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TORSION SUBGROUPS OF CM ELLIPTIC CURVES OVER ODD DEGREE

NUMBER FIELDS

ABBEY BOURDON AND PAUL POLLACK

Abstract. Let GCM(d) denote the collection of groups (up to isomorphism) that appear as the
torsion subgroup of a CM elliptic curve over a degree d number field. We completely determine
GCM(d) for odd integers d and deduce a number of statistical theorems about the behavior of torsion
subgroups of CM elliptic curves. Here are three examples: (1) For each odd d, the set of natural
numbers d′ with GCM(d′) = GCM(d) possesses a well-defined, positive asymptotic density. (2) Let
TCM(d) = maxG∈GCM(d) #G; under the Generalized Riemann Hypothesis,

(

12eγ

π

)2/3

≤ lim sup
d→∞
d odd

TCM(d)

(d log log d)2/3
≤
(

24eγ

π

)2/3

.

(3) For each ǫ > 0, we have #GCM(d) ≪ǫ dǫ for all odd d; on the other hand, for each A > 0, we
have #GCM(d) > (log d)A for infinitely many odd d.

1. Introduction

For a given positive integer d, let G (d) denote the set of (isomorphism classes) of abelian groups
that appear as E(F )[tors] for some elliptic curve E defined over some degree d number field F ,
and let T (d) denote the supremum of the orders of all such groups. Celebrated work of Merel [23]
shows that T (d) < ∞ for every d. However, the nature of the finite sets G (d) remains largely
mysterious. The only d for which G (d) has been completely determined are d = 1 (Mazur [22],
1977) and d = 2 (work of Kamienny, Kenku, and Momose, completed in 1992 [17, 16]). And while
there are completely explicit upper bounds on T (d), the known bounds grow superexponentially,
whereas it is widely believed that T (d) is bounded polynomially in d.

More can be said if we restrict the class of elliptic curves under consideration. In particular,
elliptic curves with complex multiplication (CM) are of interest since they are known to provide
examples of rational points of large order appearing in unusually low degree [8]. Let GCM(d) and
TCM(d) be defined as above, but with the added restriction that E has CM. Whereas G (d) is known
only for d = 1 and d = 2, the set GCM(d) has been computed for all d ≤ 13 [9]. And in contrast to
the situation for T (d) where the known upper bounds are (presumably) far from sharp, the upper
order of TCM(d) has recently been determined. In [10], it is shown that

lim sup
d→∞

TCM(d)

d log log d
< ∞.

From earlier work of Breuer [6], this lim sup is positive. Hence, TCM(d) has upper order d log log d.
Several other statistics concerning TCM(d) are investigated in [4]; e.g., it is shown there that the

average of TCM(d) for d ≤ x is x/(log x)1+o(1), as x → ∞.
In [5], the authors study torsion of CM elliptic curves over real number fields, meaning number

fields admitting at least one real embedding. Observe that all number fields of odd degree are
real. One of the central results of [5] is a complete classification of which groups arise as torsion
subgroups of CM elliptic curves defined over number fields of odd degree, i.e., a classification of the
elements of

⋃

d odd GCM(d). This strengthens earlier work of Aoki [2].
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Theorem 1.1 (Odd Degree Theorem, [5], cf. [2, Corollary 9.4]). Let F be a number field of odd
degree, let E/F be a K-CM elliptic curve, and let T = E(F )[tors]. Then:

a) One of the following occurs:
(1) T is isomorphic to the trivial group {•}, Z/2Z, Z/4Z, or Z/2Z ⊕ Z/2Z;
(2) T ∼= Z/ℓnZ for a prime ℓ ≡ 3 (mod 8) and n ∈ Z+ and K = Q(

√
−ℓ);

(3) T ∼= Z/2ℓnZ for a prime ℓ ≡ 3 (mod 4) and n ∈ Z+ and K = Q(
√
−ℓ).

b) If E(F )[tors] ∼= Z/2Z ⊕ Z/2Z, then EndE has discriminant ∆ = −4.
c) If E(F )[tors] ∼= Z/4Z, then EndE has discriminant ∆ ∈ {−4,−16}.
d) Each of the groups listed in part a) arises up to isomorphism as the torsion subgroup E(F )

of a CM elliptic curve E defined over an odd degree number field F .

However, given a particular subgroup that does arise, the argument of [5] does not identify the
degrees d in which it occurs. The main theorem of this paper is precisely such a result. Here,
hQ(

√
−ℓ) denotes the class number of Q(

√
−ℓ).

Theorem 1.2 (Strong Odd Degree Theorem). Let ℓ ≡ 3 (mod 4) and n ∈ Z+. Define δ as follows:

δ =















ö

3n
2

ù

− 1, ℓ > 3,

0, ℓ = 3 and n = 1,
ö

3n
2

ù

− 2, ℓ = 3 and n ≥ 2.

Then:

(1) For any odd positive integer d, the groups {•}, Z/2Z, Z/4Z, and Z/2Z ⊕ Z/2Z appear as
the torsion subgroup of a CM elliptic curve defined over a number field of degree d.

(2) Z/ℓnZ appears as the torsion subgroup of a CM elliptic curve defined over a number field
of odd degree d if and only if ℓ ≡ 3 (mod 8) and d is a multiple of hQ(

√
−ℓ) · ℓ−1

2 · ℓδ.
(3) Z/2ℓnZ appears as the torsion subgroup of a CM elliptic curve defined over a number field

of odd degree d if and only if one of the following holds:
a. ℓ ≡ 3 (mod 8), where n ≥ 2 if ℓ = 3, and d is a multiple of 3 · hQ(

√
−ℓ) · ℓ−1

2 · ℓδ, or
b. ℓ = 3 and n = 1 and d is any odd positive integer, or
c. ℓ ≡ 7 (mod 8) and d is a multiple of hQ(

√
−ℓ) · ℓ−1

2 · ℓδ.

This theorem can be used to algorithmically determine GCM(d) for any odd degree d. See section
7 for a table of the groups which arise for odd d ≤ 99.

The CM elliptic curves with a point of order ℓn in lowest possible odd degree are unexpectedly
varied. In the case of even degrees, points of order ℓ often appear for the first time on a CM elliptic
curve with a rational j-invariant. For example, any prime ℓ ≡ 1 (mod 3) appears for the first time
in even degree ℓ−1

3 on an elliptic curve E with j(E) = 0 by [8, Theorem 1]. However, we see already
from the Odd Degree Theorem that a CM elliptic curve with a rational point of order ℓ in odd
degree will not have a rational j-invariant once ℓ > 163. Moreover, through the proof of the Strong
Odd Degree Theorem, we find that the algebraic structure of these optimal examples is surprisingly
complex. Specifically, we find that if n ≥ 3, an elliptic curve with a point of order ℓn in lowest
possible odd degree necessarily has CM by a non-maximal order, and the size of the conductor
increases with n. See Remark 2.7 for a precise statement along these lines. Non-maximal orders
provide considerable technical complications, due in part to the fact that ideals do not necessarily
factor uniquely into prime ideals, and so many results in the literature are formulated only to
address the case of CM by the full ring of integers. However, we know now that non-maximal
orders play a crucial role in the extremal behavior of rational torsion points of elliptic curves.

Theorem 1.2 opens the door to establishing new statistical properties of GCM(d) and TCM(d), as
d ranges over odd integers. The mean of TCM(d) for odd d ≤ x is studied already in [4], where it is
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shown to be x1/3+o(1), as x → ∞. This should be compared with the unrestricted average, which
we recalled above was x/(log x)1+o(1). In the next theorem, we study the upper order of TCM(d)
for odd d. Again, we find that it is much smaller than the corresponding unrestricted statistic.

Theorem 1.3 (Upper order of TCM(d) for odd d).

(1) There is an infinite sequence of odd d, with d → ∞, where

TCM(d) ≥
ÅÅ

12eγ

π
+ o(1)

ã

d log log d

ã2/3

.

(2) Assume the Riemann Hypothesis for Dirichlet L-functions. Then as d → ∞ through all odd
integers,

TCM(d) ≤
ÅÅ

24eγ

π
+ o(1)

ã

d log log d

ã2/3

.

Unconditionally, TCM(d) ≪ǫ d
2/3+ǫ for each fixed ǫ > 0 and all odd d.

We turn next to understanding the “stratification” of torsion by degree.
In 1974, Olson showed that GCM(1) = {{•},Z/2Z,Z/3Z,Z/4Z,Z/6Z,Z/2Z⊕Z/2Z} [26]. Compu-

tations carried out in [9] revealed that this same list reoccurs as GCM(d) for several other small values
of d. This was one of the phenomena investigated in [5], where it was shown that GCM(d) = GCM(1)
if d = p or p2 for some prime p ≥ 7.

Call d an Olson degree if GCM(d) = GCM(1). The following complete classification of Olson
degrees was proved in [4]. To state the result, we need one more piece of notation. Given a set G of
positive integers, we write M (G) for the set of multiples of G, meaning the collection of all positive
integers divisible by some element of G.
Proposition 1.4 ([4]). The complement of the set of Olson degrees can be written as M (G), where

G = {2} ∪
ß

ℓ− 1

2
· hQ(

√
−ℓ) : ℓ prime, ℓ ≡ 3 (mod 4), ℓ > 3

™

.

As a corollary of Proposition 1.4, it was proved in [5] that the set of Olson degrees possesses a
positive density. It is easy, for reasons recalled at the start of §4.1, to rigorously bound this density
from above by 4/15 = 0.26666 . . . . However, no explicit lower bound is proved in [4]. We take the
opportunity here to address this lacuna, estimating the density of Olson degrees to within 0.1%.

Theorem 1.5. The density of Olson degrees lies in the open interval (0.264, 0.265).

Thus, a little more than half of the odd numbers d are Olson degrees.
It is natural to wonder if our results on Olson degrees are the tip of a larger iceberg. Generalizing

the above, we say that d and d′ are CM-torsion-equivalent if GCM(d) = GCM(d′). In this case, we
call d a d′-Olson degree. The following questions were suggested by Pete L. Clark:

Questions 1.6. Is it true that for every d, the set of d-Olson degrees possesses an asymptotic
density? If so, is the sum of the densities of d-Olson degrees, taken over inequivalent d, equal to 1?

