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NO LIE p-ALGEBRAS OF COHOMOLOGICAL DIMENSION ONE

PASHA ZUSMANOVICH

Abstract. We prove that a Lie p-algebra of cohomological dimension one is one-dimensional,
and discuss related questions.

0. Introduction

A cohomological dimension of a Lie algebra L over a field K, denoted by cd(L), is defined as
the right projective dimension of the trivial L-module K, i.e., the minimal possible length of a
finite projective resolution

(1) · · · → P2 → P1 → P0 → K

consisting of right projective modules Pi over the universal enveloping algebra U(L), or infinity if
no such finite resolution exists. Since for every projective resolution (1) and every L-module M ,
the cohomology of the induced complex

0←M = HomU(L)(K,M)← HomU(L)(P1,M)← HomU(L)(P2,M)← . . .

of L-modules coincides with the Chevalley–Eilenberg cohomology H•(L,M), L has cohomological
dimension n if and only if there is an L-module M such that Hn−1(L,M) 6= 0, and the two
equivalent conditions hold:

(i) Hi(L,M) = 0 for any L-module M and any i ≥ n;
(ii) Hn(L,M) = 0 for any L-module M .

A similar notion may be defined for other classes of algebraic systems with good cohomology
theory, e.g., for groups and associative algebras.

The Shapiro lemma about cohomology of a coinduced module implies that if S is a subalgebra
of a Lie algebra L, then cd(S) ≤ cd(L). As cohomological dimension of the one-dimensional Lie
algebra is equal to one, the cohomological dimension of any Lie algebra is ≥ 1. In particular, the
class of Lie algebras of cohomological dimension one is closed with respect to subalgebras.

Due to the standard interpretation of the second cohomology, the condition for a Lie algebra
L to be of cohomological dimension 1 is equivalent to the condition that each exact sequence

0→ ?→ ?→ L→ 0

of L-modules splits. The latter condition holds for a free Lie algebra, due to its universal property,
and hence a free Lie algebra (of any rank) has cohomological dimension one. The same is true
for free groups and free associative algebras.

The celebrated Stallings–Swan theorem says that for groups the converse is true: a group of
cohomological dimension one is free (cf., e.g., [Co]). A question by Bourbaki ([B, Chapitre II, §2,
footnote to Exercice 9]) asks whether the same is true for Lie algebras, i.e., whether a Lie algebra
of cohomological dimension one is free.

For a while, it was widely believed that the answer to the latter question is affirmative (the
author has witnessed several attempts of the proof), until Mikhalev, Umirbaev and Zolotykh
constructed an example of a non-free Lie algebra of cohomological dimension one over a field
of characteristic > 2 (cf. [MUZ]; note that the cases of characteristic zero and characteristic
2 remain widely open). This example is not a p-algebra, and at the same paper they made
the following conjecture: a Lie p-algebra of cohomological dimension one is a free Lie p-algebra
([MUZ, Conjecture 2]). As stated, the conjecture is somewhat misleading, for a free Lie p-algebra
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is not of cohomological dimension one: its cohomological dimension is equal to infinity. Indeed,
for any element x of such an algebra, the elements x, x[p], x[p]2, . . . span an infinite-dimensional
abelian subalgebra, whose cohomological dimension is equal to infinity (cf. Lemma 1 below).

This conjecture may be repaired in two ways. First, one may merely ask about description
of Lie p-algebras of cohomological dimension one. A (trivial) answer to this question is given in
§1: such algebras are one-dimensional. Another possibility is to replace cohomological dimension
with restricted cohomological dimension. The conjecture in this form is discussed in §2. §1 also
contains an auxiliary result related to the old Jacobson conjecture about periodic Lie p-algebras.

1. Lie p-algebras of cohomological dimension one, and almost-periodic

algebras

The following is elementary but useful.

Lemma 1.

(i) Cohomological dimension of an abelian Lie algebra is equal to its dimension.
(ii) Cohomological dimension of the two-dimensional nonabelian Lie algebra is equal to 2.

Proof. It is clear that cohomological dimension of a Lie algebra does not exceed its dimension.
(i) For an abelian Lie algebra, we have Hn(L,K) = (

∧n L)⋆ for any n (⋆ denotes the dual
space).

(ii) Let L be a two-dimensional nonabelian Lie algebra with a basis {x, y}, [x, y] = x. For an
one-dimensional moduleKv with an L-action x•v = 0, y•v = −v, we have dimH2(L,Kv) = 1. �

Corollary. A Lie algebra of cohomological dimension one does not contain a two-dimensional
subalgebra.

Lemma 2. Let x, y be two elements of a Lie algebra without two-dimensional subalgebras, such
that (ad x)ny = 0 for some n. Then x, y are linearly dependent.

