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Abstract

Sequence-to-sequence neural translation mod-
els learn semantic and syntactic relations be-
tween sentence pairs by optimizing the likeli-
hood of the target given the source, i.e., p(y|x),
an objective that ignores other potentially use-
ful sources of information. We introduce an al-
ternative objective function for neural MT that
maximizes the mutual information between
the source and target sentences, modeling the
bi-directional dependency of sources and tar-
gets. We implement the model with a simple
re-ranking method, and also introduce a decod-
ing algorithm that increases diversity in the N-
best list produced by the first pass. Applied to
the WMT German/English and French/English
tasks, both mechanisms offer a consistent per-
formance boost on both standard LSTM and
attention-based neural MT architectures. The
result is the best published performance for a
single (non-ensemble) neural MT system, as
well as the potential application of our diverse
decoding algorithm to other NLP re-ranking
tasks.

1 Introduction

Sequence-to-sequence models for machine transla-
tion (SEQ2SEQ) (Sutskever et al., 2014; 3; Cho et
al., 2014; Kalchbrenner and Blunsom, 2013; Li et
al., 2015b) are of growing interest for their capac-
ity to learn semantic and syntactic relations between
sequence pairs, capturing contextual dependencies
in a more continuous way than phrase-based SMT
approaches. SEQ2SEQ models require minimal do-
main knowledge, can be trained end-to-end, have a
much smaller memory footprint than the large phrase

tables needed for phrase-based SMT, and achieve
state-of-the-art performance in large-scale tasks like
English to French (Luong et al., 2015b) and English
to German (Luong et al., 2015a; Jean et al., 2014)
translation.

SEQ2SEQ models are implemented as an encoder-
decoder network, in which a source sequence input x
is mapped (encoded) to a continuous vector represen-
tation from which a target output y will be generated
(decoded). The framework is optimized through max-
imizing the log-likelihood of observing the paired
output y given x:

Loss = − log p(y|x) (1)

While standard SEQ2SEQ models thus capture the
unidirectional dependency from source to target, i.e.,
p(y|x), they ignore p(x|y), the dependency from the
target to the source, which has long been an impor-
tant feature in phrase-based translation (Och and Ney,
2002; Shen et al., 2010). Phrase based systems that
combine p(x|y), p(y|x) and other features like sen-
tence length yield significant performance boost.

We propose to incorporate this bi-directional de-
pendency and model the maximum mutual informa-
tion (MMI) between source and target into SEQ2SEQ

models. As Li et al. (2015a) recently showed in the
context of conversational response generation, the
MMI based objective function is equivalent to lin-
early combining p(x|y) and p(y|x). With a tuning
weight λ, such a loss function can be written as :

ŷ = argmax
y

log
p(x, y)

p(x)p(y)λ

= argmax
y

(1− λ) log p(y|x) + λp(x|y)
(2)
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But as also discussed in Li et al. (2015a), direct
decoding from (2) is infeasible because computing
p(x|y) can’t be done until the target has been com-
puted1.

To avoid this enormous search space, we propose
to use a reranking approach to approximate the mu-
tual information between source and target in neural
machine translation models. We separately trained
two SEQ2SEQ models, one for p(y|x) and one for
p(x|y). The p(y|x) model is used to generate N-best
lists from the source sentence x. The lists are fol-
lowed by a reranking process using the second term
of the objective function, p(x|y).

Because reranking approaches are dependent on
having a diverse N-best list to rerank, we also propose
a diversity-promoting decoding model tailored to neu-
ral MT systems. We tested the mutual information
objective function and the diversity-promoting decod-
ing model on English→French, English→German
and German→English translation tasks, using both
standard LSTM settings and the more advanced
Attention-model based settings that have recently
shown to result in higher performance.

As we will show, each of our two models yields a
consistent performance boost on neural MT, and the
combined system achieves what is to our knowledge
the best published BLEU score from a single (non-
ensemble) neural MT system.