To avoid a possible source of confusion, we remind the reader that asymptotic density is finitely
additive but not countably additive. Thus, an affirmative answer to the first question does not
immediately imply an affirmative answer to the second.

Note that if d and d′ are CM-torsion equivalent, then d and d′ share the same parity. Indeed,
if d′ is even, then Z/3Z ⊕ Z/3Z is realizable in degree d′ (see [5, Theorems 1.4, 2.1]), whereas the
Odd Degree Theorem guarantees that such a group is never realizable in any odd degree d, so
that GCM(d) 6= GCM(d′). Consequently, each equivalence class consists entirely of even integers or
entirely of odd integers.

Using Theorem 1.2, we are able to answer affirmatively the odd degree variants of Questions 1.6.
3



Theorem 1.7 (Stratification of torsion in odd degrees). For each odd positive integer d, the set
of d-Olson degrees possesses a positive asymptotic density. Moreover, using d(·) for asymptotic
density,

∑

d

d({d-Olson degrees}) = 1

2
,

where the sum on the left is taken over any complete set of inequivalent odd integers.

Remark 1.8. One can use the method of proof of Theorem 1.5 to study the density of d-Olson
degrees for other odd d. For instance, we have calculated in this way that the 3-Olson degrees have
density between 6.2% and 6.4%.

We conclude with a result about the number of groups realizable in a given odd degree, i.e., the
number #GCM(d) for odd d. There is no mystery about how small #GCM(d) can be; the Strong
Odd Degree Theorem implies that GCM(1) is always a subset of GCM(d), so that #GCM(d) ≥ 6,
with equality if and only d is an Olson degree. But how large can #GCM(d) be? This is the subject
of our final theorem, proved in §6.
Theorem 1.9. For each fixed ǫ > 0, we have #GCM(d) ≪ǫ d

ǫ for all positive odd integers d. On
the other hand, for each fixed A > 0, there are infinitely many odd d with #GCM(d) > (log d)A.

Theorem 1.9 provides another point of contrast between the even and odd degree cases. Indeed, at
the end of §6 we will adapt methods of Erdős [13] and Pomerance [28, 29] to show that for some
constant η > 0 and all large x, we have maxd≤x#GCM(d) > xη.

2. Complete determination of torsion in odd degrees:

Proof of Theorem 1.2

2.1. Background. Let ℓ > 2 be prime, and let F be a number field of odd degree. If E/F is a
CM elliptic curve with an F -rational point of order ℓn, then the Odd Degree Theorem gives that
ℓ ≡ 3 (mod 4). Moreover, we also have the following additional results of [5]. Here, ζℓn denotes a
primitive ℓnth root of unity, and h(∆) denotes the class number of the order of discriminant ∆.

Theorem 2.1 ([5]). Let F be a number field of odd degree, and let E/F be a CM elliptic curve with
a point of order ℓn in E(F ) for some prime ℓ ≡ 3 (mod 4). Then:

(1) E has CM by an order of discriminant ∆ = −(2ǫℓa)2 · ℓ for ǫ ∈ {0, 1} and a ∈ Z≥0.
(2) Q(ζℓn) ⊂ FK.

(3)
ϕ(ℓn)

2
h(∆) | [F : Q].

(4) If E has CM by an order of discriminant ∆ = −ℓ2a+1, there is a basis of E[ℓn] such that if
σ ∈ Gal(F̄ /FK), then the image of σ under the mod-ℓn Galois representation associated to
E is of the following form:

ρℓn(σ) =

ñ

1 β
Ä

∆−t2

4t

ä

0 1

ô

, 4t | t2 −∆, βt ≡ 0 (mod ℓn).

Proof. Since h(∆) = [Q(j(E)) : Q] and Q(j(E)) is a subfield of F , it follows that h(∆) is odd. Then
part (1) is a consequence of the Odd Degree Theorem and [5, Lemma 3.5]. Parts (2) and (3) may
be deduced from [5, Theorem 4.12]. Part (4) follows from the proof of [5, Theorem 4.12(a)]. �

As indicated in the introduction, elliptic curves with CM by a non-maximal order play a signif-
icant role in determining GCM(d) for odd d. One approach to analyzing rational torsion points on
an elliptic curve with CM by a non-maximal order is to consider the rational torsion points on an
elliptic curve with smaller conductor induced by the following natural isogeny. We thank Pete L.
Clark for the idea of the next proof.
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Proposition 2.2. Let E/F be an elliptic curve with CM by the order O in K of conductor f . If
f ′ | f , there exists an F -rational isogeny ιf ′ : E → E′, where E′

/F is an elliptic curve with CM by

the order in K of conductor f ′. Moreover, ιf ′ is cyclic of degree d = f
f ′ .

Proof. Let O′ be the order of K of conductor f ′, and let I = dO′. Then I is an ideal of O, and we
may form the I-torsion kernel,

E[I] = {x ∈ E(F̄ ) : ∀α ∈ I, αx = 0}.

Since I is fixed by complex conjugation, E[I] is defined over F . (See the discussion in Section 3.3
of [5].) Thus we have an F -rational isogeny E → E/E[I]. It remains to show E/E[I] has CM by
O′ and that E[I] is cyclic of order d.

Choose an embedding F →֒ C so that E ∼=C EO, where EO is the O-CM elliptic curve corre-
sponding to C/O under uniformization. Since O ⊂ O′, we have a natural map C/O → C/O′, and
hence a map from EO → EO′ . Then as in Proposition 1.4 of [34],

ker(EO → EO′) ∼= ker(C/O → C/O′)

= O′/O
= {z ∈ C : zO′ ⊂ O′}/O

We will show {z ∈ C : zO′ ⊂ O′} = {z ∈ C : zdO′ ⊂ O}. Indeed, if zO′ ⊂ O′, then in particular
z = a + f ′k for some a ∈ Z and k ∈ OK . Then (a + f ′k)dO′ ⊂ O, as desired. Conversely, if
zdO′ ⊂ O, then z = (a/d) + f ′k, for some a ∈ Z and k ∈ OK . Note that if d divides a, then
zO′ ⊂ O′, as desired. But d must divide a, for otherwise zdO′ would not be contained in O. Thus:

ker(C/O → C/O′) =
{

z ∈ C : zdO′ ⊂ O}

/O
= {z ∈ C : αz ∈ O ∀α ∈ I}/O
= {z ∈ C/O : αz = 0∀α ∈ I}
= C/O[I]

∼= EO[I].

Composing with the isomorphism E ∼=C EO gives an isogeny E → EO′ with kernel E[I]. It
follows that E/E[I] ∼=C EO′ , and so E/E[I] has CM by O′. Moreover, E[I] ∼= O′/O, which is cyclic
of order d. �

Remark 2.3. If f ′ = 1, we recover the classical statement which appears, for example, as Propo-
sition 25 in [8].

Finally, we will make use of the connection between CM elliptic curves and class field theory, as
stated in the following result. For a positive integer N and an imaginary quadratic field K, we let
K(NOK) denote the N -ray class field of K.

Proposition 2.4. Let F be a number field, and let E/F be an elliptic curve with CM by an order

in K. If (Z/NZ)2 →֒ E(F ) for some N ∈ Z+, then K(NOK) ⊂ FK.

Proof. For CM by the maximal order, see [34, Theorem II.5.6]. For the general case, see [10,
Theorem 5]. �

Lemma 2.5. Let ℓ ≡ 3 (mod 4) be prime and K = Q(
√
−ℓ). If n ∈ Z+, then for any a ≥ n,

Q(ζℓa) ∩KℓnOK = Q(ζℓn).

5



Proof. Let O be the order in K of discriminant ∆ = −ℓ2n+1, and let KO denote the ring class field
of K of conductor ℓn. Then by Corollary 8.7 of Cox [12], KO ⊂ KℓnOK . The field Q(ζℓa) ∩ KO
is generalized dihedral over Q by Theorem 9.18 of Cox [12], and since it is also abelian over Q we
have

Gal(Q(ζℓa) ∩KO/K) ∼= (Z/2Z)ν .

However, [KO : K] = h(∆) is odd by [5, Lemma 3.5]. Hence Q(ζℓa) ∩KO = K.
Since Q(ζℓn) ⊂ KℓnOK , we have Q(ζℓn) ⊂ Q(ζℓa) ∩KℓnOK . Let δ = [Q(ζℓa) ∩ KℓnOK : Q(ζℓn)].

Then the compositum of KO and Q(ζℓa) ∩KℓnOK has degree

1

wK
hKℓ2n−1(ℓ− 1)δ

over K, where wK denotes the number of roots of unity in K. Since

[KℓnOK : K] =
1

wK
hKℓ2n−1(ℓ− 1)

(see [11, Corollary 3.2.5]), we find δ = 1 and Q(ζℓa) ∩KℓnOK = Q(ζℓn). �

2.2. Identifying torsion in lowest degree. We will use part (4) of Theorem 2.1 to deduce a
relationship between the discriminant ∆ and the rational torsion of the elliptic curve. Since t | ∆,
we find a connection between ordℓ(∆) and the full torsion over FK forced by the existence of an
F -rational point of order ℓn. For example, suppose F is a number field of odd degree and E/F is an
elliptic curve with CM by an order of discriminant ∆ = −ℓ, where ℓ ≡ 3 (mod 4) is prime. If E(F )
contains a point of order ℓn, then E has full ℓn−1 torsion over FK by Theorem 2.1(4). This kind
of argument is key to ruling out points of order ℓn appearing in low degree on elliptic curves with
small conductor. Instead, we find that elliptic curves E defined over F = Q(j(E)) which possess
a cyclic F -rational isogeny of degree ℓn give examples of rational points of order ℓn appearing in
lowest possible odd degree. Such isogenies have been classified by Kwon [19].

Theorem 2.6. Let F be a number field of odd degree, let ℓ ≡ 3 (mod 4) be prime, and let n ∈ Z+.
If E/F is a CM elliptic curve with a point of order ℓn in E(F ), then

hQ(
√
−ℓ) ·

ℓ− 1

2
· ℓδ | [F : Q],

where

δ =















ö

3n
2

ù

− 1, ℓ > 3,

0, ℓ = 3 and n = 1,
ö

3n
2

ù

− 2, ℓ = 3 and n ≥ 2.

