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We examine the behaviour of homogeneous, anisotropic space-times, specifically the locally
rotationally symmetric Bianchi types I and VI, in the presence of anisotropic matter. By
finding an appropriate constant of the motion, and transforming the equations of motion we
are able to provide exact solutions in the presence perfect fluids with anisotropic pressures.
The solution space covers matter consisting of a single perfect fluid which satisfies the weak
energy condition and is rich enough to contain solutions which exhibit behaviour which is
qualitatively distinct from the isotropic sector. Thus we find that there is more ‘matter that
matters’ close to a homogeneous singularity than the usual stiff fluid. Example metrics are
given for cosmologies whose matter sources are magnetic fields, relativistic particles, cosmic
strings and domain walls.
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I. INTRODUCTION

We will examine the geometrical behaviour of the type I and VI, Bianchi models subject to
matter which exerts anisotropic pressures. It is usual in cosmology to treat pressure as an isotropic
function of energy density. There exist a number of physically relevant matter sources for which
the pressure is not isotropic - obvious examples include cosmic strings and magnetic fields which
have a clear preferred direction at each spatial point. However it is normally assumed that by
appealing to a coarse-graining of such fields one can ignore any directional preference and deal
with the isotropized approximation [1]. Here we will show that there are interesting anisotropic
physical phenomena which are relevant and qualitatively distinct from their isotropic counterparts.

Although one may assume that the large-scale dynamics of the universe should depend only on
long-wavelength modes over which an isotropic approximation should hold, this kind of reasoning
breaks in the neighborhood of singularities such as the big bang. Here we expect a significant
contribution to come from ever-shorter wave modes as energy densities are ever increasing. Further,
approaches to understanding the nature of singularities such as the BKL conjecture [2,3] posit that
dynamics becomes dominated entirely by local physics [4], not global phenomena, and therefore
any appeal to coarse-grained isotropization is unwarranted.

We consider locally rotational symmetric (LRS) Bianchi models of cosmology. Under this as-
sumption we can reduce the number of variables that describe a metric considerably. The LRS
condition is of course a simplification of the fully anisotropic sector in which the Bianchi mod-
els sit.[5] However this simplification still results in a space of solutions rich enough to capture
singularities not encountered in the isotropic sector, and is justified when dealing with matter
such as radiation whose pressure is axially symmetric, and thus the effects on geometry can be
aptly described by identifying a rotational symmetry about the preferred axis. There are in fact a
number of physically interesting scenarios which are described by matter sources with a preferred
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axis. Topological defects such as domain walls and cosmic strings, which can arise as a result of
spontaneous symmetry breaking, have a strong anisotropic effect on the geometry. It is usual to
treat such model such defects as a gas with no overall directional dependence, however it is clearly
not valid to continue this approximation in a close neighborhood of the defect itself.

An oft quoted mantra of the oscillatory approach to singularities is that ‘matter doesn’t mat-
ter’ [6, [7] with the specific exception of a stiff fluid (or massless scalar field). In the isotropic
matter case it is simple to see that in the effect Friedmann equation the anisotropic shear grows
as the sixth power of the scale factor, and hence it is apparent that this will dominate over any
matter source whose effect grows more sedately. However, this is not the case when one considers
anisotropic matter - in such cases the anisotropic pressures can stop a collapse in one directions
whilst continuing to allow it in others as we will see in section [V] there are physically interesting
matter sources which lead to types of singularity which are completely distinct from the vacuum
cases [8]. Thus we will observe that there are indeed a variety of types of ‘matter that matters’.

LRS Bianchi systems have been previously examined - Calogero and Heinzle provided a descrip-
tion of the dynamics of both type I space-times |9, [L0] and, in a tour-de-force paper [11] examined
all spatially homogeneous LRS space-times with anisotropic matter. These efforts centred around
the dynamical systems approach to cosmology and describe the asymptotic behaviour of systems
in terms of a ‘dominant variable’ which is a combination of the Hubble parameter and anisotropic
curvatures. Here we will present exact solutions for single anisotropic fluids which describe the
behaviour of one scale factor as a function of the other!. The precise behaviour of these exact
solutions allows us a more detailed view of the approach to singularities and the relevant physical
scalings of quantities such as curvature and energy density. Likewise we will show that there exists
solutions for which the volume becomes zero at finite and even zero energy density, and yet the
dynamics is not vacuum dominated.

The paper is laid out as follows: In the next section [ we will introduce the physical setup
which for the system under examination. Then in section [II we will show the transformations
necessary to obtain a constant of motion and use this constant to find a complete set of solutions.
In section [V] we examine the solutions in their physical context, and provide an analysis of their
geometrical structures, singularities and the behaviour of energy density, which is followed by some
physically interesting matter models in [Vl Finally we present some discussion in section [V

II. SETUP

We begin with a four dimensional manifold which can be decomposed into the product of a
spatial interval and a three-manifold: M = I x M3. We will be dealing with space-times that are
spatially homogeneous, the Bianchi models, and hence we follow the Bianchi classification, which
is based upon the behaviour of Killing vector fields £&. Thus we can represent all such models by
the structure constants defining the group of isometries of M3: For structure constants C¢, defined
by

[éaafb] = Cgbéc (2-1)

we decompose C, into its components:

CC = €apan® + 0§ — apdS (2.2)

! Note the LRS condition means that there are only two independent scale factors, the third being identical to the
second.



