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Abstract   

Intelligent management of machines, particularly in a residence area, has been of interest for 
many years. However, such system design has always been limited to simple control of 
machines from a local area or remotely from the Internet. In this report, for the first time, an 
intelligent system is proposed, where not only provides intelligent control ability of machines 
to user, but also utilizes big data and optimization techniques to provide promotional offers 
to the user to optimize energy consumption of machines. Since a high traffic communication 
is involved among the machines and the optimization-big data core of system, the 
communication core of the proposed system is designed based on cloud, where many 
challenging issues such as spectrum assignment and resource management are involved. To 
deal with that, the communication network in the home area network (HAN) is designed 
based on the cognitive radio system, where a new spectrum assignment method based on the 
ant colony optimization (ACO) algorithm is proposed to perform spectrum assignment to the 
machines in the HAN. Performance evaluation of the proposed spectrum assignment method 
shows its performance in fair spectrum assignment among machines.  

 

Key Words— Machine to Machine Communication, Optimization, Data Mining, Ant 
colony System, Channel Allocation, Cognitive Radio. 

 

I. Introduction 

The recent advancements in information and communication technology (ICT) and 
dramatically increment in using ICT based services such as social networks have caused 
rapid generation, transmission, processing, and storage of data around the world. Meanwhile, 
cities are growing faster than before and it is estimated that by 2050 two-thirds of people 
will be city-dwellers [16]. Cities require rapid technological development, driven by cloud-
based services and more powerful mobile devices, big data and analytics. In this emerging 
“Networked Society”, continuous development of ICT infrastructures, such as data centres 
are required to provide fast and reliable services for the users [17]. Intelligent networks will 
be critical to the basic functioning of cities and to their success in meeting current and 
emerging challenges. More technology development requires more energy consumption and 
as a result, more greenhouse gases (GhG) emissions [18]. The GhG emission and particularly 
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carbon emissions are major contributors to the global warming issue. The technology has 
become a part of everyone’s daily life and it is not possible to stop or limit its development, 
particularly the data centres and ICT technology. This is while there is no far and safe place 
in the earth to release the wastes without negative impacts on environment. 

In “Networked Society”, a part of the main attributes is maintaining sustainable economic, 
social and environmental developments. In such society, cities must provide high quality 
services in different areas such as governmental, healthcare, educational and other public 
services. This quality improvement must be conducted with keeping the environment safe 
from emissions, climate change, and industrial footprints [17]. Unfortunately, ICT is one of 
the main reasons for climate change [18]. However, optimal green design of ICT 
infrastructures in “Networked Society” can meet challenges encountered to cities. It can 
improve efficiency in the delivery of services and productivity, as well as encourage new 
collaboration and innovation that fuel socio-economic development [17]. 

The ICT industry is one of the major contributors in attempts against climate change. It is 
estimated that the ICT can reduce emission of 7.8 Gt CO2e in 2020, which is approximately 
$946.5 billion energy efficiency [20]. The ICT can contribute in tackling the carbon 
reduction based on the foundations of “Sustainable Networked Society”. The ICT can be 
utilized in “Sustainable Networked Society” in a smart way to form the future smart cities. 
The smart ICT can provide smart approaches in a variety of services and applications such 
as climate, energy, transportation, public sector, health, education, sustainable lifestyle, 
safety, and security [19]. The renewable portfolio standards (RPS) mechanism generally 
places an obligation on electricity supply companies to provide a minimum percentage of 
their electricity from approved renewable energy sources [22]. According to the U.S. 
Environmental Protection Agency [23], as of August 2008, 32 states plus the District of 
Columbia had established RPS targets. The RPS targets currently range from a low of 2% to 
a high of 25% of electricity generation, with California leading the pact that requires 20% of 
the energy supply come from renewable resources by 2010 and 33% by 2020. The RPS non-
compliance penalties imposed by states range from $10 to $55 per megawatt-hour [23]. In 
order to develop green energy in distributed manners, mostly for smart city applications, new 
topologies and policies must be developed. The modernized electricity generation, 
transmission, and distribution based on the ICT, the smart grids [21], can be considered as 
one of the main parts of smart cities for the climate and energy schemes. The smart grids in 
“Sustainable Networked Society” can provide smart energy solutions that are more efficient 
and can improve currently very inefficient delivery in a fossil fuel-based economy. The 
energy and water resources can be gathered, tracked, controlled, and reconfigured optimally 
based on information management systems. By developing smart ICT-based topologies for 
integrated transportation and communication in “Sustainable Networked Society”, cities can 
connect to each other as well as suburbs. One step forward, the paper usage and travels can 
be reduced dramatically by integration of E-government services. The travels in smart cities 
can even be more reduced by developing digital health and remote monitoring solutions, 
such as telemedicine schemes [24]. To develop health in “Sustainable Networked Society”, 
the daily food initiatives can be initiated based on low-carbon/water footprint products to not 
only provide health food, but also avoid waste and contaminating environment [22]. 
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To develop “Sustainable Networked Society”, it is necessary to create frameworks that 
makes the link between ICT policies and policies in other areas such as education, health, 
and transportation. The smart ICT infrastructures also need to be designed to be integrated 
into the existing systems conveniently [19]. To do so, many challenges exist such as: 

