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The effect of AC electric fields on the elasticity of supported lipid bilayers has been investigated
at the microscopic level using grazing incidence synchrotron x-ray scattering. A strong decrease in
the membrane tension up to 1mN/m and a dramatic increase of its effective rigidity up to 300kBT
are observed for local electric potentials seen by the membrane . 1V. The experimental results were
analyzed using detailed electrokinetic modeling and non-linear Poisson-Boltzmann theory. Analysis
of electrostriction effects demonstrates an accurate modeling of the electromagnetic stress. Accurate
modeling of our data shows that the decrease in tension results from the amplification of charge
fluctuations on the membrane surface whereas the increase in bending rigidity results from effects in
the electric double layer. These effects eventually lead to a destabilization of the bilayer and vesicle
formation. Similar effects are expected at the tens of nanometer lengthscale in cell membranes with
lower tension, and could explain a number of electrically driven processes.

Electric fields can be used to destabilize lipid bilay-
ers as in the electroformation process, the most popu-
lar method to form large unilamellar vesicles [1], or to
manipulate the shape of vesicles [2–4]. Beyond biosen-
sor applications and the investigation of fundamental
mechanical, dynamical and binding properties of mem-
branes using impedance spectroscopy or dielectric relax-
ation [5], the strong influence of electric fields on lipid
membrane behavior is also used in numerous applica-
tions in cell biology, biotechnology and pharmacology
[6, 7] such as cell hybridization [8], electroporation [9],
electrofusion [10] and electropermeabilization [11]. All
these effects imply a strong deformation of the mem-
branes in the field, the understanding of which in terms
of elastic properties is therefore of prime importance [12].
Theoretically, the effect of electric fields on membrane
tension has been investigated in Ref. [13], which was
extended to bending rigidity in Refs [14, 15].
When placed in an electric field E, charges of oppo-
site sign will accumulate at both sides of a membrane
which can be seen as a capacitor. For a flat mem-
brane, a direct consequence is electrostriction: at equi-
librium, the elastic response of the membrane balances
the electrostatic pressure [16]. Beyond this simple ef-
fect, membrane fluctuations modify the boundary con-
ditions for the electric field, leading to a subtle coupling
between electrostatics and membrane elasticity. The sur-
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face charge density excess for a surface mode zq exp(iq.r)
is σm = −ǫmEmdmq2 exp(iq.r), where ǫm and dm are the
membrane permittivity and thickness, Em the field seen
by the membrane, and q2zq the local curvature. The
work of the electric field to reach this configuration is
σmEmzq exp(iq.r). As q2z2

q is the increase in area of the
fluctuating membrane, this means that there is a nega-
tive correction to the free energy ∝ q2E2

m, i.e. a negative
(destabilizing) contribution Γm to the membrane surface
tension γ [13]. Similar effects occur in the electric double
layer leading to a total correction Γel = Γm + ΓDL, where
ΓDL is the usually smaller correction coming from the
electrical double layer [14]. Taking into account non-
linear effects in the electric double layer we have,

Γm = −ǫmdmE2
m = −

ǫm

dm

[

Vloc −
4kBT

e
ln

(

1 + c

1 − c

)

]2

, (1)

where Vloc is the local electric potential seen by the bi-
layer and the double electric layer, lower than the applied
potential. 0 < c < 1 is a dimensionless parameter de-
pending on Debye screening length κD and voltage, sat-
urating to 1 for either high salt or high voltage because of
non-linear effects in the Debye layer [14, 17]. Further de-
velopment in powers of q give contributions in q4 [4, 14],
corresponding to a positive correction Kel = Km + KDL

to the membrane bending rigidity κ, where the largest
correction is now due to the double layer:

KDL = 4ǫw

(

kBT

e

)2

κ−1
D

c2(3 − c2)

1 + c2
, (2)

where ǫw is the permittivity of water.
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FIG. 1: Schematic view of the experiment and electokinetic
model of the supported bilayers (A). The incident beam at
grazing incidence (direction kin) is scattered in direction ksc,
giving access to in-plane fluctuations. Schematic represen-
tation of the effect of electric field (B). Top, freely fluctuating
membrane. Middle, decrease in surface tension induced by the
electric field is effective at large length scales. Bottom, increase
in bending rigidity, mainly effective at small length scales. Cal-
culated electric potential as a function of the distance from the
wall for 10 Hz (black solid curve) and 50 Hz (red dotted line)
frequencies (C). The inset of (C) shows the local voltage at the
membrane boundaries as a function of frequency and for dif-
ferent Debye lengths κ−1

D = 800 nm (red curve), κ−1
D = 300 nm

(green curve) and κ−1
D = 150 nm (black curve).

The model system we have used consisted of two sup-
ported bilayers of DSPC (L−α 1,2-distearoyl-sn-glycero-
3-phosphocholine, Avanti Polar Lipids, Lancaster, Al-
abama) deposited on ultra-flat silicon substrates. The
first bilayer serves as a spacer to reduce the interaction
between the floating second bilayer and the substrate
and keep it free to fluctuate [18]. Potential was applied
between a Cu layer deposited at the back of the thick Si
substrate and an ITO coated glass plate mounted par-
allel to the substrate in the solution, 0.5 cm from the
membrane (Fig. 1.A).

