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6 Removable isolated asymptotic singularities of

solutions of the minimal graph equation in a

2−dimensional Cartan-Hadamard manifold

Leonardo Bonorino Jaime Ripoll

Abstract

Let M be a 2−dimensional Cartan-Hadamard manifold with sec-
tional curvature satisfying −b2 ≤ K ≤ −a2 < 0, b ≥ a > 0. Denote
by ∂∞M the asymptotic boundary of M and by M̄ := M ∪ ∂∞M
the geometric compactification of M with the cone topology. Given
a finite number of points p1, ..., pn ∈ ∂∞M, it is proved that if u ∈
C∞(M) ∩ C0

(
M̄\ {p1, ..., pn}

)
is a solution of the minimal surface

equation in M and if u|∂∞M\{p1,...,pn} extends continuously to pi,

i = 1, ..., n, then u ∈ C0
(
M̄

)
. We also prove the same result in arbi-

trary dimensions when the ambient space is the hyperbolic space.

1 Introduction

Let M be Cartan-Hadamard manifold (complete, connected, simply
connected Riemannian manifold with non-positive sectional curvature). It
is well-known that M can be compactified with the so called cone topology
by adding a sphere at infinity, also called the asymptotic boundary of M ;
we refer to [3] for details. In the sequel, we will denote by ∂∞M the sphere
at infinity and by M̄ =M ∪ ∂∞M the compactification of M .

We recall that the asymptotic Dirichlet problem of a PDE Q(u) = 0 in
M for a given asymptotic boundary data ψ ∈ C0 (∂∞M) consists in finding
a solution u ∈ C0

(
M̄

)
of Q(u) = 0 in M such that u|∂∞M = ψ, determining

the uniqueness of u as well.
The asymptotic Dirichlet problem for the Laplacian PDE has been stud-

ied since the last 30 years and there is a vast literature in this case. More
recentely, it has been studied in a larger class of PDE’s which include the
minimal graph PDE
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M(u) = div
∇u√

1 + |∇u|2
= 0, (1)

case that we are interested in the present work. We note that div and ∇ are
the divergence and the gradient in M and it is worth to mention that the
graph

G(r) = {(x, u(x)) | x ∈M}
of u is a minimal surface in M ×R if and only if u satisfies (1).

Antonio Galvez and Harold Rosenberg [5] proved that if KM ≤ −k2,
k > 0, then the asymptotic Dirichlet problem for M is solvable for any
continuous asymptotic boundary data. The second author of the paper with
Miriam Telichevesky [8] proved that it is also solvable if the metric of M is
rotationally symmetric and if, fixing an origin o ∈M, one has

max
Cr

KM ≤ − 1 + ε

r2 log r
(2)

for some ǫ > 0, where r(x) = d(x, o), d = Riemannian distance, and Cr is
the geodesic circle with radius r with origin o (it is known that the upper
bound (2) is sharp for harmonic functions and not assuming the rotationally
symmetry of the metric ([6]). For more general operators, including the
minimal one, the sharpeness or not of the upper bound (2) is not known.
For existence results on higher dimensions and to more general operators
see [2], [9]).

A natural problem related to the asymptotic Dirichlet problem concerns
the existence or not of solutions with isolated singularities at ∂∞M. We
investigate here this problem for the minimal graph operator (1), proving
that such a solutions cannot exist if M has negatively pinched curvature.
Precisely, we prove:

Theorem 1.1. Suppose thatM is a 2−dimensional Cartan-Hadamard man-
ifold with secctional curvature satisfying −b2 ≤ K ≤ −a2 < 0, b ≥ a >
0. Given a finite number of points p1, ..., pn ∈ ∂∞M, if m ∈ C∞(M) ∩
C0

(
M̄\ {p1, ..., pn}

)
is a solution of the minimal surface equation in M and

if m|∂∞M\{p1,...,pn} extends continuously to pi, i = 1, ..., n, thenm ∈ C0
(
M̄

)
.

We observe that a similar problem can obviously be posed to solutions
of the minimal graph equation M(u) = 0 on a bounded C0 domain Ω of R2.
In this case, from a classical and well-known result of R. Finn [4], it follows
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that if u is as in the above theorem with M replaced by Ω, ∂∞ by ∂, and if
there there is a solution v ∈ C∞(Ω) ∩ C0

(
Ω̄
)
such that

u|∂Ω\{p1,...,pn} = v|∂Ω\{p1,...,pn}

then u = v and hence u extends continuously through the singularities.
If the Dirichlet problem M(u) = 0 on Ω is not solvable for the continuous
boundary data φ := u|∂Ω then the result is false, a known fact on the classical
minimal surface theory (see [7], Chapter V, Section 3). We remark that even
if the Dirichlet problem is not solvable there might exist smooth compact
minimal surfaces which boundary is the graph of φ if φ and the domain are
regular enough (see [1]).