we can further make the restriction that a = (a,0,0), and describe n in terms of its eigenvalues
n;. Space-times for which a is zero are known as the class A models, for which there exists a
well-defined Hamiltonian formalism. We further exploit a symmetry of the systems to identify the
eigenvalues of n up to a relative choice of sign, therefore we are left with five separate models which
satisfy the LRS condition, which forces ny = ng. The classification is:

Type|ny |no
I
I |1

Vil

VIII—-1
IX |1

—_ == O O

TABLE I: The LRS Bianchi class A models

We thus consider metrics which can be decomposed into the form:
ds* = —dt* + q;;()W'W7 (2.3)

in which the W* denote the one forms describing spatial translations on our given three metric gq.
These represent the homogeneous Bianchi models, which we further reduce to be diagonal, and
satisfy the LRS condition. We are left with components of the metric g11 = a(¢) which we shall
term the ‘principal’ scale factor, and g2 = ¢33 = b(t), termed the ‘secondary’ scale factor, with all
other components of ¢ set to zero.

The classification is invariant under reversing of all signs chosen, which simply corresponds to
a choice of right- versus left-handed frame. Similarly the overall scale of the numerical values of
the n; are unimportant - the system is invariant under a rescaling of {n;,n;} — {nn;, xn;} for
any positive real values of 7 and x. We could have equivalently defined the structure constants in
[ with the opposite sign and recovered a description of the same space-time as a result. We will
consider matter in the form of an anisotropic perfect fluid. By fixing the momentum constraint
of our system, we can choose to align our frame such that this fluid has zero velocity. As such
our stress energy tensor is given in terms of direction dependent equations of state, relating the
anisotropic pressure to energy density:

z? = dzag(p, w1p7w2p7w2p) (24)

We shall assume that the matter content of our models consists of a single perfect fluid, which may
have anisotropic pressures. As such we will fix wy and ws, to be constants.

The geometry of our models allows us to calculate the non-zero elements of the Ricci tensor,
R;, and its trace R as:

2.2 2 2 2.2
1 nia 9 53 NMing  nja _ 2nmng nija
M= M=M= = =" ~op (25)
The non-zero extrinsic curvatures k‘; and their trace k are given:
a b a b
kl=—= k=k=— k=——2- 2.6
1 . 2 3 b a b (2.6)



And we therefore obtain the equations of motion for the scale factors:

a n’a’ ab

e g(l +wp — 2ws) (2.7)
b n%a2 ab n1n9 b?

T A L

Note that in the isotropic limit, a = b and w; = wsy and we would recover the familiar Raychaudhuri
equation at this point, written in terms of the matter content.

Our system is subject to constraints. Since we are working with homogeneous models, the
diffeomorphism constraint is satisfied, and the scalar constraint results in:

R+K?— Kk =2 (2.8)
In terms of our dynamical variables, this can be expressed as:

. 2@ + g _ n%a2 ning
P=“w " Tt T T2

(2.9)

In the FLRW case (i.e. the isotropic limit) again we see that this is simply the Friedmann equa-
tion relating the square of the Hubble rate to the energy density and curvature of the system in
consideration (note that the choice of sign of the product nins is what is important in terms of
curvature).

Combining this with our equations of motion for the scale factors, we come to the complete
equations of motion satisfying the constraint:

_ ab 1+ w1 — 2we b2 ning 29 — w1 — 5 n%a2
= (w1 — 2wy 1)ab—|—< > ><b2+ 52 >+< 3 ) b

b ab 1+ w; b2 ning 3+ w; n%a2
o _ _ _ oy e 2.1
b - ( 2 ) <b2 e >+< g ) b (2.10)

This systems exhbits a symmetry under rescaling which we expect to see from the homogeneity of
the background geometry - rescaling both scale factors by arbitrary real numbers does not change
dynamics, if corrected for by an appropriate re-scaling of n; and ns. In particular, in the cases
where nq is zero we should expect to see an arbitrary choice of scale factor. In other cases this
factor will be fixed only up to a choice of the n;.

In the isotropic limit, each of these equations reduce to the familiar Raychaudhuri equation for
a single perfect fluid which relates the acceleration of the scale factor to the pressure and energy
density. Let us denote the isotropic versions of quantities by the subscript 1.

i 3 1 2 N
or _ _ <_w1 * > <CL2 n _2> (2.11)
ar 2 aj sag

Here N represents the ‘isotropized’ value of the n; which is the product nins. Note that this is of
course freely rescaled by a choice of overall scale of the n; and equivalent to the £ in FLRW models
- the only important thing about it is its sign, the value can be chosen by an arbitrary choice of
coordinates. It may be unfamiliar to see the presence of a curvature term in the Raychaudhuri
equation, however this arises as a result of the Friedmann equation and the relationship between
energy density and pressure.