The next section presents related work, fol-
lowed by a background section 3 introducing
LSTM/Attention machine translation models. Our
proposed model will be described in detail in Sec-
tions 4, with datasets and experimental results in
Section 6 followed by conclusions.

2 Related Work

This paper draws on three prior lines of research:
SEQ2SEQ models, modeling mutual information, and
promoting translation diversity.

1As demonstrated in (Li et al., 2015a)

log
p(x, y)

p(x)p(y)λ
= log p(y|x)− λp(y) (3)

Equ. 2 can be immediately achieved by applying bayesian rules

log p(y) = log p(y|x) + log p(x)− log p(x|y)

SEQ2SEQ Models SEQ2SEQ models map source
sequences to vector space representations, from
which a target sequence is then generated. They yield
good performance in a variety of NLP generation
tasks including conversational response generation
(Vinyals and Le, 2015; Serban et al., 2015a; Li et al.,
2015a), and parsing (Vinyals et al., 2015).

A neural machine translation system uses dis-
tributed representations to model the conditional
probability of targets given sources, using two com-
ponents, an encoder and a decoder. Kalchbrenner
and Blunsom (2013) used an encoding model akin
to convolutional networks for encoding and standard
hidden unit recurrent nets for decoding. Similar con-
volutional networks are used in (Meng et al., 2015)
for encoding. Sutskever et al. (2014; Luong et al.
(2015a) employed a stacking LSTM model for both
encoding and decoding. 3; Jean et al. (2014) adopted
bi-directional recurrent nets for the encoder.

Maximum Mutual Information Maximum Mu-
tual Information (MMI) was introduced in speech
recognition (Bahl et al., 1986) as a way of measur-
ing the mutual dependence between inputs (acoustic
feature vectors) and outputs (words) and improving
discriminative training (Woodland and Povey, 2002).
Li et al. (2015a) showed that MMI could solve an
important problem in SEQ2SEQ conversational re-
sponse generation. Prior SEQ2SEQ models tended to
generate highly generic, dull responses (e.g., I don’t
know) regardless of the inputs (Sordoni et al., 2015;
Vinyals and Le, 2015; Serban et al., 2015b). Li et
al. (2015a) shows that modeling the mutual depen-
dency between messages and response promotes the
diversity of response outputs.

Our goal, distinct from these previous uses of
MMI, is to see whether the mutual information objec-
tive improves translation by bidirectionally modeling
source-target dependencies. In that sense our work is
designed to incorporate into SEQ2SEQ models fea-
tures that have proved useful in phrase-based MT,
like the reverse translation probability or sentence
length (Och and Ney, 2002; Shen et al., 2010).

Generating Diverse Translations Various algo-
rithms have been proposed for generated diverse
translations in phrase-based MT, including com-
pact representations like lattices and hypergraphs
(Macherey et al., 2008; Tromble et al., 2008; Kumar



and Byrne, 2004), “traits” like translation length (De-
vlin and Matsoukas, 2012), bagging/boosting (Xiao
et al., 2013), or multiple systems (Cer et al., 2013).
Gimpel et al. (2013; Batra et al. (2012), produce di-
verse N-best lists by adding a dissimilarity function
based on N-gram overlaps, distancing the current
translation from already-generated ones by choosing
translations that are highly-scoring but distinct from
previous ones. While we draw on these intuitions,
these existing diversity promoting algorithms are tai-
lored to phrase-based translation frameworks and not
easily transplanted to neural MT decoding. For ex-
ample the (Gimpel et al., 2013) approach can only
be evaluated after translations are constructed. We
will propose an on-line algorithm that can promote
diversity during beam search.

3 Background: LSTM & Attention Models

Neural machine translation models map source x =
{x1, x2, ...xNx} to a continuous vector representa-
tion, from which target output y = {y1, y2, ..., yNy}
is to be generated.