Although under the hypothesis of Theorem 1.1 there exists a solution
v ∈ C∞(M) ∩ C0

(
M̄

)
such that u|∂∞M\{p1,...,pn} = v|∂∞M\{p1,...,pn}, we felt

necessary to use a different approach from Finn’s since the boundeddness
of the domain is fundamental to the arguments used in [4]. Our proof
relies heavily on asymptotic properties of 2−dimensional Cartan-Hadamard
manifolds and does not use the existence of v. It is fundamentally based on
the fact that a point p of the asymptotic boundary of M is an isolated point
of the asymptotic boundary of a domain U such that M \U is convex. This
property allows the construction of suitable barriers at infinity. Although
the existence of U in the n = 2 dimensional case is trivial (for example, a
domain which boundary are two geodesics asymptotic to p), we don’t know
if such an U exists in M if n ≥ 3. Nevertheless, it is possible in the special
case of the hyperbolic space to give an ad hoc proof of Theorem 1.1 using
the symmetries of the space. Precisely, our result in H

n reads:

Theorem 1.2. Let Hn be the hyperbolic space of constant section curvature
−1. Given a finite number of points p1, ..., pn ∈ ∂∞H

n, if m ∈ C∞(Hn) ∩
C0

(
H̄n\ {p1, ..., pn}

)
is a solution of the minimal surface equation in M

and if m|∂∞Hn\{p1,...,pn} extends continuously to pi, i = 1, ..., n, then m ∈
C0

(
H̄n

)
.

2 Proof of the theorems

2.1 Proof of Theorem 1.1

We first claim that m is bounded: For each pi, consider a geodesic Γi

such that the asymptotic boundary of one of the connected components of
M \ Γi, say Xi, does not contain pj for j 6= i. Assume also that pi ∈ int Xi.
Since Γi(±∞) 6∈ {p1, . . . pn}, m is continuous at Γi(±∞) and therefore it is
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bounded on Γi. Let Si = sup
Γi

m for i ∈ {1, . . . n}, S0 = supm|∂∞M\{p1,...,pn}

and
S = max{S0, S1, . . . , Sn}.

From the maximum principle, m ≤ S in M\{X1 ∪ · · · ∪Xn}. To prove that
m ≤ S in Xi, take a sequence of geodesics βk such that the ending points
βk(+∞) and βk(−∞) converge to pi. Let Yk be the connected component
of M\βk whose the asymptotic boundary does not contain pi. Observe that
M\Xi ⊂ Yk for large k and ∪Yk = M . Consider the Scherk surface that is
the graph of a function wk which is +∞ on βk and S at ∂∞Yk \ {βk(±∞)}.
Hence wk ≥ S and therefore wk ≥ m on Γi = ∂Xi, wk = S ≥ m on
∂∞(Xi ∩ Yk) and wk = +∞ > m on βk = ∂Yk. Then wk ≥ m in Yk ∩ Xi

for large k. For any given x ∈ M , x ∈ Yk for large k. Hence, using that
wk(x) → S, we have m(x) ≤ S. In a similar way, we can conclude that m is
bounded from below, proving the claim.

Assume thatm ≤ S. Denote by φ the continous extension ofm|∂∞M\{p1,...,pn}

to ∂∞M. Let p ∈ {p1, ..., pn}. Adding a constant to φ we may assume wlg
that φ(p) = 0. Let 0 < δ ≤ S be given.

By the continuity of φ, there is an open connected neighborhood U of p
such that φ(q) ≤ δ for all q ∈ U. Moreover, we may assume that U does not
contain another point xi except p.

Let γ be a geodesic such that γ(∞) = p. Set γ = γ(R). Choose a point
q0 ∈ γ and a geodesic α0 orthogonal to γ at q0 such that α0(±∞) ∈ U. Let
qk ∈ γ be a sequence converging to p, αk the geodesic of M orthogonal to γ
at qk and Ak the domain of M bounded by α0 and αk.

p

B0

Bk

q0qk γ

Ak = Ap,qk,q0
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Fig. 1

By a simple adaptation of the proof of Theorem 4 of [9] one obtains the
following lemma:

Lemma 2.1. The Dirichlet problem





div

(
∇u√

1+|∇u|2

)
= 0 in Ak

u = S on ∂Ak

u = δ in int ∂∞Ak

has a solution uk ∈ C∞(Ak) ∩C0(Āk \ {αk(±∞), α0(±∞)}).