III. METHODS OF SOLUTION

Let us consider the Bianchi type I and VI, space-times. These are Ricci flat, and hence
each contains the £ = 0 Friedmann-Lemaitre-Robertson-Walker solutions as their isotropic limit.
For each of these, ny = 0 and hence the equations of motion (ZI0) reduce considerably in their
complexity, and become tractable upon identifying constants of the motion. In each case our
strategy for finding a solution will be the same - first we use a transformation of variables which
allows us to find a constant of the motion from the second equation of (2.10]) which will be expressed
in terms of the set {a, b, b}. Then we use this constant to transform derivatives with respect to t into
derivatives with respect to b. We note that from equation (2.9)) it is apparent that in the presence of
matter, there cannot be a turning at of the secondary scale factor at which it takes a finite value.
Since b is monotonically non-decreasing and lies in the interval [0,00) this will parametrise the
complete space-time. Finally we solve the resulting equation of motion to find a(b), and examine
the singular behaviour thereof. We will generally consider space-times in which b is increasing -
it is a trivial transformation to reverse the time direction and consider space-times in which b is
always decreasing. On first inspection, this transformation may seem counterintuitive: It is usual
when attempting to solve complex coupled equations of motion to solve parametrically - providing
{z(n),y(n)} in place of z(y). However in this case we shall see that the extraneous structure which
is used in describing the geometry, namely the time variable, is actually an impediment to finding
a solution. Once a full parametrisation z(y) or y(z) is given we can of course return to introduce
an external parameter which can be thought of as time, and we shall do this when presenting
particular physical solutions in section [V]

A. Finding a constant

In order to find a constant of the motion, we will perform a change of variables that makes the
equations more malleable. For completeness, here we will show the general case of the transfor-
mation made, then specialise this to the specific context of the LRS systems under consideration.
First note that one of the equations of motion is of the form

Y=o ¢ H(z,y.5) (3.1)
Yy yx
Our goal is to reduce the order of the differential equations, and hence we make a substitution
designed to eliminate the second derivative term. One can define the variable m = zg®. In doing
so we find that

= iy” + By’ (3.2)

and hence we can rearrange the equation to recover the product term in our equation of motion.
Thus we find
— =— - = (3.3)
Ty  my Yy
We can then choose 8 = —1/a and achieve the goal of reducing our differential equation by
removing the second derivative term in y, resulting in:

a4 H(mg =8, y,5) = 0 (3.4)
my



If the function, H can be separated such that H(mgy =", y,9) = M(m)Y (y,y) we can integrate to
leave the constant of integration and a constant of motion for the system. In the systems we are
considering here, the function M = 1 and hence the separation is trivial. On doing so we find our
constant J is given by

J = Mg exp| / %‘Z*y)] (3.5)

We have established now the general constant of motion that will arise in such systems. Let us
now specialise to those systems described in (ZI0). Here

)
Y(y,5) = A% (3.6)

and so our integral is performed easily to yield a constant given in terms of the set {x,y,y}. Since
we will be using this constant to eliminate derivates with respect to time later, we can raise the
constant to a suitable power to leave a constant which is linear in ;

J=A"% =z %y (3.7)

Note that our analysis would appear break down if @ = 0. This is indeed the case for a subset
of the space-times described by (ZI0), and hence we will have to treat these solutions separately.
Fortunately, however, such systems are easily directly integrable, since the equation of motion for
x becomes independent of y. In such cases we can solve directly the equation of motion, resulting
in

y = yo((1 = \)(t — 1,)) ™% (3.8)

From this point we could continue by transforming the equation of motion for x to remove the t
dependence in favour of dependence on y. However, from our solution it is simple to note that we
can again recover a constant which is consistent with J extended to the a = 0 case; J = gy~
Hence in either case we can continue our analysis using this constant of motion to simplify the
equation of motion for x.

We should note further at this point that the existence of our constant J given by equation (B.7))
means that ¥ must be monotonic throughout - the existence of the constant is incompatible with
the vanishing of y except where the other parameters become singular. Since these parameters «
and A are simply constants themselves, this can only occur at points where z or y vanish or become
infinite (depending on the signs of a and A). We are therefore justified in making a transformation
of the equations of motion throughout their entire range.

B. Transforming the equation

Now that we have access to a constant of the motion, we are in position to both eliminate terms
involving derivatives of b from the equation of motion for a, yielding a more malleable equation to
solve. The equation of motion for a is of the form:

. .2

r o ry Y
et 4 Z_ 3.9
it i (3.9)
Making our substitution we find this results in
x Jz J?
z Hpmartya T Y Ryt (3.10)



The powers of J that are involved is 2 — n where n is the number of time derivatives acting upon
the z terms which the Js multiply. It is therefore possible to make a change of variables; using the
fact that Jdt = 2%y dy we can eliminate time derivatives in favor of those in terms of y. Upon
doing so, and after some algebraic manipulation to simplify matters we are left with

2 2 /

" g ', x
2= o —\)= 3.11
Y a—sy +p-A_ytv (3.11)
Which has general solution:
VAt D (Afat1)24r—p—1 o) X 7 E%T
T =Ty 2(a+1) <C+y\/ (a4 1)v+(=A+p+1) ) (3‘12)

for free choices of z, and C, whose ranges will be determined by physical considerations (such as
positivity of scale factor and energy). It is also apparent that special attention needs to be paid
when F = 4(a+ 1)v+ (=X +pu+1)2 =0 or a« = —1. In the former case, the space of solutions

—Afptl
spanned by B12]is reduced to a single dimension, with solution x1 = z,(1+a)y 1) and thus we
should look for a second solution. By making the substitution xo = [z we find that [(z) satisfies

" l/2 !

