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Abstract. In recent years, many researches have been done to estab-
lish symbolic models of stateful protocols. Two works among them, the
SAPIC tool and StatVerif tool, provide a high-level specification lan-
guage and an automated analysis. Their language, the stateful applied π

calculus, is extended from the applied π calculus by defining explicit state
constructs. Symbolic abstractions of cryptography used in it make the
analysis amenable to automation. However, this might overlook the at-
tacks based on the algebraic properties of the cryptographic algorithms.
In our paper, we establish the computational soundness results for state-
ful applied π calculus used in SAPIC tool and StatVerif tool.
In our approach, we build our results on the CoSP framework. For
SAPIC, we embed the non-monotonic protocol states into the CoSP
protocols, and prove that the resulting CoSP protocols are efficient.
Through the embedding, we provide the computational soundness re-
sult for SAPIC (by Theorem 1). For StatVerif, we encode the StatVerif
process into a subset of SAPIC process, and obtain the computational
soundness result for StatVerif (by Theorem 2). Our encoding shows the
differences between the semantics of the two languages. Our work in-
herits the modularity of CoSP, which allows for easily extending the
proofs to specific cryptographic primitives. Thus we establish a compu-
tationally sound automated verification result for the input languages of
SAPIC and StatVerif that use public-key encryption and signatures (by
Theorem 3).

Keywords: Computational soundness, Applied π calculus, Stateful pro-
tocols

1 Introduction

Manual proofs of security protocols that rely on cryptographic functions are
complex and known to be error-prone. The complexity that arises from their
distributed nature motivates the researches on automation of proofs. In recent
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years, many efficient verification tools ([1,2,3]) have been developed to prove log-
ical properties of protocol behaviors. To eliminate the inherent complexity of the
cryptographic operations in formal analysis, these verification tools abstract the
cryptographic functions as idealized symbolic terms that obey simple cancelation
rules, i.e., the so-called Dolev-Yao models ([4,5]). Unfortunately, these idealiza-
tions also abstract away from the algebraic properties a cryptographic algorithm
may exhibit. Therefore a symbolic formal analysis may omit attacks based on
these properties. In other words, symbolic security does not immediately imply
computational security. In order to remove this limitation, the concept of Com-
putational Soundness (CS) is introduced in [6]. From the start, a large number of
CS results over the past decade were made to show that many of the Dolev-Yao
models are sound with respect to actual cryptographic realizations and security
definitions (see, e.g., [7,8,9,10,11,12,13,14,15]).

More recently, formal analysis methods have been applied to stateful pro-
tocols, i.e., protocols which require non-monotonic global state that can affect
and be changed by protocol runs. Stateful protocols can be used to model hard-
ware devices that have some internal memory and security APIs, such as the
RSA PKCS#11, IBM’s CCA, or the trusted platform module. There are many
formal methods that have been used to establish symbolic model of stateful
protocols ([16,17,18,19,20,21,22]). Two works among them, the SAPIC tool [20]
and StatVerif tool [21], can provide an automated analysis of stateful protocols.
Their language, the stateful applied π calculus, is extended from the applied π
calculus [23] by defining constructs for explicitly manipulating global state. One
advantage of the stateful applied π calculus is that it provides a high-level speci-
fication language to model stateful protocols. Its syntax and semantics inherited
from the applied π calculus can arguably ease protocol modeling. Another ad-
vantage is that the formal verification can be performed automatically by these
tools.

However, no CS works have been done for the stateful applied π calculus.
Although there are many for the original applied π calculus, e.g., see [11,15,24].
Our purpose is to establish the CS results for the input languages of the two
verification tools SAPIC and StatVerif. With our results, we can transform their
symbolically automated verification results of stateful protocols (with some re-
strictions) to the computationally sound one with respect to actual cryptographic
realizations and security definitions. We want to establish the CS results directly
for the input languages of SAPIC and StatVerif. To achieve this, we choose to
embed them into the CoSP work [11], a general framework for conceptually mod-
ular CS proofs. Since the stateful applied π calculus used in SAPIC and StatVerif
are slightly different, in the following we call the former SAPIC calculus and the
latter StatVerif calculus.

Our work. We present two CS results respectively for the stateful applied π cal-
culus used in SAPIC tool and StatVerif tool. In our approach, we first provide the
method to embed SAPIC calculus into the CoSP framework. Note that the CoSP
framework does not provide explicit state manipulation. We need to embed the
complex state constructs of stateful applied π calculus into the CoSP protocols
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and make sure that the resulting CoSP protocol is efficient. By the embedding,
we prove that the CS result of applied π calculus implies that of SAPIC calculus
(by Theorem 1). For StatVerif, we provide an encoding of StatVerif processes
into a subset of SAPIC processes and build the CS result of StatVerif calculus (by
Theorem 2). Our encoding shows the differences between the semantics of these
two languages. Finally, we establish a computationally sound automated verifi-
cation result for the input languages of SAPIC and StatVerif that use public-key
encryption and signatures (by Theorem 3).

For SAPIC, we use the calculus proposed by [20] as the SAPIC calculus. It
extends the applied π calculus with two kinds of state: the functional state and
the multiset state. We set two restrictions respectively for the pattern matching
in the input constructs and for the multiset state constructs. They are necessary
for the computational execution model. We embed the SAPIC calculus into the
CoSP framework. The two kinds of state are encoded into the CoSP protocol
state (as part of the CoSP node identifiers). We have met two challenges in the
embedding. First is for the functional state. If we encode them directly as π-
terms, the resulting CoSP protocol is not efficient. Thus we transform them into
the CoSP terms which are treated as black boxes by CoSP protocols. The second
problem is for the encoding of multiset state. By our restriction of multiset state
constructs, we can transform the arguments of facts into CoSP terms and limit
the growth of the size of multiset state. We also provide an efficient CoSP sub-
protocol to implement the pattern matching in the multiset state constructs. At
last, we prove that our embedding is an efficient and safe approximation of the
SAPIC calculus, and build the CS result of SAPIC calculus upon that of applied
π calculus (by Theorem 1).

For StatVerif, we use the calculus proposed by [21] as the StatVerif calculus.
It has minor differences to SAPIC calculus. We first provide an encoding of the
StatVerif processes into a subset of SAPIC processes. Then we prove that by
using SAPIC trace properties our encoding is able to capture secrecy of stateful
protocols. With the CS result of SAPIC, we can directly obtain the CS result of
StatVerif calculus (by Theorem 2). Our encoding shows the differences between
the semantics of state constructs in these two calculi.

Note that our contribution is a soundness result for the execution models
that can manipulate state, rather than a soundness result for any new cryp-
tographic primitives. The advantage of our CS result is its extensibility, since
we build it on the CoSP framework and involve no new cryptographic argu-
ments. It is easy to extend our proofs to additional cryptographic abstractions
phrased in CoSP framework. Any computationally sound implementations for
applied π calculus that have been proved in CoSP framework can be applied
to our work. To explain its extendibility, we establish a computationally sound
automated verification result for the input languages of SAPIC and StatVerif
that use public-key encryption and signatures (by Theorem 3). We have veri-
fied the classic left-or-right protocol presented in [21] by using these tools in a
computationally sound way to show the usefulness of our result.
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The paper is organized as follows. In Section 2 we give a brief introduction
to the CoSP framework and the embedding of applied π calculus. In Section 3
and Section 4 we respectively show the CS results of stateful applied π calculus
in SAPIC and StatVerif work. Section 5 contains a case study of the CS result
of public-key encryption and signatures. We conclude in Section 6.

2 Preliminaries

2.1 CoSP Framework

Our CS results are formulated within CoSP [11], a framework for conceptually
modular CS proofs. It decouples the treatment of cryptographic primitives from
the treatment of calculi. The results in [15] and [24] have shown that CoSP
framework is capable of handling CS with respect to trace properties and uni-
formity for ProVerif. Several calculi such as the applied π calculus and RCF
can be embedded into CoSP ([11,25]) and combined with CS results for cryp-
tographic primitives. In this subsection, we will give a brief introduction to the
CoSP framework.

CoSP provides a general symbolic model for abstracting cryptographic prim-
itives. It contains some central concepts such as constructors, destructors, and
deduction relations.
Definition 1 (Symbolic Model). A symbolic model M = (C,N,T,D,⊢)
consists of a set of constructors C, a set of nonces N, a message type T over C
and N with N ⊆ T, a set of destructors D over T, and a deduction relation ⊢
over T. A constructor C/n ∈ C is a symbol with (possible zero) arity. A nonce
N ∈ N is a symbol with zero arity. A message type T is a set of terms over
constructors and nonces. A destructor D/n ∈ D of arity n over a message type
T is a partial map Tn → T. IfD is undefined on a list of message t = (t1, · · · , tn),
then D(t) = ⊥.

To unify notation of constructor or destructor F/n ∈ C∪D and nonce F ∈ N,
we define the partial function evalF : Tn → T, where n = 0 for the nonce, as
follows: If F is a constructor, evalF (t) := F (t) if F (t) ∈ T and evalF (t) := ⊥
otherwise. If F is a nonce, evalF () := F . If F is a destructor, evalF (t) := F (t)
if F (t) 6= ⊥ and evalF (t) := ⊥ otherwise.

A computational implementation A of a symbolic modelM is a family of algo-
rithms that provide computational interpretations to constructors, destructors,
and specify the distribution of nonces.

A CoSP protocol Π is a tree with labelled nodes and edges. Each node has a
unique identifier. It distinguishes 4 types of nodes. Computation nodes describe
constructor applications, destructor applications, and creations of nonce. Output

and input nodes describe communications with the adversary. Control nodes
allow the adversary to choose the control flow of the protocol. The computation
nodes and input nodes can be referred to by later computation nodes or output
nodes. The messages computed or received at these earlier nodes are then taken
as arguments by the later constructor/destructor applications or sent to the
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adversary. A CoSP protocol is efficient if it satisfies two conditions: for any
node, the length of the identifier is bounded by a polynomial in the length of
the path (including the total length of the edge-labels) from the root to it; there
is a deterministic polynomial-time algorithm that, given the labels of all nodes
and edges on the path to a node, computes the node’s identifier.

Given an efficient CoSP protocol Π , both its symbolic and computational

executions are defined as a valid path through the protocol tree. In the symbolic
execution, the computation nodes operate on terms, and the input (resp. out-
put) nodes receive (resp. send) terms to the symbolic adversary. The successors
of control nodes are chosen by the adversary. In the computational execution,
the computation nodes operate on bitstrings by using a computational imple-
mentation A, and the input (resp. output) nodes receive (resp. send) bitstrings
to the polynomial-time adversary. The successors of control nodes are also cho-
sen by the adversary. The symbolic (resp. computational) node trace is a list of
node identifiers if there is a symbolic (resp. computational) execution path with
these node identifiers.

Definition 2 (Trace Property). A trace property ℘ is an efficiently decidable
and prefix-closed set of (finite) lists of node identifiers. Let M = (C,N,T,D,⊢)
be a symbolic model and Π be an efficient CoSP protocol. Then Π symbolically
satisfies a trace property ℘ in M iff every symbolic node trace of Π is contained
in ℘. Let A be a computational implementation of M. Then (Π,A) computa-
tionally satisfies a trace property ℘ in M iff for all probabilistic polynomial-time
interactive machines A, the computational node trace is in ℘ with overwhelming
probability.

Definition 3 (Computational Soundness). A computational implementation
A of a symbolic model M = (C,N,T,D,⊢) is computationally sound for a class
P of CoSP protocols iff for every trace property ℘ and for every efficient CoSP
protocol Π ∈ P , we have that (Π,A) computationally satisfies ℘ whenever Π
symbolically satisfies ℘.

2.2 Embedding Applied π Calculus into CoSP Framework

Stateful applied π calculus is a variant of applied π calculus. We need to re-
view the original applied π calculus first. We provide its syntax in Table 1. It
corresponds to the one considered in [11].

In the following, we call the terms in process calculus the π-terms and terms
in CoSP the CoSP-terms, in order to avoid ambiguities. It is similar for the
other homonyms such as π-constructors. We will use fn(P ) (resp. fv(P )) for
free names (resp. free variables) in process P , i.e., the names (resp. variables)
that are not protected by a name restriction (resp. a let or an input). The
notations can also be applied to terms in process. We call a process closed or a
term ground if it has no free variables.

The calculus is parameterized over a set of π-constructors Cπ, a set of π-
destructorsDπ, and an equational theoryE over ground π-terms. It requires that
the equational theory is compatible with the π-constructors and π-destructors
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Table 1. Syntax of applied π calculus

〈M,N〉 ::= terms 〈P,Q〉 ::= processes
a, b,m, n, ... names 0 nil
x, y, z, ... variables P |Q parallel
f(M1, ..., Mn) constructor applications !P replication

νn;P restriction
D ::= destructor terms out(M,N);P output

M,N, ... terms in(M,x);P input
d(D1, ..., Dn) destructor applications let x = D in P else Q let
f(D1, ..., Dn) constructor applications event e;P event

as defined in [11]. The symbolic model of applied π-calculus can be embedded
into the CoSP framework.