Since the sequence {uk} is uniformly bounded, interior gradient estimates
(see [10]) assures that {uk} contains a subsequence converging uniformlly
in the C2 norm, on compact subsets of A :=

⋃
k=1Ak, to a solution u ∈

C∞(A) ∩C0(Ā \ {p}). Note that u satisfies:





0 ≤ u ≤ S in A

u = S on ∂A

u = δ in int ∂∞A\{p}.

Moreover, by the comparison principle, m ≤ uk in Ak for all k so that
m ≤ u in A.

We will prove that K := lim supx→p u(x) ≤ δ. By contradiction assume
that that K > δ.

Let γi, i ∈ {1, 2}, be the geodesics with ending points at p and p1 :=
α0(∞) and p and p2 := α0(−∞), respectively. Denote by Ui the connected
component of M \ γi that does not contain α0.

Let Shi) satisfy





div

(
∇u√

1+|∇u|2

)
≤ 0 in Ui

u = +∞ on γi

u = δ in int ∂∞Ui.

Observe that u < Shi. Let ci be the level set of Shi

ci =

{
x ∈M : Shi(x) =

K

2
+
δ

2

}
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and

Vi =

{
x ∈ Ui : Shi(x) <

K

2
+
δ

2

}

Hence u < K/2 + δ/2 on Vi. Let V = A\(V1 ∪ V2).

Now, let W be a neighborhood of p (a ball centered at p) such that the
asymptotic boundary ofW ∩V is {p}. Observe that for R > 0 and any point
z on the boundary ofW ∩V there exist a ball of radius R, BR ⊂M\(W ∩V )
such that BR ∩ ¯W ∩ V = {z}. We consider R = 1.

There is ρ > 0 be such that

dist(x, Vi) < ρ for any x ∈W ∩ V.

That is, for any x ∈ W ∩ V , there is a ball Bρ centered at some point of
∂(V1 ∪ V2) ∩W s.t. x ∈ Bρ.

p V

p1

p2

V1

V2

c1

c2

p

c1

c2

Bρ
x

W

Fig. 2 Fig.3

Lemma 2.2. There exist h0 and h1 depending only on a and b, satisfying

δ < h1 < h0 < K/2 +
δ

2
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such that, for any y ∈M, the Dirichlet problem in the annulus B2ρ+1(y)\B1(y)





div

(
∇u√

1+|∇u|2

)
= 0 in B2ρ+1(y)\B1(y)

u = δ on ∂B1(y)

u = h0 on ∂B2ρ+1(y)

has a supersolution wy(x) and wy(x) ≤ h1 if dist(x, y) < ρ+ 1.

Proof. Let f : [1,∞) → R be the function defined by

f(r) = δ +

∫ r

1

sinh b α√
(sinh bs)2 − (sinh b α)2

ds,

where 0 < α ≤ 1. Hence f(1) = δ and, choosing α sufficiently small,
f(2ρ+1) < K/2+ δ/2. Let h0 = f(2ρ+1). Observe that the graphic of f is
a minimal surface in the hyperbolic plane with constant negative sectional
curvature −b2, that is, f satisfies

f ′′(r)

(1 + (f ′(r))2)3/2
+

bf ′(r) coth br

(1 + (f ′(r))2)1/2
= 0.

Moreover, from the Comparison Laplacian Theorem

∆d(x) ≤ ∆r(x̃) = b coth br,

where d(x) = dist(x, y) and r is the distance in H
2(−b2) from x̃ to a fixed

point such that d(x) = r(x̃). Then, using these two relations and that
f ′ > 0, we conclude that wy(x) := f(d(x)) is a supersolution of the minimal
equation.

Since f(1) = δ and f(2ρ+1) = h0, wy(x) satisfies the required boundary
conditions. Finally defining h1 := f(ρ+1), wy(x) ≤ h1 < h0 in Bρ+1(y).

Let ε < h0 − h1 and W0 ⊂W be a neighborhood of p (a ball centered at p)
s.t.

u < K + ε in W0.

Let W̃ ⊂W0 be a neighborhood of p (a ball centered at p) s.t.

dist(∂W0, W̃ ) > 3ρ+ 2.
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p

c1

c2

W
W0

W̃

Fig. 4
We claim that

u < K + δ + ε− h0 + h1 < K + δ

in W̃ .

Indeed: Let x ∈ W̃ and assume first that x ∈ V. As observed above,
there is some z ∈ ∂(V1 ∪ V2), say z ∈ ∂V1, s.t.

x ∈ Bρ(z)

and there is y ∈ V1 s.t.