Tyz + al—2y2 +7y=0 (3.13)
and hence we can easily recover a general solution in this case,
1 —Atpitl
z=zo(a+1)(C+ (a+1)log(y))a+iy 2t (3.14)
again we note that there is a special sub-case in which « = —1. Here we find the solution takes
the form z = z,y°.
We can now turn our attention to the second special set of solutions - those for which @ = —1.
In this case we can solve our equation of motion to obtain
x = :Eoecyikﬂﬂykfzfl (3.15)

Thus we have a complete set of solutions for systems such as those described in 210l From
solutions we have obtained it is apparent that our space-times will display qualitatively distinct
behaviours in some cases which will be determined by the free parameters describing the models
- in our case these will be combinations of the anisotropic pressures w; and ws. The space of
solutions is unsurprisingly richer than that of the purely isotropic sub-systems. In the following
section we will discuss the geometries of solutions in the richer space and analyse their singularities.

IV. PHYSICAL SOLUTIONS

We will now take the solutions obtained in the previous section and examine their nature in
the physical situation described by equation (ZI0). The complete set of solutions to these systems
is summarized in table ([I) which gives the exact behaviour of the solutions together with their
singular points and the behaviour of energy densities.

The space of solutions to these models depend on the values of w; and ws, the anisotropic
pressures. From inspection of the equations of motion we can identify the parameters in equation
In particular we note that

14w 1+ w1 — 2wo
—— w=w; — 2wy — 1 V=

a=—-w A= (4.1)



in particular, we note that the parameter which is particularly important for distinguishing solu-
tions will be determined by

F:\/4(oz+1)1/+(1—/\—|—,u)2=;4—%—2102 (4.2)

We will use this combination to split the space of solutions into the cases where F' > 0, F' = 0 and
F < 0. Note that in the isotropic cases we would always have F' > 0 so long as P < p. This is easily
extended in the anisotropic case by setting w; = 0, wo = 1 for example, and hence the pressure is
always less than or equal to energy density and yet ' = —1/2. In fact F' runs from -1 to 4 in the
anisotropic case, going beyond the range for which the isotropic equivalent (%(1 — w) which would
run from 0 to 3. Thus we should initially expect that any qualitative behaviour distinct from that
exhibited by FLRW cosmologies should occur for F' outside of this range.

The constant of motion, J given by equation (3.7)) can be expressed in terms of the scale factors
and the anisotropic pressures. By substituting the values of A and o we see that the constant is
now given:

'Lu1+1

J=a"7 b“b (4.3)

which is independent of the value of wsy. In the isotropic sector this reduces to the Friedmann
equation in the presence of a single perfect fluid; setting a = b, we see that the J becomes
143w a? J?

as we would expect for a single fluid with equation of state P = wp in FLRW cosmologies.

For each set of solutions we will give the complete behaviour and describe the singularities
encountered. Of particular interest will be the energy density for each of these solutions, which is
given:

1 a 1
p= a2w1bw1+2 <2E + g) (45)

Note that energy density should always be positive. This will determine the range of values of
constants in our solutions which give rise to physical solutions. In the systems we consider the
matter content is always described by a single perfect fluid with a fixed equation of state. Therefore
pressure can only diverge when energy density diverges, and so can be found trivially once the
energy density is calculated. Typically we will fix a, and b, to unity in order to simplify matters,
and will therefore treat p up to a constant that depends on these arbitrary choices.

This section will be split into subsections dealing first with the case w; = 1, which is a special
set of solutions then the general solutions depending on the sign of F. This is then followed by
table [l which summarises all cases.

A. Solutions for which w; =1

As was noted in section [[TI] the case in which @ = 0 (equivalently w; = 0) has a distinct space of
solutions from the rest. First let us note that F' = 2 — 2ws, and so our space of solutions separates
depending on whether ws is greater than, less than or equal to 1. 2 Let us first consider F = 0.
Using equation we can see that the behaviour of the principal scale factor, a can be given as

a = agh? (4.6)

2 Our energy conditions do not allow for ws > 1, however we present the result simply for completeness.



We can explicitly evaluate p to see behaviours at singularities and ranges of validity of solutions.
The case F' = 0 contains the only isotropic subsector in this case. This should be unsurprising
as the pressures are distinct, therefore the presence of any matter of this type will break isotropy.
Here we find

1424

= pArt (4.7)

for arbitrary choice of A > —1/2 (so that energy remains positive throughout). We see that the
energy density scales as the inverse square of the volume, as expected in the case of a stiff fluid.

Note that in the case where A = —1/2, the vacuum case, we indeed recover the Kasner solution,
a=>b"12 ie.

ds? = —dt? + t723da® + t3(dy? + d=?) (4.8)

Since F' = 0 implies that wo = 1 this situation corresponds to that of a stiff fluid, or scalar
field. This solution is of particular interest as it is central to the terms that ‘matter’ in the BKL
conjecture, as in the case of isotropic matter pressures this is the only term which contributes
at the same order of volume as the anisotropic shears in the equation for the isotropized Hubble
parameter. By making the ansatz that b = ¢ we find that v = (A 4 2)~!, we can describe the full
space of solutions by

ds? = —dt* + 2Yda® + 12 (dy? + d2?) (4.9)

in which v runs from 0 at A — oo to —2/3 at A = —1/2. Here we recover the Bianchi I condition
that the sum of the exponents of the time variable is equal to unity. From this we can trivially see
that there are distinct spaces of solutions determined by the A - if A > 0 the principal scale factor
is zero when the secondary vanishes, and both go to infinity together. However, if A = 0 we see
that the the principal scale factor stays constant whilst the secondary expands to infinity. Finally
for A < 0 we see a system that begins with a ‘cigar’ type singularity in which the principal scale
factor is infinite and the secondary zero, to a ‘pancake’ in which the secondary scale factor goes
to infinity whilst the primary tends to zero. In all these cases the initial singularity has infinite
energy density at b = 0 and zero final energy density at b — oo. Here we find that, in parallel to
the BKL type analysis, the nature of the initial time singularity is dependent on both geometrical
and matter degrees of freedom - ‘matter does matter’.