3.1 LSTM Models

A long-short term memory model (Hochreiter and
Schmidhuber, 1997) associates each time step with an
input gate, a memory gate and an output gate, denoted
respectively as it, ft and ot. Let et denote the vector
for the current word wt, ht the vector computed by
the LSTM model at time t by combining et and ht−1.,
ct the cell state vector at time t, and σ the sigmoid
function. The vector representation ht for each time
step t is given by:

it = σ(Wi · [ht−1, et]) (4)
ft = σ(Wf · [ht−1, et]) (5)
ot = σ(Wo · [ht−1, et]) (6)

lt = tanh(Wl · [ht−1, et]) (7)
ct = ft · ct−1 + it · lt (8)

hst = ot · tanh(ct) (9)

where Wi, Wf , Wo, Wl ∈ RK×2K . The LSTM
defines a distribution over outputs T and sequentially
predicts tokens using a softmax function:

p(y|x) =
nT∏
t=1

exp(f(ht−1, eyt))∑
w′ exp(f(ht−1, ew′))

where f(ht−1, eyt) denotes the activation function
between ht−1 and ewt , where ht−1 is the represen-
tation output from the LSTM at time t− 1. Each
sentence concludes with a special end-of-sentence
symbol EOS. Commonly, the input and output each
use different LSTMs with separate sets of composi-
tional parameters to capture different compositional
patterns. During decoding, the algorithm terminates
when an EOS token is predicted.

3.2 Attention Models
Attention models adopt a look-back strategy that
links the current decoding stage with input time steps
to represent which portions of the input are most re-
sponsible for the current decoding state (Xu et al.,
2015; Luong et al., 2015b; 3).

LetH = {ĥ1, ĥ2, ..., ĥNx} be the collection of hid-
den vectors outputted from LSTMs during encoding.
Each element in H contains information about the
input sequences, focusing on the parts surrounding
each specific token. Let ht−1 be the LSTM outputs
for decoding at time t − 1. Attention models link
the current-step decoding information, i.e., ht with
each of the representations at decoding step ĥt′ us-
ing a weight variable at. at can be constructed from
different scoring functions such as the dot product
between the two vectors, i.e., hTt−1 · ĥt, a general
model akin to tensor operation i.e., hTt−1 ·W · ĥt, and
the concatenation model by concatenating the two
vectors i.e., UT ·tanh(W · [ht−1, ĥt]). The behavior
of different attention scoring functions have been ex-
tensively studied in (Luong et al., 2015a). For all
experiments in this paper, we adopt the general strat-
egy where the relevance score between the current
step of the decoding representation and the encoding
representation is given by:

vt′ = hTt−1 ·W · ĥt

ai =
exp(vt∗)∑
t∗ exp(vt∗)

(10)

The attention vector is created by averaging weights
over all input time-steps:

mt =
∑

t′∈[1,NS ]

aiĥt′ (11)

Attention models predict subsequent tokens based
on the combination of the last step outputted LSTM



vectors ht−1 and attention vectors mt:

~ht−1 = tanh(Wc · [ht−1,mt])

p(yt|y<, x) = softmax(Ws · ~ht−1)
(12)

where Wc ∈ RK×2K , Ws ∈ RV×K with V denoting
vocabulary size. (Luong et al., 2015a) reported a sig-
nificant performance boost by integrating ~ht−1 into
the next step LSTM hidden state computation (re-
ferred to as the input-feeding model), making LSTM
compositions in decoding as follows:

it = σ(Wi · [ht−1, et,~ht−1])

ft = σ(Wf · [ht−1, et,~ht−1])

ot = σ(Wo · [ht−1, et,~ht−1])

lt = tanh(Wl · [ht−1, et,~ht−1])

(13)

where Wi, Wf , Wo, Wl ∈ RK×3K . For the attention
models implemented in this work, we adopt the input-
feeding strategy.

