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Abstract

In certain types of robust control techniques, it is
common having to deal with control problems where
the specifications, described in the time domain, need
to be translated to the frequency domain. This usually
happens in techniques, such as Quantitative Feedback
Theory, where the control problem is developed in
the frequency domain. Therefore, not only process
plants and disturbances should be specified in this
domain, but also the limits and restrictions initially
imposed in time. The question is important if we
consider that any deviation in the parameters transfer
from one domain to another will decisively influence
in the development of the problem and, above all, in
the finally result expressed in temporal terms. The
technique presented allows the translation of the
upper frequency limit in generic tracking
specifications from time domain to frequency domain
accurately. It will use approaches based on 2™ order
systems or an envelope approach based on higher
order systems.

Keywords: Specifications  translation,  quantitative
feedback theory, time domain, frequency domain, tracking.

1 Introduction

Quantitative Feedback Theory or QFT (Houpis and
Rasmussen, 1999; Yaniv, 1999) is a control
methodology in the frequency domain and, therefore,
the specifications required in the time domain should
be transferred as closely as possible to the frequency
domain. This problem has been considered from the
beginning of the theory, as in (Horowitz and Sidi,
1972), in the further development of the Krishnan
and Cruickshanks technique described in (Krishnan
and Cruickshanks, 1977), in the model-based
technique (D’Azzo and Houpis, 1995) or in the
procedure given in (Franchek and Herman, 1998). All
of them require manual iterative processes, ending
when the designer decides that the results obtained
are acceptable.

Despite these contributions, rigorous specifications
transfer from one domain to another is still
objectively an unsolved problem taking into account
the above techniques are not too much precise in the
conversion. It is often said this problem has presented
little difficulty in QFT methodology (Kerr, 2004).

QFT control technique uses iterative procedures: after
synthesizing the controller, if results obtained from
temporal analysis are unsuitable, although the
frequency specifications are fulfilled, you must seek
another controller on a new redesign process; if the
temporal results remain being inadequate, frequency
specifications are adjusted and the design process
start again; at the end, you can get a solution which
fulfills temporal specifications. However, if we get a
precise conversion time-frequency method, the
synthesis procedure of the controller and/or
precompensator will not need so much iteration.
Also, it will provide solutions with less overdesign, a
matter of great importance for the feedback cost
(Gil-Martinez and Garcia_Sanz, 2003).

In this paper, we present an automatic procedure for
generic tracking specifications translation from time
domain to frequency domain. It generates an
automatic apfroach to a transfer function (7F) in the
form of a 2" order subcritical damping system with
parameters, “w,” (natural frequency) and “”
(damping coefficient) (Joglar and Aranda, 2014). To
get it, we are applying a successive approximations
technique, using inverse interpolation to obtain rise
times and settling times imposed, as part of the
overall process of translation.

Specifically, we use the “Ascending and Descending
Differences of 5" order Newton Method”, described
in detail in (Joglar-Alcubilla, 2015), which presents
practical advantages (Iyengar, 2008). The proposed
technique will work with step inputs, providing step
responses with 2™ order subcritical damping.

Also, it is developed a manual procedure to translate
temporary tracking specifications to frequency
domain, using an envelope approach, based on higher
order systems.

2 Specifications tranglation

The method for specifications translation from “time
domain (TD)” to “frequency domain (WD) presented
here (Joglar-Alcubilla, 2015) is described by the
following relationship,
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Being the 7D parameters (Mp, overshoot, tr, rise
time, fs, settlement time; dev, settlement channel or
admissible tolerance) maximum values of the
response for tracking to a step input. With them, the
WD parameters are obtained based on 2" order
subcritical damping 7F’s, defining 7,(jw), the lower
limit TF, given by,
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and Ty;(jw), the upper limit TF,

T, (j0) = s () 3
Tyi(jw) 1s determined from the parameter w; , which
describes the number of times the natural frequency
of the upper limit is greater than ®, , natural
frequency, previously calculated for the lower limit
T Lu(jw) .
The steps sequence of the technique for generic
tracking specifications translation is as follows,

1) Determination of minimum damping coefficient
$nin. We consider the overshoot Mp defined for
underdamped systems as in (Ogata, 1993), i.e.:

&

Mp=e V¥ 4)

Then ¢, is given by the following equation,
expressed in terms of Mp,
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2) Find out the relationship w,=f({t), being
ti=(tr|ts). 2" order systems with same ¢, but different

w, , are characterized by the same maximum
overshoot Mp, so they have the same relative
stability.