Let us now turn our attention to the cases in which F' # 0. As we shall see in the next section,
this contains the ultra-relativistic homogeneous particle steam. Here we find the principal scale
factor is given by

F
o = g, 20AY) (4.10)
Vb

It is readily apparent that for such solutions there cannot exist an isotropic sector - this is unsur-
prising as the conditions on matter for the the anisotropic pressures to differ from one another.
For these solutions the energy density is given by an exponential function of the secondary scale
factor b, raised to the appropriate power (F'), and hence we are guaranteed that the energy density
will vanish at large values of b.

p = 2AF exp(—2Ab" )bl 3 (4.11)

Since we require that the energy density is positive throughout, both ' and A must have the same
sign. Again we recover the LRS Kasner solution (4.8)) in the vacuum case. It is therefore apparent
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that in the limit as the secondary scale factor tends to zero we see that the principal scale factor
becomes infinite, as the numerator tends to a finite (positive) value. In the large b limit, we see
that the primary scale factor tends to infinity. Between these two limits there exists a minimum
value of the primary scale factor at:

b= (2AF)"F a= (2AFe¢)?r (4.12)

From equation (£IT]) the asymptotic behaviour of the energy density is easily ascertained. At
large b, p — 0 for all values of F. Atlow b, p > 0 if F <3, p > 0if F >3 andif F =0p
becomes a constant determined by A. In the case where ' > 3 the energy density both starts and
ends at zero. The maximum can readily be found, and occurs when b = %, and is the sole
turning point of energy density. Thus we find that in these cases both the extreme behaviours have
asymptotically zero energy density - the initial singularity is still vacuum dominated.

Here we again see behaviour that is qualitatively distinct from the isotropic sector: If wy < —1/2
(i,e. F > 3) we find that the initial time singularity happens with vanishing energy density.
This scenario highlights the inadequacy of the coarse-graining arguments - had one considered the
isotropic coarse-grained equivalent, the isotropic pressure (w = %M)would be less than zero
and the initial singularity would occur at zero volume with infinite energy density.

B. Solutions for which w; # 1

There are many situations in which w; is not equal to one. First let us consider the general
case in which F' is non-zero. Here we know that solutions are given by equation ([B.12]). The space
of solutions actually splits into two, based on the sign of F'. Treating first the case where F > 0,
we find that for positive F', inserting our the relevant parameters from equations (Z10) into the
System:

P\ Ty
a:ao—(A+b ) (4.13)
Vb
for a free choice of A and a,. Since we require that the scale factor be positive, if F' > 0 we se that
at large b the term in containing b!" will dominate, and hence we can keep a, positive, regardless
of the choice of A.

The behaviour of these systems close to the initial singularity depends upon the choice of A. In
cases where A is positive or zero, the numerator is everywhere positive, and hence at low values
of the secondary scale factor, the principal scale factor will tend to infinity. Hence we observe a
‘cigar’ type singularity at this point. When A < 0 we find that at the point where b¥ = —A the
principal scale factor vanishes, and hence we are left with a singularity at which one of the scale
factors is zero where the other takes a finite value - a ‘barrel’ singularity.

The principal scale factor has a (unique) turning point if A < 0 and 1+ w; < 2ws. In this case
a begins at zero at the barrel singularity and expands to a maximum at

bF_ A(l_wl)

=— 4.14
1-2F —w ( )

and after this point re-contracts down to zero eventually. Likewise if A > 0 and 1 + wy > 2wy we
find that a begins at infinity, reduces down to a minimum value at the point above, and re-expands
to infinity thereafter. We thus note that the asymptotic behaviour of the principal scale factor is
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determined by 1+ w; — 2w - if this is negative we have endless expansion, if positive we recollapse
to a pancake singularity, and if this is zero a asymptotes to a finite value as b tends to infinity.
We can find the energy density in from equation ([@35]). On doing so we see that

2F (A+ bF)—(—Ewi ) pF—3
= 4.15
p T (4.15)
For large b the asymptotic behaviour is
__w%74w1w2+3
p—b 1-wy (4.16)

This always asymptotes to zero for matter obeying the energy conditions (to see this note that
the exponent is minimal when ws = 1, and in this circumstance we see that the energy density
follows b“173, and so always tends to zero). The one notable exception is the when w; = —1 that
p = Fb3~F. The maximal value of F' is 3 in this case, which corresponds to all pressures being the
negative of energy density - a cosmological constant. Unsurprisingly in this case we find that the
energy density does not change over time. Hence the energy density at the initial singularity is a
constant in this case.