Moreover, for any such ℓ and n, there exists a CM elliptic curve defined over a number field of
degree hQ(

√
−ℓ) · ℓ−1

2 · ℓδ with a rational point of order ℓn.

Proof. Let F be a number field of odd degree, and suppose E/F is a CM elliptic curve with a point
P of order ℓn in E(F ), where ℓ ≡ 3 (mod 4) is prime. For now suppose ℓ 6= 3. It follows from
Theorem 2.1 that E has CM by an order in K = Q(

√
−ℓ) of discriminant ∆ = −(2ǫℓa)2 · ℓ for

ǫ ∈ {0, 1} and a ∈ Z≥0, and

(1)
ϕ(ℓn)

2
· h(∆) = hK

ℓ− 1

2
ℓa+n−1

Å

2−
Å−ℓ

2

ããǫ

| [F : Q].

(The formula for h(∆) appears in [12, Theorem 7.24].) If a ≥ ⌊n
2

⌋

, then this quantity is divisible

by hK
ℓ−1
2 ℓδ, as desired. So we may assume a <

⌊n
2

⌋

.
Let ϕ : E → E′ be the F -rational isogeny of degree 2ǫℓa whose existence is guaranteed by

Proposition 2.2, where E′ is an elliptic curve with CM by OK . Then ϕ(P ) has order ℓα, where
6



α ≥ n− a ≥ 2. Indeed, n − a < 2 contradicts a <
⌊n
2

⌋

. By Theorem 2.1, there is a basis of E′[ℓα]
such that if σ ∈ Gal(F̄ /FK), then ρℓα(σ) is of the following form:

ñ

1 β
Ä−ℓ−t2

4t

ä

0 1

ô

, 4t | t2 + ℓ, βt ≡ 0 (mod ℓα).

In particular, t | ℓ, so βt ≡ 0 (mod ℓα) implies β ≡ 0 (mod ℓα−1). Thus E′ has full ℓα−1-torsion

over FK. Since FK contains Q(ζℓn) by Theorem 2.1 and Kℓα−1OK by Proposition 2.4, it follows
from Lemma 2.5 that hK(ℓ− 1)ℓn+α−2 | [FK : Q]. Hence

(2) hK
(ℓ− 1)

2
ℓn+α−2 | [F : Q].

Q

K

Q(ζℓα−1)

K(ℓα−1OK)
Q(ζℓn)

K(ℓα−1OK)(ζℓn)

ℓn−α+1

2

hKℓα−1

hKℓα−1

1
2(ℓ− 1)ℓα−2

Since a <
⌊n
2

⌋

, we have n+ α− 2 ≥ 2n− a− 2 ≥ δ. It follows that hK
(ℓ−1)

2 ℓδ | [F : Q].

If ℓ = 3, then by Theorem 2.1 E has CM by an order O in K = Q(
√
−3) of discriminant

∆ = −(2ǫ3a)2 · 3 for ǫ ∈ {0, 1} and a ∈ Z≥0. In addition, Theorem 2.1 implies

(3)
ϕ(3n)

2
· h(∆) =

3a+n+ǫ−1

[O×
K : O×]

| [F : Q].

If a ≥ ⌊n
2

⌋

, then this quantity is divisible by hK
3−1
2 3δ = 3δ, as desired. So we may assume a <

⌊n
2

⌋

.

Arguing as above, we find that FK contains both K3α−1OK and Q(ζ3n) for some α ≥ n − a ≥ 2.
By Lemma 2.5, these fields are linearly disjoint over Q(ζ3α−1); hence,

(4) 3n+α−3 | [F : Q].

Since a <
⌊n
2

⌋

, we have n+ α− 3 ≥ 2n− a− 3 ≥ δ. It follows that 3δ | [F : Q].
It remains to show these divisibility conditions are best possible. Set a =

⌊n
2

⌋

. Then ℓn | ∆ =

−(ℓa)2ℓ. Let E be an O(∆)-CM elliptic curve defined over F = Q(j(E)). By work of Kwon [19,
Corollary 4.2], E admits an F -rational isogeny which is cyclic of degree ℓn. It follows from [5,
Theorem 5.6] that there is a twist E1 of E/F and an extension L/F of degree ϕ(ℓn)/2 such that

E1(L) has a point of order ℓn. We have [L : Q] = ϕ(ℓn)
2 h(∆) = hK

ℓ−1
2 ℓδ, as desired. �

Remark 2.7. If F is a number field of odd degree and E/F is a CM elliptic curve with an F -
rational point of order ℓn, it follows from the proof of Theorem 2.6 that E has CM by an order of
discriminant ∆ = −(2ǫℓa)2ℓ where a =

⌊n
2

⌋

,
⌊n
2

⌋ − 1, or
⌊n
2

⌋

+ 1. The latter two cases are only
7



possible if n is even or if n = 1 (and ℓ = 3), respectively. In particular, it we see that E necessarily
has CM by a non-maximal order if n ≥ 3.

Corollary 2.8. Let ℓ ≡ 3 (mod 4) be prime, and let n ∈ Z+. Let F be a number field of odd degree.
If E/F is a CM elliptic curve with a point of order ℓn in E(F ), then E has CM by K = Q(

√
−ℓ)

and FK contains Kℓ⌊n
2 ⌋OK (ζℓn).

Proof. By Theorem 2.1, E has CM by the order O in K = Q(
√
−ℓ) of discriminant ∆ = −(2ǫℓa)2 ·ℓ

for ǫ ∈ {0, 1} and a ∈ Z≥0. We consider two cases.

If a ≥ ⌊n
2

⌋

, then O is contained in the order O′ of conductor ℓ⌊n
2 ⌋. Thus the ring class field of K

with conductor ℓ⌊n
2 ⌋, KO′ , is contained in KO = K(j(E)) ⊂ FK. (See exercise 9.19 of Cox [12].)

Since Q(ζℓn) ⊂ FK by Theorem 2.1 and Q(ζℓn) ∩KO′ = K by the proof of Lemma 2.5, KO′(ζℓn)

is a subfield of FK of degree hQ(
√
−ℓ) · (ℓ− 1) · ℓδ. By Corollary 8.7 of Cox [12], KO′ ⊂ Kℓ⌊n

2 ⌋OK ,

so KO′(ζℓn) ⊂ Kℓ⌊n
2 ⌋OK (ζℓn). Since they have the same degree, equality holds.

If a <
⌊n
2

⌋

, then FK contains Kℓα−1OK and Q(ζℓn), where α ≥ n − a ≥ ⌊n
2

⌋

+ 1. Thus FK

contains Kℓ⌊n
2 ⌋OK (ζℓn). �

Corollary 2.9. Let ℓ ≡ 3 (mod 4) be prime, and let n ∈ Z+. Suppose E/F is a CM elliptic curve

with a point of order ℓn in E(F ). If [F : Q] = hQ(
√
−ℓ) · ℓ−1

2 · ℓδ, for δ defined as above, then E

has CM by an order in K = Q(
√
−ℓ) and FK = Kℓ⌊n

2 ⌋OK (ζℓn). In particular, ℓ is the only prime
which ramifies in F .

Proof. This follows from Corollary 2.8. �

2.3. Proof of the Strong Odd Degree Theorem. Let T be a group which appears as the torsion
subgroup of a CM elliptic curve defined over a number field of odd degree. We will identify an odd
positive integer dT such that dT | [F : Q] whenever E/F is a CM elliptic curve with E(F )[tors] ∼= T
and F is of odd degree. Once we exhibit a number field F of degree dT and a CM elliptic curve
E/F with E(F )[tors] ∼= T , the Strong Odd Degree Theorem will follow by a result of [5]:

Theorem 2.10. Let A/F be an abelian variety over a number field, and let d ≥ 2. There are
infinitely many L/F such that [L : F ] = d and A(L)[tors] = A(F )[tors].

Proof. See Theorem 2.1 of [5]. �

We isolate the more involved case in the following lemma. Here, δ is as defined in the statement
of the Strong Odd Degree Theorem.

Lemma 2.11. Let F be a number field of odd degree. If E/F is a CM elliptic curve with E(F )[tors] ∼=
Z/2ℓnZ for ℓ ≡ 3 (mod 8), where n ≥ 2 if ℓ = 3, then 3 · hQ(

√
−ℓ) · ℓ−1

2 · ℓδ | [F : Q].

Proof. We will first consider the case where ℓ ≡ 3 (mod 8), ℓ 6= 3. Suppose E/F is an elliptic curve
with CM by an order O of discriminant ∆ in K, and suppose E(F )[tors] ∼= Z/2ℓnZ. By Theorem

2.1, ∆ = −(2ǫℓa)2 · ℓ for ǫ ∈ {0, 1} and a ∈ Z≥0. If ǫ = 0, then K2OK ⊂ F (
√
d) = FK by [5,

Lemma 3.15] and Proposition 2.4. By Corollary 2.8, Kℓ⌊n
2 ⌋OK (ζℓn) ⊂ FK. Since 2 ramifies in

K2OK and Kℓ⌊n
2 ⌋OK (ζℓn) is unramified away from ℓ, these fields are linearly disjoint over KOK .

Thus 3 ·hK(ℓ−1)ℓδ | [FK : Q], and 3 ·hK · ℓ−1
2 ·ℓδ | [F : Q]. If ǫ = 1, then the ring class field of K of

conductor 2 is contained inKO = K(j(E)) = FK (see exercise 9.19 of Cox [12]). Since this ring class

field and Kℓ⌊n
2 ⌋OK (ζℓn) are linearly disjoint over KOK , it follows that 3 · hQ(

√
−ℓ) · ℓ−1

2 · ℓδ | [F : Q].
8



Suppose ℓ = 3, and suppose E/F has CM by an order O of discriminant ∆ in K and E(F )[tors] ∼=
Z/2 · 3nZ. As in the lemma statement, we assume n ≥ 2. We first consider the case where 2 | ∆,
i.e., ∆ = −(2 · 3a)2 · 3 for a ∈ Z≥0. If a ≥ ⌊n

2

⌋

, then 3δ+1 | [F : Q] by equation (3). If a <
⌊n
2

⌋

, then
we must consider several sub-cases:

• a ≥ 1: Since 6 divides the conductor of O, the ring class field of conductor 6, KO′ , is
contained in KO = K(j(E)) ⊂ FK (see exercise 9.19 of Cox [12]). The prime 2 ramifies in

KO′ , so K3⌊n
2 ⌋OK (ζ3n) and KO′ are linearly disjoint over K. Since [KO′ : K] = 3, we have

3δ+1 | [F : Q].
• a = 0, n ≥ 3: The proof of Theorem 2.6 shows that a rational point of order 2 · 3n
forces K3α−1OK (ζ3n) ⊂ FK, where α ≥ n. Thus K3n−1OK (ζ3n) ⊂ FK, which means
32n−3 | [F : Q]. Since n ≥ 3, we have 3δ+1 | [F : Q].