B1(y) ∩ ¯W ∩ v = {z}.

Therefore
dist(x, y) < ρ+ 1.

Using triangular inequality and that dist(∂W0, W̃ ) > 3ρ+ 2, we have

B2ρ+1(y) ⊂ B3ρ+2(x) ⊂W0.

Let wy be the solution associated to the annulus B2ρ+1(y)\B1(y) given by
Lemma 2.2. Define

w = wy +K + δ + ε− h0

Then, using that B1(y) ⊂ V1,

w = 0 +K + δ + ε− h0 > K + δ + ε−K/2 > K/2 + δ > u on ∂B1(y)

8



and, from B2ρ+1(y) ⊂W0,

w = h0 +K + δ + ε− h0 = K + δ + ε > u on ∂B2ρ+1(y).

From the comparison principle,

u < w in B2ρ+1(y)\B1(y)

and, therefore

u < wy +K + δ + ε− h0 < h1 +K + δ + ε− h0 in Bρ+1(y)\B1(y).

Since dist(x, y) < ρ + 1, then x ∈ Bρ+1(y). Hence x ∈ B2ρ+1(y)\B1(y), if
x 6∈ V1. In this case, u(x) < h1 + K + δ + ε − h0. Finally, if x ∈ V1, then
u(x) < K/2 + δ < K + δ + ε− h0 + h1 proving the claim.

To conclude with the proof of the theorem, note that ν := −ε+h0−h1 >
0, since ε < h0 − h1. Then

K + ν + ε− h0 + h1 = K + δ − ν

and, from the above claim,

u < K − ν < K in W̃ .

Hence
lim sup
x→p

u(x) ≤ K − ν < K

leading a contradiction.

2.2 Proof of Theorem 1.2.

We first introduce some terminology. By a totally geodesic hyperball of Hn

we mean a domain in H
n whose boundary is a totally geodesic hypersurface

of Hn. Given p in ∂∞H
n, some geodesic γ that has an endpoint at p, two

disjoint totally geodesic hyperballs B0 and B orthogonal to γ at the points
q0 and q, respectively, and such that p belongs to the asymptotic boundary
of B, we define the totally geodesic hyperannulus Ap,q,q0 by

Ap,q,q0 = H
n\(B ∪B0).

We may eventually refer to totally geodesic hyperball and hyperannulus
simply as hyperball and hyperannulus.
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Lemma 2.3. For real numbers L and M , there exists a function w = wp,q,q0

defined in Ap,q,q0 that is the solution of the minimal graph PDE (1) satisfying
w = M on ∂Ap,q,q0 and w = L in the interior of ∂∞Ap,q,q0. Furthermore,
there exists also a solution w̃ = w̃p,q,q0 such that w =M on ∂B0 and w = L
on ∂B ∪ int∂∞ Ap,q,q0.

Proof. Consider uniformly bounded sequences of functions

f±k ∈ C0 (∂Ap,q,q0 ∪ ∂∞Ap,q,q0)

that converges, uniformly on the the C0 norm on compact subsets of ∂Ap,q,q0∪
Int (∂∞Ap,q,q0) , monotonically from above and from below, to a function f ∈
C0 (∂Ap,q,q0 ∪ Int (∂∞Ap,q,q0)) such that f |∂Ap,q,q0

=M and f |Int(∂∞Ap,q,q0)
=

L. Clearly Ap,q,q0 is mean convex and, since M has negative pinched cur-
vature, Ap,q,q0 is also strictly convex at infinity (see [11], [9]). It follows
from Theorem 5 of [11] the existence of solutions u±k ∈ C0

(
Ap,q,q0

)
of (1)

such that u±k |∂Ap,q,q0
∪∂∞Ap,q,q0

= f±k . Since u
±
k has uniformly bounded C0

norm, interior gradient estimates (see [10]) and linear elliptic PDE theory
implies that u±k has equibounded C2,α norm on compact subsets of Ap,q,q0.
Arzela-Ascoli theorem and the diagonal method implies that u±k contains
subsequences converging uniformly on the C2 norm on compact subsets of
Ap,q,q0 to solutions u

± of (1) in Ap,q,q0. The comparison principle implies that
u± extend continuously to ∂Ap,q,q0∪Int (∂∞Ap,q,q0) and that u±|∂Ap,q,q0

=M
and u±|Int(∂∞Ap,q,q0)

= L. We may then choose w = u+. The existence of w̃

is proved in a similar way.