The time constant of a 2™ order system defined by 7,
ie.,

r—_1_ (6)

can be expressed for # and s, respectively, as:
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Where parameters &, and &, depend on the tolerance
band value imposed (Ogata, 1993). Furthermore, for

the particular case with @,=I, (7) and (8) are
rewritten as,
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If (7) is combined with (9) and (8) with (10), any pair
of natural frequency values @, and @, , associated to
t. and ¢,, respectively, can be defined as,
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2a) Then, applying equation (11) with tr y &, we
achieve,
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Being tr(w,,, {.i,) an input parameter and tr(w,=1, &)
calculated with any adequate technique of inverse
interpolation, the natural frequency @,(tr; ) for ¢,
is obtained from equation (13).

2b) Similarly, applying equation (12) with ts y i
we achieve,
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With the input parameter ts(w,, &) and ts(@,=1, &)
calculated with an adequate technique of inverse
interpolation, the natural frequency @(zs, &nin) for
is obtained from equation (14).

To determine tr(w,=1,¢,;,) in 2a) and ts(w,=1,{,;,) in
2b), we apply “differences Newton method”
(Bonnans et al., 2006), using as the interpolation
function the step sign fye,(?), i.€.:
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Where f.,(1,) and f.p(t;) are given.

Observe that we want to determine temporal
parameters by inverse interpolation in (15) with @,=1
and {'={,;, so, only there is one unknown parameter
in the equation each time.

3) Choose for @,({,.,) the greater value selected
between @, (17; {in) and @y(ts, $nin). This value is the
most restrictive condition for the temporary joint



requirements (zr|ts).

4) Calculate @,({tr;ts) using 1>¢> . From now, it
will be named as (w,¢) pairs or double vector
wd(w, {). We get this with steps 2a), 2b) and 3),
varying ¢ from ,;, to I, both values excluded. The
step interval between a ¢ value and the next one will
determine the accuracy of the final result. Observe
that for a specific { value, if you increase w, value
respect to the one given for the associated pair (@, {),
rise and settlement times make smaller. So, allowed
frequency response for upper temporal limits is given
for the area over the curve (@, ¢). See Figure 1.

5) Define 2™ order curves T} (jw), such that,

e
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Where, replacing the double vector wd(@,¢), we
obtain the set of curves in the Bode diagram,
fulfilling tracking specifications for the upper time
limit, initially given.

6) Define 2™ order curves 7I'(jow), such that with
w,;=iw, and i=1,2, .., w;

2
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Figure 1. Graphical representation of wd(@,, ¢)

Thus, substituting wd(a@,,;, {) in (17), w; sets of curves
in the Bode diagram are obtained, fulfilling both
tracking requirements, the upper temporal limit
(w,=w,) and the lower temporal limit (w,=ww®,) .

7) Achieving the lower and upper limits in the
frequency domain, 7',(jw) and T’yi(jw). On the
Bode diagram above is sought, on the one hand, the
lower intersection (minimums in magnitude and in
phase) and, secondly, the upper intersection
(maximums in magnitude and in phase) of the
different curves defined by the vectors sets wd(@,; {).

8) As the lower and upper frequency limits (7, (jw)

and T’gi(jw)) are composed of the intersection of
several curves T'(jw), the way to describe both TFs is
to approximate them using one of the following
criteria, depending on the bandwidth and accurate of
interest. So, we obtain 7} ,(jw) and Ty(jw):
a) Considering restriction at low frequencies.
b) Considering restriction at high frequencies.
Le., choose the curves with minimum (min|T’(jw)|)
and maximum (max|T’(jw)|) magnitude in the
curves set wd(@,; ), taking into account (a) the
lowest or (b) the highest frequencies, respectively,
into the work frequency band used.
c¢) Considering restriction at the envelope approach.
For accurate, we can seck TFs of the lower and
upper limits 7j,(jw)and Tyi(jw). The results
obtained in 7) are approximated by higher order
models using an order reduction method, applied as
in (Aranda and Joglar, 2014; Joglar-Alcubilla and
Aranda, 2014).

