ R such
that the action ofC∗ on the Lie algebra of U induced by its conjugation action on U has all
weights strictly positive.

As an immediate consequence of this lemma and Corollary 0.4 we have

Corollary 4.2. Any well adapted linear action of H= Aut(Y) on a projective variety X with
respect to an ample line bundle L, for which semistability coincides with stability for the ac-
tion of its unipotent radical U extended by the central one-parameter subgroup of Aut(Y)/U
described above, has finitely generated invariants when L isreplaced by a tensor power L⊗c

for a sufficiently divisible positive integer c. Furthermore its enveloping quotient X ≈H is the
associated projective variety and is a categorical quotient of Xss by the action of H, while the
canonical morphismφ : Xss→ X ≈H is surjective withφ(x) = φ(y) if and only if the closures of
the H-orbits of x and y meet in Xss.

5. Jet differentials and generalised Demailly–Semple jet bundles

Our remaining aim is to apply our results to a family of examples involving non-reductive
reparametrisation groups which arise in singularity theory and the study of jets of curves. We
borrow notation from [7].

Let X be a complexn-dimensional manifold. Green and Griffiths in [14] introduced a bundle
Jk → X, the bundle ofk-jets of germs of parametrised curves inX; that is, the fibre overx ∈ X
is the set of equivalence classes of holomorphic mapsf : (W, 0)→ (X, x) whereW is an open
neighbourhood of 0 inC, with the equivalence relationf ∼ g if and only if the jth derivatives
f ( j)(0) = g( j)(0) are equal for 0≤ j ≤ k. If we choose local holomorphic coordinates (z1, . . . , zn)
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on an open neighbourhoodΩ ⊂ X aroundx, the elements of the fibreJk,x are represented by the
Taylor expansions

f (t) = f (0)+ t f ′(0)+
t2

2!
f ′′(0)+ . . . +

tk

k!
f (k)(0)+O(tk+1)

up to orderk at t = 0 ofCn-valued holomorphic maps

f = ( f1, f2, . . . , fn) : (C, 0)→ (Cn, x).

In these coordinates we have

Jk,x �

{
( f ′(0), . . . , f (k)(0)/k!)

}
� (Cn)k,

which we identify withCnk. Note, however, thatJk is not a vector bundle overX, since the
transition functions are polynomial, but not in general linear.

LetGk be the group ofk-jets of biholomorphisms

(C, 0)→ (C, 0);

that is, thek-jets at the origin of local reparametrisations

t 7→ ϕ(t) = α1t + α2t
2 + . . . + αkt

k, α1 ∈ C
∗, α2, . . . , αk ∈ C,

in which the composition law is taken modulo termst j for j > k. This group acts fibrewise on
Jk by substitution. A short computation shows that the action on the fibre is linear:

f ◦ ϕ(t) = f ′(0) · (α1t + α2t
2 + . . . + αkt

k) +
f ′′(0)
2!
· (α1t + α2t

2 + . . . + αkt
k)2 + . . .

. . . +
f (k)(0)

k!
· (α1t + α2t

2 + . . . + αkt
k)k (modulotk+1)

so the linear action ofϕ on thek-jet ( f ′(0), . . . , f (k)(0)/k!) is given by the following matrix
multiplication:

(7) ( f ′(0), f ′′(0)/2!, . . . , f (k)(0)/k!)



α1 α2 α3 · · · αk

0 α2
1 2α1α2 · · · α1αk−1 + . . . + αk−1α1

0 0 α3
1 · · · 3α2

1αk−2 + . . .

· · · · ·

0 0 0 · · · αk
1



with (i, j)th entry ∑

s1+...+si= j

αs1 . . . αsi

for i, j ≤ k.
There is an exact sequence of groups:

0→ Uk→ Gk→ C
∗ → 0,

whereGk → C
∗ is the morphismϕ→ ϕ′(0) = α1 in the notation used above, and

Gk = Uk ⋉ C
∗
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is a semi-direct product ofUk by C∗. With the above identification,C∗ is the subgroup of
diagonal matrices satisfyingα2 = . . . = αk = 0 andUk is the unipotent radical ofGk, i.e. the
subgroup of matrices withα1 = 1. The action ofλ ∈ C∗ on k-jets is described by

λ · ( f ′(0), f ′′(0), . . . , f (k)(0)) = (λ f ′(0), λ2 f ′′(0), . . . , λk f (k)(0)).

LetEn
k,m denote the vector space of polynomialsQ(u1, u2, . . . , uk), of weighted degreem, with

respect to thisC∗ action, whereui = f (i)(0); that is, such that

Q(λu1, λ
2u2, . . . , λ

kuk) = λ
mQ(u1, u2, . . . , uk).