• Resource management in integration of smart ICT infrastructure into different 
collaborators such as the health, transportation, and enterprises. 

• Optimal planning of smart ICT infrastructures, meeting future requirements. 
• Introduction of new business models for ICT providers. 
•  Providing security for smart ICT infrastructure deployment. 
•  Optimal design of eco-systems and services in large-scale. 
•  Categorizing end-users and devices in the smart city for specific applications. 
•  Development of smart grids on the “Sustainable Networked Society” platform. 

 

In order to address solutions for challenges facing the development of “Sustainable 
Networked Society”, many well-developed approaches can be utilized or new schemes can 
be developed such as in machine learning, optimization, and data mining. The nature of the 
“Sustainable Networked Society” is for large-scale developments with many integrated 
parameters and objective. In order to achieve reasonable optimized designs, with respect to 
all possible constraints, specific methodologies are required. Evolutionary algorithms are 
promising tool for solving multi-dimensional, large-scale, non-linear, non-convex, 
combinatorial optimization problems [25], [26], [28]. Therefore, such optimization tools will 
be considered and developed in this research to design the “Sustainable Networked Society”. 

The rest of the paper is organized as follows. In section II, a review on related works in the 
field are presented. In section III, the proposed architecture for the machine to machine 
communication on cloud is presented. As a case study, the channel assignment problem in 
machine to machine communication systems in home area networks (HAN) based on the ant 
colony system (ACS) is studied. To do so, a brief survey on ACS is presented in Section IV 
and the cognitive system allocation model for HAN is presented. In section V, the proposed 
ACS spectrum allocation method, as a part of the proposed architecture, is discussed in 
details and its performance is evaluated for varying number of users and channel availability 
scenarios. Finally, some interesting forthcoming research challenges are introduced and the 
paper is concluded in section VI. 

 

II. Related Works 

Many topologies have been proposed for machine to machine communications; however, 
none of them have considered a complete structure for energy efficiency and control in the 
machines through cloud communications. As the state-of-the-art research works show, one 
of the most important parts in such topologies is the communications system between 
machines. In communications, sensing, transmission, and control are introduced as the main 
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functionalities [1]. Since in communication systems, such factors are deployed in a large 
geographical field with a large number of nodes, the communications infrastructure  has  to  
integrate  enabling  networking  technologies  to  cover  the  entire region and fulfill 
expectation of secure and reliable communications [3].  However, due to the unique 
challenges imposed on the communication systems such as limited available spectrum, 
inefficiency in spectrum usage, enormous amount of data, highly varying traffic, quality of 
service (QoS) issues, and etc., the existing communications network is infeasible and cannot 
be applied trivially. Such challenges necessitate a new communication   paradigm,   referred   
to  as  cognitive   radio  networks   and  dynamic spectrum access (DSA) to exploit the 
existing wireless spectrum opportunistically [5,6]. The DSA stands  for the opposite  of the 
current  static spectrum  management  policy which  allows  the  cognitive  radio  to  operate  
in  the  best  available  channel  [7].  The cognitive radio is a context-aware system which is 
capable of reconfiguration based on the surrounding environments and their own properties 
[8].  Generally, this technology is divided into four stages which are spectrum sensing, 
spectrum management, spectrum sharing, and spectrum mobility [5,6]. In [1], a 
revolutionary communication architecture based on cognitive radio is introduced for 
efficient, sustainable, secure, and stable communications.   In  this  architecture,   the  entire  
smart  grid  communication architecture  is divided into three cognitive radio based 
hierarchical  layers which are home area networks (HANs), neighborhood area networks 
(NANs), and wide area networks (WAN) [1,3]. Generally, a HAN is comprised of intelligent 
devices such as a cognitive home gateway (HGW), smart meters, and sensors. The HGW is 
the cognitive data access point responsible for collecting the HAN data such as energy 
consumption information and transmitting it toward the NAN. The NAN cognitive gateway 
(NGW) then collects several HANs data and delivers them via WANs to a control center. In 
this architecture, the NGW is considered as the cognitive radio access point to provide single-
hop connection with HGWs in a hybrid access manner and distributes spectrum bands to 
them. 