Definition 4 (Symbolic Model of the Applied π Calculus). For a π-
destructor d ∈ Dπ, the CoSP-destructor d

′ is defined by d′(t) := d(tρ)ρ−1 where
ρ is any injective map from the nonces occurring in the CoSP-terms t to names.
Let NE for adversary nonces and NP for protocol nonces be two countably
infinite sets. The symbolic model of the applied π calculus is given by M =
(C,N,T,D,⊢), where N := NE ∪NP , C := Cπ, D := {d′|d ∈ Dπ}, and where
T consists of all terms over C and N, and where ⊢ is the smallest relation such
that m ∈ S ⇒ S ⊢ m, N ∈ NE ⇒ S ⊢ N , and such that for any F ∈ C∪D and
any t = (t1, ..., tn) ∈ Tn with S ⊢ t and evalF (t) 6= ⊥, we have S ⊢ evalF (t).

The if-statement can be expressed using an additional destructor equal,
where equal(M,N) = M if M =E N and equal(M,N) = ⊥ otherwise. We
always assume equal ∈ Dπ. The destructor equal′ induces an equivalence rela-
tion ∼= on the set of CoSP-terms with x ∼= y iff equal′(x, y) 6= ⊥.

For the symbolic model, we can specify its computational implementation
A. It assigns the deterministic polynomial-time algorithms Af and Ad to each
π-constructors and π-destructors, and chooses the nonces uniformly at random.

We introduce some notations for the definitions of computational and sym-
bolic π-executions. Given a ground destructor CoSP-term D′, we can evalu-
ate it to a ground CoSP-term evalCoSP (D′) by evaluating all CoSP-destructors
in the arguments of D′. We set evalCoSP (D′) := ⊥ iff any one of the CoSP-
destructors returns ⊥. Given a destructor π-term D, an assignment µ from
π-names to bitstrings, and an assignment η from variables to bitstrings with
fn(D) ⊆ dom(µ) and fv(D) ⊆ dom(η), we can computationally evaluate D
to a bitstring cevalη,µD. We set cevalη,µD := ⊥ if the application of one of
the algorithms Aπ

f or Aπ
d fails. For a partial function g, we define the function

f := g ∪{a := b} with dom(f) = dom(g)∪{a} as f(a) := b and f(x) := g(x) for
x 6= a.

The computational and symbolic execution models of a π-process are defined
in [11] by using evaluation contexts where the holes only occur below parallel
compositions. The adversary is allowed to determine which process in parallel
should be proceeded by setting the evaluation context for each step of proceeding.
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The execution models of π calculus are defined as follows. We take the writing
way in [11] and mark the symbolic execution model by [[...]].

Definition 5 [[6]] (Computational [[Symbolic]] Execution of π Calculus).
Let P0 be a closed process (where all bound variables and names are renamed
such that they are pairwise distinct and distinct from all unbound ones). Let A
be an interactive machine called the adversary. [[For the symbolic model, A only
sends message m if K ⊢ m where K are the messages sent to A so far.]] We define
the computational [[symbolic]] execution of π calculus as an interactive machine
ExecP0(1

k) that takes a security parameter k as argument [[interactive machine
SExecP0 that takes no argument]] and interacts with A:

Start: Let P := {P0}. Let η be a totally undefined partial function mapping
π-variables to bitstrings [[CoSP-terms]]. Let µ be a totally undefined partial func-
tion mapping π-names to bitstrings [[CoSP-terms]]. Let a1, ..., an denote the free
names in P0. Pick {ri}

n
i=1 ∈ Noncesk at random [[Choose a different ri ∈ NP ]].

Set µ := µ ∪ {ai := ri}ni=1. Send (r1, ..., rn) to A.

Main loop: Send P toA and expect an evaluation contextE from the adversary.
Distinguish the following cases:

• P = E[in(M,x);P1]: Request two bitstrings [[CoSP-terms]] c,m from the
adversary. If c = cevalη,µ(M) [[c ∼= evalCoSP (Mηµ)]], set η := η ∪ {x := m}
and P := E[P1].

• P = E[νa;P1]: Pick r ∈ Noncesk at random [[ Choose r ∈ NP \range µ]], set
µ := µ ∪ {a := r} and P := E[P1].

• P = E[out(M1, N);P1][in(M2, x);P2]: If cevalη,µ(M1) = cevalη,µ(M2)

[[evalCoSP (M1ηµ) ∼= evalCoSP (M2ηµ)]], set η := η∪{x := cevalη,µ(N)} [[η :=

η ∪ {x := evalCoSP (Nηµ)}]] and P := E[P1][P2].

• P = E[let x = D in P1 else P2]: Ifm := cevalη,µ(D) 6= ⊥ [[m := evalCoSP (Dηµ)
6= ⊥]], set µ := µ ∪ {x := m} and P := E[P1]. Otherwise set P := E[P2]

• P = E[event e;P1]: Let P := E[P1] and raise the event e.

• P = E[!P1]: Rename all bound variables of P1 such that they are pairwise
distinct and distinct from all variables and names in P and in domains of
η, µ, yielding a process P̃1. Set P := E[P̃1|!P1].

• P = E[out(M,N);P1]: Request a bitstring [[CoSP-term]] c from the adver-
sary. If c = cevalη,µ(M) [[c ∼= evalCoSP (Mηµ)]], set P := E[P1] and send

cevalη,µ(N) [[evalCoSP (Nηµ)]] to the adversary.

• In all other cases, do nothing.

We say that a closed process computationally satisfies a π-trace property ℘ if
the list of events raised by its computational execution is in ℘ with overwhelming
probability. Then the theorem in [11] states that for any given computationally
sound implementation of the applied π-calculus (embedded in the CoSP model),
the symbolic verification of a closed process P0 satisfying a π-trace property ℘
implies P0 computationally satisfies ℘.
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3 Computational Soundness Results for SAPIC

3.1 SAPIC

The SAPIC tool was proposed in [20]. It translates SAPIC process to multiset
rewrite rules, which can be analyzed by the tamarin-prover [18]. Its language
extends the applied π calculus with two kinds of explicit state construsts. The
first kind is functional. It provides the operation for defining, deleting, retriev-
ing, locking and unlocking the memory states. The second construct allows to
manipulate the global state in the form of a multiset of ground facts. This
state manipulation is similar to the “low-level” language of the tamarin-prover
and offers a more flexible way to model stateful protocols. Moreover, the secu-
rity property of SAPIC process is expressed by trace formulas. It is expressive
enough to formalize complex properties such as injective correspondence.

Table 2. State constructs of SAPIC calculus

〈P,Q〉 ::= processes
... standard processes
insert M,N ;P insert
delete M ;P delete
lookup M as x in P else Q retrieve
lock M ;P lock
unlock M ;P unlock
[L]− [e] → [R];P (L,R ∈ F∗) multiset state construct

Syntax. We list the two kinds of state constructs in Table 2. Table 1 and 2
together compose the full syntax of SAPIC language. Let Σfact be a signature
that is partitioned into linear and persistent fact symbols. We can define the set
of facts as

F := {F (M1, ...,Mn)|F ∈ Σfact of arity n},

Given a finite sequence or set of facts L ∈ F∗, lfacts(L) denotes the multiset of
all linear facts in L and pfacts(L) denotes the set of all persistent facts in L. G
denotes the set of ground facts, i.e., the set of facts that do not contain variables.
Given a set L, we denote by L# the set of finite multisets of elements from L.
We use the superscript # to annotate usual multiset operation, e.g. L1 ∪# L2

denotes the multiset union of multisets L1, L2.
Note that we do our first restriction in the input construct. In [20], the original

SAPIC language allows the input of a term in the input construct in(M,N);P .
We use the standard construct in(M,x);P instead in Table 1. We will explain
it later in Section 3.2.
Operational Semantics. A semantic configuration for SAPIC calculus is a
tuple (ñ, S, SMS , P , K, L). ñ is a set of names which have been restricted
by the protocol. S is a partial function associating the values to the memory
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state cells. SMS ⊆ G# is a multiset of ground facts. P = {P1, ..., Pk} is a
finite multiset of ground processes representing the processes to be executed
in parallel. K is the set of ground terms modeling the messages output to the
environment (adversary). L is the set of currently acquired locks. The semantics
of the SAPIC is defined by a reduction relation → on semantic configurations.
We just list the semantics of state constructs in Fig. 1. By S(M) we denote S(N)
if ∃N ∈ dom(S), N =E M . By L\E{M} we denote L\{N} if ∃N ∈ L,M =E N .
The rest are in [20].

(

ñ, S,S
MS

,P ∪
#

{insert M,N ;P} ,K,L
)

−→
(

ñ, S ∪ {M := N},S
MS

,P ∪
#

{P} ,K,L
)

(

ñ, S,S
MS

,P ∪
#

{delete M;P} ,K,L
)

−→
(

ñ, S ∪ {M := ⊥},S
MS

,P ∪
#

{P} ,K,L
)

(

ñ,S,S
MS

, P ∪
#

{lookup M as x in P else Q} ,K,L
)

−→
(

ñ, S,S
MS

,P ∪
#

{P{V/x}} ,K,L
)

if S(M) =E V

(

ñ,S,S
MS

, P ∪
#

{lookup M as x in P else Q} ,K,L
)

−→
(

ñ, S,S
MS

,P ∪
#

{Q}} ,K,L
)

if S(M) = ⊥

(

ñ,S,S
MS

,P ∪
#

{lock M;P} ,K,L
)

−→
(

ñ, S,S
MS

,P ∪
#

{P} ,K,L ∪ {M}
)

if M /∈E L

(

ñ,S,SMS, P ∪# {unlock M;P} ,K,L
)

−→
(

ñ, S,SMS,P ∪# {P} ,K,L\E{M}
)

if M ∈E L

(

ñ,S,S
MS

,P ∪
#

{[L] − [e] → [R];P} ,K,L
)

e
−→

(

ñ,S,S
MS

\lfacts(L
′
) ∪

#
R

′
, P ∪

#
{Pτ} ,K,L

)

if ∃τ, L
′
, R

′
. τ grounding for L,R such that L

′
=E Lτ,R

′
=E Rτ, and lfacts(L

′
) ⊆

#
S
MS

, pfacts(L
′
) ⊂ S

MS

Fig. 1. The semantics of SAPIC

Security Property. With the operational semantics, we can give out the defi-
nition of SAPIC trace property. The set of traces of a closed SAPIC process P ,
written traces(P ), defines all its possible executions. In SAPIC, security proper-
ties are described in a two-sorted first-order logic, defined as the trace formula.
Given a closed SAPIC process P , a trace formula φ is said to be valid for P ,
written traces(P ) �∀ φ, if all the traces of P satisfies φ. φ is said to be satisfiable
for P , written traces(P ) �∃ φ, if there exists a trace of P satisfies φ. Note that
traces(P ) �

∃ φ iff traces(P ) 2∀ ¬φ. It means the verification of satisfiability
can be transformed to the falsification of validity. Thus in the following, we only
consider the validity of trace formula. We can transform its definition to trace
property in the sense of Definition 2 by requiring that ℘ := {tr|tr � φ}. Then
we get the following definition of SAPIC trace property.

Definition 7 (SAPIC Trace Property). Given a closed SAPIC process P ,
we define the set of traces of P as

traces(P ) = {[e1, ..., em]|(∅, ∅, ∅, {P}, fn(P ), ∅) −→∗ e1−→ (ñ1,S1,S
MS
1 ,P1,K1,L1)

−→∗ e2−→ · · · −→∗ em−−→ (ñm,Sm,SMS
m ,Pm,Km,Lm)}
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A SAPIC trace property ℘ is an efficiently decidable and prefix-closed set of
strings. A process P symbolically satisfies the SAPIC trace property ℘ if we
have traces(P ) ⊆ ℘.

3.2 CS Results of the Calculus

.

SAPIC language only has semantics in the symbolic model. We need to in-
troduce the computational execution model of SAPIC process. It is not a trivial
extension of the computational execution model of the applied π calculus in
Definition 5. We first restrict the pattern matching in the original SAPIC input
construct because for some cases, it cannot be performed by any sound compu-
tational model. Then we set up the computational execution model for the two
kinds of global states in SAPIC. Note that the CoSP framework does not imme-
diately support nodes for the operation of functional states and multiset states.
We will encode them into the CoSP protocol node identifiers and mechanize the
two kinds of state constructs by using CoSP protocol tree.

First, we need to explain the restriction of the input construct. Note that we
use the standard syntax of applied π calculus as part of the syntax of SAPIC
language in Table 2. In [20], the original SAPIC process allows the input of
a term in the input construct in(M,N);P where it receives a ground term N ′

on the channel M , does a pattern matching to find a substitution τ such that
N ′ =E Nτ , and then proceeds by Pτ . However, we find that it is impossible
to embed it into the CoSP framework. As in Definition 5, the computational
execution of the calculus receives the bitstring m from the adversary. Then
the interactive machine ExecP0(1

k) should extract from m the sub-bitstrings
corresponding to the subterms in the range of τ . This is impossible for some
cases. One example is the input process P := in(c, h(x)) where the adversary
may generate a name t, compute and output the term h(t) on the channel c. It
has no computational execution model since the protocol does not know how to
bind the variable x (h(·) is not invertible). Thus in the following, we do our first
restriction that the SAPIC input construct should be in the form in(M,x).