Elements ofEn
k,m have the form

Q(u1, u2, . . . , uk) =
∑

|α1|+2|α2|+...+k|αk|=m

uα1
1 uα2

2 . . .u
αk
k ,

whereα1, α2, . . . , αk are multi-indices of lengthn.
En

k,m can be identified with the fibre of the vector bundleEGG
k,m → X introduced by Green and

Griffiths in [14], whose fibres consist of polynomials on the fibres of Jk of weighted degreem
with respect to the fibrewiseC∗ action onJk.

The action ofGk naturally induces an action on the vector space

En
k =

⊕

m≥0

En
k,m = O(Jk,x)

of polynomial functions onJk,x. Following Demailly ([7]), we defineẼn
k,m ⊂ E

n
k,m to be the

vector space ofUk-invariant polynomials of weighted degreem, i.e. those which satisfy

Q(( f ◦ ϕ)′, ( f ◦ ϕ)′′, . . . , ( f ◦ ϕ)(k)) = ϕ′(0)m · Q( f ′, f ′′, . . . , f (k)).

Thus Ẽn
k =

⊕
m≥0 Ẽ

n
k,m = O(Jk,x)Uk consists of the polynomials functions onJk,x which are

invariant under the induced action ofUk onO(Jk,x). The corresponding bundle of invariants is
the Demailly-Semple bundle of algebrasEn

k = ⊕mEn
k,m ⊂ ⊕mEGG

k,m with fibresẼn
k =

⊕
m≥0 Ẽ

n
k,m =

O(Jk,x)Uk.
This bundle of graded algebrasEn

k = ⊕mEn
k,m has been an important object of study for a

long time. The invariant jet differentials play a crucial role in the strategy developed by Green,
Griffiths, Bloch, Ahlfors, Demailly, Siu and others to prove Kobayashi’s 1970 hyperbolicity
conjecture [1, 5, 7, 8, 9, 14, 24, 26, 34, 35, 36].

We can now apply Theorem 0.1, Corollary 0.2 and Remark 0.3 to linear action ofGk on the
projective variety associated toJk,x. In this case we can also apply the results of [4] sinceGk

is a subgroup of GL(k;C) which is ‘generated along the first row’ in the sense of [4], and the
action ofGk extends to GL(k;C).

We can also consider a generalised version of the Demailly-Semple jet differentials to which
the results of [4] do not apply. Instead of germs of holomorphic mapsC→ X, we now consider
higher dimensional holomorphic objects inX, and therefore we fix a parameter 1≤ p ≤ n, and
study germs of holomorphic mapsCp → X.

Again we fix the degreek of these maps, and introduce the bundleJk,p → X of k-jets of germs
of holomorphic mapsCp → X. With respect to local holomorphic coordinates nearx ∈ X the
fibre overx is identified with the set of equivalence classes of holomorphic mapsf : (Cp, 0)→
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(Cn, x), with the equivalence relationf ∼ g if and only if all derivativesf ( j)(0) = g( j)(0) are
equal for 0≤ j ≤ k. Equivalently the elements of the fibreJk,p,x are the Taylor expansions

f (u) = x+ u f ′(0)+
u2

2!
f ′′(0)+ . . . +

uk

k!
f (k)(0)+O(|u|k+1)

aroundu = 0 up to orderk of Cn-valued maps

f = ( f1, f2, . . . , fn) : (Cp, 0)→ (Cn, x).

Here
f (i)(0) ∈ Hom ( SymiCp,Cn)

so that in these coordinates the fibre is

Jk,p,x =
{
( f ′(0), . . . , f (k)(0)/k!)

}
= Cn((k+p

k )−1)

which is a finite dimensional vector space.
Let Gk,p be the group ofk-jets of germs of biholomorphisms of (Cp, 0), that is, the group of

biholomorphic maps

(8) u→ ϕ(u) = Φ1u + Φ2u2 + . . . + Φkuk =
∑

1≤i1+···+ip≤k

ai1...ipu
i1
1 . . .u

ip
p

for which Φi ∈ Hom ( SymiCp,Cp) andΦ1 ∈ Hom (Cp,Cp) is non-degenerate. ThenGk,p

admits a natural fibrewise right action onJk,p, which consist of reparametrizing thek-jets of
holomorphicp-discs. A similar computation to at (7) shows that

f ◦ ϕ(u) = ( f ′(0)Φ1)u + ( f ′(0)Φ2 +
f ′′(0)
2!
Φ2

1)u
2 + . . . + . . . +

∑

i1+...+il=k

(
f (l)(0)

l!
Φi1 . . .Φil )u

l .

This is a linear action on the fibresJk,p,x with matrix given by

(9)



Φ1 Φ2 Φ3 . . . Φk

0 Φ2
1 Φ1Φ2 . . .

