
 

 

 

 

 

 

 

 

Abstract 

In certain types of robust control techniques, it is 
common having to deal with control problems where 
the specifications, described in the time domain, need 
to be translated to the frequency domain. This usually 
happens in techniques, such as Quantitative Feedback 
Theory, where the control problem is developed in 
the frequency domain. Therefore, not only process 
plants and disturbances should be specified in this 
domain, but also the limits and restrictions initially 
imposed in time. The question is important if we 
consider that any deviation in the parameters transfer 
from one domain to another will decisively influence 
in the development of the problem and, above all, in 
the finally result expressed in temporal terms. The 
technique presented allows the translation of the 
upper frequency limit in generic tracking 
specifications from time domain to frequency domain 
accurately. It will use approaches based on 2nd order 
systems or an envelope approach based on higher 
order systems. 
Keywords:  Specifications translation, quantitative 
feedback theory, time domain, frequency domain, tracking. 
 

1 Introduction 

Quantitative Feedback Theory or QFT (Houpis and 
Rasmussen, 1999; Yaniv, 1999) is a control 
methodology in the frequency domain and, therefore, 
the specifications required in the time domain should 
be transferred as closely as possible to the frequency 
domain. This problem has been considered from the 
beginning of the theory, as in (Horowitz and Sidi, 
1972), in the further development of the Krishnan 
and Cruickshanks technique described in (Krishnan 
and Cruickshanks, 1977), in the model-based 
technique (D’Azzo and Houpis, 1995) or in the 
procedure given in (Franchek and Herman, 1998). All 
of them require manual iterative processes, ending 
when the designer decides that the results obtained 
are acceptable.  
Despite these contributions, rigorous specifications 
transfer from one domain to another is still 
objectively an unsolved problem taking into account 
the above techniques are not too much precise in the 
conversion. It is often said this problem has presented 
little difficulty in QFT methodology (Kerr, 2004). 

QFT control technique uses iterative procedures: after 
synthesizing the controller, if results obtained from 
temporal analysis are unsuitable, although the 
frequency specifications are fulfilled, you must seek 
another controller on a new redesign process; if the 
temporal results remain being inadequate, frequency 
specifications are adjusted and the design process 
start again; at the end, you can get a solution which 
fulfills temporal specifications. However, if we get a 
precise conversion time-frequency method, the 
synthesis procedure of the controller and/or 
precompensator will not need so much iteration. 
Also, it will provide solutions with less overdesign, a 
matter of great importance for the feedback cost 
(Gil-Martínez and García_Sanz, 2003). 
In this paper, we present an automatic procedure for 
generic tracking specifications translation from time 
domain to frequency domain. It generates an 
automatic approach to a transfer function (TF) in the 
form of a 2nd order subcritical damping system with 
parameters, “ωn” (natural frequency) and “ζ” 
(damping coefficient) (Joglar and Aranda, 2014). To 
get it, we are applying a successive approximations 
technique, using inverse interpolation to obtain rise 
times and settling times imposed, as part of the 
overall process of translation.  
Specifically, we use the “Ascending and Descending 
Differences of 5th order Newton Method”, described 
in detail in (Joglar-Alcubilla, 2015), which presents 
practical advantages (Iyengar, 2008). The proposed 
technique will work with step inputs, providing step 
responses with 2nd order subcritical damping. 
Also, it is developed a manual procedure to translate 
temporary tracking specifications to frequency 
domain, using an envelope approach, based on higher 
order systems. 

2 Specifications translation  

The method for specifications translation from “time 
domain (TD)” to “frequency domain (WD)” presented 
here (Joglar-Alcubilla, 2015) is described by the 
following relationship,  

( )ioriginal devtstrMpTD ω,,,,  

↓      (1) 

      ),,,( maxmaxminmin DenNumDenNumWD        

Javier JOGLAR-ALCUBILLA1 
1Avionics Department, Barajas Institute, Avda.América 119, 28042, Madrid, Spain 

jjoglar@educa.madrid.org 

Generic Tracking Specifications Translation 

From Time Domain to Frequency Domain 



Being the TD parameters (Mp, overshoot, tr, rise 
time, ts, settlement time; dev, settlement channel or 
admissible tolerance) maximum values of the 
response for tracking to a step input. With them, the 
WD parameters are obtained based on 2nd order 
subcritical damping TFs, defining TLo(jω), the lower 
limit TF, given by,  
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and THi(jω), the upper limit TF, 
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THi(jω) is determined from the parameter ωi , which 
describes the number of times the natural frequency  
of the upper limit is greater than ωn , natural 
frequency, previously calculated for the lower limit 
TLo(jω). 
The steps sequence of the technique for generic 
tracking specifications translation is as follows, 

1) Determination of minimum damping coefficient 
ζmin. We consider the overshoot Mp defined for 
underdamped systems as in (Ogata, 1993), i.e.: 
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Then ζmin is given by the following equation, 
expressed in terms of Mp, 
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2) Find out the relationship ωn=f(ζ,ti), being  
ti=(tr|ts). 2nd order systems with same ζ, but different 
ωn , are characterized by the same maximum 
overshoot Mp, so they have the same relative 
stability. 
The time constant of a 2nd order system defined by T, 
i.e. , 

           
n

T
ζω

1=            (6) 

can be expressed for tr and ts, respectively, as: 
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Where parameters kr and ks depend on the tolerance 
band value imposed (Ogata, 1993). Furthermore, for 

the particular case with ωn=1, (7) and (8) are 
rewritten as, 
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If (7) is combined with (9) and (8) with (10), any pair 
of natural frequency values ωnr and ωns , associated to 
tr and ts, respectively, can be defined as, 
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2a) Then, applying equation (11) with tr y ζmin, we 
achieve, 
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Being tr(ωnr,ζmin) an input parameter and tr(ωn=1,ζmin) 
calculated with any adequate technique of inverse 
interpolation, the natural frequency ωnr(tr,ζmin) for tr 
is obtained from equation (13). 

2b) Similarly, applying equation (12) with ts y ζmin , 
we achieve, 
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With the input parameter ts(ωns,ζmin) and ts(ωn=1,ζmin) 
calculated with an adequate technique of inverse 
interpolation, the natural frequency ωns(ts,ζmin) for ts 
is obtained from equation (14). 
To determine tr(ωn=1,ζmin) in 2a) and ts(ωn=1,ζmin) in 
2b), we apply “differences Newton method” 
(Bonnans et al., 2006), using as the interpolation 
function the step sign fstep(t), i.e.:  
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Where fstep(tr) and fstep(ts) are given. 
Observe that we want to determine temporal 
parameters by inverse interpolation in (15) with ωn=1

 and ζ =ζmin so, only there is one unknown parameter 
in the equation each time. 

3) Choose for ωn(ζmin) 
the greater value selected 

between ωnr(tr,ζmin) 
and ωns(ts,ζmin). This value is the 

most restrictive condition for the temporary joint 
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