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Since the well-known PT symmetry has its fundamental significance and implication in physics,
where PT denotes the combined operation of space-inversion P and time-reversal T, it is extremely
important and intriguing to completely classify exotic PT-invariant topological metals and to physi-
cally realize them. Here we, for the first time, establish a rigorous classification of topological metals
(including semimetals) that are protected by the PT symmetry using KO-theory. As a physically
realistic example, a PT-invariant nodal loop model in a three-dimensional Brillouin zone is con-
structed, whose topological stability is revealed through its PT-symmetry-protected nontrivial Z2

topological charge. Based on these exact results, we propose an experimental scheme to realize and
to detect tunable PT-invariant topological nodal loop states with ultracold atoms in an optical lat-
tice, in which atoms with two hyperfine spin states are loaded in a spin-dependent three-dimensional
optical lattice and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with
site-dependent phase. It is shown that such a realistic cold-atom setup can yield topological nodal
loop states, having a tunable ring-shaped band-touching line with the two-fold degeneracy in the
bulk spectrum and non-trivial surface states. The states are actually protected by the combined
PT symmetry even in the absence of both P and T symmetries, and are characterized by a Z2-type
invariant (or topological charge), i.e., a quantized Berry phase. Remarkably, we demonstrate with
numerical simulations that (i) the characteristic nodal ring can be detected by measuring the atomic
transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based
on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy.
The present proposal for realizing topological nodal loop states in cold atom systems may provide
a unique experimental platform for exploring exotic PT-invariant topological physics.

PACS numbers: 03.65.Vf, 37.10.Jk, 03.67.Ac, 72.90.+y

I. INTRODUCTION

Since the discovery of topological insulators, the study
of band topology of insulating and semimetallic materi-
als has attracted a broad interest [1–16]. A significant
theoretical advance has been made for classification of
various kinds of gapped and gapless topological band
systems [3–11]. Very recently, a greater attention of ex-
ploring symmetry protected topological phases seems to
move from gapped insulators/superconductors to gapless
metals/semimetals. For three-dimensional systems, two
kinds of topological semimetals, which respectively con-
sist of the nodal point and nodal loop (NL), have been
addressed [17–22]. Weyl semimetals [18–20] and certain
Dirac semimetals [9, 17] belong to the former ones, who
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have the two-fold and four-fold degenerate Fermi points,
respectively, which are topologically protected by a topo-
logical invariant (such as the Chern number for Weyl
semimetals) and give rise to exotic Fermi-arc surface
states [17–20]. While an NL semimetal has the valence
and conduction bands crossing along closed lines instead
of isolated points, which may topologically be protected
by certain discrete symmetry and may give rise to nearly
flat surface bands [21, 22]. Weyl and Dirac semimetals
have been theoretically and experimentally explored not
only in materials [9, 17–20, 23–28], but also in some ar-
tificial systems, such as photonic and acoustic crystals
[29–31]. However, topological NL bands are yet to be ex-
perimentally observed or realized, even though some the-
oretical proposals have been suggested for their realiza-
tion in real materials very recently [32–37]. In addition,
the so-called PT symmetry may actually be understood
as a generalized inversion symmetry with regard to the
space-time dimension, which is fundamental in physics,
and thus a theoretical framework for classifying exotic
PT-invariant topological NLs is arresting and highly de-
sirable. Notably, a purely combined PT-invariant topo-
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logical NLs that has neither P symmetry nor T one can
hardly be realized in real condensed materials, and thus
its physical implementation presents a great challenge to
physicists both theoretically and experimentally.

On the other hand, fortunately, ultracold atoms in
optical lattices [38] with synthetic electromagnetic field
and spin-orbit coupling [13–15] provide a clean and tun-
able platform for exploring exotic topological quantum
phases [39–46]. Remarkably, the Zak phase in topologi-
cally nontrivial Bloch bands realized in one-dimensional
double-well optical lattices has been measured [39]. By
engineering the atomic hopping configurations in opti-
cal lattices, the celebrated Harper-Hofstadter model [47]
and Haldane model [48] have been realized [40–43], where
the Chern number characterizing the topological bands
has also been measured. The experimental observation
of chiral edge states in one-dimensional optical lattices
subjected to a synthetic magnetic field and an artificial
dimension has also been reported [45, 46]. An impor-
tant question then is whether the other predicted topo-
logical phases that are rare in sold-state materials can
be realized in these cold atom systems. Several schemes
have been proposed to realize Z2 topological insulators
[49, 50], chiral topological states [51–53], and topological
nodal point semimatals [54–59] using ultracold atoms in
optical lattices. However, an experimentally feasible and
tunable scheme for realizing the combined PT topological
NL states and their detection is still badly awaited.