Proof. Applying repeatedly the condition of absence of two dimensional subalgebras, we can lower
the degree n. Indeed, (ad x)ny = [(adx)n−1(y), x] = 0 implies [(ad x)n−2(y), x] = (ad x)n−1(y) =
λx for some λ ∈ K, what, in turn, implies λ = 0. Repeating this process, we get eventually
[y, x] = 0, and hence x, y are linearly dependent. �

Lemma 3. A Lie p-algebra of dimension > 1 over an algebraically closed field contains a two-
dimensional subalgebra.

This lemma may be considered as a generalization of an elementary fact that a finite-dimensional
Lie algebra of dimension > 1 over an algebraically closed field contains a two-dimensional sub-
algebra. We do not assume finite-dimensionality, but the presence of p-structure is a condition
strong enough to infer the same conclusion.

Proof. Let L be a Lie p-algebra without two-dimensional subalgebras. For any x ∈ L, we have
[x, x[p]] = 0, and hence

(2) x[p] = λ(x)x

for some λ(x) ∈ K.
If λ(x) is a constant, then L is abelian by [J, Chapter V, Exercise 15], and hence is one-

dimensional. The general case, however, requires a bit of extra work. We pause the proof
of Lemma 3 for a moment to reflect on the condition (2). This condition reminds of various
conditions on the p-map studied by Jacobson and others. The major open problem in this area
is the conjecture of Jacobson that a periodic Lie p-algebra is abelian (cf. [J, Chapter V, Exercise
16]). Recall that a Lie algebra L is called periodic if for any x ∈ L there is integer n(x) > 0

such that x[p]n(x)
= x. The strongest result toward this conjecture belongs to Premet: a periodic

finite-dimensional Lie algebra is abelian ([P, Corollary 1]).
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Generalizing the condition of periodicity, let us call a Lie p-algebra L almost periodic, if for any
x ∈ L, there is an integer n(x) > 0 and an element λ(x) ∈ K such that

(3) x[p]n(x)

= λ(x)x.

The elements for which λ(x) = 0, i.e., x[p]n(x)
= 0, will be called p-nilpotent.

Lemma 4. Let L be an almost periodic Lie p-algebra of dimension > 1 over an algebraically
closed field, with all n(x)’s bounded. Then L contains a nonzero p-nilpotent element.

Note some other related results connecting properties of Lie (p-)algebras and its elements:
Chwe proved in [Ch2] that a Lie p-algebra over an algebraically closed field with a nondegenerate
p-map is abelian. Farnsteiner investigated in [F1] Lie p-algebras in which a certain power [p]n

of the p-map is pn-semilinear. The condition (3) is somewhat reminiscent of semilinearity (in
some sense stronger, in some sense weaker). Finally, it is well-known that any finite-dimensional
Lie algebra over an algebraically closed field contains a nilpotent element. (For Lie p-algebras,
this follows from the Jordan–Chevalley decomposition, cf., e.g., [P, Proof of Theorem 3], and
for a short elementary proof valid for arbitrary Lie algebras, cf. [BI]). Lemma 4 establishes a
similar result for not necessary finite-dimensional Lie algebras, but subject to a strong condition
of bounded p-periodicity.

Proof of Lemma 4. Since n(x) are bounded, we may assume that

(4) x[p]n = λ(x)x

for some fixed n (for example, by letting n to be the product of all distinct n(x)’s, and redenoting
λ(x)’s appropriately).

Pick any two linearly independent elements x, y ∈ L, and set ϕxy(t) = λ(x+ ty), for t ∈ K. Us-
ing the well-known Jacobson binomial formula for the p-map (strictly speaking, its generalization
for the nth power of the p-map – cf., e.g., [F1, §1]), we have

(5) ϕxy(t)(x+ty) = (x+ty)[p]
n

= x[p]n+tp
n

y[p]
n

+

pn−1
∑

i=1

tisi(x, y) = λ(x)x+tp
n

λ(y)y+

pn−1
∑

i=1

tisi(x, y),

where si(x, y) are certain Lie monomials in x, y. Completing x, y to a basis of L, writing si(x, y)’s
as linear combinations of basis elements, and collecting all coefficients of x in (5), we get that
ϕxy(t) is a polynomial in t with the free term λ(x).

Suppose that there is a pair x, y such that ϕxy(t) is not constant. Since the ground field K is
algebraically closed, ϕxy(t) has a root ξ. This means that the nonzero element x+ ξy is nilpotent.