In cognitive radio system principles, two kind of users, which are the primary users (PUs) 
and secondary users (SUs), exist. The PU refers to licensed user of any legacy licensed 
spectrum system such as TV or telecommunication operators. This user has exclusive 
opportunity to access the assigned spectrum. The SU refers to the unlicensed user, which can 
only opportunistically access the spectrum holes that are not used by the PUs.  In  a machine 
to machine communication environment,  due  to  the  large  number  of  users  and  lack  of  
spectrum availability, licensed spectrum bands are not enough to meet the large amount of 
data transfer.  Therefore, unlicensed access is also needed for the HGWs to improve the 
capacity and throughput of the NAN. In unlicensed access, the HGWs and NGWs could be 
considered as SUs, and the unoccupied spectrum bands are assigned to them as 
communication channels in an opportunistic manner [1]. In [1,3], a hybrid dynamic spectrum 
access (HDSA) methodology in NANs is proposed to significantly improve the  flexibility  
of  communications   infrastructure   and  spectrum  efficiency.  In  this structure,  the  NGW  
is  responsible  for  allocating  the  spectrum  bands  to  the  HGWs within its area. The 
HGWs being allocated with unlicensed bands act as SUs. An in- service SU has to hand off 
to a spectrum hole once a PU appears and occupies its spectrum band. If there is no spectrum 
hole available to which to hand off to, the SU will be dropped. Due to the dynamic nature of 
spectrum availability, which causes a serious  difficulty  in  stable  and  assured  QoS  
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provisioning,  a  hybrid  guard  channel (HGC) strategy is proposed in [1] to protect the 
current services and sustain their QoS at a satisfactory level. In the traditional guard channel 
(GC) scheme, a number of channels are reserved for handoff traffic and new services are not 
allowed to use the reserved channels. The HGC scheme has added the aptitude of reserving 
a number of channels for the usage of spectrum handoff for both the licensed and unlicensed 
bands. Based on this  strategy,  four  types  of  channels  in  HDSA  is  hosted  which  are  
licensed  guard channels (GCs), unlicensed GCs, licensed common channels, and unlicensed 
common channels. The challenge that arises here is fair spectrum resource management 
among HGWs in the NAN level and NGWs in the WAN level. However, isolated spectrum 
assignment for WAN and NAN may reduce the extensive system performance, since most 
of the NANs located in a WAN have access to similar spectrum resources. This results in a 
competition between NANs on available resources. The importance of this issue arises as all 
the NANs in a WAN cover diverse number of HANs and therefore their traffic flow and 
demand for spectrum bands are different. Therefore, the concept of joint WAN/NAN 
spectrum management is introduced in [1] at the WAN level. In this strategy, there is a 
spectrum broker server to manage the spectrum resources of the entire communications 
infrastructure of the smart grid. From the perspective of the utility companies, the 
communications infrastructure should operate economically, efficiently, and adaptively. The 
spectrum management of the WANs and NANs should be jointly optimized. Due to the 
enormous geographical scale of the problem and large number of users in the topology, the 
above problem can be considered as a NP-hard optimization problem, which requires 
considering all possible resource management states. Similar situation can occurs for 
wireless sensor networks (WSNs) [29]. 

Metaheuristic optimization algorithms are of great interest for solving large scale problems 
and particularly the NP-hard ones in academia and industry [9-11]. The crucial benefits of 
such nondeterministic structures are their less complexity, low computational load, and time 
usage for solving complex problems, which may have no derivatives, in a short period [9-
11]. In [11] a spectrum allocation model is initially presented, and then spectrum allocation 
methods based on genetic algorithm (GA), quantum genetic algorithm (QGA), and particle 
swarm optimization (PSO), are proposed. The D-ring method is employed in [12] for channel 
assignment in wireless mobile networks. The ant colony system (ACS) is used for spectrum 
allocation in cognitive networks in [6]. In [13], the spectrum assignment problem is mapped 
to a graph coloring problem (GCP) and the ACS strategy is employed for solving it in [14] 
for mobile cognitive networks. By considering the cognitive radio based hierarchical 
communications architecture in [1], in this work the graph theory is employed for mapping 
the HAN topology into a graph problem. Then a top-down joint fair HAN cognitive resource 
management procedure based on the ACS strategy is proposed. 