• a = 0, n = 2: Let P be the point of order 18 in E(F )[tors], where E is an elliptic curve with
CM by an order of discriminant ∆ = −22 · 3. Note j(E) = 243353. Work of [18] implies E
has an equation of the form

y2 + (1− c)xy − by = x3 − bx2

for some b, c ∈ F and P = (0, 0). We let j(b, c) denote the j-invariant of E. As in [9], we may
obtain a polynomial f18 ∈ Q[b, c] that vanishes when (0, 0) has order 18. A computation
shows that if

{

f18(b, c) = 0

j(b, c) = 243353
,

then 9 | [Q(b, c) : Q] (see the research website of the first author for the Magma scripts used).
Hence 9 | [F : Q], as desired.

Next, suppose 2 ∤ ∆, i.e., ∆ = −(3a)2 · 3 for a ∈ Z≥0. If a ≥ 1, then by Proposition 2.2,
there exists an F -rational isogeny ι3 : E → E′, where E′ has CM by the order in K = Q(

√
−3) of

conductor 3. Since the kernel of this isogeny has size 3a−1, a point of order 2 in E(F ) induces a
point of order 2 in E′(F ). But E′ is a quadratic twist of the elliptic curve E0 : y

2 = x3−480x+4048,
and points of order 2 are invariant under quadratic twists. Thus E0(F ) contains a point of order
2, and F contains a root α of x3 − 480x + 4080. Since 2 ramifies in K(α), the fields K(α) and

K3⌊n
2 ⌋OK (ζ3n) are linearly disjoint over K; hence 3δ+1 | [F : Q].

If a = 0 and n ≥ 3, K3n−1OK (ζ3n) ⊂ FK and 3δ+1 | [F : Q] as above. Finally, if a = 0 and n = 2,
then j(E) = 0. As in the case where 2 | ∆, a computation shows that 9 | [F : Q]. Again, see the
research website of the first author for the Magma scripts used. �

Theorem 2.12 (Strong Odd Degree Theorem). Let ℓ ≡ 3 (mod 4) and n ∈ Z+. Define δ as
follows:

δ =















ö

3n
2

ù

− 1, ℓ > 3,

0, ℓ = 3 and n = 1,
ö

3n
2

ù

− 2, ℓ = 3 and n ≥ 2.

Then:

(1) For any odd positive integer d, the groups {•}, Z/2Z, Z/4Z, and Z/2Z ⊕ Z/2Z appear as
the torsion subgroup of a CM elliptic curve defined over a number field of degree d.

(2) Z/ℓnZ appears as the torsion subgroup of a CM elliptic curve defined over a number field
of odd degree d if and only if ℓ ≡ 3 (mod 8) and d is a multiple of hQ(

√
−ℓ) · ℓ−1

2 · ℓδ.
(3) Z/2ℓnZ appears as the torsion subgroup of a CM elliptic curve defined over a number field

of odd degree d if and only if one of the following holds:
9



a. ℓ ≡ 3 (mod 8), where n ≥ 2 if ℓ = 3, and d is a multiple of 3 · hQ(
√
−ℓ) · ℓ−1

2 · ℓδ, or
b. ℓ = 3 and n = 1 and d is any odd positive integer, or
c. ℓ ≡ 7 (mod 8) and d is a multiple of hQ(

√
−ℓ) · ℓ−1

2 · ℓδ.

Proof. The groups {•}, Z/2Z, Z/4Z, and Z/2Z⊕Z/2Z appear as torsion subgroups of CM elliptic
curves defined over Q by work of Olson [26], so part (1) is an immediate consequence of Theorem
2.10. For part (2), suppose E/F is a CM elliptic curve with E(F )[tors] ∼= Z/ℓnZ. Then ℓ ≡ 3

(mod 8) by the Odd Degree Theorem, and [F : Q] is a multiple of hQ(
√
−ℓ) · ℓ−1

2 · ℓδ by Theorem 2.6.

Conversely, if for each ℓ ≡ 3 (mod 8) there exists a number field F of degree hQ(
√
−ℓ) · ℓ−1

2 · ℓδ and

a CM elliptic curve E/F with E(F )[tors] ∼= Z/ℓnZ, part (2) will follow from Theorem 2.10.
First suppose ℓ ≡ 3 (mod 8), ℓ 6= 3. By Theorem 2.6 there exists a CM elliptic curve E defined

over a number field F of degree hQ(
√
−ℓ) · ℓ−1

2 ·ℓδ with ℓn ‖ E(F )[tors]. By the Odd Degree Theorem,

E has CM by K = Q(
√
−ℓ) and E(F )[tors] ∼= Z/ℓnZ or Z/2ℓnZ. But if E(F )[tors] ∼= Z/2ℓnZ, then

3 · hK · ℓ−1
2 · ℓδ | [F : Q] by Lemma 2.11, which is a contradiction. Thus E(F )[tors] ∼= Z/ℓnZ, as

desired. If ℓ = 3, we know that Z/3Z occurs in degree 1 by work of Olson [26], and Z/9Z occurs
in degree 3 by work of Clark, Corn, Rice, and Stankewicz [9]. If n ≥ 3, we know there is an
elliptic curve E defined over a number field of F degree 3δ with 3n ‖ E(F )[tors] by Theorem 2.6.
If E(F )[tors] ∼= Z/2 · 3nZ, then 3δ+1 | [F : Q] by Lemma 2.11. Thus the Odd Degree Theorem
guarantees E(F )[tors] ∼= Z/3nZ, as desired. This completes the proof of part 2.

Let F be a number field of odd degree, and suppose E/F is a CM elliptic curve with E(F )[tors] ∼=
Z/2ℓnZ for some prime ℓ ≡ 3 (mod 4). If ℓ ≡ 3 (mod 8), where n ≥ 2 if ℓ = 3, then 3 · hQ(

√
−ℓ) ·

ℓ−1
2 · ℓδ | [F : Q] by Lemma 2.11. If ℓ ≡ 7 (mod 8), then hQ(

√
−ℓ) · ℓ−1

2 · ℓδ | [F : Q] by Theorem 2.6.

Thus part 3 will follow from Theorem 2.10 if we can demonstrate that there is a CM elliptic curve
E defined over a number field F of smallest possible odd degree with E(F )[tors] ∼= Z/2ℓnZ.

Suppose ℓ ≡ 3 (mod 8), where n ≥ 2 if ℓ = 3. By the proof of part 2, there is a number field F
of degree hK · ℓ−1

2 · ℓδ and a CM elliptic curve E/F with E(F )[tors] ∼= Z/ℓnZ. Since points of order
2 correspond to the roots of a cubic polynomial, E gains a rational 2-torsion point over a cubic
extension of F , say F (α). By the Odd Degree Theorem and Lemma 2.11, E(F (α))[tors] ∼= Z/2ℓnZ.
Since [F : Q] = 3 · hQ(

√
−ℓ) · ℓ−1

2 · ℓδ, we may conclude part 3(a).

If ℓ = 3 and n = 1, then Z/2ℓZ does occur in degree 1 by Olson [26]. Thus 3(b) holds. For 3(c), let
ℓ ≡ 7 (mod 8). By Theorem 2.6 there exists a CM elliptic curve E defined over a number field F of
degree hQ(

√
−ℓ) · ℓ−1

2 ·ℓδ with ℓn ‖ E(F )[tors]. The Odd Degree Theorem shows E(F )[tors] ∼= Z/2ℓnZ,

as desired. �

3. The upper order of TCM(d) for odd degrees d:
Proof of Theorem 1.3

Here we exploit the fact that while hQ(
√
−ℓ) is typically of size ≍ ℓ1/2, it can be smaller by a factor

of size 1/ log log ℓ, but (assuming GRH) no more. The precise statements we need correspond via
Dirichlet’s class number formula to the following two estimates.

Proposition 3.1 (Joshi). There is a sequence of primes ℓ ≡ 3 (mod 4), ℓ → ∞, with

L(1,
(−ℓ

·
)

) ≤ π2

6eγ
1

log log ℓ
.

Proof. This is part of [15, Theorem 1]. �
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Proposition 3.2 (Littlewood). Assume the Riemann Hypothesis for Dirichlet L-functions. Then
as |D| → ∞, with D ranging through fundamental discriminants,

L(1,
(D
·
)

) ≥
Ç

π2

12eγ
+ o(1)

å

1

log log |D| .

For D satisfying
(D
2

)

= 1, this lower bound can be strengthened to

L(1,
(D
·
)

) ≥
Ç

π2

4eγ
+ o(1)

å

1

log log |D| .

Proof. The first assertion is explicitly contained in [21, Theorem 1]. The second can be proved by
the same method. For the sake of completeness, we sketch an argument for the second claim taking
as a starting point the the modern approach to Littlewood’s work presented in [20, §5.2]. From [20,
eq. (5.2)], we see that with X = 1

4(log |D|)2,

logL(1,
(D
·
)

) ≥
∑

n≤X

Λ(n)
(D
n

)

Å

1

n log n
− 1

X logX

ã

+ o(1),

as |D| → ∞. (We have dropped lower order terms from [20], since we are only interested in
asymptotics, not in an explicit bound.) For each prime p, the contribution to the right-hand sum
from n that are powers of p is at least

∑

pk≤X

Λ(pk)(−1)k
Å

1

pk log pk
− 1

X logX

ã

;

moreover, since
(D
2

)

= 1, the factor (−1)k appearing here can be replaced with 1 when p = 2. Now
summing over p,

logL(1,
(D
·
)

) ≥
∑

pk≤X

Λ(pk)(−1)k
Å

1

pk log pk
− 1

X logX

ã

+2
∑

2k≤X
k odd

Λ(2k)

Å

1

2k log 2k
− 1

X logX

ã

+o(1).