In this article, we first establish a general framework
for the classification of topological NLs in systems with
a combined PT symmetry. In three-dimensional momen-
tum space, only PT-invariant NLs are topologically pro-
tected with a Z2 classification. With this observation, we
propose an experimental scheme to realize and to detect
tunable PT-invariant topological NL states with ultracold
atoms in an optical lattice. In our proposal, fermionic (or
bosonic) atoms with two hyperfine spin states are loaded
in a spin-dependent three-dimensional optical lattice, and
two pairs of Raman lasers are used to create out-of-plane
spin-flip hopping with site-dependent phase. We show
that such a realistic cold-atom setup can yield topologi-
cal NL states having tunable ring-shaped band-touching
lines with two-fold degeneracy in the bulk spectrum and
non-trivial surface states. The NL states are actually
topologically protected by the combined PT symmetry
even in the presence of P and T breaking perturbations,
and are characterized by a quantized Berry phase (a
Z2-type invariant). Moreover, with numerical simula-
tions, we demonstrate that (i) the characteristic nodal
ring can be detected by measuring the atomic transfer
fractions in a Bloch-Zener oscillation; (ii) the topological
invariant (charge) can be measured based on the time-of-
flight imaging; and (iii) the surface states may be probed
through Bragg spectroscopy. The realization of the com-
bined PT topological NL states in cold atom systems
would definitely be of great importance in contributing
to topological matter research across disciplines.

The paper is organized as follows. Section II estab-

lishes the topological classification of NLs in systems with
a combined PT symmetry, interprets physical meanings
of the Z2 topological invariant in a lattice model, and
discusses the topological stability against perturbations
preserving the PT symmetry but breaking both P and T
symmetries. In Sec. III, we propose an experimentally
feasible scheme for realizing the PT-invariant topological
NL states with ultracold atoms in an optical lattice. We
first introduce the proposed system and lattice model,
and then study the tunable NLs and their experimen-
tal detection. In Sec. IV, we elaborate the topological
properties of the simulated NL states by calculating the
quantized Berry phase and the surface states, and also
present practical methods for their experimental detec-
tion in the cold atom system with numerical simulations.
Finally, a short conclusion is given in Sec. V.

II. CLASSIFICATION OF PT-INVARIANT
TOPOLOGICAL METALS/SEMIMETALS AND
THE TOPOLOGICAL STABILITY OF NODAL

LOOPS

In this section, we first establish a mathematically
rigorous classification of topological metals/semimetals
protected by the PT symmetry using the KO-theory.
Then we construct a physically realistic PT-invariant NL
model, which has a nontrivial Z2 topological charge. The
stability of the NL is investigated in detail, making con-
crete implications of its nontrivial topological charge.
Other physical meanings of the topological charge are
also discussed.

A. Classification of topological metals/semimetals
with PT symmetry

Let us consider a non-interacting fermionic system,
which is described by the Hamiltonian H(k) in the d-
dimensional momentum space. For such a system, the
time-reversal T and inversion P symmetries are repre-
sented by T̂ and P̂ as, respectively

T̂H(k)T̂−1 = H(−k), P̂H(k)P̂−1 = H(−k). (1)

T̂ is anti-unitary while P̂ is unitary,

T̂ iT̂−1 = −i, P̂ iP̂−1 = i. (2)

We here are interested mainly in the combined symme-
try A = PT, namely only PT is required to be preserved,
while T and P may be broken individually. The operation
of the anti-unitary symmetry A is given by

ÂH(k)Â−1 = H(k), ÂiÂ−1 = −i. (3)

It is clear that A operates trivially on the momentum co-
ordinates, which allows us to consider H(k) pointwisely.
To find the space of the gapped Hamiltonians under the
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restriction of the symmetry A, we recombine the relevant
operators as Â, iÂ and iH, which anti-commute with
each other,

{Â, iÂ} = 0, {Â, iH} = 0, {iH, iÂ} = 0. (4)

For any gapped k, we adiabatically flatten H(k) to be

H̃(k), which has the unital normalization H̃2(k) = 1N
with 1N being the N × N identity matrix. It is suffi-
cient, for topological purpose, to consider H̃. Thus for
the gapped region of the momentum space, we assume,
without loss of generality, the following normalizations,

(iH)2 = −1, Â2 = (iÂ)2 = ±1, (5)

where Â2 = (iÂ)2 comes from the anti-unitarity of Â
in Eq. (3). It is noted that a similar analysis was
used for deriving classifying spaces of one-point Hamil-
tonians in the classification of strong topological insula-
tors/superconductors [8].

For the case of Â2 = 1, we find that Â and iÂ form
the Clifford algebra C0,2, which is extended by the iH to
be C1,2. Since C0,2 ⊂ C1,2 ≈ C0,0 ⊂ C0,1 [60, 61], it is
found that the space of the gapped Hamiltonians H(k)
is given by the classifying space R0 up to homotopy. For
an NL in a three-dimensional momentum space, we may
choose a circle S1 to enclose the NL from its gapped
transverse dimensions, and H|S1(k) gives a map from S1

to R0, which is classified in the homotopy theory by

K̃O(S1) ∼= π1(R0) ∼= π0(R1) ∼= Z2. (6)

In general, for a closed compact gapless region with spa-
tial codimension dc = d − dN − 1 with the dN as the
dimension of nodal object, the classification under the
symmetry Â is given by

K̃O(Sdc) ∼= Z,Z2,Z2, 0, 2Z, 0, 0, 0 , (7)

for dc ≡ 0, 1, · · · , 7 mod 8. It is noted that the order
of the appearance of K groups are reversed, compared
with previous classifications of strong topological insula-
tors/superconductors and Fermi surfaces [6–8], due to the
involution difference of the related K-theories, namely
previous classifications correspond to KR-theory rather
than the KO-theory here.