Then we show how to embed the two kinds of states into the CoSP frame-
work and mechanize the state constructs. Our computational execution model
maintains a standard protocol state that consists of the current process P , an
environment η, and an interpretation µ as in Definition 5. Moreover, we ex-
tend the protocol state with a set S including all the pairs (M,N) of the func-
tional state cells M and their associated values N , a set Λ of all the currently
locked state cells, and a multiset SMS of the current ground facts. We denote
by dom(S) := {m|(m,n) ∈ S} the set of state cells in S (S can be seen as a
partial function and dom(S) is its domain). In each step of the execution, the
adversary receives the process P and sends back an evaluation context E where
P = E[P1] to schedule the proceeding to P1. In addition to the standard cases
operated in Definition 5, we need to mechanize the functional and multiset state
constructs according to the protocol states S, Λ, and SMS . We implement the
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procedures as CoSP sub-protocols. Note that our encoding should keep the ef-
ficiency of the resulting CoSP protocol and cannot introduce an unacceptable
time cost for computational execution. In the following, we respectively explain
how to embed the two kinds of state constructs.

Embedding the functional state. For the functional state constructs in
SAPIC, the state cells and their associated values are π-terms. If we encode
them directly as π-terms in the set S, its size would grow exponentially, and the
resulting CoSP protocol is not efficient. To solve this problem, we store the state
cell M and its value N as CoSP-terms in the sets S and Λ. The CoSP-terms can
be encoded by the indexes of the nodes in which they were created (or received).
In this setting, the CoSP-terms are treated as black boxes by the CoSP protocol
with a linear size.

However, we have to pay extra cost for this setting. For a finite set of CoSP
terms, such as dom(S) or Λ, we need to formalize the decision of set-membership.
It can be done with the help of parameterized CoSP protocols, which act as sub-
protocols with formal parameters of CoSP nodes and can be plugged into another
CoSP protocol tree. Its definition is introduced in [24]. We denote by fmem the
decision of set-membership relation: if ∃ri ∈ Λ, ri ∼= r, where r is a CoSP-term,
Λ = {r1, ..., rn} is a set of CoSP-terms. It can be accomplished by a sequence of
n CoSP computation nodes for the destructor equal′ as in Fig. 2. The success-
edge of fmem(Λ; r) corresponds to each yes-edge. The failure-edge corresponds
to the no-edge of the last computation node. With this sub-protocol, we can
embed the functional state constructs in the execution model of SAPIC. The
computation steps of the embedding would not grow exponentially. Decision of
set-membership costs no more than the size of the set, which is bounded by the
reduction steps t. Thus there exists a polynomial p, such that the computation
steps of embedding is bounded by p(t).

no

yes
equal¢equal¢equal¢r

no no

1
r

yes

2
r

yes

nr

Fig. 2. Sub-protocol fmem for decision of set-membership

Embedding the multiset state. For the multiset state, we keep a multiset
SMS of the current ground facts. In the execution model, we need to encode the
multiset state construct [L] − [e] → [R];P by using CoSP sub-protocol fmatch.
As in Fig. 1, the SAPIC process tries to match each fact in the sequence L
to the ground facts in SMS and, if successful, adds the corresponding instance
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of facts R to SMS . We denote by fv(L) the set of variables in L that are not
under the scope of a previous binder. The variables x ∈ fv(L) should be bound
by the pattern matching. For the reason of efficiency, we store the arguments of
ground facts in SMS as CoSP-terms rather than π-terms1, as we have done in
the case of functional state. SMS can only be altered using the multiset state
construct [L]− [e] → [R];P . Given a closed SAPIC process, the maximum length
of R (counted by the number of fact symbols in R) is a constant value. In each
execution step, the multiset state construct can proceed at most once. Thus the
size of SMS is bounded by a polynomial in the number of execution steps (taken
CoSP-terms as blackboxes).

When designing the sub-protocol fmatch for the multiset state construct, we
should solve the pattern matching problem, which is similar to the previous
one in the input construct. To solve this problem, we need to do our second

restriction. In the multiset state construct [L]−[e] → [R];P , we require that: (i) it
is well-formed (Definition 12 in [20]); (ii) ∀F (M1, ...,Mn) ∈ L, either Mi ∈ fv(L)
or fv(Mi) = ∅ for all 1 ≤ i ≤ n. It means that the free variables of L can only
occur as the arguments of the facts in L. By (i), the well-formed requirement,
we have fv(R) ⊆ fv(L). Thus all the facts added into the current multiset
state SMS are ground. By (ii), we can match each variable in fv(L) to the
corresponding arguments of the ground facts in SMS and find the substitution
τ for fv(L) in the execution. Note that our second restriction is necessary for
the CS results. Otherwise, if we allow the free variables in fv(L) occur as the
subterms of the arguments of facts, it might lead to a mismatch case as we have
described in the input construct.

The second restriction does not make the multiset state construct useless.
All the examples in [20] using this construct meet our requirements. Moreover,
this style of state manipulation is the underlying specification language of the
tamarin tool [18]. Even considering our restriction, the tamarin tool is still useful
to model security protocols. The example is the NAXOS protocol for the eCK
model formalized in [18].

In the following, we will give out the sub-protocol fmatch of the pattern
matching. Since fmatch is plugged in the execution model of SAPIC, it assumes
an initial protocol state which includes an environment η, an interpretation
µ, and a multiset SMS of the current ground facts. For each multiset state
construct [L] − [e] → [R], fmatch tries to find a substitution τ ′ from fv(L)
to CoSP-terms, such that lfacts(L)η′µ ⊆# SMS and pfacts(L)η′µ ⊂ SMS ,
where η′ = η ∪ τ ′. For simplicity, we denote by f/(n, k) a π-fact such that
f/(n, k) = F (M1, ...,Mk) ∈ F and {Mi}ki=1 are π-terms including n variables.
A π-fact f/(0, k) is ground.

Definition 8 (Sub-protocol of Pattern Matching). Let η be a partial func-
tion mapping variables to CoSP-terms, let µ be a partial function mapping
π-names to CoSP-terms, let SMS be a multiset of facts whose arguments are
CoSP-terms. Let [L]− [e] → [R];P be a multiset state construct with our restric-

1 Otherwise, the length of π-terms may grow exponentially by the iterated binding of
variables. One example is the construct !([Iter(x)]− [] → [Iter(fun(x, x))]).
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tion. We define the sub-protocol fmatch which contains two stages respectively
for the pattern matching of linear and persistent facts in L:

Start. For stage 1, let τ ′ be a totally undefined partial function mapping vari-
ables to CoSP-terms. Set Srest := SMS . Let Lrest := lfacts(L) and Llinear := ∅
be two multisets of π-facts.

Loop. Choose a π-fact l/(n, k) ∈# Lrest, match it to all the fact f ∈# Srest

with the same fact symbol by performing the following steps i)-iii). If any check
in step ii) is failed, choose the next f ∈# Srest to match. If there is no matching
with l/(n, k) for any facts in Srest, stop and go to the failure-edge.

i) For n variables xi in l/(n, k), pick up xi /∈ dom(η) ∪ dom(τ ′)(i.e., the free
variables in l), set τ ′′ := τ ′ ∪ {xi 7→ si|1 ≤ i ≤ n, xi /∈ dom(η) ∪ dom(τ ′)} by
mapping xi to the CoSP-term si with the same position in f . This can be
done since we require free variables should be the arguments of facts.

ii) For k arguments of l/(n, k) = F (M1, ...,Mk), use the CoSP computation
node to check whether tj ∼= evalCoSP (Mjη

′µ) for j = 1, ..., k, where tj is the
argument of f with the same position, η′ = η ∪ τ ′′. This can be done since
dom(η) ∩ dom(τ ′′) = ∅.

iii) If all the checks in step ii) pass, we set Lrest := Lrest\#{l/(n, k)}, Srest :=
Srest\#{f}, Llinear := Llinear∪#{l/(n, k)}, and τ ′ = τ ′′. Loop while Lrest 6=
∅.

Stage 2 is similar. We perform the above algorithm of stage 1 without #. In
the Start, let τ ′ be the one we have achieved in stage 1, set Lrest := pfacts(L),
Srest := SMS , and do not change Srest in step iii) of the Loop. If both the two
stages are successful, fmatch goes to the success-edge.

All the steps in fmatch can be performed by CoSP nodes. By the conditions in
step ii), if successful, fmatch will find τ ′ and η′ = η∪τ ′ such that lfacts(L)η′µ ⊆#

SMS and pfacts(L)η′µ ⊂ SMS . Thus we encode the pattern matching of multiset
state construct into the CoSP sub-protocol fmatch.

Then we need to explain that the embedding way does not cost unacceptably
high. The time complexity of the above sub-protocol (measured by the CoSP
nodes) is approximately the size of SMS times the size of L. Given a closed
SAPIC process, the maximum size of L is a constant number and the size of
SMS is polynomial in the execution steps t. Thus there exists a polynomial p,
such that the computation steps of encoding is bounded by p(t).

Now we could give out the definition of computational execution model of
SAPIC in Definition 9. It is an interactive machine ExecSP0

(1k) that executes the
SAPIC process and communicates with a probabilistic polynomial-time adver-
sary. The model maintains a protocol state as 6-tuple (P , η, µ, S, Λ, SMS). The
definition of the evaluation context is similar to that of the applied π calculus.
We write E[P ] = P ∪ {P}.

In order to relate the symbolic and the computational semantics of a SAPIC
process, we also define an additional symbolic execution for closed SAPIC pro-
cesses as a technical tool as in [11]. It is a direct analogue of the computational ex-
ecution model and denoted by SExecSP0

. The difference between ExecSP0
(1k) and
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SExecSP0
is that the latter one operates on CoSP-terms rather than bitstrings: It

computes CoSP-terms Mηµ and evalCoSPDηµ instead of bitstrings cevalη,µ(M)
and cevalη,µ(D), it compares the CoSP-terms using CoSP-destructor ∼= instead
of checking for equality of bitstrings, and it chooses a fresh nonce r ∈ NP instead
of choosing a random bitstring r as value for a new protocol name.

Due to the limited space, we merge the Definition 10 of the symbolic execution
of SAPIC into the Definition 9 of the computational one. It is marked by [[...]].
In the main loop, we only present the cases of SAPIC state constructs. For the
standard cases, the execution model performs in the same way as the applied π
calculus model does.

Definition 9 [[10]] (Computational [[Symbolic]] Execution of SAPIC). Let
P0 be a closed SAPIC process (where all bound variables and names are renamed
such that they are pairwise distinct and distinct from all unbound ones). Let A
be an interactive machine called the adversary. We define the computational
[[symbolic]] execution of SAPIC calculus as an interactive machine ExecSP0

(1k)

that takes a security parameter k as argument [[interactive machine SExecSP0

that takes no argument]] and interacts with A:

Start: Let P := {P0}. Let η be a totally undefined partial function mapping π-
variables to bitstrings [[CoSP-terms]], let µ be a totally undefined partial function
mapping π-names to bitstrings [[CoSP-terms]], let S be an initially empty set of
pairs of bitstrings [[CoSP-terms]]. Let SMS be an initially empty multiset of
facts whose arguments are bitstrings [[CoSP-terms]]. Let Λ be an initially empty
set of bitstrings [[CoSP-terms]]. Let a1, ..., an denote the free names in P0. Pick
{ri}ni=1 ∈ Noncesk at random [[Choose a different ri ∈ NP ]]. Set µ := µ ∪ {ai :=
ri}ni=1. Send (r1, ..., rn) to A.

Main loop: Send P toA and expect an evaluation contextE from the adversary.
Distinguish the following cases:

• For the standard cases, the execution model performs the same way as in
Definition 5 [[6]].

• P = E[insert M,N ;P1]: Set m := cevalη,µ(M), n := cevalη,µ(N) [[m :=

evalCoSP (Mηµ), n := evalCoSP (Nηµ)]]. Plug in fmem to decide if ∃(r′, r) ∈
S, r′ = m [[r′ ∼= m]]. For the success-edge, set P := E[P1] and S :=
S\{(r′, r)} ∪ {(m,n)}. For the failure-edge, set P := E[P1] and S := S ∪
{(m,n)}.

• P = E[delete M ;P1]: Set m := cevalη,µ(M) [[m := evalCoSP (Mηµ)]]. Plug
in fmem to decide if ∃(r′, r) ∈ S, r′ = m [[r′ ∼= m]]. For the success-edge, set
P := E[P1] and S := S\{(r′, r)}. For the failure-edge, set P := E[P1].

• P = E[lookup M as x in P1 else P2]: Set m := cevalη,µ(M) [[m := evalCoSP

(Mηµ)]]. Plug in fmem to decide if ∃(r′, r) ∈ S, r′ = m [[r′ ∼= m]]. For the
success-edge, set P := E[P1] and η := η ∪ {x := r}. For the failure-edge, set
P := E[P2].

• P = E[lock M ;P1]: Set m := cevalη,µ(M) [[m := evalCoSP (Mηµ)]]. Plug in
fmem to decide if ∃r′ ∈ Λ, r′ = m [[r′ ∼= m]]. For the success-edge, do nothing.
For the failure-edge, set P := E[P1] and Λ := Λ ∪ {m}.
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• P = E[unlock M ;P1]: Set m := cevalη,µ(M) [[m := evalCoSP (Mηµ)]]. Plug
in fmem to decide if ∃r′ ∈ Λ, r′ = m [[r′ ∼= m]]. For the success-edge, set
P := E[P1] and Λ := Λ\{r′}. For the failure-edge, do nothing.