As on p. 2408 of [20],

∑

pk≤X

Λ(pk)(−1)k
Å

1

pk log pk
− 1

X logX

ã

≥ − log logX − γ + log
π2

6
+ o(1).

Moreover,

2
∑

2k≤X
k odd

Λ(2k)

Å

1

2k log 2k
− 1

X logX

ã

= 2
∑

2k≤X
k odd

1

k · 2k + o(1)

= 2
∑

k≥1

1

k · 2k −
∑

j≥1

1

j · 22j + o(1) = 2 ln

Ç

1

1− 1
2

å

+ ln

Å

1− 1

4

ã

+ o(1) = ln(3) + o(1).

Collecting the estimates and exponentiating (and noting that logX ∼ 2 log log |D|), we obtain the
claim. �

We can now prove the unconditional lower-bound half of Theorem 1.3.

Proof of Theorem 1.3(i). We fix a sequence of primes ℓ as in Proposition 3.1. To each such ℓ, we
associate the odd positive integer d = hQ(

√
−ℓ) · ℓ−1

2 . Clearly, d → ∞ as ℓ → ∞. By Dirichlet’s class

number formula,

d =

√
ℓ

π
L(1,

(−ℓ
·
)

) · ℓ− 1

2
≤
Å

π

12eγ
+ o(1)

ã

ℓ3/2/ log log ℓ,

11



as ℓ → ∞. It is straightforward to deduce that ℓ3/2 ≥ (12e
γ

π + o(1))d log log d. From the Strong
Odd Degree Theorem, either Z/ℓZ or Z/2ℓZ is realizable in degree d, and so TCM(d) ≥ ℓ. Theorem
1.3(i) follows. �

The proof of the upper bound is more intricate.

Proof of Theorem 1.3(ii). We will assume to start with that the Riemann Hypothesis for L-functions
holds, and we will prove that under this assumption,

(5) TCM(d) ≤
ÅÅ

24eγ

π
+ o(1)

ã

d log log d

ã2/3

as d → ∞ through odd values. We say a few words at the end about how to modify the proof to
obtain the unconditional upper bound TCM(d) ≪ǫ d

2/3+ǫ.
From the Odd Degree Theorem, the largest torsion subgroup realizable in degree d has the form

Z/ℓnZ or Z/2ℓnZ for a prime ℓ ≡ 3 (mod 4) and a positive integer n. Here the prime ℓ and the
positive integer n are uniquely determined by d.

Case 1: n is even. From Theorem 1.2 along with the bounds ℓ−1
2 ≥ ℓ

3 and hQ(
√
−ℓ) ≥ 1,

d ≥ ℓ− 1

2
· ℓδ · hQ(

√
−ℓ) ≥

1

3
ℓδ+1 ≥ 1

9
ℓ3n/2.

To see the last estimate, notice that ℓδ+1 = ℓ3n/2 unless ℓ = 3, in which case it is 1
3ℓ

3n/2. Hence,

ℓn ≤ (9d)2/3 and TCM(d) ≤ 2ℓn ≤ 2 · (9d)2/3. This certainly implies (5) for these d.

Case 2: ℓ < log log d. Here Theorem 1.2 implies that

d ≥ 1

3
ℓδ+

3
2 ·

hQ(
√
−ℓ)

ℓ1/2
≥ 1

9
ℓ3n/2 ·

hQ(
√
−ℓ)

ℓ1/2
≥ 1

9(log log d)1/2
ℓ3n/2.

Thus, TCM(d) ≤ 2ℓn ≪ d2/3(log log d)1/3 in these cases, so (5) again holds.

Case 3: n odd and ℓ ≥ log log d. Taking D = −ℓ in Proposition 3.2 and invoking the class number
formula, we deduce from Proposition 3.2 that as d → ∞,

d ≥ hQ(
√
−ℓ) ·

ℓ− 1

2
· ℓδ =

√
ℓ

π
L(1,

(−ℓ
·
)

) · ℓ− 1

2
ℓδ(6)

≥
Å

π

24eγ
+ o(1)

ã

ℓδ+3/2

log log ℓ
=

Å

π

24eγ
+ o(1)

ã

ℓ3n/2

log log ℓ
.(7)

This certainly implies that d ≥ ℓ for large d, and hence log log d ≥ log log ℓ. Feeding this back into
the above estimate gives

d ≥
Å

π

24eγ
+ o(1)

ã

ℓ3n/2

log log d
, whence ℓn ≤

ÅÅ

24eγ

π
+ o(1)

ã

d log log d

ã2/3

.

As a consequence, if the largest torsion subgroup in degree d has the form Z/ℓnZ, rather than
Z/2ℓnZ, then we again obtain (5). It remains to treat the subcase when the largest torsion subgroup
has the form Z/2ℓnZ. Recall that d → ∞ and ℓ ≥ log log d, so certainly we can assume ℓ > 3. If
ℓ ≡ 3 (mod 8), Theorem 1.2 shows that the first inequality in (6) can be strengthened by a factor
of 3. If ℓ ≡ 7 (mod 8), then

(−ℓ
2

)

= 1, and Proposition 3.2 shows that the inequality in (7) can be
strengthened by a factor of 3. Following the argument through shows that in either case,

ℓn ≤
ÅÅ

8eγ

π
+ o(1)

ã

d log log d

ã2/3

,
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and hence

TCM(d) ≤ 2

ÅÅ

8eγ

π
+ o(1)

ã

d log log d

ã2/3

.

Since 8 · 23/2 < 24, (5) holds in this case as well.

The proof of the unconditional bound is similar but simpler. The key difference is that in the
treatment of odd n, we are forced to use Siegel’s lower bound L(1,

(D
·
)

) ≫ǫ |D|−ǫ instead of the
much stronger results of Proposition 3.2. �

4. The density of Olson degrees:

Proof of Theorem 1.5

4.1. Upper bound. To bound the density of Olson degrees from above, we must bound from
below the density of M (G) for the set G appearing in Proposition 1.4. There is an obvious plan
of attack: Bound M (G) from below by M (H) for a large finite subset H ⊂ G. For example, since
g5 = 3 and g11 = 5, we have {2, 3, 5} ⊂ G, and so

d(M (G)) ≥ d(M ({2, 3, 5})) = 11

15
.

This implies the upper bound of 4
15 — mentioned in the introduction — for the density of Olson

degrees. In this section, we implement the same strategy with a much larger set H.
It requires some finesse to make this method computationally feasible. For any finite set H of

positive integers, inclusion-exclusion immediately yields a formula for M (H) , namely

d(M (H)) =
#H
∑

j=1

(−1)j−1
∑

A⊂H
#A=j

1

lcm(A)
.

Unfortunately, the above formula involves 2#H − 1 terms and so a direct implementation of this
idea quickly becomes prohibitively time-consuming. To work around this we make two observations,
encoded in the following lemmas.

Lemma 4.1. For a finite collection H of positive integers, let

Hrel = {h ∈ H : h is relatively prime to all other elements of H}.
Then

1− d(M (H)) = (1− d(M (H \Hrel)))
∏

h∈Hrel

Å

1− 1

h

ã

.

If H is a finite set of natural numbers and p is a prime, we define the p-scaled set H(p) by

H(p) = {h/ gcd(h, p) : h ∈ H},

and we define the p-sieved set H(p) by

H(p) = {h ∈ H : p ∤ h}.

Lemma 4.2. Let H be a finite collection of positive integers. For any prime number p,

d(M (H)) =
1

p
d(M (H(p))) +

Å

1− 1

p

ã

d(M (H(p))).

Lemmas 4.1 and 4.2 make pleasant elementary exercises, and we omit the proofs. The more difficult
of the two, Lemma 4.2, appears in more general form in work of Behrend [3, Lemma, p. 681].
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Proof of the upper bound in Theorem 1.5. We begin by computing a large list of elements of G
which eventually will be truncated to form our H. Specifically, we start with the singleton set {2}.
We then successively go through the primes 3 < ℓ ≤ 100000 from the congruence class 3 mod 4,
throwing gℓ into our set whenever gℓ is not divisible by a preexisting element. (If gℓ is divisible
by such an element, then there is no need to throw it in, as this would not lead to a larger set of
multiples.) At the end of this process, we sort the resulting list; this leaves us with a set the first
several elements of which are

2, 3, 5, 913, 1631, 1703, 2051, 2891, 3247, 3401, 3619, 4067, 5327, 6251, 6617, 7051, 7183, 7429, 9737,

10829, 11129, 11143, 12389, 12463, 12673, 12847, 17611, 18403, 19253, 19931, 20033, 22211, 22747,

23351, 27491, 28237, 30173, 32927, 33541, 38171, 38641, 39311, 39689, 40687, 42601, 45103, . . . .

We let H consist of the first 38 elements of this list, so that

H = {2, 3, 5, 913, . . . , 32927}.
We will show that

1− d(M (H)) < 0.265.

This implies the same upper bound 0.265 for the density of Olson degrees.
Apply Lemma 4.1 to H. In this case, one computes that Hrel = {2, 3, 5, 11129, 27491}. Thus,

puting H′ = H \Hrel,

1− d(M (H)) = (1− d(M (H′)))

Ç

1− 1

2

åÇ

1− 1

3

åÇ

1− 1

5

åÇ

1− 1

11129

åÇ

1− 1

27491

å

.

To estimate d(M (H′)), we apply Lemma 4.2 with p = 11:

d(M (H′)) =
1

11
d(M (H′

(11))) +

Å

1− 1

11

ã

d(M (H′(11))).

The setH′(11) has only 23 elements, and so d(M (H′(11))) can be computed without fuss by inclusion-
exclusion. We find that

d(M (H′(11))) = 0.004217267361708 . . . .

Let H′′ = H′
(11). Then H′′ has 33 elements; 33 is large enough that a direct inclusion-exclusion

computation is best avoided. So we make another application of Lemma 4.1, this time to H′′. We
compute that H′′

rel = {641, 653, 1013, 1133, 1601}. So with H′′′ = H′′ \ H′′
rel,

1− d(M (H′′)) = (1− d(M (H′′′))

Ç

1− 1

641

åÇ

1− 1

653

åÇ

1− 1

1013

åÇ

1− 1

1133

åÇ

1− 1

1601

å

.