We used a 27 keV x-ray beam (wavelength λ = 0.0459
nm) at the CRG-IF beamline of the European Syn-
chrotron Radiation Facility (ESRF) in an off-specular ge-

ometry described in Fig. 1.A [19]. Off-specular scattering
is sensitive to both static deformation and thermal fluc-
tuations of bilayers. In the limit of small amplitudes,
and the simple case of a single bilayer in an interaction
potential U, the scattered intensity is Isc ∝ 〈zqz−q〉, with
the fluctuation spectrum 〈zqz−q〉 = kBT/h(q) and

h
(

q
)

= U′′ + γq2 + κq4. (3)

The Hamiltonian of the system is given by H =
∑

qH (q) =
∑

q h
(

q
)

∣

∣

∣zq

∣

∣

∣

2
. Fitting of the scattering curves

following the procedure of [18, 20] therefore gives access
to the bilayer electron density profile, γ, κ and U′′. Dif-
ferent scattering curves are presented in Supplemental
Material, showing that high voltage differences, up to 10
V can be applied to the cell without destroying the mem-
brane, but strongly affecting its fluctuations. Fig. 2 sum-
marizes the main findings of this paper. First, we clearly
observe an electrostriction effect on structural proper-
ties. The thickness dw of water layer in between the two
lipid bilayers decreases with the electric field (Fig. 2.A).
Depending on voltage and frequency, we also observe
large negative corrections to the tension Γel = γ(V=0) − γ
(up to 1 mN/m, Fig. 2.C,D) and positive corrections to the
bending stiffness Kel = κ − κ(V=0) (up to a few hundreds
of kBT, Fig. 2.E,F).

Analyzing our results first requires to determine the
local voltage drop Vloc seen by the bilayer. To this
end, we model the system electrokinetics by solving
the Poisson-Nernst-Planck equations, generalizing the
model of Ziebert et al [15] to the double supported bi-
layer (Fig. 1.A) [17]. The only unknown parameter is
the Debye screening length κ−1

D
, which might slightly

depend on the dissolved carbon dioxide and fixes the
conductivity of the solution [21]. Whereas κ−1

D
= 960 nm

in pure water, it is reduced to 150 nm for normal atmo-
spheric conditions. As scattering curves were recorded
5 to 10 hours after sample preparation, which can influ-
ence the Debye length, κ−1

D = 150 nm, 300 nm and 800 nm
were used in the analysis. With these values and a single
diffusion coefficient D = 7.5 × 10−9 m2/s for all ions [22],
the effective membrane resistivity, lower than its intrinsic
resistivity, ranges from 20Ω.cm2 to 300Ω.cm2. The sys-
tem behaves as a low-pass filter with a cut-off frequency
determined by the bulk solution conductance R−1

B
and

the electric double layer capacitance per unit area CDL

(inset of Fig. 1.C), the highest resistance and capacitance
in the system respectively. Depending on Debye length,
RB = 0.5 − 10 MΩ.cm2 and CDL = 0.04 − 0.18 µF/cm2,
leading to cutoff frequencies of 0.2 Hz for κ−1

D = 150 nm

to 3 Hz for κ−1
D
= 800 nm. Accordingly, the voltage drop

at the membrane increases from less than 0.01V0 at 50 Hz
to ≈ 0.04V0 at 10 Hz, where V0 is the AC field applied to
the membrane (Fig. 1.C).

First discussing electrostriction, the most compressible
part in the system is the water layer in between the two
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FIG. 2: Effect of an AC field on a supported bilayer. Filled
symbols are data from this work. Black squares (�), green
circles (•) and red triangles (N) correspond to different experi-
ments. Solid lines correspond to the full electrostatic contribu-
tion (Poisson-Boltzmann) to Γel and Kel which can be decom-
posed in a membrane contribution (dotted line) and an electric
double layer contribution (dashed line). Linear Debye-Hückel
theory is shown as dashed-dotted lines. κ−1

D = 800 nm (red

curves), κ−1
D = 300 nm (green curves) and κ−1

D = 150 nm (black
curves). Mechanical pressure as a function of distance (A). Blue
stars are from Ref. [18] where pressure was applied by osmotic
stress on similar double bilayers. Empty symbols are from
Ref. [23] (osmotic stress on multilayer stacks). The solid line is
calculated after Ref. [18] using dispersive, electrostatic and en-
tropic contributions to the inter-bilayer potential. Number of
water molecules per lipid nw as a function of electrostatic pres-
sureΠ (B). Blue circles (◦) were obtained by NMR spectroscopy
for osmotically stressed DMPC multilayer stacks[24]. Electro-
static contribution to the membrane tension Γel as a function of
frequency for a fixed voltage V0 = 5 V (C) and as a function of
the local voltage Vloc at the membrane (D). Electrostatic contri-
bution to the membrane rigidity Kel as a function of frequency
for a fixed voltage V0 = 5 V (E) and KelκD/kBT as a function of
the local potential difference Vloc (F).

lipid bilayers and the electromagnetic stress is balanced
by the interbilayer potential. By plotting the electrostatic

pressure Π [17] as a function of the interbilayer water
thickness dw (Fig. 2.A), all points fall on a master curve
obtained for both the natural entropic repulsion between
bilayers [18] and osmotic stress, either applied on float-
ing bilayers [18] or multilayer stacks [23], demonstrating
that the local electromagnetic stress is well described by
our model. We also report in Fig. 2.B the number of wa-
ter molecules per lipids nw as a function of the pressure
Π. Similar curves obtained when the pressure is osmoti-
cally applied on a floating bilayer [18] and on multilayer
stacks [24] are also presented, clearly demonstrating that
the floating bilayers behave the same way irrespective
of how the mechanical stress is applied and keep their
integrity under the applied electric field.
The frequency dependence of the correction to the mem-
brane tension Γel is plotted in Fig. 2.C for V0 = 5 V, where
a≈ ω−2 decay is observed. The origin of this purely elec-
trokinetic effect lies in the impossibility to charge the
membrane above the cutoff frequency of the low band-
pass filter formed by the electric double layer capacitor
and bulk water resistor due to the finite mobility of ions
in water. By plotting Γel as a function of the local electric
field Vloc, we observe a good agreement between data
and theoretical predictions with Γel exhibiting a roughly
∝ V2

loc
dependence (Fig. 2D).