The behaviour of energy density at the initial singularity is somewhat more complex. When
w1 = —1, with the exception of the case of the cosmological constant [12], p is always divergent.
However, when w; > —1 there exist a number of circumstances under which F' > 3 and hence
there could be zero energy density at the initial singularity. The behaviour here depends crucially
on the type of singularity - if the singularity is barrel like (i.e. a vanishes at a finite value of b,
characterised by A < 0) we see that the energy density is always divergent at this point, following

_ 1wy
1—wq

p— (A+bh) (4.17)

in which the exponent is always negative. In the case where A > 0, the behaviour is determined
by

p— bF'3 (4.18)

and hence may tend to a constant when F' = 3 or even zero for F' > 3 (recall that F' is bounded
above by 4 in the anisotropic case, as opposed to 3 in the isotropic sector). Hence
The case w = —1 also contains an isotropic sector when F' > 0: Isotropic matter pressures are
achieved when w1 = wy = w, and so ' = 3(1 — w). Together with our equation of motion I3 we
see that in such a case
3 1
A+ b2(l-w) 1=
a= ao( ) (4.19)
)
and geometrical isotropy further requires that A = 0 (and hence a = b). The energy density in
such a situation is given by

14w

3(A + b3 (1w~ 1
b%(1+w)

p= (4.20)

again in the geometrically isotropic situation, A = 0 and so this reduces to the familiar b=3(+w).

The geometry of solutions for which F' = 0 is determined by equation (B.14]). Substituting the
factors in terms of their expressions in terms of anisotropic pressures we find that the principal
scale factor is given by

(A+ (1 wy)log(b) =
NG

a=a, (4.21)
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As b — 0 we note that log(b) — —oo. Therefore in these geometries, for any real value of A
there will always be a finite value of the secondary scale factor at which the primary scale factor
vanishes. For large b the denominator will always dominate, and thus the geometry asymptotes to
a pancake. Between these points there exists a unique turning point at

2-A 1 2(1—wy)
b=el""1 a=aqa,2T""1e 2-4 (4.22)

Thus we find that this is a situation in which the geometry always transitions between two pancake
solutions, the first at a finite, non-zero value of the secondary scale factor, and the second as the
secondary scale factor tends to infinity.
The energy density for such geometries is given:
14wy
2(A+ (1 —wy)log(b)) T
b3

(4.23)

and we can see that such systems must begin with infinite energy density, as this includes a term
that is a negative power of the principal scale factor. The behaviour of p is dominated at large
values of the secondary scale factor by the denominator, as this grows faster than the logarithmic
term in the numerator. Hence the energy density vanishes at the final pancake surface.

Finally we come to the case in which F' < 0. As noted above, such for these solutions the weak
energy condition ensures that the matter cannot be isotropic, therefore we are in a regime which
qualitatively differs from the isotropic sector. The solutions to the equations of motion are again
given by equation ([B12)). However, in these cases we find that the expansion of the square root
terms has the opposite sign to that described in the F' > 0 case, and thus we can express our space
of solutions as those given by:

1
F\T=wr
a= ao% (4.24)

The energy density of these solutions is given:

1+wq
2AF(1 + ApF) " T-wr
= 0T (4.25)

and thus we observe that the positivity of energy density requires that A be negative. We can
therefore immediately infer the behaviour of these solutions in the vicinity of their initial singularity.
When b is sufficiently small the term in the numerator of equation ([£.24]) vanishes, and thus we see
that we have a finite pancake initial singularity - the principal scale factor vanishes at a non-zero
value of the secondary scale factor. Likewise as b becomes large, a ~ a,/ Vb and thus the final
singularity is an infinite pancake. Solutions have a turning point at

pF — (1—w)
A(l = 2F —wy)

(4.26)

The behaviour of the energy density is also entirely determined - at the initial pancake singu-
larity, the energy density is infinite, and as the secondary scale factor becomes large, we see that
p ~ 1/b3~F and hence tends to zero. Therefore the geometry of these solutions is unusual - the
systems starts and ends at pancake singularities, the former finite, the latter infinite, having a
finite extent in the principal direction in between. The energy density of these solutions decreases
throughout.



Sector Scale Factor Energy Density Range | Zero Size Infinite Size Turning Point Singular Density
w [F a(v) o(v) (A) | a© a(c0) @'(b) = 0 p(0)
i b= (2AF)"F 0 F>3
1|+ xp(2s ) P T (0, 00) s &S 0= (2AFe)? | 2AF F=3
o0 F<3
) (—3,0) % 0 N/A
110 b4 e 0 Const Const Always 00
(0, 00) 0 00 N/A _
exp(AbF) 2AF . b= (2AF)TF
- p\/g exp(2AbF)p3—F ( 00, O) 0 0 = (2AF€)% o0
- b (L) (=00,0) | b=—AF |00 14w > 2w, A o0 wy = —1
#1"‘ % % 0 00 1 14w =2ws bF:—l_wliiuglF 00 wl#—lASO
—
(0, 0) 0 0 1+w < 2w . ~bF 3w £ -1 A>0
(A+(1—wy) log(b) T - A b=el-»
e e = AU loge) T |(—00,00)|p = ¢ 0 — >
a =
b
1 _ 14wy _ -1
B} (1+ABF) -1 2AF(14+AbF) T=m _ Ak pF = —___l-wy | OO0 wy #
#1 S =y (—00,0) |b=—-A"T 0 AT=0—20 | p g5 = 1

TABLE II: All the type I and VII, with ranges and behaviours. Note that a(0) is used to describe the value of a at b = 0 or the value of b for which
a = 0. Likewise p(0) describes the value of p at either a = 0 or b = 0. The behaviour of the scale factors is determined up to a free choice of ag and b, -
a coordinate choice. Similarly the energy density is only determined up to this free choice in the model, which amounts to a choice of units. * Note that
the energy density in the case F' > 0 and wy = —1 is constant when F' = 3 (i.e. wy = —1, the case of the cosmological constant).

el
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V. MATTER MODELS

There are a wide number of matter models which are anisotropic at the fundamental level,
yet have been treated as isotropic gasses when considering cosmological effects. This treatment is
justified in the large scale approximation, in which short range fluctuations are thought to average
out in some manner. However, on considering the approach to a singularity, it is clear that short
range physics is important. In the context of local physics dominating dynamics, (such as that
described by quiescent cosmology) this approximation becomes invalid. It is therefore necessary to
consider anisotropic solutions.