Suppose now that for any pair x, y ∈ L, ϕxy(t) is constant, i.e., ϕxy(t) = λ(x). This means
that λ(x + ty) = λ(x) for any linearly independent x, y ∈ L, and any t ∈ K, and, consequently,
λ(x) = λ is constant. If λ 6= 0, then substituting in (4) αx instead of x, we get that αpn−1 = α
for any α ∈ K, i.e., K is a finite field, a contradiction. Hence λ = 0, and every element of L is
nilpotent. �

Continuation of the proof of Lemma 3. According to Lemma 4 (with n(x) = 1 for all x), L is
either one-dimensional, or contains a nonzero nilpotent element. In the latter case by Lemma 2,
L is one-dimensional too, a contradiction. �

Theorem. A Lie p-algebra of cohomological dimension one is one-dimensional.

Proof. As the property of being a p-algebra, and dimension (and, in particular, vanishing) of coho-
mology do not change under field extensions, we may assume that the ground field is algebraically
closed. Then the claim follows from Corollary to Lemma 1, and Lemma 3. �
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2. Lie p-algebras of restricted cohomological dimension one

When speaking about cohomological dimension, we consider the category of all Lie algebra
modules, including infinite-dimensional ones. If we restrict ourselves with, say, finite-dimensional
Lie algebras and the category of finite-dimensional modules, the whole subject, both in results and
methods employed, becomes quite different. In fact, we cannot longer speak about cohomological
dimension, as vanishing of all cohomology in a given degree does not imply vanishing in higher
degrees. A sample of results in this domain: in characteristic zero, an “almost” converse of the
classical Whitehead Lemmas holds ([Z1], [Z2]), and in positive characteristic, for any degree less
than the dimension of the algebra, a module with non-vanishing cohomology exists ([D] and [FS]).

Still, instead of the category of all modules we can consider a smaller subcategory of modules
with a good-behaving cohomology theory: for example, restricted modules with restricted coho-
mology. The definition of a restricted cohomological dimension of a Lie p-algebra L over a field
of positive characteristic (notation: cd∗(L)) repeats the definition of the ordinary cohomological
dimension, with projective resolutions (1) are considered in the category of restricted modules
over the restricted universal enveloping algebra u(L).

As in the unrestricted case, Shapiro’s lemma for restricted cohomology implies that the re-
stricted cohomological dimension does not increase when passing to subalgebras. In particular,
the class of Lie p-algebras of restricted cohomological dimension one is closed with respect to
subalgebras. A free Lie p-algebra has restricted cohomological dimension one. In this context, we
reformulate the Conjecture 2 from [MUZ]:

Conjecture. A Lie p-algebra of restricted cohomological dimension one is a free Lie p-algebra.

Let us establish some facts about Lie p-algebras of restricted cohomological dimension one,
which provide some evidence in support of this conjecture.

The following fact was established in [Ch1, Theorem 5.1] using a not entirely trivial result
from homological algebra due to Kaplansky. We give an alternative, more elementary proof – a
mere reformulation of known (and easy) results about (co)homology of commutative associative
algebras.

Lemma 5. A finite-dimensional Lie p-algebra has infinite restricted cohomological dimension.

Proof. As for a Lie p-algebra L, and an u(L)-bimodule M , we have

(6) Hn
∗
(L,Mad) ≃ HHn(u(L),M),

where H∗ and HH stand for the restricted cohomology of a Lie p-algebra, and Hochschild coho-
mology of an associative algebra, respectively, and Mad is a restricted L-module structure on M
defined via x •m = xm −mx for x ∈ L, m ∈ M , it is enough, for each finite-dimensional L, to
exhibit an u(L)-bimodule in which Hochschild cohomology does not vanish for an arbitrarily high
degree.

Also, it is enough to prove the claim for an one-generated (abelian) Lie p-algebra, i.e., for a

Lie algebra L with a basis of the form {x, x[p], x[p]2, . . . , x[p]n−1
}, where an element x satisfies the

relation of the form

(7) λ0x+ λ1x
[p] + · · ·+ λnx

[p]n = 0

for λi ∈ K, λn 6= 0. In this case u(L) ≃ K[x]/(f), where the polynomial f is obtained from
the left-hand side of (7) by replacing [p]-powers in a Lie p-algebra by the ordinary p-powers in a
polynomial algebra: f(t) = λ0 + λ1t

p + · · ·+ λnt
pn.

The Hochschild cohomology of associative algebras of the form K[x]/(f) was well studied in
the literature. For example, in [H, Proposition 2.2] a periodic free resolution of such algebras
is constructed, and it is proved that the Hochschild cohomology HHn(K[x]/(f), K[x]/(f)), for
any f , does not vanish for an arbitrarily high n. As K[x]/(f) is commutative, K[x]/(f)ad, as an
L-module, is the direct sum of pn copies of the trivial L-module K, and due to isomorphism (6),
Hn

∗
(L,K) is nonzero for an arbitrarily high n. �
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Proposition 1. A p-subalgebra of a Lie p-algebra of finite restricted cohomological dimension is
infinite-dimensional.