• P = E[[L] − [e] → [R];P1]: Plug in fmatch to find a substitution τ ′ from
fv(L) to bitstrings [[CoSP-terms]], such that lfacts(L)η′µ ⊆# SMS and
pfacts(L)η′µ ⊂ SMS , where η′ = η∪τ ′. For the success-edge, set P := E[P1],
SMS := SMS\#lfacts(L)η′µ ∪Rη′µ, η := η′, and raise the event e. For the
failure-edge, do nothing.

• In all other cases, do nothing.

For a given polynomial-time interactive machine A, a closed SAPIC process
P0, and a polynomial p, let EventsS

A,P0,p
(k) be the distribution for the list of

events raised within the first p(k) computational steps (jointly counted for A(1k)
and ExecSP0

(1k)). Then the computational fulfillment of SAPIC trace properties
can be defined as follows.

Definition 11 (Computational SAPIC Trace Properties). Let P0 be a
closed process, and p a polynomial. We say that P0 computationally satisfies a
SAPIC trace property ℘ if for all polynomial-time interactive machines A and
all polynomials p, we have that Pr[EventsSA,P0,p

(k) ∈ ℘] is overwhelming in k.

Then we should explain that SExecSP0
can be realized by a CoSP protocol

tree. The state of the machine SExecSP0
includes a tuple (P , µ, η, S, SMS , Λ). It

is used as a node identifier. CoSP-terms should be encoded by the indexes in
the path from the root to the node in which they were created (or received).
The process P , the fact symbols in SMS , and the π-names in dom(µ) will be en-
coded as bitstrings. We plug two sub-protocols, fmem and fmatch, into the CoSP
protocol respectively for the decision of set-membership in the functional state
constructs, and for the pattern matching in the multiset state constructs. We
have explained that these two sub-protocols do not introduce an unacceptable
cost. The operation of raising event e can be realized using a control node with
one successor that sends (event, e) to the adversary. Given a sequence of nodes
ν, we denote by events(ν) the events e raised by the event nodes in ν. We call
this resulting CoSP protocol ΠS

P0
.

Definition 12. SExecSP0
satisfies a SAPIC trace property ℘ if in a finite inter-

action with any Dolev-Yao adversary, the sequence of events raised by SExecSP0

is contained in ℘.

Before we prove Theorem 1 of the CS result of SAPIC, we first state and
prove three lemmas. Lemma 1 relates the computational/symbolic execution
of SAPIC calculus and the CoSP protocol ΠS

P0
. Lemma 2 states that ΠS

P0
is

efficient. Lemma 3 asserts that the symbolic execution is a safe approximation
for SAPIC. Theorem 1 states that the computationally sound implementation
of the symbolic model of applied π calculus implies the CS result of SAPIC
calculus. We present the proofs in Appendix A.

Lemma 1. SExecSP0
satisfies a trace property ℘ iff ΠS

P0
satisfies events−1(℘).

Moreover, P0 computationally satisfies ℘ iff (ΠS
P0
, A) computationally satisfies

events−1(℘). Both are in the sense of Definition 2.
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Lemma 2. The CoSP protocol ΠS
P0

is efficient.
Lemma 3. If a SAPIC closed process P0 symbolically satisfies a SAPIC trace
property ℘ in the sense of Definition 7, then SExecSP0

satisfies ℘ in the sense of
Definition 12.
Theorem 1 (CS in SAPIC). Assume that the computational implementation
of the applied π calculus is a computationally sound implementation (in the
sense of Definition 3) of the symbolic model of applied π calculus (Definition 4)
for a class P of protocols. If a closed SAPIC process P0 symbolically satisfies a
SAPIC trace property ℘ (Definition 7), and ΠS

P0
∈ P, then P0 computationally

satisfies ℘ (Definition 11).

4 Computational Soundness Result for StatVerif

StatVerif was proposed in [21]. Its process language is an extension of the
ProVerif process calculus with only functional state constructs. StatVerif is lim-
ited to the verification of secrecy property.

In this section, we first encode the StatVerif processes into a subset of SAPIC
processes. Then we prove that our encoding is able to capture secrecy of stateful
protocols by using SAPIC trace properties. Finally with the CS result of SAPIC,
we can directly obtain the CS result for StatVerif calculus. Note that our encod-
ing way shows the differences between the semantics of state constructs in these
two calculi.

Table 3. State constructs of StatVerif calculus

〈P,Q〉 ::= processes
... standard processes
[s 7→ M ] initialize
s := M ;P assign
read s as x;P read
lock; P lock state
unlock; P unlock state

Syntax. We first review the StatVerif calculus proposed in [21]. We list the
explicit functional state constructs in Table 3. Table 1 and 3 together compose
the full syntax of StatVerif calculus. Note that the state constructs are subject
to the following two additional restrictions:

• [s 7→ M ] may occur only once for a given cell name s, and may occur only
within the scope of name restriction, a parallel and a replication.

• For every lock;P , the part P of the process must not include parallel or
replication unless it is after an unlock construct.

Operational Semantics. A semantic configuration for StatVerif is a tuple
(ñ,S,P ,K). ñ is a finite set of names. S = {si := Mi} is a partial function
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mapping cell names si to their associated values Mi. P = {(P1, β1), ..., (Pk, βk)}
is a finite multiset of pairs where Pi is a process and βi ∈ {0, 1} is a boolean
indicating whether Pi has locked the state. For any 1 ≤ i ≤ k, we have at most
one βi = 1. K is a set of ground terms modeling the messages output to the envi-
ronment (adversary). The semantics of StatVerif calculus is defined by transition
rules on semantic configurations. We do a little change to the original semantics
by adding two labelled transitions for the input and output of adversary. With
these rules, we can define secrecy property without explicitly considering the ad-
versary processes. We list these two rules and the semantics of state constructs
in Fig. 3. The rest are in [21].

(ñ,S,P ∪ {([s 7→ M], 0)} ,K) −→ (ñ,S ∪ {s := M},P,K) if s ∈ ñ and s /∈ dom(S)

(ñ,S,P ∪ {(s := N ;P, β)} ,K) −→ (ñ,S ∪ {s := N},P ∪ {(P, β)} ,K) if s ∈ dom(S) and ∀(Q, β
′
) ∈ P, β

′
= 0

(ñ,S,P ∪ {(read s as x;P, β)} ,K) −→ (ñ,S,P ∪ {(P{S(s)/x}, β)} ,K) if s ∈ dom(S) and ∀(Q, β
′
) ∈ P, β

′
= 0

(ñ,S,P ∪ {(lock;P, 0)} ,K) −→ (ñ,S,P ∪ {(P, 1)} ,K) if ∀(Q, β
′
) ∈ P, β

′
= 0

(ñ,S, P ∪ {(unlock;P, 1)} ,K) −→ (ñ,S,P ∪ {(P, 0)} ,K)

(ñ,S,P ∪ {(out(M, N);P, β)} ,K)
K(N)
−−−−−→ (ñ,S,P ∪ {(P, β)} ,K ∪ {N}) if νñ.K ⊢ M

(ñ,S,P ∪ {(in(M,x);P, β)} ,K)
K(M,N)
−−−−−−−→ (ñ,S,P ∪ {(P{N/x}, β)} ,K) if νñ.K ⊢ M and νñ.K ⊢ N

Fig. 3. The semantics of Statverif

Security Property. StatVerif is limited to the verification of secrecy property.
The secrecy property of StatVerif is defined as follows.
Definition 13 (StatVerif Secrecy Property). Let P be a closed StatVerif
process, M a message. P preserves the secrecy of M if there exists no trace of
the form:

(∅, ∅, {(P, 0)}, fn(P ))
α
−→

∗

(ñ,S,P ,K) where νñ.K ⊢ M

In the following, we encode the StatVerif processes into a subset of SAPIC
processes and obtain the CS result directly from that of SAPIC, which has been
proved in Section 3.2. With this encoding, we can easily embed the StatVerif
calculus into the CoSP framework. Thus we do not need to build another com-
putational execution model for StatVerif like what we have done for SAPIC.

There are many differences between the semantics of these two calculi. The
lock construct is the place in which they differ the most. For a StatVerif process
P := lock;P1, it will lock the state and all the processes in parallel cannot access
the current state cells until an unlock in P1 is achieved. For a SAPIC process
P := lock M ;P1, it will only store the π-term M in a set Λ and make sure it
cannot be locked again in another concurrent process Q := lock M ′;Q1 where
M ′ =E M until an unlock construct is achieved. Moreover, the state cells in
StatVerif calculus should be initialized before they can be accessed. It is not
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required in SAPIC. Thus we should do more for a SAPIC process to simulate
the state construct in a StatVerif process.

⌊0⌋
0
= 0 ⌊P |Q⌋

0
= ⌊P ⌋

0
|⌊Q⌋

0
⌊νn;P⌋

b
= νn; ⌊P ⌋

b
⌊!P ⌋

0
=!⌊P ⌋

0

⌊in (M, x) ;P ⌋
b
= in (M,x) ; ⌊P ⌋

b
⌊out (M,N) ;P ⌋

b
= out (M,N) ; ⌊P ⌋

b

⌊let x = D in P else Q⌋
b
= let x = D in ⌊P ⌋

b
else ⌊Q⌋

b
⌊event e;P ⌋

b
= event e; ⌊P ⌋

b

⌊[s 7→ M ]⌋
0
= insert s,M

⌊lock;P ⌋
0
= lock l; ⌊P ⌋

1
⌊unlock;P⌋

1
= unlock l; ⌊P ⌋

0

⌊s := M ;P⌋
b
=







lock l; lookup s as xs in insert s,M ; unlock l; ⌊P ⌋
0
for b = 0

lookup s as xs in insert s,M ; ⌊P ⌋
1
for b = 1

where xs is a fresh variable

⌊read s as x;P ⌋
b
=

{

lock l; lookup s as x in unlock l; ⌊P ⌋
0
for b = 0

lookup s as x in ⌊P ⌋
1
for b = 1

Fig. 4. Encoding Statverif process

We first define the encoding ⌊P ⌋b for StatVerif process P with the boolean b
indicating whether P has locked the state. Note that we only need to encode the
StatVerif state constructs by using SAPIC functional state constructs. We leave
the standard constructs unchanged. For the sake of completeness, we list them
all in Fig. 4. The state cell initialization [s 7→ M ] is represented by the construct
insert s,M . To encode the lock operation, we set a free fresh cell name l. The
lock is represented by lock l and turning the boolean b from 0 to 1. The unlock
construct is done in the opposite direction. To write a new value into an unlocked
state cell (s := M for b = 0), we need to perform 4 steps. We first lock l before
the operation. It is to ensure the state is not locked in concurrent processes. We
then read the original value in s to ensure s has been initialized. We complete
the writing operation by the construct insert s,M and finally unlock l. When
the state has been locked (s := M for b = 1), we omit the contructs lock l and
unlock l because it has been locked before and the boolean b could be turned
from 1 to 0 only by an unlock construct. The reading operation is similar where
we bind the value to x instead of a fresh variable xs.

Let O = (ñ,S,P ,K) be a StatVerif semantic configuration where P =
{(Pi, βi)}ki=1 and βi ∈ {0, 1} indicating whether Pi has locked the state. We
define the encoding ⌊O⌋ as SAPIC semantic configuration.

⌊O⌋ =

{(

ñ,S, ∅, {⌊Pi⌋βi}
k
i=1,K, {l}

)

if ∃(Pi, βi) ∈ P , βi = 1,
(

ñ,S, ∅, {⌊Pi⌋βi}
k
i=1,K, ∅

)

if ∀(Pi, βi) ∈ P , βi = 0.

Before we prove Lemma 6 that our encoding is able to capture secrecy of
StatVerif process, we provide Lemma 4 and Lemma 5 to explain that the en-
coding SAPIC process can simulate the encoded StatVerif process. Then by
Theorem 2 we obtain the CS result of StatVerif. The proofs are in Appendix B.
Lemma 4. Let O1 be a StatVerif semantic configuration. If O1

α
−→ O2, then

⌊O1⌋
α
−→

∗

⌊O2⌋.
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Lemma 5. Let O1 be a StatVerif semantic configuration. If ⌊O1⌋
α
−→ O′, then

there exists a StatVerif semantic configuration O2, such that O1
α
−→

∗

O2 and
that O′ = ⌊O2⌋ or O′ −→∗ ⌊O2⌋.
Lemma 6. Let P0 be a closed StatVerif process. Let M be a message. Set
P ′ := in(attch, x); let y = equal(x,M) in event NotSecret, where x, y are two
fresh variables that are not used in P0, attch ∈ NE is a free channel name which
is known by the adversary.We set ℘ := {e|NotSecret is not in e}.Q0 := ⌊P ′|P0⌋0
is a closed SAPIC process and ℘ is a SAPIC trace property. Then we have that
P0 symbolically preserves the secrecy of M (in the sense of Definition 13) iff Q0

symbolically satisfies ℘ (in the sense of Definition 7).

Theorem 2 (CS in StatVerif). Assume that the computational implementa-
tion of the applied π calculus is a computationally sound implementation (Def-
inition 3) of the symbolic model of the applied π calculus (Definition 4) for a
class P of protocols. For a closed StatVerif process P0, we denote by Q0 and ℘
the same meanings in Lemma 6. Thus if the StatVerif process P0 symbolically
preserves the secrecy of a message M (Definition 13) and ΠS

Q0
∈ P, then Q0

computationally satisfies ℘.