For the case of Â2 = −1, the Clifford algebra C2,0 of
Â and iÂ is extended by iH to be C3,0. From C2,0 ⊂
C3,0 ≈ C0,4 ⊂ C0,5, it is found that the space of the
Hamiltonians is given by R4. For an NL in the three-
dimensional momentum space, the classification is

K̃O
−4

(S1) ∼= π1(R4) ∼= 0, (8)

which means that the NL is always trivial. For a general
case with codimension dc, the classification is given by

K̃O
−4

(Sdc) ∼= 2Z, 0, 0, 0,Z,Z2,Z2, 0 , (9)

for dc ≡ 0, 1, · · · , 7 mod 8.

FIG. 1: (Color online) An NL in the three-dimensional mo-
mentum space, enclosed by a tiny circle.

B. A two-band nodal loop model and the meanings
of its topological charge

We now construct a simple two-band model, which has
PT symmetry with (P̂ T̂ )2 = 1, to illustrate our theory.
A two-band model may be written in the unified form
H(k) = fµ(k)σµ, where fµ are real functions of k and
σµ = (σ0, σj) are Pauli matrices. Choosing the time-

reversal and inversion symmetry as T̂ = K with the K
as the complex-conjugate operator and P̂ = σ3, the PT
symmetry with Â = σ3K, requires

σ3H∗(k)σ3 = H(k), (10)

which simply means the absence of σ1 term in H(k). The
time-reversal symmetry implies

H∗(k) = H(−k), (11)

leading to that the coefficients of σ0,σ1 and σ3 are even
functions of k, while that of σ2 is odd. Note that the
conservation of TP and T implies also the conservation
of P. From the above points, we start with a simple
continuum model in three dimensions as

H0(k) = [R2 −B(k2
x + k2

y)−Bzk2
z ]σ3 + Czkzσ2 (12)

with k = (kx, ky, kz) and B > 0, which has both P and T
symmetries, and therefore the PT symmetry. Note that
we abandon σ0 term for clarity, since it has nothing to
do with the spectrum gap. We also keep the rotation
symmetry of the kx-ky plane for simplicity. It is found
that the gapless points form an NL on the kx-ky plane
with kz = 0, which may be enclosed by a loop from the
gapped region, for instance a tiny circle on the ky-kz
plane as shown in Fig. 1. The circle is parametrized
as (0, R/

√
B + ρ cosφ, ρ sinφ), where ρ is the radius and

φ the angle. If ρ is sufficiently small, the Hamiltonian
restricted on the circle is expanded as

h(φ) = −2
√
BRρ cosφσ3 + Czρ sinφσ2 +O(ρ2). (13)

It is a well-known result that the Berry phase of the
occupied state wave function of such a Hamiltonian is
equivalent to one modulo 2, namely

γS1 =
1

π

∫
a(φ)dφ ≡ 1 mod 2, (14)
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where a(φ) = 〈φ|i∂φ|φ〉 with |φ〉 being the occupied state
of h(φ). The unit topological charge γ means the NL is
in the nontrivial class of the Z2 classification, which was
obtained above.

According to our classification theory, the topological
protection of the stability of the gapless modes requires
only the combined PT symmetry, not both P and T. In
other words, the gapless modes still exist for topological
reason under perturbations breaking both P and T sym-
metries but preserving PT symmetry. In general, a σ2

term with even functions of k and a σ3 term with odd
functions of k break both P and T. From our discussion
of P and T symmetries above, the perturbations below,
for instance, satisfy the symmetry conditions.

H′(k) = [D(kx + ky) +Dzkz]σ3

+ [µ+ εzk
2
z + ε(k2

x + k2
y)]σ2, (15)

under which gapless modes still survive, although the
shape of the NL has been distorted. For instance when ε
and εz vanish, the gapless region is given by the solution
of the equation

B(k2
x + k2

y)−D(kx + ky)

+ [Bz(µ/Cz)
2 +Dzµ/Cz − κ2] = 0, (16)

for which it is seen that the radius of the NL is changed
and the center is moved by the perturbations.

We now consider the realistic situation that the NL
exists in a lattice model, where the momentum coordi-
nates are periodic, forming a Brillouin zone as illustrated
in Fig. 2. The NL in Fig. 2 as the collection of gapless
points is still denoted by the red circle as in Fig. 1. But
in a lattice model the periodicity of the momentum coor-
dinates allows large circles, such as L1 and L2 in Fig. 1,
since the two ends of such a line segment are identified.
Thus for a lattice model, the tiny circle in Fig. 1 enclos-
ing the NL can be continuously deformed to be the S1 in
the gapped region, which may further be divided as two
large circles L1 and L2, namely

S1 ≈ L1 − L2 (17)

with the sign indicating the direction of the line. The
topological charges satisfy the relation

γS1 = γL1 − γL2 mod 2, (18)

where actually L1 and L2 can be any large circles in-
side and outside the NL, respectively, as in Fig. 2. For
a topologically nontrivial NL, if the topological charge
of any outside line is trivial, then every large circle go-
ing inside the NL has nontrivial topological charge. For
straight lines inside, each of them may be regarded as
corresponding to a one-dimensional gapped system that
is of topologically nontrivial band structure, leading to
certain gapless boundary modes.