3.3 Unknown Word Replacements
One of the major issues in neural MT models is the
computational complexity of the softmax function for
target word prediction, which requires summing over
all tokens in the vocabulary. Neural models tend to
keep a shortlist of 50,00-80,000 most frequent words
and use an unknown (UNK) token to represent all
infrequent tokens, which significantly impairs BLEU
scores. Recent work has proposed to deal with this
issue: (Luong et al., 2015b) adopt a post-processing
strategy based on aligner from IBM models, while
(Jean et al., 2014) approximates softmax functions
by selecting a small subset of target vocabulary.

In this paper, we use a strategy similar to that
of Jean et al. (2014), thus avoiding the reliance on
external IBM model word aligner. From the atten-
tion models, we obtain word alignments from the
training dataset, from which a bilingual dictionary
is extracted. At test time, we first generate target
sequences. Once a translation is generated, we link
the generated UNK tokens back to positions in the
source inputs, and replace each UNK token with the
translation word of its correspondent source token
using the pre-constructed dictionary.

As the unknown word replacement mechanism re-
lies on automatic word alignment extraction which is
not explicitly modeled in vanilla SEQ2SEQ models, it

can not be immediately applied to vanilla SEQ2SEQ

models. However, since unknown word replacement
can be viewed as a post-processing technique, we
can apply a pre-trained attention-model to any given
translation. For SEQ2SEQ models, we first gener-
ate translations and replace UNK tokens within the
translations using the pre-trained attention models to
post-process the translations.

4 Mutual Information via Reranking

As discussed in Li et al. (2015a), direct decoding
from (2) is infeasible since the second part, p(x|y),
requires completely generating the target before it
can be computed. We therefore use an approximation
approach:

1. Train p(y|x) and p(x|y) separately using vanilla
SEQ2SEQ models or Attention models.

2. Generate N-best lists from p(y|x).

3. Rerank the N-best list by linearly adding p(x|y).

4.1 Standard Beam Search for N-best lists
N-best lists are generated using a beam search de-
coder with beam size set to 200 from p(y|x) models.
As illustrated in Figure 1, at time step t − 1 in de-
coding, we keep record of K hypotheses based on
score S(Yt−1|x) = log p(y1, y2, ..., yt−1|x). As we
move on to time step t, we expand each of the K
hypotheses (denoted as Y k

t−1 = {yk1 , yk2 , ..., ykt−1},
k ∈ [1,K]), by selecting top K of the translations,
denoted as yk,k

′

t , k′ ∈ [1,K], leading to the construc-
tion of K ×K new hypotheses:

[Y k
t−1, y

k,k′

t ], k ∈ [1,K], k′ ∈ [1,K]

The score for each of the K ×K hypotheses is com-
puted as follows:

S(Y k
t−1, y

k,k′

t |x) = S(Y k
t−1|x)+log p(yk,k

′

t |x, Y k
t−1)
(14)

In a standard beam search model, the top K hy-
potheses are selected (from the K × K hypothe-
ses computed in the last step) based on the score
S(Y k

t−1, y
k,k′

t |x). The remaining hypotheses are ig-
nored as we proceed to the next time step.

We set a maximum length to 1.5 times the length
of sources. As decoding proceeds, sentences that are
generated with a predicted EOS token are stored for
later reranking.



Figure 1: Illustration of Standard Beam Search and proposed diversity promoting Beam Search.

4.2 Generating a Diverse N-best List

Unfortunately, the N-best lists outputted from stan-
dard beam search are a poor surrogate for the entire
search space (Finkel et al., 2006; Huang, 2008). The
beam search algorithm can only keep a small propor-
tion of candidates in the search space and most of
the generated translations in N-best list are similar,
differing only by punctuation or minor morpholog-
ical variations, with most of the words overlapping.
Because this lack of diversity in the N-best list will
significantly decrease the impact of our reranking
process, it is important to find a way to generate a
more diverse N-best list.