The increase in bending rigidity of the membrane Kel is
plotted as a function of frequency for V0 = 5 V in Fig. 2.E
and as a function of Vloc in Fig. 2.F. Both curves exhibit
a more complex behavior than the Γel curves which can
be attributed to non-linear effects due to the large volt-
age drop at the membrane with eV/kBT ≃ 1 (Fig. 1.C).
In contrast with the linear theory which exhibits the ex-
pected ω−2 behavior, the low-frequency plateau seen for
both experimental data and non-linear theory in Fig. 2.E
comes from saturation effects in the electric double layer.
By plotting the data as a function of Vloc, which allows
one to decouple microscopic and electrokinetic effects,
all KelκD values indeed fall on a master curve with a sat-
uration from 0.5V (see Fig. 2.F). This is in remarkable
agreement with the theory which predicts a saturation
value of Kel proportional to the Debye length [15], and
fully consistent with the expectation that a thicker layer
is more difficult to bend. As κD also fixes independently
cutoff frequencies via water conductivity, the analysis is
clearly consistent. However, it should be kept in mind
that despite its remarkable description of the experimen-
tal data, the theory of Ref. [14] is for a single bilayer in a
symmetric environment, unlike the experimental condi-
tions used here.
The electroformation technique uses similar electric field
to destabilize membranes and fabricate Giant Unilamel-
lar Vesicles (GUVs). The stability limit of the bilayers can
be calculated using h(q) = 0, and is drawn in Fig. 3.A for
two different values of the potential second derivative
(U′′ = 3× 1011 J.m−4 and 3× 1012 J.m−4). It clearly shows
that our x-rays experiments are performed in the stability
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domain but close to instability conditions. With the aim
of observing destabilization, we have applied an elec-
tric field on a single supported bilayer on an ITO coated
glass slide under similar conditions. We observed by
fluorescence microscopy the formation of GUVs above
and close to the main transition temperature Tm (Fig. 3).
Small vesicles of diameter ≈5 µm are the dominant pop-
ulation at short times (t ∼ 1-10 min) and grow with time
to reach a diameter of 10-30 µm. Interestingly, the initial
size we find here is consistent with the instability in the
bilayer fluctuation spectra evidenced by x-ray scattering.

FIG. 3: Γel as a function of Kel (A). The destabilization limits for
U′′ = 1012.5 J.m−4 and 1011.5 J.m−4 are given as light and dark
pink domains respectively. Vesicle formation under electric
field (5 V, 5 Hz) from a single supported bilayer of DPPC (B).
Observation by fluorescence microscopy at 5 min (left) and 85
min (right) after the application of the field.

The effect of low AC fields on supported floating bilay-
ers has been determined by x-ray off-specular scattering
measurements and carefully analyzed both at the elec-
trokinetic level and at the microscopic level of the bilayer
elasticity following [14, 15]. At small lengthscales ≤ 0.5
µm, the electric field induces a strong increase in the bi-
layer bending rigidity, with a saturation related to the
electric double layer thickness, whereas at larger length-
scales ≥ 0.5 µm, we observe a dramatic decrease in the
membrane tension, possibly down to negative values.
The competition between the stabilizing effect on bend-
ing rigidity and destabilizing effect on tension can be
tuned to achieve vesicle formation with sizes larger than

2π
√

κ/γ ∼ 1 µm as observed by optical microscopy, the
fastest growing mode being selected by hydrodynam-
ics [13]. This detailed understanding can now be used
for further analysis of the effect of electric fields on bi-
ological membranes. For cell membranes which have a
smaller rigidity (∼ 1−10 kBT) than our model membrane,
destabilization is expected to occur at lengthscales ≃ 50
nm and could explain the effect of low electric fields in
processes like electroendocytosis.
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After introducing the notation we used, we present the main theoretical models used for describing
our data in section 2. The first one is an extension of Ziebert and Lacoste’s electrokinetic model [1] to our
experimental configuration (section 2.1.1). It allows to calculate the electric potential and electric field in
the cell in the case of an applied AC electric field, assuming that the membranes are strictly planar and
non-fluctuating. In a second step (section 2.2), we present how to calculate the modification of mechanical
parameters for a single free bilayer in a static electric field, in the framework of the non-linearized Poisson-
Boltzmann theory, following the work of Ziebert and Lacoste [2, 1]. Section 3 is devoted to Material and
Methods. We give all the experimental off-specular reflectivity data together with the best fits we have
obtained and the corresponding Electron Density Profile (EDP) (section 3.4). All the fitted parameters
are summarized in a table in section 3.5. Finally, we give some details on the calculation of number of
water molecules in section 4.

1 Notations

• e = 1.6 · 10−19 C, elementary charge.

• kB = 1.38 · 10−23 J/K, Boltzmann constant.

• ǫ0 = 8.8541 · 10−12 F/m, electric permittivity of a vacuum.

• ǫm = 2ǫ0, electric permittivity of membranes.

• ǫw = 80ǫ0, electric permittivity of water.

• A, sample surface.

• Φ (r) = Φ (z), electric potential.