The arguments above are applicable to general cases
in the classification. We may note an essential differ-
ence between Z and Z2 topological charges, namely for Z

FIG. 2: (Color online) An NL in a three-dimensional Brillouin
zone, enclosed by different loops.

topological charge, reversing the direction also reverses
the topological charge, while Z2 topological charge is in-
sensitive to the direction since 1 ≡ −1 mod 2 [12].

III. PT-INVARIANT NODAL LOOP STATES IN
COLD ATOM SYSTEMS

Although the two-band Hamiltonian of PT-invariant
NL is simple, the direct implementation of this ideal
model in electronic materials is difficult due to the spin-
orbit coupling or complex lattice structure therein [32–
37]. In this section, we turn to propose an experimen-
tal scheme to realize and detect tunable PT-invariant
topological NL states with ultracold atoms in a three-
dimensional optical lattice. We first describe the pro-
posed system and the lattice model, which may have
both P and T symmetries or generically only preserves
the combined PT symmetry while breaks both of them.
Then we study the tunable NLs and their experimental
detection in this cold atom system.

A. Proposed cold atom system and lattice model

Our proposed system is based on a fermionic gas (or
bosonic gas) of noninteracting atoms with two chosen hy-
perfine spin states |↑〉 and |↓〉 in a spin-dependent cubic
optical lattice, as shown in Fig. 3(a). The lattice poten-
tial takes the form

Vσ(r) = −V0,σ[cos2(k0x) + cos2(k0y) + cos2(k0z)], (19)

where σ =↑, ↓, V0,σ denote the potential strengths for
the spin state |σ〉, and k0 is the wave number with the
lattice constant a = π/k0. As shown in Fig. 3(a), we
consider a two-photon Raman transition between |↑〉 and
|↓〉 along the z axis, which is achieved by coupling the
two ground hyperfine states to an excited state |e〉 with a
large single-photon detuning ∆d. In addition, the two hy-
perfine states differ in the magnetic quantum number by
one and thus the atomic addressing is achieved through
polarization selection. This configuration has been used
to create the equal-Rashba-Dresselhaus spin-orbit inter-
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FIG. 3: (Color online) The proposed cold atom system and
laser configuration. (a) The cubic optical lattice and the effec-
tive atomic hopping configuration between nearest-neighbor
lattice sites. It contains the spin-conserved hopping t↑ along
each axis, t↓ in the xy plane but −t↓ out of the plane, the
spin-flip hopping from |↓〉 to |↑〉 which is ±tso staggered along
the z axis, and its hermitian conjugation progress. (b) The
spin-dependent lattice structure and laser configuration of the
Raman transition between spin states |↑〉 and |↓〉 along the
z axis . The effective Raman field strength proportional to
sin(k0z) (green dotted line) consists two pairs of plane waves
denoted by their Rabi frequencies Ω1,± (gives Ω1 laser field)
and Ω2,± (gives Ω2 laser field). Two spin states are coupled
via a two-photon Raman transition with a large detuning ∆d

from an excited state |e〉 and a two-photon detuning δ.

action [13–15]. The Rabi frequencies of the correspond-

ing laser fields are chosen as Ω1(z) = Ω0 cos(k0z/2)eik
′
0z

and Ω2(z) = Ω0 sin(k0z/2), respectively, where Ω0 is the
strength constant controlled by the laser intensities of
the Raman fields and k′0 denotes a small deviation of
the wave numbers (k′0 � k0) that can be tuned from
zero to finite value via the laser beams. Here Ω1 and Ω2

can be realized, respectively, with a pair of laser beams
Ω1,± = 1

2Ω0e
±i(k0±k′0)z and Ω2,± = 1

2Ω0e
±i(k0z+π/2).

Generally, there is a two-photon detuning δ in the Raman
transition, as shown in Fig. 3(b).

In the presence of large detuning |∆| � Ω0, |δ| for the
Raman transition, we can eliminate the excited state and
consider the atomic motions in the ground state mani-
fold. Under this condition, the effective single-particle
Hamiltonian in the spin basis {|↑〉 , |↓〉} is given by

H0 =
p2

2ma
+

(
V↑(r) ~Ωeff(z)

~Ω∗eff(z) V↓(r) + ~δ

)
, (20)

where p and ma respectively denote the atomic momen-

tum and mass, and Ωeff(z) =
Ω∗1Ω2

∆d
=

Ω2
0e
−ik′0z

2∆d
sin(k0z)

denotes the resulting Raman coupling in the two-photon
transition. We consider all the atoms in the lowest band
of the optical lattice, and then the Hamiltonian in the
second quantization formalism takes the form

Ĥ =

∫
d3r′Ψ†(r′)H0Ψ(r′). (21)

Here Ψ = (Ψ↑,Ψ↓)
T is the two-component field operator

with Ψσ(r′) =
∑

r âr,σwσ(r′ − r), which is expanded in
terms of the Wannier function wσ(r′ − r) and âr,σ repre-
senting the annihilation operator of the fermionic mode
of the spin state |σ〉 at the lattice site r. A straightfor-
ward calculation yields the tight-binding Hamiltonian

Ĥ = −
∑
r,σ,η

tσâ
†
r,σâr+η̂,σ + H.c.