We propose to change the way S(Y k
t−1, y

k,k′

t |x)
is computed in an attempt to promote diversity, as
shown in Figure 1. For each of the hypotheses
Y k
t−1 (he and it), we generate the top K translations,
yk,k

′

t , k′ ∈ [1,K] as in the standard beam search
model. Next we rank the K translated tokens gen-
erated from the same parental hypothesis based on
p(yk,k

′

t |x, Y k
t−1) in descending order: he is ranks the

first among he is and he has, and he has ranks second;
similarly for it is and it has.

Next we rewrite the score for [Y k
t−1, y

k,k′

t ] by
adding an additional part γk′, where k′ denotes the
ranking of the current hypothesis among its siblings,
which is first for he is and it is, second for he has and
it has.

Ŝ(Y k
t−1, y

k,k′

t |x) = S(Y k
t−1, y

k,k′

t |x)− γk′ (15)

The top K hypothesis are selected based on
Ŝ(Y k

t−1, y
k,k′

t |x) as we move on to the next time step.
By adding the additional term γk′, the model pun-
ishes bottom ranked hypotheses among siblings (hy-
potheses descended from the same parent). When
we compare newly generated hypotheses descended
from different ancestors, the model gives more credit
to top hypotheses from each of different ancestors.
For instance, even though the original score for it is
is lower than he is, the model favors the former as the
latter is more severely punished by the intra-sibling
ranking part γk′. The model thus generally favors
choosing hypotheses from diverse parents, leading to
a more diverse N-best list.

The proposed model is straightforwardly imple-
mented with minor adjustment to the standard beam
search model2.

We employ the diversity evaluation metrics in (Li
et al., 2015a) to evaluate the degree of diversity of the
N-best lists: calculating the average number of dis-
tinct unigrams distinct-1 and bigrams distinct-2 in the
N-best list given each source sentence, scaled by the
total number of tokens. By employing the diversity
promoting model with γ tuned from the development
set based on BLEU score, the value of distinct-1
increases from 0.54% to 0.95%, and distinct-2 in-

2Decoding for neural based MT model using large batch-
size can be expensive resulted from softmax word prediction
function. The proposed model is tailored to decoding in chunk
using GPU, significantly speed up decoding process than other
diversity fostering models tailored to phrase based MT systems.



creases from 1.55% to 2.84% for English-German
translation. Similar phenomenon are observed from
English-French translation tasks and details are omit-
ted for brevity.

4.3 Reranking

The generated N-best list is then reranked by lin-
early combining p(y|x) with p(x|y). The score of
the source given each generated translation can be
immediately computed from the previously trained
p(x|y). We also consider an additional term that
takes into account the length of targets (denotes as
LT ) in decoding. We thus linearly combine the three
parts, making the final ranking score for a given target
candidate y as follows:

Score(y) = (1−λ)p(y|x)+λp(x|y)+ ηLT (16)

We applied grid search to achieve the combination
value for η, λ and γ. Hyperparameters are tuned via
BLEU score (Papineni et al., 2002) on the develop-
ment set.

5 Experiments

Our models are trained on the WMT’14 training
dataset containing 4.5 million pairs for English-
German and German-English translation, and 12 mil-
lion pairs for English-French translation. For English-
German translation, we limit our vocabularies to the
top 50K most frequent words for both languages. For
English-French translation, we keep the top 200K
most frequent words for the source language and
80K for the target language. Words that are not in the
vocabulary list are noted as the universal unknown
token.

For the English-German and English-German
translation, we use newstest2013 (3000 sentence
pairs) as the development set and translation perfor-
mances are reported in BLEU (Papineni et al., 2002)
on newstest2014 (2737) sentences. For English-
French translation, we concatenate news-test-2012
and news-test-2014 to make a development set (6,003
pairs in total) and evaluate the models on news-test-
2014 with 3,003 pairs3.

3As in (Luong et al., 2015a). All texts are tokenized with tok-
enizer.perl and BLEU scores are computed with multi-bleu.perl

5.1 Training Details for p(x|y) and p(y|x)

We trained neural models on Standard SEQ2SEQ

Models and Attention Models. We trained p(y|x)
following the standard training protocols described in
(Sutskever et al., 2014). p(x|y) is trained identically
but with sources and targets swapped.