III. Proposed Architecture 

3.1. Architecture Description 

In this section, the proposed intelligent residence topology is presented. As it is demonstrated 
in  
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Figure 1, the machines {MN,1,…,MN,P1} in residence N are connected directly to the specific 
gateway GatewayN. The user N has direct access to the GatewayN  for controlling and 
communication with other parts of the network. In order to present a design on top of the 
internet available at residence via RouterN and also provide security for the home area 
network (HAN) where the machines {MN,1,…,MN,P1} are located, the GatewayN  is the only 
pathway between the HAN and outside world. The all the routers are connected through a 
cloud network to the data center, where the data of machines are recorded. Since the collected 
data from machines have a huge size, where a portion of that is redundant data, the data 
processing approaches are employed to reduce dimensionality of data and provide clean data 
to the optimizer. The optimizer, based on the received patterns of each machine usage, the 
user behavior, and recommended policies, provides promotional plans to the user and the 
machines.   

 

Figure 1 Proposed Intelligent Residence Topology. 

In this topology, the data center and optimizer are in direct communication with each other, 
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with provides a feedback from users to the optimizer. In Figure 2, the message exchanging 
procedure between different components of the system is presented. The working hours and 
device usage of devices are mostly managed by users, for example when to turn on the 
washing machine or ironing the cloths. The energy consumption as well as usage time of 
devices are sent as raw data to the Gateway controller, which is in charge of receiving the 
machine data, collecting data from all the machines in the HAN, forwarding collected data 
toward the data center through the router, and sending controlling commands to the 
machines. The router, is considered as a regular one, which not only routes the data from/to 
Gateway, but also routes the other traffic (e.g. Internet usage). The router sends the data 
through the cloud to the data center for storage and further processing. The collected data 
from users and machines in the network is high dimensional, noisy and has a huge size. 
Therefore, big data processing techniques employed by the processing unit to clean the data 
(e.g. redundancy) and prepare the data for optimization stage. Based on the recommendation 
from specific sources such as the Hydro companies, the optimization stage tries to optimize 
energy consumption of machines and make recommendations to the users. The user has the 
authority to accept, decline, or modify the recommended plan. After approval, the commands 
are forwarded toward the target machine for operation and an acknowledgment is sent to the 
user. 

 

Figure 2 Diagram of the message exchanges between system components. 
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3.2. Challenges 

As it is demonstrated, many challenges are facing the proposed architecture which are stated 
as below: 

3.2.1. Optimizer 

Many optimization algorithms have been proposed for different applications in the literature. 
The question which arises here is what optimization algorithm is suitable for each 
application. There are many parameters that specify the optimization problem, and the art of 
optimization is in selecting the best approach which matches the criteria of the problem. The 
optimization problems are specified by number of dimensions, linearity/non-linearity, 
modality, convex/non-convex, and constraints condition, to mention some. In the proposed 
topology, we are dealing with high dimensional, large-scale, non-linear, non-convex 
optimization problems, which can be classified as NP-hard problem. From other, 
perspective, the computational complexity of the algorithm is of great importance, since the 
core system receives a huge amount of data, which need to be analyzed and optimized. 
Therefore, parallel processing method on could can be utilized to deal with the problem. 
Metaheuristic algorithms, such as evolutionary algorithms, are state of the art method to deal 
with such problems. Particularly that in population based algorithm, we are dealing with a 
set of population, where the population set can be divided to different groups of agents and 
run on separate cluster on the could for parallelization. 

3.2.2. Data Centre 

The amount of data as well as its rapid transmission from machine toward the data center are 
big challenges for data centers. The system have to be able to iterate on functionality quickly. 
It should be developed in a much more agile manner, with dynamic reallocation capability. 
The huge volume, dimensionality, and complexity of data under management is of great 
importance. Although the scale of data is important, but complexity of data is a serious 
problem. Today’s data is consisted of a mix of structured and unstructured components. Most 
database technologies are not architected to allow elastic expansion or contraction of 
capacity or compute power, which makes it hard to achieve many of the benefits (and cost 
savings) of cloud technologies [27]. 

3.2.4. Resource Allocation in Cloud  

In the new machine to machine communication paradigm, there are many devices that need 
to be supported through communication infrastructure. The limited available spectrum and 
the inefficiency in spectrum usage necessitate a new communication paradigm, referred to 
cognitive radio networks as well as next generation (XG) networks and dynamic spectrum 
access (DSA), to exploit the existing wireless spectrum opportunistically [1]. Cognitive radio 
techniques provide capability to use or share spectrums in an opportunistic manner. The DSA 
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stands for the opposite of the current static spectrum management policy [2], [4]. The DSA 
techniques allow the cognitive radio to operate in the best available channel. Generally, the 
cognitive radio technology is consisted of four stages which are spectrum sensing, spectrum 
management, spectrum sharing, and spectrum mobility. Open Spectrum allows unlicensed 
(secondary) users to share spectrum with legacy (primary) spectrum users. Based on 
agreements and constraints imposed by primary users, secondary users opportunistically 
utilize unused licensed spectrum on a non-interfering or leasing basis at any location over 
the entire spectrum. While maximizing spectrum utilization is the primary goal of open 
spectrum systems, a good allocation scheme also needs to provide fairness across devices.   