The set H′′′ has 28 elements. However, it contains both 83 and 4067 = 83 · 49. So we may remove
4067 from H′′′ without changing the corresponding set of multiples. Similarly, H′′′ contains both
329 and 6251 = 19 · 329, and so 6251 can also be removed. This brings #H′′′ down to 26, which is
small enough that the inclusion-exclusion computation is manageable. We find that

1− d(M (H′′′)) = 0.979914305743609 . . . .

Working back through the chain of equalities,

1− d(M (H′′)) = 0.974452539520107 . . . ,

d(M (H′)) = 0.006156375826997 . . . ,

and finally

1− d(M (H)) = 0.264991512979231 . . . .

This completes the proof of the upper bound half of Theorem 1.5. �
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4.2. Lower bound. For the rest of this section, ℓ always denotes a prime with ℓ > 3 and ℓ ≡
3 mod 4. To establish the lower bound in Theorem 1.5, we require a lower bound on the numbers
gℓ that holds “most of the time”. Via Dirichlet’s class number formula, this comes down to bounding
below L(1,

(−ℓ
·
)

). We will deduce what we need from the following variant of the Siegel–Tatuzawa
theorem, due to Chen [7].

Proposition 4.3. Let 0 < ǫ < 1
log(106)

. For all real primitive characters χ of conductor q >

exp(1/ǫ), with at most one exception,

(8) L(1, χ) > min

®

1

7.732 log q
,
1.5 · 106 · ǫ

qǫ

´

.

Let ǫ0 = 0.999
log(106) , and apply Proposition 4.3 with ǫ = ǫ0. The minimum in (8) corresponds to the

first term when q / 2.82 · 10115, and to the second term past this point. Moreover, for q > 10115,
one checks that the right-hand side of (8) is bounded below by 105 ·q−ǫ0 . We use these observations
in the proof of the next result.

Corollary 4.4. For all negative fundamental discriminants D with |D| > 106, except for a single
possible exception, we have

hQ(
√
D) > 0.041

»

|D|/ log |D| when |D| ≤ 10115,

and, with ǫ0 = 0.999/ log(106),

hQ(
√
D) > 3 · 104 · |D| 12−ǫ0 when |D| > 10115.

Proof. Recall that when D is negative and |D| > 4, we have hQ(
√
D) =

√
|D|
π L(1,

(D
·
)

). Since
1

7.732π = 0.0411 . . . and 105

π > 3 · 104, the result follows. �

Proof of the lower bound in Theorem 1.5. We have already noted that G ⊃ {2, 3, 5} and that

d(M ({2, 3, 5})) = 11

15
= 0.7333 . . . .

The lower bound claimed in Theorem 1.5 is equivalent to the assertion that M (G) has density
< 0.736. So it is enough to show that, with d(·) denoting upper density,

(9) d(M (G) \ M ({2, 3, 5})) < 0.0026.

Suppose that m ∈ M (G) and m /∈ M ({2, 3, 5}). Then m has the form gℓr, where gcd(gℓ, 30) =
gcd(r, 30) = 1. Fixing ℓ with gcd(gℓ, 30) = 1, the number of corresponding m ≤ x is 4

15
x
gℓ

+ O(1).

(The O(1) error term comes from the application of inclusion-exclusion to enforce the condition
gcd(r, 30) = 1.) Hence, the total number of such m ≤ x is at most

4

15
x

∑

ℓ: gℓ≤x
gcd(gℓ,30)=1

1

gℓ
+O(x/ log x).

Dividing by x and letting x → ∞ shows that

d(M (G) \ M ({2, 3, 5})) ≤ 4

15

∑

ℓ: gcd(gℓ,30)=1

1

gℓ
.

We write
∑

ℓ: gcd(gℓ,30)=1

1

gℓ
=

∑

1
+

∑

2
+

∑

3
,

15



where
∑

1,
∑

2, and
∑

3 indicate a restriction to the ranges ℓ ≤ 109, 109 < ℓ ≤ 2.8 · 109, and
ℓ > 2.8 · 109, respectively.

We treat these three sums in turn. The first sum can be calculated directly in PARI, using the
routine quadclassunit to compute the class numbers of the fields Q(

√
−ℓ). We find that

∑

1
< 0.00788.

We remark that, in general, PARI’s function quadclassunit is only guaranteed to produce correct
output assuming the truth of GRH. However, in our range of ℓ, the GRH-conditional result employed
here has been verified by extensive computations of Jacobson, Ramachandran, and Williams. (See
the discussion in [14, §3.4].) So our estimation of

∑

1 is in fact unconditional. To treat
∑

2, we
recall that Watkins [35] has shown that hQ(

√
D) > 100 for all negative fundamental discriminants

with |D| > 2383747. Thus, replacing the condition gcd(gℓ, 30) = 1 by the weaker hypothesis that
gcd( ℓ−1

2 , 30) = 1,
∑

2
<

∑

109<ℓ≤2.8·109
gcd( ℓ−1

2
,30)=1

1
ℓ−1
2 · 100

< 0.0001819,

where again the final estimate comes from an explicit computation in PARI.
It remains to treat

∑

3. We write
∑

3 =
∑′

3 +
∑′′

3 , where
′ is the contribution of the possible

exceptional D = −ℓ described in Corollary 4.4, and ′′ is the contribution from all other ℓ. Using
that hQ(

√
−ℓ) > 100 for this exceptional ℓ (if it exists),

∑′
3
<

1
2.8·109−1

2 · 100
< 10−11.

We turn next to
∑′′

3. Let Π(t) be the number of ℓ ∈ (3, t] with gcd( ℓ−1
2 , 30) = 1. Each ℓ counted

here satisfies ℓ ≡ 3 (mod 4), ℓ ≡ 2 (mod 3), and ℓ ≡ 2, 3, or 4 (mod 5). So ℓ is forced into 3 of the
ϕ(60) = 16 reduced residue classes modulo 60. By the Brun–Titchmarsh theorem in the explicit
form of Montgomery–Vaughan [24],

Π(t) ≤ 2
3

16

t

log (t/60)
=

3

8

t

log(t/60)

for every t > 60.
Applying Corollary 4.4, we find that

∑′′
3
<

∑

2.8·109<ℓ≤10115

gcd( ℓ−1
2

,30)=1

1
ℓ−1
2 · 0.041

√
ℓ

log ℓ

+
∑

ℓ>10115

gcd( ℓ−1
2

,30)=1

1
ℓ−1
2 · 3 · 104 · ℓ1/2−ǫ0

=
2

0.041

∫ 10115

2.8·109
log t

(t− 1)
√
t
dΠ(t) +

2

3 · 104
∫ ∞

10115

1

(t− 1) · t1/2−ǫ0
dΠ(t)

<
2

0.041

∫ ∞

2.8·109
Π(t)

Ç

− log t

(t− 1)
√
t

å′
dt+

2

3 · 104
∫ ∞

10115
Π(t)

Ç

− 1

(t− 1)t1/2−ǫ0

å′
dt.

Inserting the above upper bound for Π(t) and using Mathematica to bound the resulting integrals
from above, we find that

∑′′
3
< 0.001220.

Putting everything together,

d(M (G) \ M ({2, 3, 5})) ≤ 4

15

Ä∑

1
+

∑

2
+

∑

3

ä
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<
4

15

Ä

0.00788 + 0.0001819 + 10−11 + 0.001220
ä

< 0.00248.

This establishes (9) and so completes the proof of the lower bound in Theorem 1.5. �

5. Stratification of torsion in odd degrees:

Proof of Theorem 1.7

We begin with an analytic lemma concerning integers with prescribed sets of divisors. Let G be
a set of positive integers. For each positive integer n, put D(n,G) = {g ∈ G : g | n}.

Lemma 5.1. Let G be a set of odd positive integers, and suppose that the sum of the reciprocals of
the elements of G converges. Let H be any finite subset of G. The set of odd n with D(n,G) = H
possesses a well-defined asymptotic density; this density is positive as long as there is at least one
such n.

Proof. We prove the lemma in two steps. First, we show that the density exists, and then we show
positivity. Let A be the set of odd n with D(n,G) = H. For each real z > maxH, put

Az = {n : D(n,G ∩ [1, z]) = H}.
Notice that whenever z′ > z > maxH,

(10) A ⊂ Az′ ⊂ Az.

Now whether or not n belongs to Az depends only on n modulo 2
∏

g∈G∩[1,z] g. Thus, Az is a finite
union of congruence classes, and so d(Az) exists. From (10), d(Az) is a nonincreasing function of
z, and so we we may define

δ = lim
z→∞

d(Az).

We will show that A has asymptotic density δ.
In what follows, we continue to use d(·) for upper density, and we use d(·) for lower density.
From the first inclusion in (10), d(A) ≤ d(Az) for all z; now letting z → ∞ shows that A has

upper density at most δ. Now consider the lower density of A. If n ∈ Az but n /∈ A, then n is
divisible by some g ∈ G with g > z; the number of these n ≤ x is at most x

∑

g∈G, g>z 1/g. Dividing
by x and letting x → ∞, it follows that

d(A) ≥ d(Az)−
∑

g∈G, g>z

1

g
.

Letting z → ∞, and recalling our assumption that the reciprocal sum of the elements of G converges,
we find that d(A) ≥ δ. Thus, d(A) = δ.

It remains to show the positivity of δ under the assumption that A is nonempty. We prove this
by exhibiting a subset of A of positive lower density. Fix n0 ∈ A. For each real z > maxH, put

Mz := 2
∏

g∈G, g≤z

g.

We consider n of the form n0m, where m ≡ 1 (mod Mz). Clearly, the set of m ≡ 1 (mod Mz) has
density 1

Mz
. Moreover, each number of the form n0m is odd and satisfies D(n0m,G ∩ [1, z]) = H.

So if m ≤ x and n0m /∈ A, then g | n0m for some g ∈ G with g ∈ (z, n0x]; hence,

g/ gcd(g, n0) | m.

Since m ≡ 1 (mod Mz), we must have g/ gcd(g, n0) coprime to Mz. Hence, the above divisibility
forces m into a uniquely determined residue class modulo gMz/ gcd(g, n0). The number of these
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m ≤ x is at most

∑

z<g≤n0x
g∈G, (g/ gcd(g,n0),Mz)=1

Ç

x gcd(g, n0)

gMz
+ 1

å

≤ x

Mz
·
Ç

n0

∑

g>z
g∈G

1

g

å

+
∑

g≤n0x
g∈G

1.