We adopt a deep structure with four LSTM lay-
ers for encoding and four LSTM layers for decoding,
each of which consists of a different set of parameters.
We followed the detailed protocols from Luong et
al. (2015a): each LSTM layer consists of 1,000 hid-
den neurons, and the dimensionality of word embed-
dings is set to 1,000. Other training details include:
LSTM parameters and word embeddings are initial-
ized from a uniform distribution between [-0.1,0.1];
For English-German translation, we run 12 epochs
in total. After 8 epochs, we start halving the learning
rate after each epoch; for English-French translation,
the total number of epochs is set to 8, and we start
halving the learning rate after 5 iterations. Batch size
is set to 128; gradient clipping is adopted by scaling
gradients when the norm exceeded a threshold of 5.
Inputs are reversed.

Our implementation on a single GPU4 processes
approximately 800-1200 tokens per second. Training
for the English-German dataset (4.5 million pairs)
takes roughly 12-15 days. For the French-English
dataset, comprised of 12 million pairs, training takes
roughly 4-6 weeks.

5.2 English-German Results

Results for different models on WMT2014 are shown
in Figure 1. As can be seen, the mutual information
reranking models result in improved performance:
+1.4 and +1.3 for standard SEQ2SEQ models with-
out and with unknown word replacement, +0.9 for
attention models. We see the benefit from our diverse
N-best list by comparing mutual+diversity models
with diversity models. On top of the improvements
from standard beam search due to mutual information
reranking, the diversity models introduce additional
gains of +0.7, +0.9 and +0.6, leading the total gains
roughly up to +2.0. The unknown token replacement
technique yields significant gains, in line with obser-
vations from Jean et al. (2014; Luong et al. (2015a).

We compare our English-German system with var-

4Tesla K40m, 1 Kepler GK110B, 2880 Cuda cores.



Language Pairs Model BLEU scores
English→German Standard 13.6
English→German Standard (mutual) 15.0 (+1.4)
English→German Standard (mutual+diversity) 15.7 (+2.1)
English→German Standard+UnkRep 14.6
English→German Standard (mutual)+UnkRep 15.7 (+1.1)
English→German Standard (mutual+diversity)+UnkRep 16.6 (+2.0)
English→German Attention+UnkRep 20.4
English→German Attention (mutual)+UnkRep 21.5 (+1.1)
English→German Attention (mutual+diversity)+UnkRep 22.1 (+1.7)
English→German Buck et al., 2014 20.7
English→German Jean et al., 2015 (without ensemble) 19.4
English→German Jean et al., 2015 (with ensemble) 21.6
English→German Thang et al., 2015 (with UnkRep, without ensemble) 20.9
English→German Thang et al., 2015 (with UnkRep, with ensemble) 23.0

Table 1: BLEU scores from different models for on WMT14 English-German results. UnkRep denotes applying
unknown word replacement strategy. diversity indicates diversity-promoting model for decoding being adopted.
Baselines performances are reprinted from Buck et al. (2014; Luong et al. (2015a; Jean et al. (2014).

Language Pairs Model BLEU scores
German→English Standard+UnkRep 15.2
German→English Standard (mutual+UnkRep) 16.5 (+1.3)
German→English Standard (mutual+diversity+UnkRep) 18.0 (+1.8)
German→English Attention+UnkRep 19.6
German→English Attention (mutual)+UnkRep 20.8 (+1.2)
German→English Attention (mutual+diversity+UnkRep) 21.2 (+1.6)

Table 2: BLEU scores from different models for on WMT’14 German-English results.

ious others: (1) The winning system in WMT2014
(Buck et al., 2014) where language models were
trained on a huge monolingual dataset. (2) The end-
to-end neural MT system from Jean et al. (2014)
using a large vocabulary size. (3) Models from Lu-
ong et al. (2015a) that combines different attention
models. For the models described in (Jean et al.,
2014) and (Luong et al., 2015a), we reprint their
results from both the single model setting and the
ensemble setting, which a set of (usually 8) neural
models that differ in random initializations and the
order of minibatches are trained, the combination
of which jointly contributes in the decoding process.
The ensemble procedure is known to result in im-
proved performance (Luong et al., 2015a; Jean et al.,
2014; Sutskever et al., 2014).