IV. Channel Allocation In The Proposed Machine To Machine 

Architecture: A Case Study 

In this section, before detailed discussion of the proposed algorithm, a brief survey on ACS 
is presented. Then, the cognitive channel allocation model for HAN is presented. The 
proposed algorithm to solve the model is presented at the end. 

4.1. Ant Colony System  
The ant colony optimization (ACO) is a class of algorithm whose first member, called ant 

system (AS), was initially proposed by Colorni, Dorigo and Maniezzo [15]. Although real 
ants are blind, they are capable of finding shortest path from their nest to a food source by 
exploiting information of a liquid substance, called pheromone, which they release on the 
transit route. The more developed AS strategy attempts to simulate the behavior of real ants 
with the addition of several artificial characteristics: visibility, memory and discrete time to 
resolve many complex problems successfully such as the traveling salesman problem (TSP) 
[15] and transportation networks [16]. Even though many changes have been made to the 
ACO algorithms during the past years, their fundamental ant behavioral mechanism that is a 
positive feedback process demonstrated by a colony of ants, is still the same. Ants algorithm 
finds plenty of applications in different areas of wireless communications such as routing 
and resource management [17,18], cell planning and user detection [19, 20] and spectrum 
assignment [13, 14]. Different steps of a simple ACS algorithm are as follow:  

Problem Graph Depiction: Artificial ants move between discrete states in discrete 
environments. Since the problems solved by ACS algorithm are often discrete, they can be 

represented by a graph with N  nodes and R  routes. 

Ants Distribution Initializing: A number of ants are placed on the origin nodes. The number 
of ants is often determined by trial and error and number of nodes in the region. 

Ants Probability Distribution Rule: Ants probabilistic transition between nodes can also be 
specified as node transition rule. The transition probability of ant k  from node i  to node 

j  is given by 
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where Q  is a constant parameter and
kf is the cost value of the found solution by ant k . 

Stopping Procedure: This procedure is completed after arriving at a predefined number of 
cycles, or the maximum number of cycles between two improvements of the global best 
solutions. 

4.2. Cognitive HAN Resource Allocation Model  

In a typical HAN, the HGW manages the spectrum resources and allocates channel to 
smart machines in a centralized mode as in Figure 3. In such scenario, the smart devices 
interfere with each other on available resources. This interference can be modeled as a graph 
problem as follow.    

4.2.1. HAN as a Graph Problem 

The main idea of efficient utilization in an open spectrum is to find a suitable assignment 
of channels to the SUs while minimizing the interference among them. In traditional 
spectrum assignment procedure [14,15], when two simultaneous transmissions overlap in 
spectrum and physical location, both can fail. Hence, a user seizing spectrum without 
coordinating with others can cause harmful interference with its neighbors and degrade 
overall spectrum usage. To have a closer look at a sample scenario, some PUs and SUs (i.e. 
smart devices) are located randomly in a HAN as illustrated in Figure 4. For the sake of 
simplicity, the users are considered static, while in real scenarios mobile users such as hybrid 
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cars can also be considered as smart grid users which will be considered in further works. In 
this scenario, two PUs exist where each one has occupied one licensed channel from the 
spectrum pool and cannot use the channel taken by the other one. The SUs are assumed to 
use orthogonal frequency division multiple access (OFDMA) technology. The smart grid 
SUs are waiting for channel within the coverage area of PUs. Each PU x inhabits a channel

m with a radius of protection area 
,x mdp . The radius of coverage area for SU n  on channel m

is defined by
,n mds . This radius is adjustable by tuning the transmit power on channel m and 

is defined as  

 
Figure 3 Home area network (HAN) architecture. 

 

, max , ,min( , min( ))n m x n x mds d Dist dp= −                                          (4) 

 
where

,x nDist is the distance between PU x  and SU n . As a general rule, the interference range 

is bounded by the minimum and maximum transmit power that is [ min max,d d ], [15]. 