9) Getting the final 7D parameters, from the WD ones
achieved, which match to the original 7D
requirements. That is,
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3 Envelope approach

We have developed a manual procedure to translate
generic temporary tracking specifications to
frequency domain, using an envelope approach based
on reduction of higher order systems.

The method consists of rationalizing the envelopes
T’(ow) and T yi(jow), which represent the limits in
frequency of the tracking specifications. These
envelopes are expressed in complex form, within a
certain frequency range, and must be approximated to
TF’s with not too high order: the reduced TFs solution
will be T7,(jw) and Ty(jo).

Suppose one envelope T’(jw) (T’1,(jw) or T yi(jw)) to
rationalize. For this, consider the relationship
between the envelope input in complex form 7"(jw)
and its approach, the reduced transfer function 7(jw):

_ bytbs+..+bs"
ay,tas+..+a,s"

7(s) =T'(s) »withs=jw (19)

Where the different parameters are defined as,
e T Complex input 7F with [N,1] vector
size.
e w: Range of frequencies with [N,1] vector
size.



e m and n: Number of poles and zeros,
respectively, for the reduced TF expressed in
the form “numerator/denominator”.

The equation (19) can be rewritten as:
[a() +as+..+ a”Hsm'l]— Ti [bo +bs+..+ b”s"] =-a,s" (20)

From the input function 7T’(s) with N complex
numbers, one for each frequency w, we obtain N
equations, by replacing in (20). Applying the
rationalization process described by (Horowitz,
1992), we obtain values for the m coefficients @; and
n coefficients b;.

Finally, we must use a polynomial evaluation over
T(s). This evaluation is used to compare in magnitude
and phase with the original complex TF T’(s) value.
So, the differences obtained are the errors in
magnitude and phase of the process.

The practical development of this rationalization
process, as it is described above, is the program
RACWE.M. This can be downloaded as it is
indicated in section 5.

The RACWE.M program is technically described as
follows, in Matlab format:

function [numer, denom]=racwe (T’, w, n, m) (21)

We get working with complex input 7’ to offer as
output the corresponding transfer function
(numer/denom), according to the supplied frequency
vector w. It also allows users to decide the order of
the output functions by adjusting the number of poles
and zeros they may contain. Depending on the order
of the output 7F we have selected, so it will be the
difference in magnitude and phase for each frequency
within the range used, between the output and the
input. Therefore, selecting different output orders and
observing the differences in magnitude and phase
(errors), we can achieve reducing the order of the
input function to a value where these differences are
not too high and the approach adequate.

On the other hand, we must remind that the number
of poles selected must be equal or greater than the
number of zeros, to assure stability.

Once the output 7F is obtained the user must decide,
if it is necessary, to apply gain adjustment.

To maintain stability there must be no RHP poles or
zeros in the final output 7F, nor poles with zero
value. So, the program allows eliminating this type of
poles/zeros or even those with insignificant values.
The program offers numerical and graphical
magnitude/phases differences between the input
T’(jw) and the output T(jw). With the maximum
magnitude and phase errors the user decides if the
approach is adequate or not.

The process ends offering numerical and graphical
temporary responses associated with 7(jw) obtained.