A. Cosmic Strings

A clear example of this is the case of topological defects, such as cosmic strings and domain
walls [13, [14]. In each of these cases there is a preferred axis (along the string or perpendicular
to the wall) about which we should expect our geometry to behave isotropically, but along which
we should see different motion. It is in these contexts that the LRS ansatz is justified. The local
dynamics near a cosmological string is determined by the energy density of the string itself, which
we will assume is describe in a geometry in which the string is at rest [15]. For such a system the
anisotropic pressure are such that w; = —1 and wo = 0, and hence F = 1. These solutions fall

into the category described in equation(4.I3]) - the principal scale factor behaves as a = a4/ % +1,
and there is a more complex set of singularities depending on the value of A - at late time a
approaches a constant value, and at early times a diverges to infinity in a cigar-like singularity.
This is significantly different from the isotropic case, where the equivalent behaviour is described
by a string gas, in which the averaged pressure gives w = —1/3. Similarly we see that the energy
density, given by equation(@.I5]) follows b=2. At first this may seem surprising - in the isotropic
case we expect the string energy to fall off with average scale factor to the fourth power. However,
by stretching our space-time in the principal direction, we should increase the string energy in the
region such that the density remains constant, and therefore the only scaling should be due to a
dilution following b%. From our constant of motion, it is possible to determine exactly the metric
given by these solutions in some circumstances. Since the constant is b/ a, we can easily invert:

b=Ca=C 1—% (5.1)

and hence we can solve, (setting C = 1 through an appropriate rescaling of the temporal coordinate);
t = /b(A+b) — Alog(v/b(A + 1)) (5.2)
in the simple case, where A = 0, this can be inverted, yielding the metric:
ds® = —dt? + da* + t*(dy® + d2?) (5.3)

From this we explicitly see the singularity as having a ‘barrel’ type - the y and z directions collapse
whilst the x direction remains finite. Further, by making the transformation dr = dt/ Vb we can
solve explicitly to obtain a general metric:

2
ds? = —dr® o+ e’ + (07— Ay’ + ) (54)

for which the energy density follows (72 — A)~2.
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B. Domain Walls

The case of the domain wall [16, [17] is also distinct from its isotropized counterpart. For a
domain wall, the principal scale factor will describe the axis perpendicular to the wall and the
secondary scale factor those parallel to it [18]. In this case we see that wqy = 0 and we = —1,
again, choosing coordinates such that the domain wall is a non- moving entity. Hence F' = 7/2,
and we are in a region which is not described by the isotropic FLRW cosmologies - this solution
falls into the class described by equation (£I3). The principal scale factor is then described by
a = ay,(A/ Vb + b%) and hence close to the initial time singularity the dynamics is determined by
the value of A - for positive A there is a cigar like singularity, for zero A a point-like, and for
negative A we see the principal scale factor vanish at a finite, non-zero value of b - a finite pancake.
In this case, we find that our constant of motion is found following equation (3.8]), and hence b3/2
is proportional to time. Inverting this we find the general metric for such solutions:

2

ds? = —dt* + (tél + t2> da? + 3 (dy® + d2?) (5.5)
3

Therefore cosmologies dominated by domain walls always begin with a vanishing of the principal

scale factor when the secondary scale factor takes a finite value.

The energy density of this situation is given by equation (4.I5]), and we see that the value of p
at the initial singularity is not fixed by the presence of the domain wall itself, but actually depends
on the free parameter determining the system, A. In the case where A < 0 - the finite pancake
- the energy density is infinite at this surface, as it follows vb. When A > 0 (either as A = 0, a
point-like singularity, or A > 0, a cigar) the energy density near this initial singularity follows Vb,
and hence tends to zero. The general behaviour of the energy density is

7vb Tt5
p= = = (5.6)
A+ b2 A+1t3

C. Magnetic Fields

Another case of interest is that of a stationary (primordial) magnetic field [19], which we shall
choose to be aligned with the principal axis. In this case, the Maxwell tensor F} is zero apart from
F; = FY = 2B, hence the stress-energy tensor is diagonal with entries (B2, —B?2, B2, B?) and so
w; = —1 and we = 1 [20]. In the isotropic case, this would be modelled through w = 1/3 and
hence have the same behaviour as radiation. However, the anisotropic nature of the field leads to
a distinct behaviour. The behaviour of the principal scale factor is (up to a choice of constants)
a = ‘/bb_ic for a negative constant C' = —A of equation (£.24]). Hence we can use our constant of
motion to show a general metric: Letting dr = dt/b we can solve to find

2 2 2 2
sde” +dy” +dz (5.7)