5 Case Study: CS Results of Public-Key Encryption and

Signatures

In section 3 and 4, we have embedded the stateful applied π calculus used in
SAPIC and StatVerif into the CoSP framework. CoSP allows for casting CS
proofs in a conceptually modular and generic way: proving x cryptographic prim-
itives sound for y calculi only requires x+y proofs (instead of x·y proofs without
this framework). In particular with our results, all CS proofs that have been con-
ducted in CoSP are valid for the stateful applied π calculus, and hence accessible
to SAPIC and StatVerif.

We exemplify our CS results for stateful applied π calculus by providing
the symbolic model that is accessible to the two verification tools, SAPIC and
StatVerif. We use the CS proofs in [15] with a few changes fitting for the ver-
ification mechanism in these tools. The symbolic model allows for expressing
public-key encryption and signatures.

LetC := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1, string1/1,
empty/0, garbageSig/2, garbage/1, garbageEnc/2} be the set of constructors.
We require that N = NE⊎NP for countable infinite sets NP of protocol nonces
and NE of attacker nonces. Message type T is the set of all terms T matching
the following grammar, where the nonterminal N stands for nonces.

T ::=enc(ek(N), T,N)|ek(N)|dk(N)|sig(sk(N), T,N)|vk(N)|sk(N)|

pair(T, T )|S|N |garbage(N)|garbageEnc(T,N)|garbageSig(T,N)

S ::=empty|string0(S)|string1(S)
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Let D := {dec/2, isenc/1, isek/1, isdk/1, ekof/1, ekofdk/1, verify/2, issig/1,
isvk/1, issk/1, vkof/2, vkofsk/1, fst/1, snd/1, unstring0/1, equal/2} be the
set of destructors. The full description of all destructor rules is given in [15]. Let
⊢ be defined as in Definition 4. Let M = (C,N,T,D,⊢) be the symbolic model.

In StatVerif, the symbolic model M can be directly achieved since the term
algebra is inherited from ProVerif, whose CS property has been proved in [15].
In SAPIC, we formalize the symbolic model by a signature Σ := C∪D with the
equational theories expressing the destructor rules. Note that 3 destructor rules
are filtered out including: i) ekofdk(dk(t)) = ek(t); ii) vkof(sig(sk(t1), t2, t3)) =
vk(t1); iii) vkofsk(sk(t)) = vk(t), since they are not subterm-convergent, which
is required by SAPIC (by verification mechanism of tamarin-prover). Note that
these rules are all used to derive the public key. We require that for all the
signatures and private keys in communication, they should be accompanied by
their public keys. In this way, both the adversary and the protocol will not use
these rules. To show the usefulness of our symbolic model in this section, we
have verified the left-or-right protocol presented in [21] by using SAPIC and
StatVerif. In Appendix C and D, we provide the scripts for the protocol.

To establish CS results, we require the protocols to fulfill several natural
conditions with respect to their use of randomness. Protocols that satisfy these
protocol conditions are called randomness-safe. Additionally, the cryptographic
implementations needs to fulfill certain conditions, e.g., that the encryption
scheme is PROG-KDM secure, and the signature scheme is SUF-CMA. Both
the protocol conditions and the implementation conditions could be found in
[15]. Then we conclude CS for protocols in the stateful applied π calculus that
use public-key encryption and signatures.
Theorem 3 (CS for Enc. and Signatures in SAPIC and StatVerif). Let
M be as defined in this section and A of M be an implementation that satis-
fies the conditions from above. If a randomness-safe closed SAPIC or StatVerif
process P0 symbolically satisfies a trace property ℘, then P0 computationally
satisfies ℘2.

6 Conclusion

In this paper, we present two CS results respectively for the stateful applied π
calculus used in SAPIC tool and StatVerif tool. We show that the CS results
of applied π calculus implies the CS results of SAPIC calculus and of StatVerif
calculus. Thus for any computationally sound implementation of applied π cal-
culus, if the security property of a closed stateful process is verified by SAPIC
tool or StatVerif tool, it is also computationally satisfied. The work is conducted
within the CoSP framework. We give the embedding from the SAPIC calculus
to CoSP protocols. Furthermore, we provide an encoding of the StatVerif pro-
cesses into a subset of SAPIC processes, which shows the differences between
the semantics of these two calculi. As a case study, we provide the CS result

2 For a closed StatVerif process P0, we denote by Q0 and ℘ the same meanings in
Lemma 6. We say P0 computationally satisfies ℘ iff Q0 computationally satisfies ℘.
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for the input languages of StatVerif and SAPIC with public-key encryption and
signatures.
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Appendix A: Proof of Theorem 1

Lemma 1. SExecSP0
satisfies a trace property ℘ iff ΠS

P0
satisfies events−1(℘).

Moreover, P0 computationally satisfies ℘ iff (ΠS
P0
, A) computationally satisfies

events−1(℘). Both are in the sense of Definition 2.

Proof. Since events−1(℘) is the set of nodes sequences whose raised events se-
quence are in the trace property set ℘. Thus the symbolic case is immediate
from the construction of ΠS

P0
. For the computational case, note that the com-

putational implementation of P0 is defined like the symbolic one, except that
it uses the implementations of the CoSP-constructors (includes the nonces) and
CoSP-destructors (includes destructor equal′) rather than operate abstractly on
CoSP-terms. Thus it is true for the computational case.

Lemma 2. The CoSP protocol ΠS
P0

is efficient.

Proof. By construction, given all the node identifiers and the edge labels on
the path to a node N , there should be a deterministic polynomial-time algo-
rithm that can compute the label of N (the current state of the CoSP protocol).
According to the construct of SExecSP0

, it only needs to prove that the compu-
tation steps in each loop is bounded by a polynomial in the loop number. We
only consider the state constructs and others are with constant numbers. For the
functional state constructs, the number of computation steps in set-membership
decision fmem is bounded by the cardinal number of set, which is less than the
reduction steps of main process. For the multiset state construct, as we have
stated in Section 3.2 that the time complexity for the pattern matching algo-
rithm fmatch is polynomial in the reduction steps. Thus the computation steps
of the algorithm would not grow exponentially.

It is left to show that the length of the node identifier is bounded by a
polynomial in the length of the path leading to that node. This is equivalent to
showing that the state tuple (P , µ, η, S, SMS , Λ) of SExecSP0

is of polynomial-
length (when not counting the length of the representations of the CoSP-terms).
For µ, η, S, and Λ, this is immediately satisfied since they grow by at most one
entry in each activation of SExecSP0

. For SMS , we have stated in Section 3.2
that its size is polynomial in the number of reduction steps since we treat the
CoSP-terms as black-boxes. At last, we should show that the size of processes P
in P is polynomially bounded. Note the fact that in each activation of SExecSP0

,
processes P either gets smaller, or we have P = E[!P1] and processes P in P
grow by the size of P1, which is bounded by the size of P0. Thus the size of
processes P in P is linear in the number of activation of SExecSP0

.

Lemma 3 (Safe Approximation for SAPIC). If a SAPIC closed process P0

symbolically satisfies a SAPIC trace property ℘ in the sense of Definition 7, then
SExecSP0

satisfies ℘ in the sense of Definition 12.

Proof. . To show this lemma, it is sufficient to show that if SExecSP0
raises

events e1, ..., en, then e is a SAPIC event trace of P0. Hence, for the following



Computational Soundness Results for Stateful Applied π Calculus 25

we fix an execution of SExecSP0
in interaction with a Dolev-Yao adversary A in

which SExecSP0
raises the events e1, ..., en. We then prove the lemma by show-

ing that there exists a finite sequence [K1, ...,Kn] of sets of π-terms such that

(∅, ∅, ∅, {P0}, fn(P0), ∅) −→∗ e1−→ (ñ1,S1,SMS
1 ,P1,K1,L1) −→∗ e2−→ · · · −→∗ en−→

(ñm,Sm,SMS
m ,Pm,Km,Lm).

For a given iteration of the main loop of SExecSP0
, let (P , η, µ, S, SMS , Λ)

denote the corresponding state of SExecSP0
at the beginning of that iteration.

Let E denote the evaluation context chosen in that iteration. Let n be the
domain of µ without the names r1, ..., rn sent in the very beginning of the ex-
ecution of SExecSP0

. (P ′, η′, µ′, S′, SMS′

, Λ′) and n′ are the corresponding val-
ues after that iteration. Let fromadv be the list of terms received from the
adversary in that iteration, and let toadv be the list of terms sent to the ad-
versary. By (P0, η0, µ0, S0, S

MS
0 , Λ0) we denote the corresponding values be-

fore the first iteration but after the sending of the message (r1, ..., rn), and
by (P∗, η∗, µ∗, S∗, S

MS
∗ , Λ∗) and n∗ the values after the last iteration. We call

a variable or name used if it occurs in the domain of η∗ or µ∗, respectively. Note
that µ0 = (a1 7→ r1, ..., an 7→ rn) where a are the free names in P0, but n0 = ∅.
Note that P will never contain unused free variables or names.

Let K denote the list of all CoSP-terms output by SExecSP0
up to the current

iteration. We encode K = (t1, ..., tm) as a substitution ϕ mapping xi 7→ ti where
xi are arbitrary unused variables. We denote by K ′, ϕ′, K0, ϕ0 and K∗, ϕ∗ the
values of K,ϕ after the current iteration, before the iteration (but after sending
(r1, ..., rn)), and after the last iteration, respectively. Note that K0 = (r1, ..., rn).

Let γ be an injective partial function that maps every N ∈ NE to an un-
used π-name, and every N ∈ range µ∗ to µ−1

∗ (N). (This is possible because
range µ∗ ⊆ NP and µ∗ is injective.) We additionally require that all unused
π-names are in range γ. (This is possible since both NE and the set of unused
π-names are countably infinite.)

The following claims proposed in [11] can still stick. Note that for any π-
destructor d and any π-terms M with fv(M) ∈ dom(η) and fn(M) ∈ dom(µ),
we have that Mηµ are CoSP-terms and d′(Mηµ)γ = d(Mηµγ) (where d′ is
as in Section 2.2). Hence for a destructor term D with fv(D) ⊆ dom(η) and
fn(D) ⊆ dom(µ), we have evalCoSP (Dηµ)γ = evalπ(Dηµγ). Since aµγ = a for
all names a ∈ dom(µ), Dηµγ = Dηγ. Since evalCoSP (Dηµ) does not contain
variables, evalCoSP (Dηµ) = evalCoSP (Dηµ)η. Thus forD with fv(D) ⊆ dom(η)
and fn(D) ⊆ dom(µ), we have

evalCoSP (Dηµ)ηγ = evalπ(Dηγ). (1)

where the left hand side is defined iff the right hand side is defined.

Similarly to (1), if fv(D) ⊆ dom(ϕ) and fn(D) ⊆ dom(γ−1), we have that
evalCoSP (Dϕγ−1)γ = evalπ(Dϕγ). For a CoSP-term t with K ⊢ t, from the
definition of ⊢ it follows that t = evalCoSP (Dtϕγ

−1) for some destructor π-term
Dt containing only unused names and variables in dom(ϕ) (note that every
N ∈ NE can be expressed as aγ−1 for some unused a). Since all unused names
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are in dom(γ−1), we have

tγ = evalCoSP (Dtϕγ
−1)γ = evalπ(Dtϕγ). (2)

Given two CoSP-terms t, u such that equal′(t, u) 6= ⊥ and t and u only
contain nonces N ∈ NE ∪ range µ∗, by definition of equal′ and using that γ is
injective and defined on NE ∪ range µ∗, we have equal

′(t, u) = equal(tγ, uγ)γ−1

and hence equal(tγ, uγ) 6= ⊥. Hence, for t, u only containing nonces N ∈ NE ∪
range µ∗, we have that

equal′(t, u) 6= ⊥ ⇔ tγ =E uγ (3)

Claim:The main loop in SExecSP0
satisfies that (n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ) ⇒

(n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ). Here ⇒ denotes
e
−→ if an event e is raised

in the current iteration, and −→∗ otherwise. Sηγ := {(rηγ, r′ηγ)|∀(r, r′) ∈ S}.
SMSηγ is similar by applying the mapping ηγ to all the arguments of facts in
SMS .