0 0 Φ3
1 . . .

. . . . .

Φk
1


,

whereΦi is a p × dim( SymiCp)-matrix, theith degree component of the mapΦ and thep ×
pmatrixΦ1 is invertible. HereΦi1 . . .Φil is the matrix of the map Symi1+...+il (Cp) → SymlCp,
which is induced by

Φi1 ⊗ · · · ⊗ Φil : (Cp)⊗i1 ⊗ · · · ⊗ (Cp)⊗il → (Cp)⊗l

The linear groupGk,p is generated along its firstp rows, in the sense that the parameters in the
first p rows are independent, and all the remaining entries are polynomials in these parameters.
The only condition which the parameters must satisfy is thatthe determinant of the first diagonal
p × p block is nonzero. Note thatGk,p is an extension of its unipotent radicalUk,p (given by
Φ1 = 1 byGL(p;C) (given byΦi = 0 for i > 1), so we have an exact sequence

0→ Uk,p → Gk,p→ GL(p;C) → 0.
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The centralC∗ of GL(p;C) corresponds to the diagonal matrices with entriest, t2, . . . , tk for
t ∈ C∗ whereti occurs dim( Symi(Cp)) times, and these act by conjugation on the Lie algebra
of Uk,p with weightsi − 1 for 2≤ i ≤ k. Thus by Corollary 0.4 we have

Corollary 5.1. Any linear action ofGk,p on a projective variety X with respect to an ample
line bundle L for which semistability coincides with stability for the action ofUk,p extended
by the central one-parameter subgroup ofGL(p;C) has finitely generated invariants when L is
replaced by a tensor power L⊗c for a sufficiently divisible positive integer c and the linearisation
is twisted by a well adapted rational character. Furthermore its enveloping quotient X≈Gk,p

is the associated projective variety and is a categorical quotient of Xss by the action ofGk,p,
while the canonical morphismφ : Xss→ X ≈Gk,p is surjective withφ(x) = φ(y) if and only if the
closures of theGk,p-orbits of x and y meet in Xss.

Definition 5.2. The generalized Demailly-Semple jet bundle Ek,p,m→ X of invariant jet differen-
tials of order k and weighted degree(m, . . . ,m) has fibre at x∈ X consisting of complex-valued
polynomials Q( f ′(0), f ′′(0)/2, . . . , f (k)(0)/k!) on the fibre Jk,p,x of Jk,p, which transform under
any reparametrizationφ ∈ Gk,p of (Cp, 0) as

Q( f ◦ φ) = (Jφ(0))mQ( f ) ◦ φ,

where Jφ(0) denotes the Jacobian at 0 ofφ; that is, Jφ(0) = detΦ1 whenφ is given as at (9).
Thus the generalized Demailly-Semple bundle Ek,p = ⊕Ek,p,m of invariant jet differentials of
order k has fibre at x∈ X given by the generalized Demailly-Semple algebraO(Jk,p,x)Uk,p⋊S L(p;C).

We can apply Corollary 5.1 to the linear action ofGk,p on the projective spaceX = P(Jk,p,x)
with respect to the line bundleL = OP(Jk,p,x)(1) satisfying

O(Jk,p,x) = ⊕ j≥0H0(X, L⊗ j).

As at Remark 0.3, by considering a diagonal action onX × P1, we can deduce that the algebra
⊕∞m=0H0(X×P1, L⊗cm

mχ ⊗OP1(M))Gk,p ofGk,p-invariants onX×P1 is finitely generated whenM >> 1
and c is a sufficiently divisible positive integer and the linear action has been twisted by a
suitable rational characterχ/c. This finitely generated graded algebra can be identified with
the subalgebra of the generalized Demailly-Semple algebraO(Jk,p,x)Uk,p⋊S L(p;C) generated by the
Uk,p ⋊ S L(p;C)-invariants in⊕∞m=0H0(X, L⊗cm)Uk,p⋊S L(p;C) which are weight vectors with non-
negative weights for the action of the central one-parameter subgroup ofGLp after twisting by
a suitable characterχ. This twisting is such that the matrix (9) is replaced with its multiple by
(det(Φ1)−(1/p)−ǫ for 0 < ǫ << 1, so the only weight vectorsσ ∈ H0(X, L) =

⊕k
i=1 Symi(Cp)

with non-negative weights are the sectionsσ in Sym1(Cp) = Cp, which have weightpǫ. It
therefore follows that the localisationO(Jk,p,x)

Uk,p⋊S L(p;C)
σ of the generalized Demailly-Semple

algebraO(Jk,p,x)Uk,p⋊S L(p;C) at any suchσ is finitely generated (cf. [8, 26]).
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