+
∑
r,±

tr,r±ẑs â†r,↑âr±ẑ,↓ + H.c. (22)

+
∑
r

mz(â
†
r,↑âr,↑ − â

†
r,↓âr,↓).

Here the spin-conserved hopping along the η axis (η =

x, y, z) is derived as tσ = −
∫
d3r′w∗σ(r′ − r)[ p2

2ma
+

Vσ]wσ(r′ − r− η̂) ≈ (4/
√
π)V

3/4
0,σ E

1/4
R e−2

√
V0,σ/ER in the

harmonic approximation with ER = ~2k2
0/2ma being

the recoil energy [62]. The spin-flip hopping terms
induced by the Raman field take the form tr,r±ẑs =∫
d3r′w∗↑(r

′ − r)~Ωeff(r′)w↓(r
′ − r∓ ẑ).

In this lattice system, the strength of the Raman
field proportional to sin(k0z) and the lowest band Wan-
nier functions are antisymmetric and symmetric with
respect to the center of each lattice site, respectively.
Due to this spatial configuration, the periodic field
does not couple the intra-site spins and the spin-flip
hopping terms satisfy tr,r±ẑs = ±(−1)z/ae±iϕtso [51],

where tso =
~Ω2

0

2∆d

∫
dxw∗↑(x)w↓(x) ×

∫
dyw∗↑(y)w↓(y) ×∫

dzw∗↑(z)e
ik′0z sin(k0z)w↓(z − a) and ϕ = k′0a. The last

term mz = (V0,↑ − V0,↓ − ~δ)/2 is equivalent to a Zee-
man field along the z axis and can be precisely tuned via
the laser frequencies of the Raman beams with acoustic-
optic modulator or through the lattice potentials for fixed
laser frequencies. By redefining the spin-down operator
âr,↓ → eiπz/aâr,↓, Hamiltonian (22) can be rewritten as

Ĥ = −
∑
r,σ

tσ(â†r,σâr+x̂,σ + â†r,σâr+ŷ,σ) + H.c.

−
∑
r

(t↑â
†
r,↑âr+ẑ,↑ − t↓â†r,↓âr+ẑ,↓) + H.c. (23)

+
∑
r

tso(eiϕâ†r,↑âr+ẑ,↓ − e−iϕâ†r,↑âr−ẑ,↓) + H.c.

+
∑
r

mz(â
†
r,↑âr,↑ − â

†
r,↓âr,↓).

Figure 3(a) also shows this effective atomic hopping con-
figuration for the ϕ = 0 (i.e., k′0 = 0) case in the optical
lattice.

In the three-dimensional Brillouin zone, the resultant
Bloch Hamiltonian is given by

HB = fz(k)σ3 − 2tso sin(kza+ ϕ)σ2 − f0(k)σ0, (24)

where fz(k) = mz−α−[cos(kxa)+cos(kya)]−α+ cos(kza)
and f0(k) = α+[cos(kxa) + cos(kya)] +α− cos(kza), with
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α± ≡ t↑ ± t↓ are also tunable parameters. The Bloch
Hamiltonian can be rewritten as

HB = H̃0 +HP , (25)

where H̃0 = fz(k)σ3 − 2tso cosϕ sin(kza)σ2 − f0(k)σ0

and the perturbation part HP = −2tso sinϕ cos(kza)σ2.

Here H̃0 preserves both P and T symmetries but HP
(which vanishes in the case ϕ = 0) breaks the two sym-
metries. However, the whole Hamiltonian HB satisfies
the combined PT symmetry. As analysized in Sec. II,
this guarantees the existence and the topological stabil-
ity of symmetry-protected NLs in three-dimensional Bril-
louin zone. The perturbation partHP in this system only
shifts the center of the NLs by replacing kza→ kza+ ϕ,
and do not modified their shape and topological prop-
erties. Therefore, without loss of generality, we take
ϕ = 0 case in the following sections to study the NL
states and their detection in this system. It is noted that
the proposed optical lattice system and the Raman cou-
pling scheme are also applicable to the bosonic atoms
[13–15, 40–42].
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FIG. 4: (Color online) Phase diagram and tunable NL states.
(a) Phase diagram. III, II.a,II.b and I correspond to trivial
insulator, an NL on the kz = 0 plane, an NL on the kz = π/a
plane and two coexisting NLs on the two planes. (b) The evo-
lution of an NL during the increase of β denoted by the black
arrows in (a). (c) The distribution of the topological numbers
of one-dimensional subsystems on kx-ky plane in difference
phases during the increase of β marked by the white arrow in
(a).

B. Tunable nodal loop states

Now we proceed to study the properties and the de-
tection method of the NL states in the proposed model

system. For ϕ = 0, the bulk spectrum is E±(k) =

f0(k) ±
√

4t2so sin2(kza) + fz(k)2. The bulk bands are

fully gapped except the points in momentum positions
that satisfy the following conditions:

cos(kxa) + cos(kya) = (mz − α+)/α− for kz = 0,(26)

cos(kxa) + cos(kya) = (mz + α+)/α− for kz = π/a,(27)

which can give rise to NLs with two-fold degeneracy in
the three-dimensional Brillouin zone. Without loss of
generality, we assume t↑ ≥ t↓ > 0. Since the effective
Zeeman field and the hopping amplitudes can be tuned
independently, we can define two ratio parameters β =
mz/α− and τ = α+/α− in this system.