4 Example application

Suppose tracking specifications given by the lower
limit and the upper limit, described by the set of
temporal parameters  TD,iginai(15%0,55,305,£3%,5),
i.e., 15% of maximum overshoot, maximum rise and
settlement times of 5s and 30s, respectively,
settlement channel deviation +3% and upper
frequency limit defined as Sw,. Applying the
technique described above, and using the programs
developed in Matlab indicated below in section 5, we
obtain:

o 2" order responses T(jw), from wd(a, {), which
are fitted to the 7D,,,y parameters, given by the
upper time limit; these are described by the
following TFs,

0.1137 0.1284 0.1459
52 +0.34865 +0.1137 " 5% +0.40635 +0.1284 " 5% +0.47135 +0.1459

0.1668 0.1918 0.2211 0.21

757 +0.54485 +0.1668 5> +0.6279s +0.1918" s> +0.72125 +0.2211 5% +0.7487s + 0.21

0.3013 0.3923 0.5438 19
752 +0.95185+0.3013" s> +1.1495 +0.3923 " 5* +1.426s+0.5438( )

e Sets of 2" order responses T'(jw), from wd(a@,; .
Results in Figure 2.

e Sets of TD responses, equivalent to those 7T'(jw)
systems. Results in Figure 3.

e Lower and upper limits in the frequency domain,
T’1o(jow) and T yi(jow). These are obtained looking
for the minimum and maximum
magnitudes/phases, respectively, for each
frequency. Results in Figure 4.

e Lower and upper limits in the frequency domain,
T1,(jow) and Ty(jow), considering restriction at low
frequencies, i.e., from the curves of minimum and
maximum magnitude, respectively, in the low
frequency area. Results in Figure 5.

Magnitude (dB)

Phase (deg)

Frequency (rad'sec)

Figure 2. 2" order Responses T (jo)
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Figure 3. Set of temporary Responses, equivalent to the
systems T'(jw)
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Phase(T;; )
max(Phase(T"))
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Phase(T,)
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Figure 4. Lower and upper limits in the frequency domain
(Bode diagram), T’;,(jw) and T y;(jow)

Curves and final TD parameters which fit to the
original TD, applying restriction at low
frequencies. Temporary results in Figure 6.
v" Lower frequency limit defined as the initial
tightening curve T(jw) , at low frequencies,
Num,, | 0.3923 (20)
Den,, ), s*+1.1495+0.3923
<
v' Upper frequency limit defined as the most
restricted 7(jw)*Sm, curve, at low frequencies,
Num,,. | 2.843 21)
Den,,, ), s* +1.743s +2.843
Lower and upper limits in the frequency domain,

Tio(jow) and Ty(jo), considering restriction at
high frequencies, i.e., from the curves of
minimum and maximum magnitude, respectively,
in the high frequency area. Results in Figure 7

Restriction at low frequencies

Magnitude (dB)

Phase (deg)

Frequency (rad'sec)

Figure 5. Lower and upper limits in the WD, T;,(jw) and
Tui(jw) , considering restriction at low frequencies.
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Figure 6. Final temporary responses associated with 7;,(jw)
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Tui(jw), considering restriction at low frequencies.
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Figure 7. Lower and upper limits in the WD, T;,(jw) and
Tui(jw) , considering restriction at high frequencies.



e Curves and final TD parameters which fit to the
original TD, applying restriction at high
frequencies. Temporary results in Figure 8.

(o Lower frequency limit defined as the initial

tightening curve T(jw) , at high frequencies,

Num, | 0.1137 (22)
Den,,, ).~ s’ +034865+0.1137

o  Upper frequency limit defined as the most
restricted 7(jw)*Swm, curve, at high frequencies,

[Nummax j

Denmax Hi

e Lower and upper limits in the frequency domain,
T1.(jow) and Ty(jw), considering restriction at the
envelope approach, i.e., rationalizing real limits

T’1,(jw) and T’yi(jew) until TFs have not got too
high order. Results in Figure 9.

13.59

= (23)
s*+7.13s5+13.59

max

Input Data : tr, =5s, s, =30s, Mp=15%, Dev=:3% , ;=5

3 40
Time (s)

0 5 15 1|5 2|0 25 35
Response: — — — 1,=5s, 15,,716.56s, Mpupp=1‘5%
tr,=1s, ts,,=1.392s, Mp, =0.0006718%

low

Figure 8. Final temporary responses associated with 7;,(jw)
and Ty;(jow), considering restriction at high frequencies.

Restriction at the envelope approach
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Phase (deg)

. Phase(T,) !
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Figure 9. Lower and upper limits in the WD, T;,(jw) and
Tui(jw) , considering restriction at the envelope approach.

e Curves and final TD parameters which fit to the

original TD, applying restriction at the envelope
approach. Temporary results in Figure 10.