Assuming that we have shown this claim, it follows that (n0, S0η0γ, S
MS
0 ηγ,

P0η0γ,K0γ, Λ0η0γ) −→∗ e1−→−→∗ e2−→−→∗ · · · −→∗ en−→. Since η0 = S0 = SMS = n0 =
Λ0 = ∅,K0γ = a = fn(P0) and since P0 = {P0} does not contain nonces N ∈ N,

we haveP0η0γ = P0. Then we have that (∅, ∅, ∅, {P0}, fn(P0), ∅) −→∗ e1−→−→∗ e2−→−→∗

· · · −→∗ en−→. This implies that e is a SAPIC event trace of P0. It proves this lemma.
It is left to prove the claim. We distinguish the following cases:
i) In the following cases, the adversary chooses to proceed the standard π-

process except for the input and output constructs where P = E[νa;P1], or
P = E[out(M1, N);P1][in(M2, x);P2], or P = E[let x = D in P1 else P2], or
P = E[event e;P1], or P = E[!P1]. In these cases, we have S′ = S, SMS′

= SMS ,
K ′ = K, Λ′ = Λ. For all x ∈ dom(η′)\dom(η), we have x /∈ fv(S) ∪ fv(Λ) ∪
fv(SMS). Thus Sηγ = S′η′γ, Ληγ = Λ′η′γ and SMSηγ = SMS′

η′γ. According
to the proof of Lemma 4 in [11], we have that (n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ) ⇒
(n′, S′η′γ, SMS′

ηγ,P ′η′γ,K ′γ, Λ′η′γ).
ii) P = E[in(M,x);P1] and fromadv = (c,m) and evalCoSPMηµ ∼= c: Then

P ′ = E[P1], K ′ = K, S′ = S, SMS′

= SMS , Λ′ = Λ, µ′ = µ, and η′ =
η∪{x := m}. Furthermore, since SExecSP0

interacts with a Dolev-Yao adversary,
K ⊢ c,m. By (2), we have Kγ ⊢ cγ,mγ. Since a Dolev-Yao adversary will never
derive protocol nonces that have never been sent, we have that only nonces
N ∈ NE ∪ range µ occur in c and in Mηµ. Hence with (3), from Mηµ =
evalCoSPMηµ ∼= c it follows that Mηγ = Mηµγ =E cγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [in(Mηγ, x);P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ{mγ/x}] ,Kγ, Ληγ
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)
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Since we maintain the invariant that all bound variables in P are distinct from
all other variables in P , or S, or λ, or dom(η), we have x /∈ fv(E), x /∈ S, x /∈ λ,
x /∈ SMS , and x /∈ dom(η). Hence Eηγ = Eη′γ, P1ηγ{mγ/x} = P1η{m/x}γ =
P1η

′γ, Ληγ = Λη′γ. Thus the last equation is true.

iii) P = E[out(M,N);P1] with t′M := fromadv ∼= tM and toadv = tN
where tM ∼= evalCoSP (Mηµ) and tN := evalCoSP (Nηµ). Then K ′ = K ∪ {tN},
P ′ = E[P1], η

′ = η, µ′ = µ, S′ = S, SMS′

= SMS , and Λ′ = Λ. Since t′M
was sent by the adversary, K ⊢ t′M . According to the Dolev-Yao property, the
adversary will never derive protocol nonces that have never been sent, we have
that only nonces N ∈ NE ∪ range µ occur in t′M and Mηµ. Hence with (3), from
t′M

∼= tM it follows that Mηγ = Mηµγ = tMγ =E t′Mγ, and that Nηγ = tNγ.
Thus Kγ ⊢ Mηγ, and K ′γ = Kγ ∪ {tNγ} = Kγ ∪ {Nηγ}. We have that

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [out(Mηγ,Nηγ);P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ] ,Kγ ∪ {Nηγ}, Ληγ
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

iv) P = E[insert M,N ;P1] with tM = evalCoSP (Mηµ), tN = evalCoSP (Nηµ),
and ∃(r, r′) ∈ S such that r ∼= tM . ThenK ′ = K,P ′ = E[P1], η

′ = η, µ′ = µ, S′ =
S\{(r, r′)} ∪ {(tM , tN )}, SMS′

= SMS , Λ′ = Λ. By (1), tMηγ = evalπ(Mηγ) =
Mηγ, tNηγ = Nηγ. r ∼= tM implies rη ∼= tMη. Since a Dolev-Yao adversary
will never derive protocol nonces that have never been sent, we have that only
nonces N ∈ NE ∪ range µ occur in rη and tMη. By (3), Mηγ = tMηγ = rηγ ∈
dom(S)ηγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [insert Mηγ,Nηγ;P1ηγ] ,Kγ, Ληγ
)

→(n, Sηγ\{(rηγ, r′ηγ)} ∪ {Mηγ 7→ Nηγ}, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ)

=(n′, (S\{(r, r′)} ∪ {(tM , tN )}) ηγ, SMS′

η′γ, )P ′η′γ,K ′γ, Λ′η′γ)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

v) P = E[insert M,N ;P1] with tM = evalCoSP (Mηµ), tN = evalCoSP (Nηµ),
and ∀(r, r′) ∈ S, r ≇ tM . Then K ′ = K,P ′ = E[P1], η

′ = η, µ′ = µ, S′ =

S ∪ {(tM , tN)}, SMS′

= SMS , Λ′ = Λ. By (1), tMηγ = evalπ(Mηγ) = Mηγ,
tNηγ = Nηγ. r ≇ tM implies rη ≇ tMη. Since a Dolev-Yao adversary will never
derive protocol nonces that have never been sent, we have that only nonces
N ∈ NE ∪ range µ occur in rη and tMη. By (3), Mηγ = tMηγ 6= rηγ for all



28 Jianxiong Shao, Dengguo Feng, Yu Qin

rηγ ∈ dom(S)ηγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [insert Mηγ,Nηγ;P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ ∪ {(Mηγ,Nηγ)}, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ
)

=
(

n′, (S ∪ {(tM , tN )}) ηγ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

vi) P = E[delete M ;P1] with tM = evalCoSP (Mηµ), and ∃(r, r′) ∈ S such
that r ∼= tM . Then K ′ = K,P ′ = E[P1], η

′ = η, µ′ = µ, S′ = S\{(r, r′)}, SMS′

=
SMS , Λ′ = Λ. By (1), tMηγ = evalπ(Mηγ) = Mηγ. r ∼= tM implies rη ∼= tMη.
Since a Dolev-Yao adversary will never derive protocol nonces that have never
been sent, we have that only nonces N ∈ NE ∪ range µ occur in rη and tMη. By
(3), Mηγ = tMηγ = rηγ ∈ dom(S)ηγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [delete Mηγ;P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ\{(rηγ, r′ηγ)}, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ
)

=
(

n′, (S\{(r, r′)}) ηγ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

vii) P = E[delete M ;P1] with tM = evalCoSP (Mηµ), and ∀(r, r′) ∈ S, r ≇

tM . Then K ′ = K,P ′ = E[P1], η
′ = η, µ′ = µ, S′ = S, SMS′

= SMS , Λ′ = Λ.
By (1), tMηγ = evalπ(Mηγ) = Mηγ. r ≇ tM implies rη ≇ tMη. Since a Dolev-
Yao adversary will never derive protocol nonces that have never been sent, we
have that only nonces N ∈ NE ∪ range µ occur in rη and tMη. By (3), Mηγ =
tMηγ 6= rηγ for all rηγ ∈ dom(S)ηγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [delete Mηγ;P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

viii) P = E[lookup M as x in P1 else P2] with tM = evalCoSP (Mηµ), and
∃(r, r′) ∈ S such that r ∼= tM . Then K ′ = K,P ′ = E[P1], η

′ = η∪{x := r′}, µ′ =
µ, S′ = S, SMS′

= SMS , Λ′ = Λ. By (1), tMηγ = evalπ(Mηγ) = Mηγ. r ∼= tM
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implies rη ∼= tMη. Since a Dolev-Yao adversary will never derive protocol nonces
that have never been sent, we have that only nonces N ∈ NE ∪ range µ occur
in rη and tMη. By (3), Mηγ = tMηγ = rηγ ∈ dom(S)ηγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=(n, Sηγ, SMSηγ, (Eηγ) [lookup Mηγ as x in P1ηγ else P2ηγ],Kγ, Ληγ)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ {r
′ηγ/x}] ,Kγ, Ληγ

)

=
(

n′, S′η′γ, SMS′

η′γ, (Eη′γ) [P1ηγ {r
′ηγ/x}] ,K ′γ, Λ′η′γ

)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

Since we maintain the invariant that all bound variables in P0 are distinct from
all other variables in P0, S, Λ, or dom(η), we have x /∈ fv(E)∪ fv(S′)∪ fv(Λ)∪
dom(SMS) ∪ dom(η). Hence Eηγ = Eη′γ, Sηγ = S′η′γ, SMSηγ = SMS′

η′γ,
and Ληγ = Λ′η′γ. Moreover, P1ηγ {r′ηγ/x} = P1 {x := r′} ηγ = P1η

′γ. Thus
the last equation is true.

ix) P = E[lookup M as x in P1 else P2] with tM = evalCoSP (Mηµ), and
∀(r, r′) ∈ S, r ≇ tM . Then K ′ = K,P ′ = E[P2], η

′ = η, µ′ = µ, S′ = S, SMS′

=
SMS , Λ′ = Λ. By (1), tMηγ = evalπ(Mηγ) = Mηγ. r ≇ tM implies rη ≇ tMη.
Since a Dolev-Yao adversary will never derive protocol nonces that have never
been sent, we have that only nonces N ∈ NE ∪ range µ occur in rη and tMη. By
(3), Mηγ = tMηγ 6= rηγ for all rηγ ∈ dom(S)ηγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=(n, Sηγ, SMSηγ, (Eηγ) [lookup Mηγ as x in P1ηγ else P2ηγ],Kγ, Ληγ)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P2ηγ] ,Kγ, Ληγ
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

x) P = E[lock M ;P1] with tM = evalCoSP (Mηµ), and ∀r ∈ Λ, r ≇ tM .

Then K ′ = K,P ′ = E[P1], η
′ = η, µ′ = µ, S′ = S, SMS′

= SMS , Λ′ = Λ ∪ {tM}.
By (1), tMηγ = evalπ(Mηγ) = Mηγ. r ≇ tM implies rη ≇ tMη. Since a Dolev-
Yao adversary will never derive protocol nonces that have never been sent, we
have that only nonces N ∈ NE ∪ range µ occur in rη and tMη. By (3), Mηγ =
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tMηγ 6= rηγ for all rηγ ∈ Ληγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [lock Mηγ;P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ ∪ {Mηγ}
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ ∪ {tMηγ}
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

xi) P = E[unlock M ;P1] with tM = evalCoSP (Mηµ), and ∃r ∈ Λ such that
r ∼= tM . Then K ′ = K,P ′ = E[P1], η

′ = η, µ′ = µ, S′ = S, SMS′

= SMS , Λ′ =
Λ\{r}. By (1), tMηγ = evalπ(Mηγ) = Mηγ. r ∼= tM implies rη ∼= tMη. Since
a Dolev-Yao adversary will never derive protocol nonces that have never been
sent, we have that only nonces N ∈ NE ∪ range µ occur in rη and tMη. By (3),
Mηγ = tMηγ = rηγ ∈ Ληγ. Thus we have

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [unlock Mηγ;P1ηγ] ,Kγ, Ληγ
)

→
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ\{Mηγ}
)

=
(

n, Sηγ, SMSηγ, (Eηγ) [P1ηγ] ,Kγ, Ληγ\{tMηγ}
)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

xii) P = E[[L] − [e] → [R];P1] with τ ′ := {xi 7→ si} is a substitution found
by the pattern matching algorithm in SExecSP0

, and such that lfacts(L)(η ∪

τ ′)µ ⊆# SMS , pfacts(L)(η ∪ τ ′)µ ⊂ SMS . Then K ′ = K,P ′ = E[P1], η
′ =

η ∪ τ ′, µ′ = µ, S′ = S, SMS′

= SMS\#lfacts(L)η′µ ∪# Rη′µ,Λ′ = Λ. According
to the pattern matching sub-protocol fmatch, τ

′ is grounding for L such that
for all symbolic fact l ∈# lfacts(L), there exists a fact f ∈# SMS such that
lη′µ = f , where the equality means that the two symbolic facts have the same
fact label, and their arguments (as CoSP-terms) are equal under ∼=. Then for any
Ml that is the argument of l, let tf be the corresponding one of f , by (1) we get
Mlη

′γ = evalCoSP (Mlη
′µ)η′γ = tfη

′γ. Since all the arguments of lη′γ and fη′γ
are equal, we have that lη′γ = fη′γ. Hence lfacts(Lη′γ) ⊆# SMSη′γ = SMSηγ.
It is similar to get pfacts(Lη′γ) ⊂ SMSηγ. We set τ = τ ′γ. Then we have
(Lηγ)τ = (Lηγ)(τ ′γ) = Lη′γ = (Lη′µ)η′γ. The last equation is true since
dom(η)∩dom(τ ′) = ∅. Similarly, we have (Rηγ)τ = Rη′γ = (Rη′µ)η′γ. Thus we
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have that

(

n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ
)

=(n, Sηγ, SMSη′γ, (Eηγ) [([Lηγ]− [e] → [Rηγ]);P1ηγ] ,Kγ, Ληγ)

→(n, Sηγ, SMSη′γ\#lfacts(Lηγ)τ ∪# (Rηγ)τ, (Eηγ) [(P1ηγ)τ ] ,Kγ, Ληγ)

=(n, Sηγ, SMSη′γ\#lfacts(Lη′µ)η′γ ∪# (Rη′µ)η′γ, (Eηγ) [(P1ηγ)τ ] ,Kγ, Ληγ)

=(n, Sηγ, SMS′

η′γ, (Eηγ) [(P1ηγ)τ ] ,Kγ, Ληγ)

=
(

n′, S′η′γ, SMS′

η′γ,P ′η′γ,K ′γ, Λ′η′γ
)

Since we maintain the invariant that all bound variables are pairwise distinct,
∀x ∈ τ , we have x /∈ fv(E) ∪ fv(S′) ∪ fv(Λ′) ∪ fv(SMS) ∪ dom(η). Hence
Eηγ = Eη′γ, Sηγ = S′η′γ, and Ληγ = Λ′η′γ. Moreover, we have (P1ηγ)τ =
(P1ηγ)(τ

′γ) = P1η
′γ. Thus the last equation is true.

xiii) In all other cases we have P ′ = P ,K ′ = K, η′ = η, µ′ = µ, S′ =
S, SMS′

= SMS , Λ′ = Λ and that (n, Sηγ, SMSηγ,Pηγ,Kγ, Ληγ) = (n′, η′γ,
SMS′

ηγ,P ′η′γ,K ′γ, Λ′η′γ)

Theorem 1 (CS in SAPIC). Assume that the computational implementation
of the applied π-calculus is a computationally sound implementation (Definition
3) of the symbolic model of the applied π-calculus (Definition 4) for a class P
of protocols. If a closed SAPIC process P0 symbolically satisfies a SAPIC trace
property ℘ (Definition 7), and ΠS

P0
∈ P, then P0 computationally satisfies ℘

(Definition 12).