We then numerically solve the Eqs. (26) and (27) for
the existence and the shape of the NLs, and the resul-
tant phase diagram is shown in Fig. 4(a), where the
phases III, II.a, II.b and I, respectively, correspond to
trivial insulator, an NL on the kz = 0 plane, an NL on
the kz = π/a plane and two coexisting NLs on the two
planes. The two NLs belong to the same nontrivial Z2

case as that being discussed in the previous section. Dur-
ing the increase of β (denoted by the black solid arrows
in Fig. 4), the NLs have the same evolution procession
as illustrated in Fig. 4(b). First, a singular point is cre-
ated at the corner of the sub-Brillouin zone with kz = 0
or π/a, then spread to be a circle centered at the cor-
ner. The circle expands bigger and bigger, going across
the whole sub-Brillouin zone (the red large circle), then
becomes a circle centered at the origin, and finally dis-
appears after decaying as a singular point at the origin.
After such a Z2 nontrivial small nodal circle is created
at the corner of the sub-Brillouin zone, the topological
number of any one-dimensional subsystem parametrized
by kz inside the small circle is increased by one, while any
one outside has its topological number unchanged, which
can be seen from the model discussed in Fig. 2 consid-
ering a fact that the creation of the circle results in only
continuous deformations for the outside ones. Having
this in mind we can infer the topological number of any
one-dimensional system with fixed in-plane momentum
k‖ ≡ (kx, ky) in any region of the phase diagram. For
instance, the distribution of topological number γ in the
kx-ky plane along the white arrow in Fig. 4(a) is shown
in Fig. 4(c), which has also been confirmed by the nu-
merical simulation. It is noted that in the fifth sub-figure
with β = 0, ones at the corner of the sub-Brillouin zone
have the topological number γ = 1 + 1 ≡ 0 mod 2. In
addition, the shape of the NL can changes from a circle
to square as shown in Fig. 4(b) due to the fact that the
k2
η terms in the continuum Hamiltonian (12) are replaced

by the cos(kηa) terms in this lattice system with Hamil-
tonian (24). Thus, in the proposed optical lattice system,
one can realize tunable NL states by simply varying the
ratio parameter β via the laser fields.

In the following, we focus on the single NL cases and
further study the properties of the NL state. In Figs. 5(a)
and 5(b), we plot the bulk energy gap E+(k)−E−(k) for
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(a) (b) 
Bulk gap 

(c) (d) 
zξ

FIG. 5: (Color online) The bulk gap with the gap-closing
points forming a nodal ring and its detection. (a) A nodal ring
on the kz = 0 plane with the parametermz = 2.0. (b) A nodal
ring on the kz = π/a plane with the parameter mz = −1.8.
(c,d) The momentum distribution of the atomic transfer frac-
tion ξz(kx, ky) with the parameter F = 0.2. The maximum
positions form a curve that reveals the nodal ring in (a) and
(b), respectively. Other parameters in (a-d) are t↑ = 1 as the
energy unit, t↓ = tso = 0.3.

typical parameters, which clearly show the gap-closing
points forming the NLs on the kz = 0 and kz = π/a
planes, respectively. On the two planes, the upper and
lower energy surfaces touch along a ring with a con-
stant energy εa in phase II.a and εb in phase II.b. The
constant energies εa = −α+(α+ − mz)/α− − α− and
εb = −α+(α+ + mz)/α− + α− come from the f0(k)σ0

term in Hamiltonian (24), respectively. This term breaks
the chiral symmetry but only shifts the nodal ring from
zero energy without modifying its shape. Actually, it
does not affect the topological stability of the NLs but
gives the surface states a dispersion [3, 21]. In phase II.a,
the low-energy effective Hamiltonian near Kr = (0, 0, 0)
is given by

Heff(q) = [b1(q2
x + q2

y) + b0q
2
z − λ1]σ3 − vzqzσ2

+ [b0(q2
x + q2

y) + b1q
2
z − λ0]σ0, (28)

where q = k−Kr, b0 = a2α+/2, b1 = a2α−/2, λ1 =
2α− + α+ − mz, vz = 2atso, and λ0 = 2α+ + α−. In
phase II.b, the low-energy effective Hamiltonian near
K′r = (π/a, π/a, π/a) is H′eff(q) = −Heff(q) with rede-
fined q = k−K′r in this case. The effective Hamiltonian
(28) takes the form of the two-band model (12), and cap-
tures the essential features of the nodal ring states on the
qz = 0 plane of radius