Observe that

∑

g≤n0x
g∈G

1 ≤ x1/2 +
∑

x1/2<g≤n0x
g∈G

1 ≤ x1/2 +
∑

x1/2<g≤n0x
g∈G

n0x

g
≤ x1/2 + x

Ç

n0

∑

g>x1/2

g∈G

1

g

å

.

Thus, the number of m ≤ x with m ≡ 1 (mod Mz) and n0m /∈ A is at most

x

Mz
·
Ç

n0

∑

g>z
g∈G

1

g

å

+ x

Ç

n0

∑

g>x1/2

g∈G

1

g

å

+ x1/2.

Dividing by x and letting x → ∞, we find that the upper density ofm ≡ 1 (mod Mz) with n0m /∈ A
is at most

1

Mz

Ñ

n0

∑

g>z

1

g

é

.

We now fix z large enough that the parenthesized term is smaller than 1/2. Then the lower density
of m with n0m ∈ A is at least 1

2Mz
, and so the lower density of A is at least 1

2n0Mz
. �

We can now prove the first assertion of Theorem 1.7.

Proof that the density of the d-Olson degrees exists and is positive, for odd d. Let G run over the
groups realizable as torsion subgroups in odd degree, as specified by the Odd Degree Theorem.
For each such G, Theorem 1.2 shows that G is realizable in a particular odd degree d precisely
when a certain explicitly described positive odd integer gG (say) divides d. So with G = {gG :
G realizable in odd degree}, the d-Olson degrees are precisely the odd positive integers d′ with

D(d′,G) = D(d,G).

The existence of the density of d-Olson degrees, together with its positivity, now follows from
Lemma 5.1 once it is checked that

∑

g∈G 1/g converges. From Theorem 1.2, every g ∈ G has the

form hQ(
√
−ℓ) · ℓ−1

2 · ℓδ or 3hQ(
√
−ℓ) · ℓ−1

2 · ℓδ for some prime ℓ ≡ 3 (mod 4) and some nonnegative

integer δ. Hence,

∑

g∈G

1

g
≤ 4

3

∑

ℓ

1

hQ(
√
−ℓ) · ℓ−1

2

∑

δ

1

ℓδ
<

8

3

∑

ℓ

1

hQ(
√
−ℓ) · ℓ−1

2

.

As already observed in [4], this final sum on ℓ converges; for example, this follows from Siegel’s

lower bound hQ(
√
−ℓ) ≫ǫ ℓ

1/2−ǫ. �

It remains to prove that the densities of the sets of d-Olson degrees, for inequivalent odd d, sum
to 1/2. For this we need the following result from [4].

Proposition 5.2 (“Typical boundedness” of torsion in the CM case). For each ǫ > 0, there is
a positive real number z such that the set of (odd or even) d with TCM(d) > z has upper density
smaller than ǫ.
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Proof of the final assertion of Theorem 1.7. We must show that for any complete set D of inequiv-
alent odd degrees,

∑

d∈D d({d-Olson degrees}) = 1/2. To begin, fix ǫ > 0 and choose z so that the
integers d with TCM(d) > z comprise a set of upper density smaller than ǫ.

Since equivalent integers d share the same value of TCM(d), the set of odd d with TCM(d) ≤ z is
a union of equivalence classes. Moreover, since there are only finitely many abelian groups of order
at most z, this union is necessarily a finite one. So we can pick d1, . . . , dk ∈ D with

{odd d : TCM(d) ≤ z} =
k
⋃

i=1

{di-Olson degrees},

where the union on the right is disjoint. Exploiting finite additivity,

∑

d∈D
d({d-Olson degrees}) ≥

k
∑

i=1

d({di-Olson degrees})

= d({odd d : TCM(d) ≤ z}) = 1

2
− d({odd d : TCM(d) > z}) > 1

2
− ǫ.

On the other hand, we also have that for each positive Z,
∑

d∈D, d≤Z

d({d-Olson degrees}) = d(
⋃

d∈D, d≤Z

{d-Olson degrees}) ≤ d({odd d}) = 1

2
.

Letting Z → ∞,
∑

d∈D
d({d-Olson degrees}) ≤ 1

2
.

Since ǫ > 0 is arbitrary, we conclude that
∑

d∈D d({d-Olson degrees}) = 1/2. �

6. The number of groups that can appear in a given degree

6.1. Odd degrees: Proof of Theorem 1.9. The proof of the lower bound in Theorem 1.9 will
depend on the following “Brun–Titchmarsh theorem on average”, which gives nontrivial information
about primes in [2,X] in arithmetic progressions with moduli slightly larger than X1/2 (i.e., slightly
beyond the range of applicability of the Bombieri–Vinogradov Theorem or the GRH). For the rest
of this section, we fix the constant

δ0 = 10−100.

As usual, π(x; q, a) denotes the count of primes p ≤ x with p ≡ a (mod q).

Proposition 6.1. Let A > 0. If X > X0(A) and Q ∈ [X1/2,X1/2+δ0 ], then

0.85
X

ϕ(q) logX
≤ π(X; q, 1) ≤ 1.48

X

ϕ(q) logX

for all q ∈ [Q, 2Q] except those belonging to an exceptional set EA(X,Q) of cardinality not exceeding
Q(logX)−A.

Proof. This is a theorem of Rousselet [32]. �

Proof of Theorem 1.9. The upper bound is relatively straightforward. The Odd Degree Theorem
implies that apart from {•}, Z/2Z, Z/4Z, and Z/2Z⊕ Z/2Z, the elements of G (d) are of the form
Z/ℓnZ or Z/2ℓnZ, where ℓ ≡ 3 (mod 4) is prime. From Theorem 1.2, for Z/ℓnZ or Z/2ℓnZ to
appear, it is necessary that ℓ−1

2 divide d. Thus, the number of possible ℓ is at most τ(d). Theorem

1.2 also implies that n ≤ 2
3vℓ(d) + O(1), where vℓ(·) is the ℓ-adic valuation. Since vℓ(d) ≪ log(d),

given ℓ there are only O(log(3d)) possibilities for n. Hence,

#GCM(d) ≪ 1 + τ(d) log(3d) ≪ǫ d
ǫ,
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where we use in the last step the well-known upper estimate for the maximal order of τ(d).
The lower bound requires significantly more effort. Recall from Theorem 1.2 that if ℓ ≡ 3

(mod 4) is prime and ℓ−1
2 hQ(

√
−ℓ) | d, then at least one of Z/ℓZ or Z/2ℓZ belongs to G (d). So if

r(d) denotes the number of divisors of d of the form ℓ−1
2 hQ(

√
−ℓ), with ℓ as above, then

#G (d) ≥ r(d).

Now let A be any large, fixed positive real number. We will show that there are infinitely many
odd d with

r(d) > (log d)
1
4
Aδ0 .

The lower bound in Theorem 1.9 is then immediate.
In what follows, we allow implied constants to depend on A, and ℓ is understood to run only

over primes from the residue class 3 mod 4.
For each real number x ≥ 3, put

M :=
∏

2<p≤ 1
2
log x

p.

By the prime number theorem, M ≤ x2/3 for large x. Our plan is to show that the average of r(d)
is large when taken over those d ≤ x that are multiples of M . (This strategy is inspired by a similar
argument of Prachar [30]. Cf. the proof of [1, Proposition 10].) Hence, some individual term r(d)
must also be large. Now

∑

d≤x
M |d

r(d) =
∑

d≤x
M |d

#{(m, ℓ) : m

Å

ℓ− 1

2

ã

hQ(
√
−ℓ) = d}

= #{(m, ℓ) : M | m
Å

ℓ− 1

2

ã

hQ(
√
−ℓ), and m

Å

ℓ− 1

2

ã

hQ(
√
−ℓ) ≤ x}.

We partition the pairs (m, ℓ) counted above according to the value of gcd(2M,m). Since we seek
only a lower bound on the partial sums of r(d), it is enough to consider pairs with gcd(2M,m)
highly restricted. Let

T = (log x)A.

Given g | 2M with g ∈ (T, 2T ], we construct pairs (m, ℓ) with gcd(2M,m) = 2M/g as follows: First,
fix ℓ ≤ T 2−δ0 with g/ gcd(g, 2) | ℓ − 1. Choose any m ≤ x

h
Q(

√
−ℓ)·(ℓ−1)/2 with gcd(2M,m) = 2M/g.

Then the pair (m, ℓ) is counted above. Given ℓ, inclusion-exclusion shows that the number of
corresponding m is (as x → ∞)

∼ x
ℓ−1
2 hQ(

√
−ℓ)

1

2M/g

ϕ(g)

g
.

Using hQ(
√
−ℓ) ≪ ℓ1/2 log ℓ and ϕ(g) ≫ g/ log log g, the preceding expression is

≫ x

M(log log x)2
· g

ℓ3/2
.

Summing on ℓ, and recalling that ℓ ≤ T 2−δ0 , the number of pairs we construct for our given g is

≫ x

M(log log x)2
T

T
3
2
(2−δ0)

∑

ℓ≤T 2−δ0

ℓ≡3 (mod 4)
ℓ≡1 (mod g/ gcd(g,2))

1.
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Now
∑

ℓ≤T 2−δ0

ℓ≡3 (mod 4)
ℓ≡1 (mod g/ gcd(g,2))

1 = π(T 2−δ0 ; g/ gcd(g, 2), 1) − π(T 2−δ0 ; 4g/ gcd(g, 2), 1).

In the notation of Proposition 6.1,

π(T 2−δ0 ; g/ gcd(g, 2), 1) ≥ 0.85 · T 2−δ0

ϕ(g/ gcd(g, 2)) log(T 2−δ0)

unless g is even and g/2 ∈ E1(T
2−δ0 , T/2) or g is odd and g ∈ E1(T

2−δ0 , T ); from Proposition 6.1,
the number of g involved in these exceptional sets is O(T/ log log x). Similarly, as long as g avoids
a certain set of size O(T/ log log x), we have

π(T 2−δ0 ; 4g/ gcd(g, 2), 1) ≤ 1.48 · T 2−δ0

2ϕ(g/ gcd(g, 2)) log(T 2−δ0)
.