Proof. . Assume that P0 symbolically satisfies ℘. By lemma 3, SExecSP0
satisfies

℘. By lemma 1, ΠS
P0

symbolically satisfies events−1(℘). Furthermore, since ℘ is
an efficiently decidable, prefix closed set, so is events−1(℘). Thus events−1(℘)
is a CoSP-trace property. By lemma 2, we have that ΠS

P0
is an efficient CoSP

protocol. By assumption, the computational implementation A of the applied
π-calculus is computationally sound; hence (ΠS

P0
, A) computationally satisfies

events−1(℘). Using lemma 1, we obtain that P0 computationally satisfies ℘.
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Appendix B: Proof of Theorem 2

Lemma 4. Let O1 be a StatVerif semantic configuration. If O1
α
−→ O2, then

⌊O1⌋
α
−→

∗

⌊O2⌋.

Proof. . We prove this lemma by induction over the size of the set of processes
in O1. Let O1 = (ñ,S,P ∪ {(P0, β0)},K) be a StatVerif semantic configura-

tion, where P =
k
∪
i=1

{(Pi, βi)}. Assume that O1
α
−→ O2 conducts a reduction on

(P0, β0). We distinguish the following cases of P0:
i) In the following cases, where P0 = P |0, or P0 =!P , or P0 = P |Q, or

P0 = νn;P , or P0 = let x = D in P else Q, or P0 = out(M,N);P , or P0 =
in(M,x);P , or P0 = event e;P , we have that ⌊P0⌋β0 keep the standard con-

structs unchanged. Thus it is easy to obtain ⌊O1⌋
α
−→

∗

⌊O2⌋ where O1
α
−→ O2

conducts a reduction on (P0, β0).
ii) O1 = (ñ,S,P ∪ {([s 7→ M ], 0)},K), O2 = (ñ,S ∪ {s := M},P ,K), and

s ∈ ñ, s /∈ dom(S). Then we have

⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {insert s,M},K, Λ)

→(ñ,S ∪ {s := M}, ∅,
k
∪
i=1

{⌊Pi⌋βi},K, Λ)

=⌊O2⌋

where Λ = {l} if ∃(Pi, βi) ∈ P , βi = 1, or Λ = ∅ if ∀(Pi, βi) ∈ P , βi = 0.
iii) O1 = (ñ,S,P ∪ {(s := M ;P, 0)},K), O2 = (ñ,S ∪ {s := M},P ∪

{(P, 0)},K), and s ∈ dom(S), ∀(Pi, βi) ∈ P , βi = 0. Then we have

⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lock l; lookup s as xs in insert s,M ; unlock l; ⌊P ⌋0},K, ∅)

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lookup s as xs in insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := M}, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := M}, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {⌊P ⌋0},K, ∅)

=⌊O2⌋

Note that the second reduction is true because xs is fresh.
iv) O1 = (ñ,S,P ∪ {(s := M ;P, 1)},K), O2 = (ñ,S ∪ {s := M},P ∪

{(P, 1)},K), and s ∈ dom(S), ∀(Pi, βi) ∈ P , βi = 0. Then we have
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⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lookup s as xs in insert s,M ; ⌊P ⌋1},K, {l})

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {insert s,M ; ⌊P ⌋1},K, {l})

→(ñ,S ∪ {s := M}, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {⌊P ⌋1},K, {l})

=⌊O2⌋

Note that the first reduction is true because xs is fresh.
v)O1 = (ñ,S,P∪{(read s as x;P, 0)},K), O2 = (ñ,S,P∪{(P{S(s)/x}, 0)},K),

and s ∈ dom(S), ∀(Pi, βi) ∈ P , βi = 0. Then we have

⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lock l; lookup s as x in unlock l; ⌊P ⌋0},K, ∅)

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lookup s as x in unlock l; ⌊P ⌋0},K, {l})

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {unlock l; ⌊P{S(s)/x}⌋0},K, {l})

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {⌊P{S(s)/x}⌋0},K, ∅)

=⌊O2⌋

vi)O1 = (ñ,S,P∪{(read s as x;P, 1)},K), O2 = (ñ,S,P∪{(P{S(s)/x}, 1)},K),
and s ∈ dom(S), ∀(Pi, βi) ∈ P , βi = 0. Then we have

⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lookup s as x in ⌊P ⌋1},K, {l})

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {⌊P{S(s)/x}⌋1},K, {l})

=⌊O2⌋

vii) O1 = (ñ,S,P ∪ {(lock;P, 0)},K), O2 = (ñ,S,P ∪ {(P, 1)},K), and
∀(Pi, βi) ∈ P , βi = 0. Then we have

⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {lock l; ⌊P ⌋1},K, ∅)

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {⌊P ⌋1},K, {l})

=⌊O2⌋
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viii) O1 = (ñ,S,P ∪ {(unlock;P, 1)},K), O2 = (ñ,S,P ∪ {(P, 0)},K), and
∀(Pi, βi) ∈ P , βi = 0. Then we have

⌊O1⌋ =(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {unlock l; ⌊P ⌋0},K, {l})

→(ñ,S, ∅,
k
∪
i=1

{⌊Pi⌋βi} ∪ {⌊P ⌋0},K, ∅)

=⌊O2⌋

ix) In all the other cases, there is no reduction for O1
α
−→ O2 that conducts a

reduction on (P0, β0).

Lemma 5. Let O1 be a StatVerif semantic configuration. If ⌊O1⌋
α
−→ O′, then

there exists a StatVerif semantic configuration O2, such that O1
α
−→

∗

O2 and
that O′ = ⌊O2⌋ or O′ −→∗ ⌊O2⌋.

Proof. . We prove this lemma by induction over the size of the set of processes
in ⌊O1⌋. Let ⌊O1⌋ = (ñ,S, ∅,P ′∪{P0},K, Λ) be a SAPIC semantic configuration

transformed from a StatVerif semantic configuration, where P ′ =
k
∪
i=1

{P ′
i}. As-

sume that ⌊O1⌋
α
−→ O′ conducts a reduction on P0. We distinguish the following

cases of P0:

i) In the following cases, where P0 = P |0, or P0 =!P , or P0 = P |Q, or
P0 = νn;P , or P0 = let x = D in P else Q, or P0 = out(M,N);P , or P0 =
in(M,x);P , or P0 = event e;P , we have that ⌊·⌋β keep the standard constructs
unchanged. Thus it is easy to obtain the StatVerif semantic configuration O2

such that O1
α
−→ O2 and O′ = ⌊O2⌋.

ii) ⌊O1⌋ = (ñ,S, ∅,P ′∪{insert s,M ;P ′},K, Λ), O′ = (ñ,S∪{s := M}, ∅,P ′∪

{P ′},K, Λ). We get ⌊O1⌋
α
−→ O′. According to the rules of encoding, we can

assume O1 = (ñ,S,P ∪ {([s 7→ M ], 0)},K). Let O2 = (ñ,S ∪ {s := M},P ,K)
be a StatVerif semantic configuration, we have O′ = ⌊O2⌋. It is left to show

O1
α
−→ O2. This reduction needs two conditions: s ∈ ñ and s /∈ dom(S). We get

s ∈ ñ from the fact that [s 7→ M ] is a process in O1 and from the first restriction
in the syntax of StatVerif. For s /∈ dom(S), we use the disproof method. If
s ∈ dom(S), the first insertion for the state cell s should be performed by the
process ⌊[s 7→ N ]⌋0 or ⌊s := N ;P ⌋β. The former contradicts the restriction
that [s 7→ N ] occurs only once. The latter cannot be the first time to perform
the insertion since we set a lookup construct before the insert construct. Thus
s /∈ dom(S) and we have O1

α
−→ O2.

iii) ⌊O1⌋ = (ñ,S, ∅,P ′∪{unlock l;P ′},K, {l}), O′ = (ñ,S, ∅,P ′∪{P ′},K, ∅).

We get ⌊O1⌋
α
−→ O′. According to the rules of encoding, we can assume O1 =

(ñ,S,P ∪ {(unlock;P, 1)},K). Let O2 = (ñ,S,P ∪ {(P, 0)},K) be a StatVerif

semantic configuration, we have O′ = ⌊O2⌋ and O1
α
−→ O2.



Computational Soundness Results for Stateful Applied π Calculus 35

iv) ⌊O1⌋ = (ñ,S, ∅,P ′ ∪ {lock l;P ′},K, ∅), O′ = (ñ,S, ∅,P ′ ∪ {P ′},K, {l}).

We get ⌊O1⌋
α
−→ O′. According to the rules of encoding, we distinguish 3 cases

in the construction of O1:

(a) We assume O1 = (ñ,S,P ∪ {(lock;P, 0)},K) and ∀(Pi, βi) ∈ P , βi = 0.
Let O2 = (ñ,S,P ∪ {(P, 1)},K) be a StatVerif semantic configuration, we have

O′ = ⌊O2⌋ and O1
α
−→ O2.

(b) We assume O1 = (ñ,S,P∪{(s := M ;P, 0)},K) and ∀(Pi, βi) ∈ P , βi = 0. Ac-
cording to the rules of encoding, we have P ′ = lookup s as xs in insert s,M ; unlock l; ⌊P ⌋0.
If P = {([s 7→ N ], 0)}∪P1, then set O2 = (ñ,S∪{s := M},P1∪{(P, 0)},K). Oth-
erwise, set O2 = (ñ,S ∪{s := M},P ∪{(P, 0)},K). For P = {([s 7→ N ], 0)}∪P1,
we have O1 −→∗ O2. It is left to show O′ −→∗ ⌊O2⌋. We can assume ⌊O2⌋ =
(ñ,S ∪ {s := M}, ∅,P ′

1 ∪ {⌊P ⌋0},K, ) where P ′
1 = P ′\{insert s,N}. Then we

have

O′ =(ñ,S, ∅,P ′
1 ∪ {insert s,N} ∪ {lookup s as xs in insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := N}, ∅,P ′
1 ∪ {lookup s as xs in insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := N}, ∅,P ′
1 ∪ {insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := M}, ∅,P ′
1 ∪ {unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := M}, ∅,P ′
1 ∪ {⌊P ⌋0},K, ∅)

=⌊O2⌋

For {([s 7→ N ], 0)} /∈ P , we get s ∈ dom(S) from the restriction of the syntax of
[s 7→ M ]. Thus we have that O1 −→∗ O2, and that

O′ =(ñ,S, ∅,P ′ ∪ {lookup s as xs in insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S, ∅,P ′ ∪ {insert s,M ; unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := M}, ∅,P ′ ∪ {unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := M}, ∅,P ′ ∪ {⌊P ⌋0},K, ∅)

=⌊O2⌋

(c) We assume O1 = (ñ,S,P∪{(read s as x;P, 0)},K) and ∀(Pi, βi) ∈ P , βi = 0.
According to the rules of encoding, we have P ′ = lookup s as x in unlock l; ⌊P ⌋0.
If P = {([s 7→ N ], 0)} ∪ P1, then set O2 = (ñ,S,P1 ∪ {(P{N/x}, 0)},K). Oth-
erwise, set O2 = (ñ,S,P ∪ {(P{S(s)/x}, 0)},K). For P = {([s 7→ N ], 0)} ∪ P1,
we have O1 −→∗ O2. It is left to show O′ −→∗ ⌊O2⌋. We can assume ⌊O2⌋ =
(ñ,S, ∅,P ′

1 ∪ {⌊P{N/x}⌋0},K, ∅) where P ′
1 = P ′\{insert s,N}. Then we have
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O′ =(ñ,S, ∅,P ′
1 ∪ {insert s,N} ∪ {lookup s as x in unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := N}, ∅,P ′
1 ∪ {lookup s as x in unlock l; ⌊P ⌋0},K, {l})

→(ñ,S ∪ {s := N}, ∅,P ′
1 ∪ {unlock l; ⌊P{N/x}⌋0},K, {l})

→(ñ,S ∪ {s := N}, ∅,P ′
1 ∪ {⌊P{N/x}⌋0},K, ∅)

=⌊O2⌋

For {([s 7→ N ], 0)} /∈ P , we get s ∈ dom(S) from the restriction of the syntax of
[s 7→ M ]. Then we have that O1 −→∗ O2, and that

O′ =(ñ,S, ∅,P ′ ∪ {lookup s as x in unlock l; ⌊P ⌋0},K, {l})

→(ñ,S, ∅,P ′ ∪ {unlock l; ⌊P{S(s)/x}⌋0},K, {l})

→(ñ,S, ∅,P ′ ∪ {⌊P{S(s)/x}⌋0},K, ∅)