√
λ1/b1 when its size is small (see

Fig. 4).
At this stage, we turn to elaborate that the NLs can be

detected using the Bloch-Zener-oscillation method, which
has been experimentally demonstrated to probe the Dirac
points in a honeycomb optical lattice [63, 64]. A basic
idea lies in that the band touching points can be moni-
tored from the atomic fraction tunnelling to the excited
band in Bloch oscillations. We can use noninteracting
fermionic atoms or an incoherent distribution of bosonic
atoms with the population being homogeneous in the mo-
mentum space initially prepared in the lower band [42].
A constant force F is applied along the z axis and pushes
the atoms moving along the kz direction. After a Bloch
cycle, we can obtain the momentum distribution of the
transfer fraction to the upper band from time-of-flight
imaging [63, 64]. In this case, the transfer fraction ξz(k‖)
is given by

ξz(k‖) = PLZ(k‖) = e−π∆2
z(k‖)/4vzF , (29)

where PLZ is the Landau-Zener transition probability and
∆z = (E+−E−)|kz=0,π/a denotes the energy gap for the
transition along the kz direction. Figures 5(c) and (d)
show the typical momentum distribution ξz(k‖), where
each point of maximum transfer in the kx-ky plane corre-
sponds to a nodal point and all the points form a nodal
loop, corresponding to the cases in Figs. 5(a) and 5(b),
respectively. The peaks in ξz(k‖) are sharp as the tran-
sition probability in a Landau-Zener event increases ex-
ponentially as the energy gap decreases, such that the
momentum distribution of the atomic transfer fraction
with its maximum positions can well reveal the shape of
an NL.

IV. TOPOLOGICAL PROPERTIES OF THE
SIMULATED NODAL LOOP STATES

In this section, we precede to investigate the topolog-
ical properties of the simulated NL states and present
practical methods for their experimental detection in this
cold atom system. We first show the quantized Berry
phase characterizing the NL states in the bulk and then
consider the related non-trivial surface states.

A. Quantized Berry phase: Z2 topological invariant

As analysed in the previous section, Hamiltonian (24)
preserves the combined PT symmetry. This guarantees
the symmetry-protected topological stability of the PT-
invariant NLs in three-dimensional Brillouin zone and a
quantized Berry phase γ in units of π that characterizes
its topological protection, even in the presence of P and
T breaking perturbation HP . If a closed loop in the mo-
mentum space is pierced by the NL, one has γ = 1 (i.e.,
π Berry phase), otherwise γ = 0, which represents a Z2-
type invariant. The same invariant can be written if the
loop is chosen parallel to kz, i.e., with fixed k‖, since it
is closed at kz = ±π/a due to periodic boundary con-
ditions. Thus the topological invariant of the NL states
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may be evaluated as

γ(k‖) = − i
π

∑
En<EF

∫ π/a

−π/a
〈un(k)|∂kz |un(k)〉dkz, (30)

where the sum is over the filled Bloch eigenstates |un(k)〉
of Hamiltonian (24) with the Fermi energy EF . Equa-
tion (30) indicates that the topological properties of the
system can be parameterized by k‖ as the nontrivial Zak
phase for an effective gapped one-dimensional system.
Using the Bloch Hamiltonian (24) with given k‖, we ver-
ify that γ = 1 for k‖ inside the projected NL while γ = 0
outside, as shown in Fig. 6(a).

For fermionic atoms in this optical lattice, one can di-
rectly probe γ(k‖) by measuring the Bloch wave func-
tion cnσ(k) from |un(k)〉 = cn↑(k) |↑〉 + cn↓(k) |↓〉 with
time-of-flight imaging [65]. One first map out the atomic
momentum distribution ρnσ(k) = |cnσ(k)|2 for the filled
band using the conventional time-of-flight imaging. One
then may measure the phase information of cnσ(k) by in-
troducing a π/2 rotation between the two spin states with
an impulsive pulse light before the flight of atoms, which
induces the transition cn↑(k) → [cn↑(k) + cn↓(k)]/

√
2

and cn↓(k)→ [cn↑(k)− cn↓(k)]/
√

2. With this pulse, the
difference between |c↑(k) ± c↓(k)|2/2 measured through
time-of-flight imaging gives the real part of the inter-
ference terms Re[c∗n↑(k)cn↓(k)]. The imaginary part

Im[c∗n↑(k)cn↓(k)] can be obtained by the same way with
a different rotation. The measurement of the popula-
tion and interference terms determines the Bloch wave
function up to an arbitrary overall phase cnσ(k) →
cnσ(k)eiχ(k), where χ(k) in general depends on k instead
of the spin index. The arbitrary k-dependent phase poses
an obstacle to measure the topological invariant [65]. To
overcome this difficulty, we use a gauge-invariant method
to calculate the Berry phase [66]

γ(k‖) =
1

π

Nj−1∑
j=0

Arg[det〈un(k‖, k
z
j )|un′(k‖, kzj+1)〉],

(31)
where kz in the BZ is discretized into small Nj inter-
vals with kzj = −π/a + 2jπ/Nja, the overlap phase
Arg[•] = Imag{ln[•]}, and the determinant is that of
a matrix formed by allowing n and n′ to run over filled
Bloch eigenstates.