Lemma 2.4. Let p ∈ ∂∞H
n, γ be a geodesic that has an endpoint at p,

q0 ∈ γ, and (qk) be a sequence of points in γ such that qk → p in the cone
topology. If wk is the solution of





div

(
∇u√

1+|∇u|2

)
= 0 in Ak

u = M on ∂Ak

u = L in int ∂∞Ak

where Ak = Ap,qk,q0, then wk converges to the solution of the minimal surface
equation v, defined in A = ∪∞

k=1Ak, that satisfies v = M in ∂A and v = L
on int ∂∞A.

Proof. We can suppose that L = 0 and M > 0, otherwise we can consider
wk − L if M > L or −wk +L if M < L. Furthermore, since qk → p, we can
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extract a subsequence qj = qkj such that

Bj+1 ⊂ Bj,

where Bj is the totally geodesic hyperball that is orthogonal to γ at qj and
whose its asymptotic boundary contains p. Then Aj+1 ⊃ Aj.

Observe that the maximum principle implies that 0 ≤ wj ≤ M in Aj .
Hence, using that ∂Aj ⊂ ∂Aj+1 ∪ Aj+1, we have that wj+1 ≤ M = wj on
∂Aj and, by comparison principle, wj+1 ≤ wj in Aj . Since wj is uniformaly
bounded, interior gradient estimates imply that, up to a subsequence, wj

converges uniformly on the C2 norm on compact subsets of A, to a C∞

solution v defined in A such that 0 ≤ v ≤ wj in Aj for any j. Thus

v = 0 on
∞⋃

j=1

(int ∂∞Aj) = int ∂∞A\{p}.

We have also that
wj ≥ w̃1 in A1,

where w̃1 = w̃p,q1,q0 is the solution in A1, given by Lemma 2.3, that satisfies
w̃1 =M on ∂B0 and w̃1 = 0 on ∂B ∪ int∂∞ A. Thus v ≥ w̃1 and, therefore,
v =M on ∂B0. Finally we have to prove that

lim
x→p

v(x) = 0.

Let
K = lim sup

x→p
v(x).

From 0 ≤ v ≤ wj ≤ M in Aj it follows that 0 ≤ K ≤ M . Suppose that
K > 0. Let Vm be a decreasing sequence of neighborhood of p such that

⋂
V m = {p} and sup

x∈Vm

v(x) < K + 1/m.

We can suppose that each Vm is a hyperball centered at p. For each m, let
Ṽm ⊂ Vm be a hyperball centered at p such that

dist(∂Ṽm, ∂Vm) ≥ m and sup
x∈Ṽm

v(x) > K − 1/m.

Then there exists a sequence (xm) that satisfies xm ∈ Ṽm and

K − 1/m < v(xm) < K + 1/m.

11



It is well known that there exists an isometry Tm : Hn → H
n (a transvection

along γ) that preserves p, Tm(γ) = γ, Tm(Ṽm) ⊃ A and ym := Tm(xm) ∈
∂B0. Observe that

wm = v ◦ T−1
m

is a solution to the minimal surface problem defined in Tm(A) and satisfies

sup
Tm(Vm)

wm < K + 1/m and Tm(ym) > K − 1/m. (3)

Moreover
⋃
Tm(Vm) = H

n, since Ṽm ⊂ Vm ⊂ A ⊂ T (Ṽm) and, therefore,

dist(∂Tm(Vm), A) ≥ dist(∂Tm(Vm), Tm(Ṽm))

= dist(∂Vm, Ṽm) ≥ m → ∞.

We also notice that (wm) is a decreasing sequence as a result of the com-
parison principle for minimal surfaces, wm+1 ≤ M = wm on ∂Tm(A) and
wm+1 = wm = 0 in int∂∞Tm(A). Hence, using that 0 ≤ wm ≤ M is a
sequence of solutions, we have that wm → w uniformly in compacts of Hn.
From (3), it follows that 0 ≤ w ≤ K and w is a solution to the minimal
surface equation. The monotonicity of (wm) implies that

w1(ym) ≥ wm(ym) = v(T−1
m (Tm(xm)) = v(xm) > K − 1/m.

Since ym ∈ ∂B0, w1 is continuous and zero on ∂∞B0 ∩ ∂∞A, we conclude
that (ym) is a bounded sequence in ∂B0. Hence there exists some convergent
subsequence, we name (ym), such that ym → y ∈ ∂B0 and, therefore, w(y) =
limwm(ym) ≥ K. Thus w is not constant, since w ≤ w1 = 0 on ∂∞A\{p}.
But this contradicts the maximum principle, 0 ≤ w ≤ K and w(y) = K.
Therefore K = 0, completing the proof.
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