=⌊O2⌋

v) ⌊O1⌋ = (ñ,S, ∅,P ′ ∪ {lookup s as x in P ′},K, {l}), O′ = (ñ,S, ∅,P ′ ∪

{P ′{S(s)/x}},K, {l}). We get ⌊O1⌋
α
−→ O′. According to the rules of encoding,

we distinguish 2 cases in the construction of O1:

(a) We assume O1 = (ñ,S,P ∪ {(s := M ;P, 1)},K) and ∀(Pi, βi) ∈ P , βi = 0.
According to the rules of encoding, we have P ′ = insert s,M ; ⌊P ⌋1 and x is
a fresh variable. Let O2 = (ñ,S ∪ {s := M},P ∪ {(P, 1)},K) be a StatVerif
semantic configuration. Since ⌊O1⌋ −→ O′ conducts a reduction on the lookup
construct. We get s ∈ dom(S). Thus we have that O1 −→∗ O2, and that

O′ =(ñ,S, ∅,P ′ ∪ {P ′{S(s)/x}},K, {l})

=(ñ,S, ∅,P ′ ∪ {insert s,M ; ⌊P ⌋1},K, {l})

→(ñ,S ∪ {s := M}, ∅,P ′ ∪ {⌊P ⌋1},K, {l})

=⌊O2⌋

(b) We assume O1 = (ñ,S,P∪{(read s as x;P, 1)},K) and ∀(Pi, βi) ∈ P , βi = 0.
According to the rules of encoding, we have P ′ = ⌊P ⌋1. Let O2 = (ñ,S,P ∪
{(P{S(s)/x}, 1)},K) be a StatVerif semantic configuration. Since ⌊O1⌋ −→ O′

conducts a reduction on the lookup construct. We get s ∈ dom(S). Thus we
have that O1 −→∗ O2, and that
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O′ =(ñ,S, ∅,P ′ ∪ {P ′{S(s)/x}},K, {l})

=(ñ,S, ∅,P ′ ∪ {⌊P{S(s)/x}⌋1},K, {l})

=⌊O2⌋

vi) In all the other cases, there is no reduction for ⌊O1⌋
α
−→ O′ that conducts

a reduction on P0

Lemma 6. Let P0 be a closed StatVerif process. Let M be a message. Set
P ′ := in(attch, x); let y = equal(x,M) in event NotSecret, where x, y are two
fresh variables that are not used in P0, attch ∈ NE is a free channel name which
is known by the adversary.We set ℘ := {e|NotSecret is not in e}.Q0 := ⌊P ′|P0⌋0
is a closed SAPIC process and ℘ is a SAPIC trace property. Then we have that
P0 symbolically preserves the secrecy of M (in the sense of Definition 13) iff Q0

symbolically satisfies ℘ (in the sense of Definition 7).

Proof. . By definition 13, P0 does not preserve the secrecy of M if there exists a

StatVerif trace of the form (∅, ∅, {(P0, 0)}, fn(P0))
α
−→

∗

(ñ,S,P ,K) where νñ.K ⊢
M . Then we have the following StatVerif trace

O = (∅, ∅, {(Q0, 0)}, fn(Q0)) −→ (∅, ∅, {(P0, 0)} ∪ {(P ′, 0)}, fn(P0))
α
−→

∗

(ñ,S,P ∪ {(P ′, 0)},K)

K(attch,M)
−−−−−−−−→

∗

(ñ,S,P ∪ {event NotSecret},K)
NotSecret
−−−−−−−→ (ñ,S,P ,K)

By lemma 4, for ⌊O⌋ there exists a trace that contains the event NotSecret.
Thus Q0 does not satisfy ℘.

For the opposite direction, if Q0 does not satisfy ℘, then we get (∅, ∅, ∅, {Q0},

fn(P0), ∅)
α
−→

∗ NotSecret
−−−−−−−→ (ñ,S, ∅,P ,K, Λ). We distinguish two cases for the re-

duction of in(attch, x) construct in P ′:
i) The adversary inputs a termN on the channel attch. We have the following

trace

⌊O⌋ = (∅, ∅, ∅, {Q0}, fn(P0), ∅)
α
−→

∗

(ñ1,S1, ∅,P1 ∪ {P ′},K1, Λ1)

K(attch,N)
−−−−−−−→ (ñ1,S1, ∅,P1 ∪ {let y = equal(N,M) in event NotSecret},K1, Λ1)

NotSecret
−−−−−−−→

∗

(ñ,S, ∅,P ,K, Λ)

We get that M =E N . By lemma 5 and the first reduction step, we have that
P0 does not preserve the secrecy of M .
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ii) Before the reduction of P ′, the process has output a termN on the channel
attch. We have the following trace.

⌊O⌋ = (∅, ∅, ∅, {Q0}, fn(P0), ∅)
α
−→

∗

(ñ1,S1, ∅,P1 ∪ {out(attch,N);P1} ∪ {P ′},K1, Λ1)

−→ (ñ1,S1, ∅,P1 ∪ {P1} ∪ {let y = equal(N,M) in event NotSecret},K1, Λ1)

NotSecret
−−−−−−−→

∗

(ñ,S, ∅,P ,K, Λ)

We have that M =E N , and that

⌊O⌋ = (∅, ∅, ∅, {Q0}, fn(P0), ∅)
α
−→

∗

(ñ1,S1, ∅,P1 ∪ {out(attch,N);P1} ∪ {P ′},K1, Λ1)

K(N)
−−−−→ (ñ1,S1, ∅,P1 ∪ {P1} ∪ {P ′},K1 ∪ {N}, Λ1)

By lemma 5, we have that P0 does not preserve the secrecy of M .

Theorem 2 (CS in StatVerif). Assume that the computational implementa-
tion of the applied π-calculus is a computationally sound implementation (Def-
inition 3) of the symbolic model of the applied π-calculus (Definition 4) for a
class P of protocols. For a closed StatVerif process P0, we denote by Q0 and ℘
the same meanings in Lemma 6. Thus if the StatVerif process P0 symbolically
preserves the secrecy of a message M (Definition 13) and ΠS

Q0
∈ P, then Q0

computationally satisfies ℘.

Proof. . Theorem 2 can be easily proved by using Lemma 6 and Theorem 1.
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Appendix C: Left-or-right Protocol in StatVerif Syntax

fun enc /3 . fun ek /1 . fun dk /1 . fun s i g /3 . fun vk /1 . fun sk /1 .
fun pa i r /2 . fun garbage /1 . fun garbageEnc /2 . fun garbageS ig /2 .
fun s t r i n g 0 /1 . fun s t r i n g 1 /1 . fun empty /0 .
reduc dec (dk ( t1 ) , enc ( ek ( t1 ) ,m, t2 ) ) = m.
reduc i s e k ( ek ( t ) ) = ek ( t ) .
reduc i s e n c ( enc ( ek ( t1 ) , t2 , t3 ) ) = enc ( ek ( t1 ) , t2 , t3 ) ;

i s e n c ( garbageEnc ( ek ( t1 ) , t2 ) ) = garbageEnc ( ek ( t1 ) , t2 ) .
reduc f s t ( pa i r (x , y ) ) = x .
reduc snd ( pa i r (x , y ) ) = y .
reduc eko f ( enc ( ek ( t1 ) ,m, t2 ) ) = ek ( t1 ) ;

eko f ( garbageEnc ( t1 , t2 ) ) = t1 .
reduc equa l (x , x ) = x .
reduc v e r i f y ( vk ( t1 ) , s i g ( sk ( t1 ) , t2 , t3 ) ) = t2 .
reduc i s s i g ( s i g ( sk ( t1 ) , t2 , t3 ) ) = s i g ( sk ( t1 ) , t2 , t3 ) ;

i s s i g ( garbageS ig ( t1 , t2 ) ) = garbageS ig ( t1 , t2 ) .
reduc vkof ( s i g ( sk ( t1 ) , t2 , t3 ) ) = vk ( t1 ) ;

vkof ( garbageS ig ( t1 , t2 ) ) = t1 .
reduc i svk ( vk ( t1 ) ) = vk ( t1 ) .
reduc uns t r ing0 ( s t r i n g 0 ( s ) ) = s .
reduc uns t r ing1 ( s t r i n g 1 ( s ) ) = s .
reduc i s e k ( ek ( t ) ) = ek ( t ) .
reduc i sdk (dk ( t ) ) = dk ( t ) .
reduc ekofdk (dk ( t ) ) = ek ( t ) .
reduc i s s k ( sk ( t ) ) = sk ( t ) .
reduc vko fsk ( sk ( t ) ) = vk ( t ) .

query a t t : vs , pa i r ( s l , s r ) .

l e t dev i c e =
out ( c , ek (k ) ) |
( ! l o ck ; in ( c , x ) ; read s as y ;

i f y = i n i t then s := x ; unlock ) |
( ! l o ck ; in ( c , x ) ; read s as y ;

l e t z = dec ( dk (k ) , x ) in
l e t z l = f s t ( z ) in
l e t z r = snd ( z ) in
i f y = l e f t then out ( c , z l ) ; unlock
else i f y = r i gh t then out ( c , z r ) ; unlock ) .

l e t user =
new s l ; new s r ; new r ;
out ( c , enc ( ek (k ) , pa i r ( s l , s r ) , r ) ) .

p r o ce s s
new k ; new s ; [ s |−> i n i t ] | dev i c e | ! user
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Appendix D: Left-or-right Protocol in SAPIC Syntax

theory LeftRightCase
begin

fun c t i o n s :
enc /3 , ek /1 , dk/1 , s i g /3 , vk/1 , sk /1 , pa i r /2 , s t r i n g 0 /1 ,
s t r i n g 1 /1 , empty /0 , garbageS ig /2 , garbage /1 , garbageEnc/2
dec /2 , i s e n c /1 , i s e k /1 , i sdk /1 , eko f /1 , ekofdk /1 , v e r i f y /2 ,
i s s i g /1 , i s vk /1 , i s s k /1 , vkof /1 , vko fsk /1 , f s t /1 , snd /1 ,
uns t r ing0 /1 , uns t r ing1 /1

equat ions :
dec ( dk ( t1 ) , enc ( ek ( t1 ) , m, t2 ) ) = m,
i s e n c ( enc ( ek ( t1 ) , t2 , t3 ) ) = enc ( ek ( t1 ) , t2 , t3 ) ,
i s e n c ( garbageEnc ( t1 , t2 ) ) = garbageEnc ( t1 , t2 ) ,
i s e k ( ek ( t ) ) = ek ( t ) ,
i s dk (dk ( t ) ) = dk ( t ) ,
eko f ( enc ( ek ( t1 ) , m, t2 ) ) = ek ( t1 ) ,
eko f ( garbageEnc ( t1 , t2 ) ) = t1 ,
v e r i f y ( vk ( t1 ) , s i g ( sk ( t1 ) , t2 , t3 ) ) = t2 ,
i s s i g ( s i g ( sk ( t1 ) , t2 , t3 ) ) = s i g ( sk ( t1 ) , t2 , t3 ) ,
i s s i g ( garbageS ig ( t1 , t2 ) ) = garbageS ig ( t1 , t2 ) ,
i s vk ( vk ( t1 ) ) = vk ( t1 ) ,
i s s k ( sk ( t1 ) ) = sk ( t1 ) ,
vkof ( garbageS ig ( t1 , t2 ) ) = t1 ,
f s t ( pa i r (x , y ) ) = x ,
snd ( pa i r (x , y ) ) = y ,
uns t r ing0 ( s t r i n g 0 ( s ) ) = s ,
uns t r ing1 ( s t r i n g 1 ( s ) ) = s

l e t Device=(
out ( ek ( sk ) )
| |
( in ( req ) ;

l o ck s ;
lookup s as ys in

i f ys= ’ i n i t ’ then
i n s e r t s , req ;
unlock s

else unlock s
)
| |
(
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l o ck s ;
in ( x ) ;
i f i s e n c (x ) = x then
i f eko f ( x ) = ek ( sk ) then
i f pa i r ( f s t ( dec (dk ( sk ) , x ) ) , snd ( dec (dk ( sk ) , x ) ) )

= dec (dk ( sk ) , x ) then
lookup s as y in

i f y=’ l e f t ’ then
event Access ( f s t ( dec (dk ( sk ) , x ) ) ) ;

out ( f s t ( dec (dk ( sk ) , x ) ) ) ; unlock s
else i f y=’ r i g h t ’ then

event Access ( snd ( dec (dk ( sk ) , x ) ) ) ;
out ( snd ( dec (dk ( sk ) , x ) ) ) ; unlock s

else unlock s
)

)

l e t User=new lm ; new rm ; new rnd ; event Exc lu s i v e ( lm , rm ) ;
out ( enc ( ek ( sk ) , pa i r ( lm , rm) , rnd ) )

! ( new sk ; new s ; i n s e r t s , ’ i n i t ’ ; ( Device | | ! User ) )

lemma types [ typing ] :
Al l m #i . Access (m)@i ==>

(Ex #j . KU(m)@j & j<i )
| ( Ex x #j . Exc lu s i v e (x ,m)@j )
| ( Ex y #j . Exc lu s i v e (m, y )@j )

lemma s e c r e c y :
not (Ex x y #i #k1 #k2 . Exc lu s i v e (x , y )@i & K(x)@k1 & K(y)@k2)

end
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