(o Lower frequency limit 7;,(jw) defined by
rationalizing the lower intersection in the set

T'(jw).

Num;, | _ 0.1168 (24)
Den, ), s> +039035+0.1168
Graphical magnitude/phases differences

between T';,(jw) and T;,(jw) are expressed
in Figure 11. We are obtaining a maximum
magnitude error of 0./13/rad and a
maximum phase error of -3.6015 degrees.

9 o  Upper frequency limit Ty;(jw) defined by
rationalizing the lower intersection in the set

T'(jo).

Num,, | 0.002s+13 (25)
Den,,, ). 7 +6.79s +13
Graphical magnitude/phases differences

between T’y;(jow) and Ty;(jo) are expressed
in Figure 12. We are obtaining a maximum

magnitude error of 0./1799rad and a
\_ maximum phase error of /.7387 degrees.
Input Data - tr,, =5s, ts _=30s, Mp=15%, Dev=3% , @;=5
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Response: — — — 1,74 96s, ts,,716.355, Mp,,=14.70% Time (s)

tr,,=15, 15,,=1 3925, Mp,,=0.0006718%

low

Figure 10. Final temporary responses associated with
T1.(jow) and Tyi(jow), considering restriction at the envelope
approach.

5 Application development

The author has developed in Matlab the necessary
programs to verify the above example application and
any other, for tracking temporary specifications
translation to frequency domain.

“Tracking specifications translation from time
domain to frequency domain” can be downloaded



from the next URL:

https://www.dropbox.com/sh/x7ywzymrkkr2qks/AA
BC2dvUDAfVPWBubWzo-gWQa?d1=0

The application starts with the program TD2WD.M

Rationalization of the lower envelope T,
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Figure 11. Graphical differences in magnitude and phase
between 7;,(jw) and the lower envelope approach TF
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Rationalization of the upperenvelope T,
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Figure 12. Graphical differences in magnitude and phase
between 7'’y(jw) and the upper envelope approach TF
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6 Conclusions

The contributions made for the purpose of reliable
and accurate conversion of temporary specifications
to the frequency domain in different fields of control,
as in QFT, have been insufficient, so that, rigorous
specifications translation from time to frequency

remains being actually an unsolved problem.

In practice, it has not paid much attention to this
problem: control methodologies affected, including
QFT, often use iterative processes for synthesizing
the controller, ending in a temporary analysis; if the
temporary verification is not adequate, although
frequency specifications are fulfilled, the designer
goes back in a new redesign process of the controller;
ultimately, to get good temporary results, frequency
specifications are relaxed, starting the process again.
The technique presented here allows the conversion
of generic tracking specifications from time to
frequency accurately, so that, the process of
synthesizing the controller in the design phase will
not require much iteration; also, it will be achieved
solutions with less overdesign: consider, for example,
that in the methodology QFT, the precision degree of
specifications translation influences in the level of
accuracy of the bounds, at least, in the final design
stage.

It uses variation of the maximum temporary input
parameters, overshoot, rise time and settling time, by
inverse interpolation, to find the most appropriate
frequency response to the type of selected approach:
maximum accuracy in a specific area of the
bandwidth (low or high frequency with 2™ order
systems) or in the entire bandwidth (envelope with
reduced higher order systems). Once the lower
frequency limit (temporary response with maximum
values) is defined, the upper frequency limit is
determined, proportional to previous one in the WD.
The upper frequency limit associated with tracking
specifications is often described in temporary terms
of maximum overshoot response to a given step input.
From the technique presented here, it can be
developed a specific method to get this kind of
tracking specification in the WD.

Instead of using inverse interpolation methods of
temporary parameters, relatively complex, the
methodology developed can be simplified applying
classical hypothesis, but at the cost of reducing its
accuracy significantly.

Furthermore, the methodology for translation of
temporary specifications to frequency ones using
inverse interpolation can be applied also in those
situations where a step or pulse input must produce a
damped impulse response. This case corresponds to
the specifications of sensitivity or decoupled
tracking.
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