2 32
ds® = —dr +7(T—|—C)

and t = 7(72 + 3C) can be inverted to express in terms of ¢ as required. We see from this metric
that the solution indeed has a barrel type singularity at 7 — 0 at which p — C~!. This again
constitutes an example of ‘matter that matters’ as it has fundamentally changed the nature of the
initial singularity. The general form of the energy density is:

C C

Pmp ™ (12 — A)? (5:8)
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D. Relativistic Particles

In contrast to the magnetic field case, there is another matter model for which the average
pressure scales as one third of the energy density - a highly relativistic particle. To model this
situation, we consider a continuous, homogeneous stream of particles and align the principal axis
with the direction of motion of the stream. In this case, we see that the anisotropic pressures give
wp =1 and wy = 0, F' = 2 and so we are in the sector which is determined by equation ([@I0). We
thus see the geometry begin with an initial cigar like singularity (noting that A must be positive
due to the positivity of energy density) and the principal scale factor expands to infinity as the
secondary scale factor expands. In this case the constant of motion is abb, and so we can follow
the same methods as above to find a solution. Setting

dr = 2Ab3 dt (5.9)
we can integrate to find that b = 4/ % and a = (10A )%T, and hence we have a general metric
2(7)

for solution which takes the form:

A 1
dilf2 + Og(T)

s (7] . (dy* + d2?) (5.10)

ds? = —dr? + 72

which is valid for 7 > 1 when A is positive, and 7 < —1 for negative A. The energy density, given
by equation (£ITl), is determined to be

4A 4A3
= (5.11)

" bexp(248?) 72, /log(r)

and hence is infinite at the initial singularity, and tends to zero as the space-time expands.

p

VI. DISCUSSION

Various approaches to understanding the cosmological singularities of general relativity invoke
the idea that the dynamical equations become ultra-local; spatial derivatives contribute at a lower
order than temporal derivatives [21], and thus the system is approximately described by a set of
weakly interacting points each behaving as a homogeneous cosmology [22-24]. This has been used
to justify the idea that quantum gravity itself may be a lower dimensional theory [25], and has
been used to inform approaches to attacking generic singularities in quantum gravity [26]. The
strategy that is employed is to classify the nature of singularities (or their resolution) in the set
of homogeneous space-times that result from such a conjecture, and from there to argue that the
fate of generic singularities is determined by the behaviour of these homogeneous models. Thus
a generic model of singularities in a quantum space-time can be obtained without having to deal
with complexities that arise from spatial interactions. In particular the nature of the equations of
motion in the homogeneous case is that the partial differential equations that determine solutions
in general relativity become ordinary differential equations which are much more tractable for
quantum considerations. Since the universe that results from these conjectures consists of a set of
essentially independent points, each can be treated using methods of quantum mechanics rather
than attempting a full quantum field theory of gravity.

Typically quantum models of cosmology it is assumed that the only relevant matter source is
a stiff fluid, which can be modelled as a massless scalar field. This has provided the matter source
in many of the quantum cosmological treatments of Bianchi models |27, 28], in which it has been
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shown that that the classical singularity is overcome by the effects of quantum geometry, and it
has been shown that in fact such a treatment of homogeneous, isotropic cosmologies never gives
rise to a singularity [29]. However, it remains to be seen whether this result continues to hold in
the anisotropic sector, and further into the presence of anisotropic matter.

Here we have studied the locally rotationally symmetric Bianchi I and VII, models in which
matter consist of a perfect fluid only, not considering homogeneous models in full generality. Due to
this simplification the equations of motion became significantly more tractable than in the general
case - the presence of curvature in other LRS Bianchi models would lead to a more complex
replacement for the constant of motion J which was used heavily in finding solutions. Further,
when considering models which are not LRS the generic behaviour of one scale factor in terms
of one of the others is not as clear cut - monotonicity is not guaranteed and identifying the full
extent of solutions is not simple. The use of a single matter source can be viewed in a number of
ways - either as an approximation describing the behaviour of a cosmology in which a single source
dominates, or to be valid in the neighbourhood of a singularity in which once would expect that a
single source (that with the greatest pressure in the contracting direction, say) would be dominant.
In isotropic models, we see that the dominant energy density comes from those fields with the
highest value of w - those whose pressures increase the most as space-time contracts to a point.
However, in the presence of an anisotropic singularity, we should expect the dominant matter
to be that which experiences not only the greatest increase in energy density due to contracting
directions, but also that which is diluted the least by expanding directions. It is therefore likely
that anisotropic matter sources would play a more significant role in such space-times.

The matter that has been used as examples in this paper may not be that present at an initial
singularity. Topological defects arise as a result of symmetry breaking in field theories as the
temperature of the matter is reduced, and thus as density is increased we should expect symmetry
to be restored. However we see that in the case of the domain wall there exist solutions which
both begin and end at singularities with zero energy density. Thus although there may be a global
symmetry at a maximum of energy density (or above a certain value) the behaviour near these
singularities may indeed exist at broken states of the symmetry and thus exhibit topological defects.
Further, although the matter can be considered to be a toy model, there is as yet grand unified
theory, and the nature of matter at high energy densities remains unknown. It is therefore logical
to assume that there may be fields which are anisotropic in their pressures, existing with preferred
vectors (like the magnetic and electric fields) and it is conceivable that particles such as photons
would remain all the way to the singularity, and thus the approximation of isotropy in matter is
unfounded.
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