• E (r) = E (z)uz, electric field.

• n− (r) = n− (z), density of anions.

• n+ (r) = n+ (z), density of cations.

• D, diffusion coefficient of ionic species.

• j (r) = j (z)uz, electric current density.

• Vloc, local electric potential at the floating membrane + electric double layers boundaries (Fig. S3).

• Z, total impedance of the system.

• ZB, bulk impedance.

• Zm, membrane impedance.

• ZDL, electric double layer impedance.

• ZSi, silicon oxyde impedance.

• L = 0.5 cm, experimental cell size.

• dw, intermembrane water layer thickness.

• d, membrane thickness.

• dSi, silicon oxyde layer thickness.

• Γel electric correction to the membrane tension.

• Kel electric correction to the membrane bending rigidity.
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2 Modeling

2.1 Electrokinetic modeling

2.1.1 Generalization of Ziebert and Lacoste model

The model Ziebert and Lacoste [2] consider a single bilayer in a symmetric environment. Extending
their model [1] for our experimental configuration, we calculate here the electric potential and electric
field in the cell in the case of an applied AC field for planar, non-fluctuating membranes.

−10 0 10
0.00

0.02

0.04

Φ

(I) Bulk
water

(II)(III)(IV)(V)

(VI)
Si

z (nm)

z (nm)
0.0 400.0 800.0

0.00

0.02

0.04

0.06

0.08

(I) Bulk
water

(VI)
Si

Φ

dw dd

Figure S1: Electrostatic potential Φ as a function of z (top). Zoom on the double bilayer region and
definition of the different domains in the system (bottom).

We have the following domains (see Fig. S1):

• domain I: bulk water (first electrode) between z = d/2 and z = L, modeled as an electrolyte of
Debye length κ−1

D and permittivity ǫw;
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• domain II: a floating bilayer of thickness d centered in z = 0, modeled as an insulator of permit-
tivity ǫm;

• domain III: an interbilayer water layer of thickness dw between z = −d/2 and z = −d/2 − dw,
modeled as an electrolyte of Debye length κ−1

D and permittivity ǫw;

• domain IV: a supported bilayer of thickness d between z = −d/2 − dw and z = −d/2 − dw − d,
modeled as an insulator of permittivity ǫm;

• domain V: a silicon oxide layer of thickness dSi between z = −3d/2−dw and z = −3d/2−dw−dSi,
modeled as an insulator of permittivity ǫSi;

The silicon block at z = −3d/2− dw − dSi is grounded (Φ = 0) and the counterelectrode at z = L is
at potential Φ = V .

In the electrolyte, we have to solve the Poisson-Nernst-Planck equations:

ǫw∂
2
zΦ = −e (n+ − n−) , (1)

e∂tn
± = −∂zj

±, (2)

j± = −D

(

e∂zn
± ∓ n±

e2

kBT
∂zΦ

)

. (3)

In insulating domains, we have to solve the Poisson equation:

∂2zΦ = 0, (4)

with continuity relations at each interface.
In the following we note:

β (ω, κD, I0, D) = κD

√

1 +
ω

Dκ2
D

, (5)

λm =
ǫw
ǫm

d. (6)

Charge density and electrostatic potential In domain I (bulk) the charge density ρ(I) and the

potential Φ(I) are given by:

ρ(I) (z, V, L, κD, I0, D, ω) =
κ2

DI0 sinh (β (z − L))

ωβ cosh (βL)
, (7)

Φ(I) (z, V, L, κD, I0, D, ω) = V +
(I0(z − L)−Dρ(I))

ǫwDβ2
. (8)

In domain II (bilayer), the charge density is 0 and the potential is a linear function. By writing the
continuity of the potential and the electric field we can write:

ρ(II) (z, V, L, κD, I0, D, ω) = 0, (9)

Φ(II) (z, V, L, κD, I0, D, ω) = Φ(I) (d/2, V, L, κD, I0, D, ω) +
I0
(

z − d
2

)

ωǫm
. (10)

By using the same approach it is possible to write the charge density and the potential in domain III.
Integrating Poisson equation Eq. 4, we have:

ρ(III) (z, V, L, κD, I0, D, ω) =
I0κ

2
D

βω

(

eβdweβ(z+d/2) − e−β(z+d/2)
)

1 + eβdw

, (11)

Φ(III) (z, V, L, κD, I0, D, ω) = c2 +
I0z −Dρ(III)

Dβ2ǫw
, (12)
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with c2 an integration constant which is fixed by ensuring the water layer electroneutrality :

∫ −d/2−dw

−d/2

ρ(III) (z)dz = 0.

In domain IV we have:

ρ(IV ) (z, V, L, κD, I0, D, ω) = 0, (13)

Φ(IV ) (z, V, L, κD, I0, D, ω) = Φ(III) (− (dw + d/2))

+
I0
(

1− Dκ2
D

)

Dβ2ǫm

(

z +
d

2
+ dw

)

. (14)

In domain V:

ρ(V ) (z, V, L, κD, I0, D, ω) = 0, (15)

Φ(V ) (z, V, L, κD, I0, D, ω) = Φ(IV )

(

−
(

dw +
3

2
d

))

+
I0
(

1− Dκ2
D

)

Dβ2ǫSi

(

z +
3

2
d+ dw

)

. (16)

Impedance We then impose that the potential vanishes on the silicon electrode:

Φ(V )

(

−(
3

2
d+ dw + dSi)

)

= 0,

leading to a linear relation between I0 and V that allows us to define the system impedance:

Z (ω, κD)A =
[ β

D

{

ǫSi (2ǫw − ǫm) d+ 2ǫm (ǫwdSi + ǫSi (dw + L))
}

+
2

ω

{

(ǫSid+ ǫmdSi) ǫwβκ
2
D + ǫSiǫwdβ

3

+ ǫSiǫmκ2
D

(

sinh (β (L− d/2))

cosh (βL)
+ 2 tanh

(

βdw
2

))

}]

/
(

2ǫSiǫmǫwβ
3
)

. (17)

The potential is represented on figure S1 for κ−1
D = 500 nm and f = 10 Hz.