Increasing coverage area of a SU results in interference probability with a neighboring smart 
device user. For simplicity, SUs are assumed with a fixed power control scheme to adjust 
their transmit power to the maximum permissible level in order to avoid interfering with 
PUs. In addition, the transmission and interference ranges are assumed identical. Any 
radiation from each PU or SU into the coverage area of other user on channel m  would 

cause interference, [15]. Typically, a HAN is consisted of totally Mchannels. In the binary 
channel availability matrix of users N ML × , if

, 1n ml = channel m is available for SU n . The 

interferences between different SUs on channels are determined by the binary matrix N N MC × ×

where if
, , 1n k mc =  SUs n  and k  interfere on channel m . By considering the interferences, the 

topology in Figure 4 can be modeled as a graph problem where each SU denotes a node with 
a pool of available channels and each interference between them on a specific channel as an 
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edge. In a GCP [15], each vertex is colored using a number of colors from its available color 
list under the constraint that two vertices linked by an edge cannot share the same color. In 
GCP, the objective is to assign a color to each SU so that a given utility function maximizes 
[11]. Therefore, the spectrum allocation problem is mapped into a graph problem defined 

with ( , , )G V L C= , where V  is a set of nodes denoting the SUs, L is list of available channels, 

and C  is interference matrix between SUs. 
 

 

Figure 4 Interferences between smart device gate ways (SDGWs) in a home area network (HAN). 

 
 

4.2.2. Network Spectrum Utilization Measure 
 

In a spectrum allocation problem, the final channel assignment is represented by a binary 

matrix N M
A

× . The binary ,
1

n m
a = means channel m is allocated to SU n . In some situations 

where no channel is assigned to a user, it is called a starved user. A reward vector is defined 

for each SU when obtaining a channel m  as 
, , 1

1

{ }
M

n n m n m N

m

R r a b
×

=

= = ∑  where 
,{ }n m N MB b ×=  can 

be considered as maximum bandwidth or throughput that can be acquired (assuming no 
interference from neighbors) by user n  using channel m . Therefore, the reward can be the 
capacity of using a channel (assuming the signal to noise ratio (SNR) is a function of

,n mds ) 

defined as 
 

, , min , maxlog(1 ( )),n m n m n mb f ds d ds d= + ≤ ≤                                    (5) 

 
or can be considered as coverage of SU n using channel m  as 
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By defending the rewards, the spectrum allocation problem can be presented as the 

optimization problem  
 

,

{ , , }

* arg max ( )

L C

i
A

i MSR MMR MPF

A U R
∈Λ

∈

=                                                 (7) 

 

where ,L C
Λ is set of conflict free channel assignment for a given Land C . The ( )iU R  is defined 

as the network utilization where three measures called max-sum-reward (MSR), max-min-
reward (MMR), and max-proportional-fair (MPF) are considered [9, 15]. The MSR function 
maximizes the total spectrum utilization in the system regardless of fairness as 
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The MMR function maximizes the spectrum utilization regarding the user with the least 

allotted spectrum as      
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This function gives the user with the lowest reward, the largest possible share while not 

wasting any network resources. The MPF function addresses fairness for single-hop flows 
as 
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Proofs and more details are available in [15]. 

4.3. Cognitive HAN Fair Resource Management Algorithm 

By modeling the resource management problem as a graph problem at the NAN level, the 
total structure of a joint WAN/NAN can be modeled as in Fig. 4. In order to assign the 
channels fairly and efficiently, the algorithm in Fig. 5 is proposed. In this ACS procedure, 
the spectrum breaker is considered as the artificial ants nest and the nodes in NANs are 
considered as the food sources. Therefore, the ants are run from the spectrum breaker, each 
carrying the candidate channel and move toward the most possible HGW based on the 
motivation defined. The detailed steps of the algorithm are described as follows. 

Initialization: As the first step, initial value of the parameters such as pheromone matrix



 

14 

 

1
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T × × = , selection parameters G  and G′ , and the evaporation coefficient ρ are set. 

Graph Mapping: At the beginning of each procedure, topology information is gathered 
and the interferences among the SUs is mapped into a graph problem, as described in the 
first part of section II.   

NGWs Probabilities: As it is illustrated in Fig. 4, in each iteration an ant, carrying a 
channel, is released from the spectrum breaker toward a HGW. At the first stage each ant 
must select a NGW. Therefore, it calculates probability of each candidate NGW as   
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where
1 NNGW×

Γ is list of available NANs, NGWN is number of NANs, and HGWN is number of 

HGWs in NAN i . The probability of NGW jfor channel m is defined by 
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ξ

= =

= ∑ ∑                                  (12) 

 

whereξ  is the iteration number. 

Based on the operations of HGC as described in [1,3], a status parameter i
js is developed 

for each HGW j in NAN i . With respect to the HGC policy, two smart grid service (SGS) 

which are new SGS (NSGS) and handoff SGS (HSGS) are defined. If the statuses in Table I 

are satisfied for a SGS on channel m , 1i
js = and the SGS is permitted to access the network. 