Inserting these prime counting estimates above (noting that 1.48/2 < 0.85) we find that as long as
g avoids a set of size O(T/ log log x), we construct

≫ x

M(log log x)2
T

T
1
2
(2−δ0)

1

g log T
≫ x

M(log log x)3
1

T 1− 1
2
δ0

pairs for a given g.
We now wish to sum over allowable values of g. Recall that our g ∈ (T, 2T ] must satisfy g | 2M ,

i.e., g must be a squarefree, 1
2 log x-smooth number. Without the squarefree restriction, the number

of these g ≤ 2T is ∼ 2ρ(A)T , where ρ(·) is Dickman’s function; insisting that g is squarefree cuts this
down to ∼ 12

π2ρ(A)T (see, e.g., [25]). Similarly, the number of 1
2 log x-smooth g ≤ T is ∼ 6

π2 ρ(A)T .
Thus, there are ≫ T values of g ∈ (T, 2T ] that divide 2M . (This could also be established by more
elementary methods.) Excluding the O(T/ log log x) bad values of g coming from the application
of Proposition 6.1, we are still left with ≫ T allowable values of g (for large x). It follows that

∑

d≤x
M |d

r(d) ≫ x

M(log log x)3
1

T 1− 1
2
δ0

· T =
x

M
· (log x)

1
2
Aδ0

(log log x)3
,

and hence
∑

d≤x
M |d

r(d) >
x

M
(log x)

1
4
Aδ0

for large enough x.
Since there are no more than x/M multiples of M in [1, x], there is some d ≤ x satisfying

r(d) > (log x)
1
4
Aδ0 , and hence also r(d) > (log d)

1
4
Aδ0 . Letting x → ∞, we obtain infinitely many

distinct d of this kind. �

6.2. Even degrees. In this section we explain why the upper bound in Theorem 1.9 fails if we do
not restrict to odd values of d. The key ingredient in our argument is a variant of the following
1935 theorem of Erdős [13] asserting the existence of “popular” values of Euler’s ϕ-function.

Proposition 6.2. For some constant δ > 0 and all sufficiently large x,

max
m≤x

#{n squarefree : ϕ(n) = m} > xδ.

An easy modification of Erdős’s proof yields the following more general result.
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Proposition 6.3. Let P be any subset of the primes with positive relative lower density. There
are constants δ = δ(P) > 0 and x0 = x0(P) such that for all x > x0,

max
m≤x

#{n : n is a squarefree product of primes in P, and ϕ(n) = m} > xδ.

Proof (sketch). We refer the reader to the proof of Proposition 6.2 appearing in the survey article
[29] (see that paper’s Theorem 4.6). It is clear from that exposition that the proposition will follow
if it is shown that, for some fixed α > 0 and all large T ,

(11) #{p ≤ T : p ∈ P, all prime factors of p− 1 are at most T 1−α} ≫ T/ log T.

By hypothesis, there is a constant c > 0 such that for all large T ,

#{p ≤ T : p ∈ P} ≥ cT/ log T.

From Brun’s sieve, if α is fixed sufficiently close to 1 and T is large, then

#{primes p ≤ T : q | p− 1 for some prime q > T 1−α} <
c

2
T/ log T ;

up to changes in notation, this assertion is contained in Erdős’s proof of [13, Lemma 4]. Combining
the last two estimates yields (11). �

Theorem 6.4. For some constant η > 0 and all sufficiently large x,

max
d≤x

#GCM(d) > xη.

Proof. Let E be an elliptic curve with j(E) = 0, and choose a model of E defined over Q. Since E
has CM by the full ring of integers in K = Q(

√
−3), the image of Gal(Q̄/K) under the mod-ℓ Galois

representation associated to E lands in a split Cartan subgroup for each prime ℓ ≡ 1 (mod 3). (See
[8, p. 12-13].) Thus we have a K-rational cyclic subgroup of order ℓ. Let n = ℓ1ℓ2 · · · ℓr, where
ℓi ≡ 1 (mod 3) are distinct primes, and let Pi be a generator of the K-rational subgroup of order
ℓi. Then P1 + · · · + Pr generates a K-rational subgroup of order n. By [5, Theorem 5.5], there is
a number field Fn of degree dividing ϕ(n) and a quadratic twist E′ of E/Fn

such that E′(Fn) has

a point of order n. Below we write E′ = E′
n to indicate the dependence on n. By enlarging Fn if

necessary, we can (and will) assume that [Fn : Q] = ϕ(n).
Let P be the set of primes congruent to 1 modulo 3, so that P has relative density 1/2. Let

δ = δ(P) be the positive constant whose existence is specified in Proposition 6.3. Thus, for all
large x, there is an integer d ≤ x for which the set

N := {squarefree numbers n composed of primes ℓ ≡ 1 (mod 3) : ϕ(n) = d}
satisfies #N > xδ. For each n ∈ N , let Fn be the number field specified in the previous paragraph,
so that [Fn : Q] = d. We will bound #GCM(d) from below by showing that there is not too much
repetition among the groups E′

n(Fn)[tors], for n ∈ N .
Suppose that n and n′ both belong to N and that E′

n(Fn)[tors] ∼= E′
n′(Fn′)[tors] ∼= G (say).

Then both n and n′ divide the exponent of G. The exponent of G is bounded by #G, and from
[10], #G ≤ TCM(d) ≪ x log log x. (We could avoid appealing to [10] by referencing earlier results of
Silverberg [33] or Prasad–Yogananda [31].) Hence (for large x) the number of integers that divide
the exponent of G is no more than xδ/2. So no more than xδ/2 numbers n ∈ N share the same
value of E′

n(Fn)[tors]. Thus,

#GCM(d) ≥ #N

xδ/2
> xδ/2.

Since d ≤ x, this establishes Theorem 6.4 with η = δ/2. �

We can go a bit further. The arguments presented by Pomerance in [29, §4] suggest the following
conjecture on the upper order of #GCM(d).
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Conjecture 6.5. As x → ∞,

max
d≤x

#GCM(d) = x/L(x)1+o(1),

where L(x) = exp(log x log log log x
log logx ).

Indeed, the proof of [29, Theorem 4.4] shows that under a reasonable conjecture on the distribu-
tion of smooth shifted primes (appearing there as Hypothesis 4.3), there are numbers m ≤ x with

at least x/L(x)1+o(1) representations in the form ϕ(n), with n squarefree. We expect Hypothesis
4.3 to remain true even when restricted to primes from the residue class 1 mod 3. Combining the
argument for [29, Theorem 4.4] with the above proof of Theorem 6.4 then shows that

max
d≤x

#GCM(d) ≥ x/L(x)1+o(1).

The upper bound half of Conjecture 6.5 can be proved unconditionally. We start from [29,
Theorem 4.1], which asserts that

(12) max
m≤x

#{n : ϕ(n) = m} ≤ x/L(x)1+o(1).

Now take any positive integer d ≤ x. From [4, Theorem 2.4], if G ∼= E(F )[tors] for some CM elliptic
curve E over some degree d number field F , then, writing rad(·) for the product-of-distinct-prime-
factors function,

ϕ(rad(#G)) =
∏

ℓ|#G

(ℓ− 1) | 12d.

From the maximal order of the divisor function, τ(12d) ≤ exp(O(log x/ log log x)), and this last

expresion is L(x)o(1). So given d, the integer ϕ(rad(#G)) is restricted to a set of at most L(x)o(1)

possible values. It now follows from (12) that, given d, there are at most x/L(x)1+o(1) possible values
of rad(#G). From [10], we have #G = O(x log log x). As a consequence, given a value of rad(#G),
there are at most exp(O(log x/ log log x)) possibilities for #G (see, e.g., [27, Lemma 4.2]). Hence,

there are no more than x/L(x)1+o(1) possibilities for #G. But the structure of G is determined by
its two invariant factors; hence, given #G, the number of possible choices for G is crudely bounded
by τ(#G), which is at most exp(O(log x/ log log x)). We conclude that #GCM(d) ≤ x/L(x)1+o(1),
as claimed.

7. CM Torsion Subgroups in Odd Degree d ≤ 99

We have written PARI/GP code which, given an odd positive integer d, returns the list of groups
which appear the torsion subgroup of a CM elliptic curve defined over a number field of degree d.
This code is available at the research website of either author.

On a modern desktop computer, one can process all odd d ≤ 2 · 108 in about 12 hours. The
output in the more modest range d ≤ 99 is included below.

Degree Torsion Subgroups Appearing

1 Z/mZ for m = 1, 2, 3, 4, 6 and Z/2Z⊕ Z/2Z

3 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14 and Z/2Z⊕ Z/2Z

5 Z/mZ for m = 1, 2, 3, 4, 6, 11 and Z/2Z⊕ Z/2Z

7 Olson

9 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27 and Z/2Z⊕ Z/2Z

11 Olson

13 Olson

15 Z/mZ for m = 1, 2, 3, 4, 6, 9, 11, 14, 22 and Z/2Z⊕ Z/2Z
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Degree Torsion Subgroups Appearing

17 Olson

19 Olson

21 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 43 and Z/2Z⊕ Z/2Z

23 Olson

25 5-Olson

27 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27, 38, 54 and Z/2Z⊕ Z/2Z

29 Olson

31 Olson

33 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 46, 67 and Z/2Z⊕ Z/2Z

35 5-Olson

37 Olson

39 3-Olson

41 Olson

43 Olson

45 Z/mZ for m = 1, 2, 3, 4, 6, 9, 11, 14, 18, 19, 22, 27, 62 and Z/2Z⊕ Z/2Z

47 Olson

49 Olson

51 3-Olson

53 Olson

55 5-Olson

57 3-Olson

59 Olson

61 Olson

63 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27, 43, 86 and Z/2Z⊕ Z/2Z

65 5-Olson

67 Olson

69 3-Olson

71 Olson

73 Olson

75 15-Olson

77 Olson

79 Olson

81 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27, 38, 54, 81, 163 and Z/2Z⊕ Z/2Z

83 Olson

85 5-Olson

87 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 59 and Z/2Z⊕ Z/2Z

89 Olson

91 Olson

93 3-Olson

95 5-Olson

97 Olson

99 Z/mZ for m = 1, 2, 3, 4, 6, 9, 14, 18, 19, 27, 46, 67, 134 and Z/2Z⊕ Z/2Z
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