It is then possible to rearrange Eq. 17:

Z (ω, κD) = ZSi (ω) + ZB (ω, κD) + ZDL (ω, κD)

+ZS,1 (ω, κD) + ZS,2 (ω, κD) , (18)

schematically represented in Fig. S2, where

ZSiO2
(ω) =

dSi

ωǫSiA
, (19)

is the SiO2 impedance (purely capacitive),

ZS,1 (ω) =
d

ωǫmA
, (20)

is the supported bilayer impedance (purely capacitive),

ZS,2 (ω, κD) =
d

ADǫmβ2
=

1

R−1
m + ωCm

, (21)
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is the floating bilayer impedance (capacitance Cm = ǫmA/d and resistance Rm = d/(Dκ2
DǫmA) in

parallel), and

ZB (ω, κD) =
(L+ dw − d/2)

ADǫwβ2
=

1

R−1
B + ωCB

, (22)

is the bulk impedance (capacitance CB = ǫwA/ (L+ dw − d/2) and resistanceRB = (L+ dw − d/2) /(Dκ2
DǫwA)

in parallel).
Finally ZDL is the impedance attributed to the two electric double layers:

ZDL (ω, κD) =
1

ω

κ2
D

Dǫwβ2

[ sinh (β (L− d/2))

cosh (βL)
+ 2 tanh

(

βdw
2

)

]

. (23)

When L ≫ κ−1
D ≫ dw we obtain:

ZDL (ω, κD) ≃
1

ωCDL
, (24)

with CDL = ǫwA/
(

κ−1
D + dw + λm

)

. The Debye layers behave as a capacitance.

RB m

DL
SiO2

V
0

V

CB m

Figure S2: Schematic representation of equivalent circuit for the experimental set-up.

We are thus in the configuration of Fig.S2 with an additional capacitance for the supporting bilayer.

Orders of magnitude The bulk solution resistivity ρs
(

κ−1
D

)

depends on the Debye length κ−1
D . Due

to the dissolution of CO2 in water, Debye length decreases from 960 nm for pure water to ∼ 100 − 200
nm and pH from 7 to 5.8. Dissociation of CO2 in water leads to various species following the reactions:

CO2 +H2O ↔ H2CO3

H2CO3 +H2O ↔ HCO−

3 +H3O
+ (pKa = 6.37)

HCO−

3 +H2O ↔ CO2−
3 +H3O

+ (pKa = 10.33)

At pH∼ 5 − 6, the dominant forms are HCO−

3 and H3O
+. The diffusion coefficients of HCO−

3 and
H3O

+ are 1.18 · 10−9 m2.s−1 and 7.15 · 10−9 m2.s−1 [3] respectively. The curves presented in the paper
are calculated with a single ion diffusion coefficient D which is taken to be 7.15 · 10−9 m2.s−1, as H3O

+

has the highest mobility. Using these values we find:
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• a resistance ranging from 0.5 MΩ.cm2 to 10 MΩ.cm2;

• a characteristic time for the bulk is CBRB ∼ 5µs, meaning that the capacitive behavior of the bulk
is negligible in the working frequency range;

• a bilayer resistance ranging from 20 Ω.cm2 (κ−1
D = 150 nm) to 300 Ω.cm2 (κ−1

D = 800 nm);

• the silicon oxyde capacitance is given by CSiO2
= ǫSiO2

/dSiO2
∼ 4 · 109ǫ0;

• the membrane capacitance is given by Cm = ǫm/d ∼ 4 · 108ǫ0;

• the Debye layer capacitance is given by CDL = ǫw/(dw + ǫw/ǫmd+ κ−1
D ) ∼ 0.5− 2 · 108ǫ0;

We then obtain:

Cm ∼ CDL ≪ CSiO2
and Rm ≪ RB. (25)

2.1.2 Electric field at floating bilayer level

z
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Figure S3: Schematic representation of the floating bilayer cell: a quasi-planar bilayer is embedded in a
symmetric electrolyte of Debye length κ−1

D and a voltage difference Vloc is applied far from the membrane
z ≫ κ−1

D .

Calculating the effect of the electric field on the floating bilayer (see Section 2.1.2) implies a precise
knowledge of the electric field and electric double layer structure around the bilayer. The solution of
the full non-linearized Poisson-Boltzmann equation considering only the floating bilayer is given below,
following Ziebert and Lacoste [2]. We consider a neutral and insulating bilayer of thickness d in a
monovalent electrolyte characterized by its Debye length κ−1

D only and submitted to a steady voltage
Vloc (−Vloc/2 and Vloc/2 far away from the membrane (z ≫ κ−1

D ), see Fig. S3). We first give the local
potential Vloc using the previously described electrokinetic model.