Note that the reported results from the standard

SEQ2SEQ models and attention models in Table 1
(those without considering mutual information) are
from models identical in structure to the correspond-
ing models described in (Luong et al., 2015a), and
achieve similar performances (13.6 vs 14.0 for stan-
dard SEQ2SEQ models and 20.4 vs 20.7 for attention
models).

To the best of our knowledge, our proposed mu-
tual information model achieves the best published
performance from a single neural model: +2.1 when
compared with Jean et al. (2014) and +1.2 when com-
pared with Luong et al. (2015a). (Due to time and
computational constraints, we did not implement an
ensemble mechanism, making our results incompara-
ble to the ensemble mechanisms in these papers.)



Language Pairs Model BLEU scores
French→English Standard 29.4
French→English Standard (mutual) 31.0 (+1.6)
French→English Standard (mutual+diversity) 32.2 (+2.8)
French→English Standard+UnkRep 31.2
French→English Standard (mutual)+UnkRep 32.7 (+1.5)
French→English Standard (mutual+diversity)+UnkRep 33.7 (+2.5)
French→English Attention+UnkRep 33.6
French→English Attention (mutual)+UnkRep 34.8 (+1.2)
French→English Attention (mutual+diversity)+UnkRep 35.8 (+2.2)
French→English LSTM (Google) (without ensemble) 30.6
French→English LSTM (Google) (with ensemble) 33.0
French→English Luong et al. (2015), UnkRep (without ensemble) 32.7
French→English Luong et al. (2015), UnkRep (with ensemble) 37.5

Table 3: BLEU scores from different models for on WMT’14 English-French results. Google is the LSTM-based
model proposed in Sutskever et al. (2014). Luong et al. (2015) is the extension of Google models with unknown token
replacements.

5.3 German-English Results
We carried out similar set of experiments for the
WMT’15 German to English translation task. Mutual
information reranking again results in gains in BLEU,
as demonstrated in Table 2. The mutual information
model gives +1.3 and +0.9 performance gains, on top
of which we obtain another boost of up to +0.5-0.7
form the diversity decoding mechanism.

5.4 French-English Results
Results from the WMT’14 French-English datasets
are shown in Table 3, along with results reprinted
from Sutskever et al. (2014; Luong et al. (2015b).
We again observe that applying mutual information
yields better performance than the corresponding
standard neural MT models.

Relative to the English-German dataset, the
English-French translation task shows a larger gap
between our new model and vanilla models where
mutual information is not considered; our models
respectively yield up to +2.8, +2.5, +2.2 boost in
BLEU compared to standard neural models without
and with unknown word replacement, and Attention
models.

6 Discussion

In this paper, we introduce a new objective for neu-
ral MT based on the mutual dependency between

the source and target sentences, inspired by recent
work in neural conversation generation (Li et al.,
2015a). We build an approximate implementation of
our model using reranking, and then to make rerank-
ing more powerful we introduce a new decoding
method that promotes diversity in the first-pass N-
best list.

On English→French and English→German trans-
lation tasks, we show that the neural machine transla-
tion models trained using the proposed method per-
form better than corresponding standard models, and
that both the mutual information objective and the
diversity-increasing decoding methods contribute to
the performance boost..

The new models come with the advantages of
easy implementation with sources and targets inter-
changed, and of offering a general solution that can
be integrated into any neural generation models with
minor adjustments. Indeed, our diversity-enhancing
decoder can be applied to generate more diverse N-
best lists for any NLP reranking task.

Finding a way to introduce mutual information
based decoding directly into a first-pass decoder with-
out reranking naturally constitutes our future work.
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