Otherwise, 0i
js = and the SGS jaccess is blocked.  

NGW Selection: The random parameter g with uniform probability in 0 1g< < is compared 

with the selection parameterG  with uniform probability in 0 1G< < . The result picks up one of 
the following two selection methods  



 

15 

 

( )
( )

arg m ax

   R o u lette W heel

i
N G W

N G W
i
N G W

g G

otherw ise
S

 Ρ >
= 

Ρ


                               (13)         

where 
N GWS is the selected NGW by the ant. 

Semi-Local Pheromone Updating: After selection of a NGW, with respect to the ACS 
policy as in [6,9,14], pheromone of all HANs in the selected NAN is modified by updating 
the pheromone matrix as 
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where the updating pheromone amount is  
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HGW Selection: After selection of NGW, the HGW is selected at the NAN level. In this 
step, probability of each HGW candidate for the

NGWi S= , which were constructed at the 

NGWs Probabilities step using (12) is loaded. Then, a HGW is selected for channel m by  
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where
HGWS is the selected HGW G′ is the selection parameter with uniform probability in

0 1G′< < . It should be noted that each ant can visit each node for once. 

Local Pheromone Updating: Pheromone amount of 
HGWS for the channel m  is updated as 

, ,
NGW NGW

NGW NGW

S S

S m S m
T T τ= +∆

                                                  (17) 

for 
HGWj S= in (15). 

Global Pheromone Updating: In order to follow the ACS strategy in pheromone 
evaporation, the last traditional step of each completed iteration is global pheromone 
updating as 
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where the parameter 0 1ρ< <  is the evaporation coefficient [6,10,14].  

Final Channel Selection: Finally, a channel 
jω  is assigned to each HGW based on their 

corresponding pheromone amount as  
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1
arg ( )
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Figure 5 Smart device gate ways (SDGWs) interferences modeled a as a graph problem. 

 

 
Procedure Fuzzy-ACS Cognitive HAN Fair Resource Management Algorithm 
 Initialization 
 Graph Mapping 
  For each Iteration 
 For each Channel 
 For each Ant   
 If any SU exists  

                  Calculate SDGW Probabilities 
 SDGW Selection 
 Local Pheromone Updating  

 End If any SU exists 

        End each Ant 
 End each Channel 

      Global Pheromone Updating 
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 End each Iteration 

  Final Channel Selection     
End Procedure Fuzzy-ACS Cognitive HAN Fair Resource Management Algorithm 

Figure 6 Proposed Fuzzy-ACS Cognitive home area network (HAN) fair resource allocation algorithm in pseudocode. 

4.4. Simulation Results 

In this section, performance of the proposed method is analyzed with respect to the 
utilization  functions  MSR,  MMR,  and  MPF  in comparison  with  the  color  sensitive 
graph coloring  (CSGC) method in [15] and a random channel assignment.  Then, its 
stability and convergence is examined for different number of ants as well iterations. 

4.4.1. Parameters Setting 
To do so, a desktop computer with Intel Core2Quad T9300 2.5 GHz CPU and 4 GB 

of RAM is employed for simulations in MATLAB 2010b. In order to set the parameters 
of algorithm, different cases have been studied based on trial and error to achieve the 

best  performance.  The  parameters  are  set  to Cmax  = 10 , dmax  = 4 , dmin  = 1 ,  and dp = 2 .  In 

simulations, 5 NANs are considered where in which 20 HGWs exist. In order to avoid 
interference  with PUs, each HGW adjusts  its transmit  power and interference  range 

ds
n, m 

on   each   channel m by   giving   the   location   and   channel   selection   of   PUs. 

Configuration   of   PUs   determines   channel   availability,   reward,   and   interference 
constraints, as seen by SUs. Increasing the number of PUs or increasing the protection 
range, not only can expand the primary protection area but also force affected SUs to reduce 
their power and thus  ds . This results in reduction of the available channels as well as 
channel reward at SUs and therefore degrades spectrum utilization. In addition, the 
interference among SUs decreases and improves the possibility of spectrum reuse by 
multiple SUs [15].During simulations, 15 ants are employed and the ACS parameters 

are considered as ρ = 0.9 , G = 0.9 , and G′ = 0.9 . 