To demonstrate that the method is feasible in a real-
istic experiment, we numerically simulate the proposed
detection of the Berry phase γ(k‖) with finite lattice sys-
tem and an additional harmonic trap

Ĥtrap =
1

2
maω

2
∑
i,σ

d2
i â
†
i,σâi,σ, (32)

where ω is the trap frequency and di is the distance from
the center of the trap to the lattice site i. We can use
ν = maω

2a2/2t↑ to parametrize the influence of this trap-
ping potential. For a typical experiment with a ≈ 400

nm and t↑ ≈ 1 kHz, µ is on the order of 10−3 for 6Li or
40Ka atoms in a trap with ω ≈ 2π× 50 Hz. In numerical
simulations, we perform the spin rotation and obtain the
momentum distribution under different spin basis by di-
agonalizing the real-space Hamiltonian on a finite lattice
and using a Fourier transformation [65]. The numeri-
cal result of γ(k‖) for finite lattice 32 × 32 × 32 with a
weak harmonic trap (ν = 0.001) and typical parameters
is shown in Fig. 6(b). Compared with the result shown
in Fig. 6(a), in this case the k‖ regime with γ = 1 slightly
shrink from that of the ideal NL [black solid line in Fig.
6(b)] and the sharp boundary between γ = 0 and γ = 1
becomes relatively smooth, which are due to the trapping
potential and the finite size effects.
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FIG. 6: (Color online) (a) The Berry phase γ(kx, ky) calcu-
lated by using the Bloch Hamiltonian (24). (b) The simu-
lated measurement of Berry phase γ(kx, ky) with the lattice
size 32 × 32 × 32 and an additional harmonic trap with the
parameter ν = 0.001 (see the text) by using Eq. (31). The
black solid line denotes the nodal loop in this case. (c) The
energy spectrum with respect to kx for fixed ky = 0 and open
boundary condition along the z axis, and the surface states
inside the gap. (d) The density distribution of two surface
modes at kx = ky = 0. Other parameters in (a-d) are t↑ = 1
as the energy unit, t↓ = tso = 0.3, and mz = 2.0.

B. Protected surface states

According the the bulk-edge correspondence, the topo-
logical NL state with the Berry phase γ(k‖) is related
to edges states at the end of the one-dimensional sys-
tem with a fixed k‖ [21, 66, 67]. Hence, for a fixed k‖
and two surfaces (upper and lower surfaces) along the z
axis, two in-gap states appear at in the surface Brillouin
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zone when γ(k‖) 6= 0. This indicates that surface states
appear for all γ(k‖) inside the area enclosed by the pro-
jected NL on the surface plane. With the f0(k)σ0 term,
the surface states acquire a dispersion proportional to
f0(kx, ky, 0). In Fig. 6(c), we plot the energy spectrum
with respect to kx for fixed ky = 0 and open bound-
ary condition along the z axis (with 32 lattice sites),
which shows the surface states inside the gap denoted by
red solid lines connecting the two band-touching points.
The density distribution of the two corresponding sur-
face modes at kx = ky = 0 is shown in Fig. 6(d). The
surface states for other ky are similar, and they merge
into the bulk bands when the system become a trivial in-
sulator. For this system in phase II.a, the surface modes
perpendicular to the z direction with fixed k‖ can be de-
scribed by the effective Hamiltonian Hz(k‖) = ivzσ2∂z +
gz(k‖)σ3 + g0(k‖)σ0 up to the linear order in kz → −i∂z,
where gz(k‖) = mz − α+ − α−[cos(kxa) + cos(kya)] and
g0(k‖) = −α− − α+[cos(kxa) + cos(kya)].

In the optical lattice, the surface states may be washed
out by the smooth harmonic potential and become undis-
tinguishable from the bulk states. To circumvent this
problem, one can use a steep confining potential or cut
the atomic hopping along the z axis by locally tuning
the effective Rabi frequency of the Raman lasers. Un-
der this condition, the protected surface states can be
probed through Bragg spectroscopy [53, 68, 69]. One
could shine another two laser beams at a certain angle to
induce a specifically tuned Raman transition from an oc-
cupied spin state to an unoccupied hyperfine level and fo-
cus them near the surface of the three-dimensional atomic
cloud [69]. When the momentum and energy conserva-
tion conditions are satisfied, the atomic transition rate
is peaked and can be measured. By scanning the Ra-
man frequency difference, the surface energy-momentum
dispersion relation can be mapped out from these Bragg
signals [68, 69].

V. CONCLUSION

In summary, we have established a topological classifi-
cation of NLs in systems with the PT symmetry. In three-
dimensional momentum space, only PT-invariant NLs are
topologically protected with a Z2 classification. Moti-
vated by this observation, we have proposed a realistic
experimental scheme to realize PT-invariant topological
NL states with cold atoms in a three-dimensional optical
lattice, which have tunable loop-shaped Fermi lines with
two-fold degeneracy in the bulk spectrum and non-trivial
surface states. The NL states are actually protected by
the combined PT symmetry even in the absence of both
P and T symmetries, and are characterized by a quan-
tized Berry phase (a Z2-type invariant). We have also
shown that (i) the characteristic NLs can be detected by
measuring the atomic transfer fractions in a Bloch-Zener
oscillation; (ii) the topological charge can be measured
based on the time-of-flight imaging; and (iii) the surface
states can be probed through Bragg spectroscopy. The
experimental realization and detection of PT-symmetry
protected NL states in cold atom systems will be regarded
as an important advance in the field of quantum simu-
lation, paving the way for exploring exotic PT-invariant
topological physics.
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