Proof. Follows from Lemma 5. �

In particular, in a Lie p-algebra L of finite restricted cohomological dimension every nonzero
element x is not p-algebraic, i.e., does not satisfy any relation of the form (7) (or, in other words,
the p-envelope of x inside L is infinite-dimensional). This is a Lie-p-algebraic analog of the well-
known fact that groups of finite cohomological dimension are torsion-free (cf., e.g., [Co, p. 6,
Corollary 2]).

Similarly with the unrestricted case, we have:

Corollary. The restricted cohomological dimension of any Lie p-algebra is ≥ 1.

Proof. Take an arbitrary nonzero element x in a Lie p-algebra L. If x is p-algebraic, then by
Proposition 1, L has infinite restricted cohomological dimension. If x is not p-algebraic, then it
generates a free Lie p-subalgebra of rank 1. The restricted cohomological dimension of the latter
algebra is equal to 1, and hence the restricted cohomological dimension of L is ≥ 1. �

Proposition 2. An abelian p-subalgebra of a Lie p-algebra of restricted cohomological dimension
one is isomorphic to the free Lie p-algebra of rank one.

Proof. It is enough to prove that any two commuting elements, x and y, in a Lie p-algebra
L of restricted cohomological dimension one, can be represented as p-polynomials of a third
element. Suppose the contrary. By Proposition 1, each of x, y generate the free Lie p-algebra
of rank one, and hence the restricted universal enveloping algebra of the p-subalgebra S of L
generated by x, y, is isomorphic to the polynomial algebra in two variables K[x, y]. The latter
algebra has non-vanishing 2nd Hochschild cohomology (for example, HH2(K[x, y], K[x, y]) ≃
∧2(Der(K[x, y]))⊗K[x,y] K by the Hochschild–Kostant–Rosenberg theorem), and reasoning as in

the end of the proof of Lemma 5, we get that H2
∗
(S,K) does not vanish, whence cd∗(L) ≥ 2, a

contradiction. �

The next lemma shows that the (ordinary) cohomology of Lie p-algebras of restricted cohomo-
logical dimension one behaves in a rather peculiar way.

Lemma 6. Let L be a Lie p-algebra L of restricted cohomological dimension one, and M a
restricted L-module M . Then

(8) Hn(L,M) ≃
((

∧n

L
)⋆

⊗ML
)

⊕
((

∧n−1
L
)⋆

⊗H1
∗
(L,M)

)

for any n ≥ 1.

Proof. This follows from a particular form of the Grothendieck spectral sequence relating re-
stricted and ordinary cohomology. Namely, for a Lie p-algebra and a restricted L-module M ,
there is a spectral sequence with the E2 term

Est
2 = Ct(L,Hs

∗
(L,M)) ≃

(

∧n

L
)⋆

⊗Hs
∗
(L,M)

abutting to Hs+t(L,M) (cf. [FP, Proposition 5.3]; note that the standing assumption in [FP] of
finite-dimensionality of algebras and modules is not relevant here; cf. also [F2, Theorem 4.1] and
[M, Corollary 1.3]). Here Cn(V,W ) ≃ (

∧n V )⋆⊗W denotes, as usual, the space of skew-symmetric
n-linear maps from one vector space to another.

If Hs
∗
(L,M) = 0 for s ≥ 2, the only nonvanishing E2 terms are E0t

2 and E1t
2 . Hence the spectral

sequence stabilizes at E2, H
n(L,M) ≃ E0n

2 ⊕E1,n−1
2 for any n ≥ 1, and (8) follows. �

Lemma 6 provides a yet another proof of the fact that a Lie p-algebra L of restricted cohomo-
logical dimension one is infinite-dimensional (a particular case of Lemma 5), without appealing
to any computation of Hochschild cohomology. Indeed, suppose the contrary, and take in (8)
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n = dimL + 1. Then the left-hand side and the first direct summand at the right-hand side of
the isomorphism vanish, and the second direct summand is isomorphic to H1

∗
(L,M). Therefore,

H1
∗
(L,M) = 0 for any restricted L-module M , i.e., L is of restricted cohomological dimension

zero, a contradiction.
Moreover, a stronger statement holds:

Proposition 3. A Lie p-algebra of restricted cohomological dimension one has infinite (ordinary)
cohomological dimension.

Proof. Let L be a Lie algebra of restricted cohomological dimension one. Taking in (8) M = K,
we get

Hn(L,K) ≃
(

∧n

L
)⋆

⊕
((

∧n−1
L
)⋆

⊗H1
∗
(L,K)

)

.

Either by Lemma 5, or by the reasoning above, L is infinite-dimensional, and thus
∧n L, and

hence Hn(L,K), does not vanish for any n ≥ 1. �
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