4.4.2. Performance Analyze 
In order  to analyze  performance  of the  proposed  algorithm  for different  number  of 
available  channels,  10 PUs  and  20 HGWs  in each  NAN  are considered.  As Figure 
7 illustrates,  increasing  the number of channels results in more MSR, MMR and MPF 
values. The comparison  between the Rand, CSGC, and the proposed ACS algorithm 
shows that the ACS has the best performance  among the other approaches under all 
utilizations.  In Figure 8, performance  of the proposed  algorithm  is studied for varying 
number of PUs for 10 channels and 10 HGWs. As it is illustrated, by increasing the 
dense of PUs in NANs, the MSR, MMR, and MPF utilizations decrease dramatically. 
As expected, the random channel assignment has the least performance, while the ACS 
approach has the best achievement. Increasing the number of HGWs in NAN, results in 
more interference on available channels. As Figure 9 illustrates, this increment decreases 
the overall network utilization for all utilization measures. Similar to the previous results, 
the ACS has the best outcome of utilization while the CSGC performs much better 
than the random approach. The above results clearly demonstrate that the ACS approach 
due to the artificial visibility and ants memory can perform much stronger in joint resource 
management in cognitive HAN of machine to machine networks. However, its stability and 
convergence will be studied in the following subsection. 

Stability   of   the   biologically   inspired   algorithms   is   mostly   studied   by   their 
performance  in  convergence  for  varying  the  number  of  artificial  ants  as  well  as 
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iterations. In Figure 10, the ACS approach is studied with respect to the normalized 
total cost, in each iteration. In the beginning, the algorithm has many interchanges, 
however, after 14 cycles it converges. 

 

 

(a)                                                                  (b)                                                                   (c) 

Figure 7 Spectrum assignment with varying number of channels versus three utilization functions: a) MSR; b) MMR; c) 

MPF. 

 

 

 

 

 

 

 

(a)                                                                  (b)                                                                   (c) 

Figure 8 Spectrum  assignment  with  varying  number  of  primary  users  versus  three utilization functions: a) MSR; b) 

MMR; c) MPF. 

 

 

 

 

 

 

 

(a)                                                                  (b)                                                                   (c) 
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Figure 9 Spectrum  assignment  with  varying  number  of  secondary  users  versus  three utilization functions: a) MSR; b) 

MMR; c) MPF.
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Figure 10 Performance of the proposed ACS algorithm with respect to normalized cost in each iteration number.  

 

 

 

 

Figure 11 Performance of the proposed ACS algorithm with respect to normalized total cost for each number of artificial ants. 

 

Convergence of algorithm in middle iterations is a proof for algorithm stability and proper 
adjustment [6,9,10,14]. In another study, the algorithm is analyzed for varying number of artificial 
ants. As Figure 11 demonstrates, the algorithm has converged for 15 numbers of artificial ants. It 
shows that as the number of ants increases, the system computational load also increases but 
the normalized total system cost decreases. 

The simulations verifies that the proposed ACS is a reliable and stable approach with low 
computational complexities as well as superior performance for joint resource management in 
hierarchical cognitive radio based machine to machine communication. 

 

VI.   CONCLUSION AND FURTHER CHALLENGES 

In this paper, a review on recent approaches in machine to machine communication is presented. 
The current methods are advanced in many aspects, however, such methods are not efficient for 
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large-scale machine to machine communication and control. In this report, a new structure for 
communication between machine on cloud is presented. In this topology, the user has direct control 
on the utilities, for example in a residential place, and a central optimization and data analytics core 
control the behavior of machines. The data mining and optimization approaches are utilized to 
recommend promotional offers to the user. Since in such topology, all the devices are in 
communication with a control center, many problems such as the lack of communication channels 
arise. To do deal with this problem as a case study, the hierarchical structure of cognitive radio 
based communication network in machine to machine communication systems is studied in home 
area networks (HANs) and corresponding interferences model using graph theory is presented. 
Then, an ant colony system ( A C S )  based approach is introduced for fair resource management 
in the model. Performance study of the proposed procedure has yielded significant results in 
resource management in cognitive HAN and has prepared a basic study for further developments 
in the topic. 

There are several challenges lie ahead before the cognitive radio based communications networks 
for fair and high performance resource management in the machine to machine communication 
networks can be deployed. In order to keep simplicity, the HANs are considered without 
interference with each other. Also, the users are considered static, while in real scenarios mobile 
users such as hybrid cars can also be considered as smart grid services. The  other  issue  is  QoS-
aware  policies  which  should  be  used  in  hybrid  dynamic spectrum access (HDSA) in NANs 
and employing cooperative relay techniques into the communications infrastructure for QoS 
enhancement. Biologically inspired algorithms are state of the art methods for solving NP-hard 
problems.  Performance of such methods in joint resource management in cognitive radio based 
smart grid networks should be studied. There are also several techniques such as fuzzy system to 
control performance of such algorithms which all need further study and development by the 
academia as well as industry. 
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