Local electrostatic potential Vloc In order to calculate the local tension Vloc acting on the floating
bilayer and the electric double layers, we use the results of section 2.1.1:

Vloc (ω, V0) =

∣

∣

∣

∣

Zm

Z

∣

∣

∣

∣

V0, (26)
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where

Zm (ω, κD) = ZS,2 (ω, κD) + ZDL (ω, κD, ) , (27)

Z (ω, κD) = ZB (ω, κD) + ZDL (ω, κD) + ZS,1 (ω) + ZS,2 (ω, κD) + ZSiO2
(ω, κD) . (28)

Using Eq. 25 it can be simplified as:

Vloc =

√

1 + (ωτ1)
2

1 + (ωτ2)
2
+ (ωτ3)

4 V0, (29)

with

τ1 = Rm (Cm + CDL) , (30)

τ2 =
√

R2
BC

2
DL +R2

m (C2
m + CmCDL), (31)

τ3 =
√

RmRBCmCDL, (32)

and τ1 ≪ τ3 ≪ τ2.
We have a low-pass filter with a cut-off frequency fc which is a solution of:

(ωτ3)
4
+
((

τ22 − τ21
)

ω
)2 − 1 = 0, (33)

leading to

2πfc =
1√
2

τ0
τ23

√

√

√

√

√

1 + 4

(

τ3
τ0

)4

− 1, (34)

where we have used τ0 =
√

τ22 − τ21 .
In our case τ1 ≪ τ3 ≪ τ2 and we have simply:

τ0 ∼ τ2 (35)

2πfc ∼
1

τ2
. (36)

Using conditions 25 we have τ2 ∼ RBCDL and we obtain the cut-off frequency :

• for κ−1
D ∼ 150 nm, fc ≃ 2− 3 Hz;

• for κ−1
D ∼ 800 nm, fc ≃ 0.2 Hz.

Self-consistent equation for local electric field Solving the Poisson-Boltzmann equation leads to
the following relation for the local electric field acting on the membranes:

Em (Vloc, κD) =
4kBT

ed

(

log

{

1 + c

1− c

}

− eVloc

kBT

)

(37)

where c (Vloc, T, κD, d) ∈ (0, 1) is given by the self-consistent equation:

ǫm
ǫw

(

eVloc

kBT
− 4 log

{

1 + c

1− c

})

= 4κDd

(

c

1− c2

)

. (38)

Numerical solutions of this self-consistent equation are presented in Fig. S4 for various conditions. The
linear low voltage limit is in agreement with the calculations based on the Debye-Hückel approximation of
[4] (dotted-dashed line). Finally, we report on Fig. S4 (right) the values corresponding of our experimental
conditions clearly showing that we experimentally access the non-linear regime.
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Figure S4: Solid line: numerical solution of Eq. 38 for c (Vloc, T, κD, d) as a function of Vloc for κ
−1
D =150

(black), 300 (green) and 800 nm (red). Dashed-dotted red line: linear Debye-Hückel solution for κ−1
D =150

nm. Solid symbols correspond to our experimental conditions.

2.2 Floating bilayer mechanical properties in an electric field

Again following Ziebert and Lacoste [2, 1], we use the solution of the non-linearized Poisson-Boltzmann
equation (see section 2.1.2) to determine the effect of the electric field on the bilayer. We still consider
a single neutral and insulating floating bilayer of thickness d, surface tension γ and bending modulus
κ in a monovalent electrolyte characterized by its Debye length κ−1

D . The membrane is fluctuating and
supposed to be flat enough to be described within the Monge representation by a height function h(r⊥),
where r⊥ is a two-dimensional in-plane vector. The potential is assumed to be equal to −Vloc/2 and
Vloc/2 far away from the membrane (z ≫ κ−1

D ).
Knowing the electric field (see section 2.1.2) and solving in Stokes approximation the hydrodynamics

problem of the electrolyte around the membrane, Ziebert and Lacoste calculate the total stress tensor
as :

τij = −pδij + η (∂ivj + ∂jvi) + ǫ

(

EiEj −
1

2
δijE

2

)

. (39)

Ensuring the force balance equation supposes to compensate the discontinuity of the normal/normal
component of the stress tensor and the restoring force due to membrane elasticity, leading to the an
expression of membrane fluctuation’s growth rate. Performing an expansion with respect to the membrane
height field, one obtains at zero order the electrostatic pressure acting on the flat membrane, and at order
one the contribution of the electric field to both the surface tension and the bending modulus (for details
see [2, 1]).

2.2.1 Electrostatic pressure

Using the previous description at zero order, the electric field exerts an electrostatic pressure on the
bilayer that can be calculated as:
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Πel =

∫ L

d/2

dzρ(I) (z)E(I) (z)−
∫ dw

−d/2−dw

dzρ(III) (z)E(III) (z)

= ǫw

∫ L

d/2

dzE(I) (z)
dE(I) (z)

dz
− ǫw

∫ dw

−d/2−dw

dzE(III) (z)
dE(III) (z)

dz

=
1

2
ǫw

(

E(I) (z)
2
)L

d/2
− 1

2
ǫw

(

E(III) (z)
2
)dw

−d/2−dw

. (40)

Using the expressions of the electrostatic potential in each domain it is possible to obtain the electric
field. We obtain:

Πel =
1

2

I20
D2ǫwβ4

(

(

1− 
Dκ2

D

ω

1

cosh (βL)

)2

−
(

1− 
Dκ2

ω

cosh (β (L− d/2))

cosh (βL)

)2
)

.

In the next section we analyze our experimental results combining these two models. It should be
noticed that we have essentially only one unknown parameter which is the Debye length of the solution.
All other parameters are well known from the literature and the experimental conditions.

2.2.2 Surface tension

The electrostatic correction to the surface tension Γel has a contribution due to the electric field inside
the membrane Γm and another one due to the electric double layers ΓDL:

Γel (Vloc, κD) = Γm (Vloc, κD) + ΓDL (Vloc, κD) . (41)

0.01 0.1 1 10 100
10-5

0.001

0.1

10

1000

VlocHVoltL

G
el
Km

N m
O

Figure S5: Γel for κ
−1
D = 150 nm (black solid line) and κ−1

D = 800 nm (red solid line) and corresponding
linear Debye-Hückel solutions (dotted-dashed line). Membrane (Γm, dotted line) and Debye layers (ΓDL,
dashed line) contributions are also shown for κ−1

D = 800 nm.
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Using the solution of the Poisson-Boltzmann (PB) equation for the electric field, Ziebert and Lacoste
[2] obtain:

Γm (Vloc, κD) = −ǫmdE2
m, (42)

ΓDL (Vloc, κD) = −16ǫwκD

(

eVloc

kBT

)2
c2

1− c2
. (43)

It is possible to express asymptotic expressions for ΓDL:

for
eVloc

kBT
≫ 1, ΓDL (Vloc, κD) ≃ −4ǫm

kBT

e

Vloc

d
(44)

for
eVloc

kBT
≪ 1, ΓDL (Vloc, κD) = − ǫ2m

ǫw

κDV 2
loc

(2 ǫm
ǫw

+ κDd)2
. (45)

Fig. S5 left-hand side shows the comparaison between the exact numerical solution for ΓDL with the
asymptotic expressions. On right hand-side, the total electrostatic surface tension Γel and the both
membrane Γm and Debye layer ΓDL contributions are represented for two Debye lengths. We clearly
observe that for voltage ≫ 0.1 V the membrane gives the main contribution. In this regime we also
observe a clear deviation to the linear Debye-Hückel approximation (dotted-dashed line).

2.2.3 Bending modulus

As for the surface tension, the electrostatic corrections to the bending modulus Kel has a contribution
due to the electric field inside the membrane Km and another one due to the electric double layers KDL:

Kel (Vloc, κD) = Km (Vloc, κD) +KDL (Vloc, κD) . (46)
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Figure S6: Kel for κ
−1
D = 800 nm (red solid line) and κ−1

D = 150 nm (black solid line) and linear (Debye-
Hückel) solution (dotted-dashed line). Membrane (Km, dotted line) and Debye layers (KDL, dashed line)
contributions are also shown for κ−1

D = 150 nm.
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Again, using the PB solution for the electric field, Ziebert and Lacoste [2] obtain:

KDL (Vloc, κD) =
4ǫw
κD

(

kBT

e

)2(
3− c2

1 + c2

)

c2, (47)

Km (Vloc, κD) = ǫmE2
m

(

d3

12
− 2kBTκ

−1
D d

eEm

(

1− c2

1 + c2

)

c

)

.

Again it is possible to obtain the following asymptotic expressions for KDL:

for
eVloc

kBT
≫ 1, KDL (Vloc, T, κD, d) = 4ǫwκ

−1
D V 2

loc, (48)

for
eVloc

kBT
≪ 1, KDL (Vloc, T, κD, d) =

3

4
ǫw

V 2
loc

(

2κ−1
D + λm (d)

)2 . (49)

Fig. S6 left-hand side shows the comparaison between the exact numerical solution for KDL with the
asymptotic expressions. On right hand-side, the total electrostatic bending modulus Kel and both mem-
brane Km and Debye layer KDL contributions are represented for two Debye lengths. For voltage lower
than 10 V the membrane contribution is negligible. The Debye layer present a saturation plateau which
value is directly related to κ−1

D .

3 Experimental datas and analysis

3.1 Samples preparation

DSPC (L−α 1,2-distearoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids, Lancaster, Alabama) sup-
ported bilayers were prepared by depositing two bilayers on ultra-flat silicon substrates (SESO, France)
using a Langmuir trough filled with ultra pure water (18.2 MΩ.cm) from a Millipore purification system.
First three monolayers were deposited using the classical Langmuir-Blodgett method and the last one
using Langmuir-Schaefer deposition (horizontal sample) [5]. The first bilayer serves as a spacer to reduce
the interaction between the floating bilayer and the substrate and keeps it free to fluctuate. Samples were
inserted into a PTFE sample cell with 50 µm thick windows embedded in an Al box, and gradually heated
in the fluid phase, with a feedback on the cell temperature measured using a Pt100 sensor. Potential was
applied between a Cu layer deposited at the back of the thick Si substrate and an ITO coated glass plate
mounted parallel to the subtrate in the solution, 0.5 cm from the membrane.

3.2 Off-specular reflectivity

Off-specular reflectivity curves were recorded using the procedure of Ref. [6]. The experiments reported
here used a 27 keV x-ray beam (wavelength λ = 0.0459 nm) at the CRG-IF beamline of the European
Synchrotron Radiation Facility (ESRF). The scattering geometry is described in Fig. 1A (main paper).
Off-specular reflectivity was recorded at a fixed grazing angle of incidence θin = 0.7 mrad below the criti-
cal angle of total external reflection at the Si-water interface (0.83 mrad) in order to facilitate background
subtraction. With this geometry, both qx and qz are varied during a scan.

3.3 Data analysis

Off-specular reflectivity is sensitive to both static deformation and thermal fluctuations of a membrane.
The linear response theory of Ref. [7] was extended to double bilayers in order to describe the static
coupling of the bilayers to the substrate [8] and the thermal correlation functions were derived applying
equipartition of energy using a Hamiltonian taking into account the bilayers tensions γ, bending rigidities
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κ and interaction potentials via their second derivative [8, 9]. In the simple case of a single bilayer, we have
H =

∫

d2qH(q), withH(q) = U ′′+γq2+κq4, leading to a fluctuation spectrum 〈z(q)z(−q)〉 = kBT/H(q).
In the limit of small amplitudes, the scattered intensity is Isc ∝ 〈z(q)z(−q)〉. Fitting of the scattering
curves following the procedure of Refs. [8, 9] therefore gives access to the bilayer electron density profile,
γ, κ and interaction potentials. Different scattering curves are presented on Fig. S7, showing that high
voltage differences, up to 10 V can be applied to the membrane without destroying it, but strongly
affecting its fluctuations.

3.4 Experimental curves

The off-specular reflectivity curves and the associated best fits are presented on figure S7. The Electron
Density profile corresponding to the best fit are presented on Fig. S8.

Figure S7: Diffuse scattering and best fit (full line).
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Figure S8: Electron Density profile corresponding to the best fit of Fig. S7.
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3.5 Fitted parameters

Parameters obtained from the best fits presented in Fig. S7 are given in Table S1.

Series 1 (�) Before field 1V 50Hz 2V 50Hz 5V 50Hz 5V 10Hz

dw[�A] 23.4 ± 1 16.3 ± 1 12.8 ± 1 10.1 ± 1 7.0 ± 1

κ2 [kBT] 14 (10-25) 23 (15-35) 81 (60-110) 99 (85-130) 116 (95-130)
γ2 [mN/m] 0.87 ± 0.2 0.85 ± 0.2 1.08 ± 0.2 0.68 ± 0.2 0.22 ± 0.2

σ2,th [�A] 8 ± 0.5 9 ± 1 9 ± 1 10 ± 1 10 ± 1
U′′

M1,M2
[10x J/m4] 12.96 ± 0.2 12.26 ± 0.2 11.71 ± 0.2 11.43 ± 0.2 11.63 ± 0.2

Kel [kBT] 0 9 (5-10) 67 (50-85) 85 (75-105) 102 (85-105)
Γel [mN/m] 0 0.02 ± 0.4 -0.21 ± 0.4 0.19 ± 0.4 0.65 ± 0.3

nw 23.0 ± 2 15.2 ± 2 11.9 ± 2 9.5 ± 2 6.7 ± 2

Series 2 (•) Before field 5V 50Hz 5V 30Hz 5V 10Hz

dw[�A] 22.0 ± 1 20.1 ± 1 17.0 ± 1 14.1 ± 1

κ2 [kBT] 20 (15-30) 193 (130-250) 141 (120-220) 177 (150-280)
γ2 [mN/m] 0.78 ± 0.2 0.67 ± 0.2 0.38 ± 0.2 0.13 ± 0.2

σ2,th [�A] 9 ± 1.8 8 ± 1 8 ± 1 12 ± 1.7
U′′

M1,M2
[10x J/m4] 12.9 ± 0.2 12.7 ± 0.2 11.8 ± 0.2 11.0 ± 0.2

Kel [kBT] 0 173 (110-191) 121 (130-201) 157 (180-261)
Γel [mN/m] 0 0.11 ± 0.3 0.4 ± 0.3 0.65 ± 0.3

nw 23.2 ± 2 18.8 ± 2 17.6 ± 2 16.4 ± 2

Series 3 (N) Before field 5V 10Hz 10V 10Hz

dw[�A] 22.5 ± 1 18.4 ± 1 17.3 ± 1

κ2 [kBT] 20 (15-40) 450 (200-600) 700 (500-1000)
γ2 [mN/m] 0.50 ± 0.2 -0.1 ± 0.2 -1.6 ± 0.2

σ2,th [�A] 9 ± 2 5 ± 1 6 ± 1.5
U′′

M1,M2
[10x J/m4] 12.7 ± 0.2 12.9 ± 0.2 12.7 ± 0.2

Kel [kBT] 0 430 (180-581) 680 (480-981)
Γel [mN/m] 0 0.6 ± 0.3 2.1 ± 0.3

nw 16.3 ± 2 18.8 ± 2 18.4 ± 2

Table S1: Structural and elastic parameters obtained from the best fits of off-specular data (see Fig. S7).

4 Hydration of the floating bilayer

An important quantity characterizing the hydration of the bilayers is the number of water molecules per
lipid nw located between the two membranes. nw can be obtained as follows [10]:

nw =
ALdw
2Vw

(50)

where Vw = 30�A
3
is the volume of one molecule of water and AL the area per lipid of the floating bilayer.

AL is calculated by integration of the electron density profile over the fatty acid chains of each monolayer:

AL

∫

ch

ρ(z)dz = 2n∗

ch, (51)

with n∗

ch the number of electron per chain (n∗

ch = 274 for DSPC).
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In Fig. S9 nw is plotted as a function of the pressure Π. Similar curves obtained when the pressure is
osmotically applied on a floating bilayer [9] and on multilayer stacks [11] are also presented on Fig. S9.
All points follow the same master curve showing that the bilayer behave the same way irrespective how
the mechanical stress is applied. This again demonstrates that the floating bilayers keep their integrity
under the electric field we apply.

10−3 10−2 10−1 100 101 102
100

101

102

n w

Π(MPa)

Figure S9: Number of waters per lipid nw determined from solid-state 2H NMR spectroscopy as a
function of osmotic pressure for DMPC multilayer stacks [11] and comparison with our data as a function
of electrostatic pressure.
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