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Abstract

A piecewise Chebyshevian spline space is a space of spline functions having pieces in different Extended
Chebyshev spaces and where the continuity conditions between adjacent spline segments are expressed
by means of connection matrices. Any such space is suitable for design purposes when it possesses an
optimal basis (i.e. a totally positive basis of minimally supported splines) and when this feature is preserved
under knot insertion. Therefore, when any piecewise Chebyshevian spline space where all knots have zero
multiplicity enjoys the aforementioned properties, then so does any spline space with knots of arbitrary
multiplicity obtained from it.

In this paper, we provide a practical criterion and an effective numerical procedure to determine whether
or not a given piecewise Chebyshevian spline space with knots of zero multiplicity is suitable for design.
Moreover, whenever it exists, we also show how to construct the optimal basis of the space.

Keywords: Generalized spline spaces, Extended Chebyshev (piecewise) spaces, Optimal normalized
totally positive basis, Transition functions, Weight functions, Geometric design
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1. Introduction

Extended Chebyshev spaces (EC-spaces) represent a naturalgeneralization of polynomial spaces. They
contain transcendental functions and provide additional degrees of freedom, that can be exploited to control
the behavior of parametric curves and to accomplish shape-preserving approximations. While Chebyshe-
vian splines are piecewise functions whose pieces belong tothe same EC-space [1], piecewise functions
having sections in different EC-spaces are called piecewise Chebyshevian splines. The latter are of great
interest in Geometric Design and Approximation for their capacity to combine the local nature of splines
with the diversity of shape effects provided by the wide range of known EC-spaces.

Unfortunately, in general, there is no guarantee that a piecewise Chebyshevian spline space can have a
real interest for applications. In particular, the existence of a normalized, totally positive B-spline basis is
essential in order to have computational stability and goodapproximation properties. Such a basis is the
Optimal Normalized Totally Positive basis (ONTP basis for short), in the sense of the B-basis [2]. Moreover,
not only the ONTP basis shall exist in the spline space itself, but also in all other spaces derived from it by
insertion of knots. Besides being crucial for the development of most geometric modeling algorithms, the
latter feature allows for the existence of a multiresolution analysis and permits local refinement for solving

Email addresses:carolina.beccari2@unibo.it (Carolina Vittoria Beccari),giulio.casciola@unibo.it (Giulio
Casciola)

1

http://arxiv.org/abs/1601.00380v1


PDEs. Therefore, a spline space is suitable for design when it possesses the ONTP basis and when this
property is preserved under knot insertion.

Piecewise Chebyshevian spline spaces were introduced in the seminal paper by Barry [3]. In that frame-
work, the continuity conditions between adjacent spline pieces are expressed in terms of connection matrices
linking the appropriate number of left and right generalized derivatives. By exploiting different theoretical
machineries, first Barry and later Mühlbach and coauthors [4–6] proved that, if all the connection matrices
are totally positive, then the corresponding spline space has a B-spline basis. Later, Mazure showed that
total positivity of the connection matrices is a far too restrictive assumption [7]. Moreover she demonstrated
the equivalence between the existence of blossoms [8, 9] and the existence of a B-spline basis both in the
spline space itself and in all other spaces derived from it byknot insertion. When blossoms exist, Mazure
calls a space “good for design”, the terminology being also motivated by the fact that blossoms enable to
easily develop all classical geometric design algorithms such as evaluation, knot-insertion and subdivision,
and guarantee the existence of the ONTP basis.

From a practical point of view, however, it is not easy to check whether or not blossoms do exist. To
overcome this difficulty, Mazure introduced the notion of Extended Chebyshev Piecewise spaces (ECP-
spaces) and generalized the classical theory of EC-spaces to the piecewise setting [10].

Given a closed and bounded real intervalI , a (single)m-dimensional EC-spaceUm ⊂ Cm−1(I ) contain-
ing constants is good for design if and only ifDUm is an EC-space [11]. For null spaces of linear differential
operators with constant coefficients the latter property is verified whenever the length ofthe intervalI does
not exceed a maximal length, which is known or can be computedfor a wide class of EC-spaces of interest
for applications [11–13].

In the piecewise setting, we shall take an increasing partition a = x0 < x1 < · · · < xk < xk+1 = b of an
interval [a, b], and assume that, fori = 0, . . . , k,Ui,m is anm-dimensional EC-space on [xi , xi+1] containing
constants. Let us consider them-dimensional space of all piecewiseCm−1 functionsF defined separately
on each interval [xi , xi+1] such that the restriction ofF to [xi , xi+1], denoted byF[i] , belongs toUi,m for all
i = 0, . . . , k and such that, fori = 1, . . . , k, the left and right derivatives ofF are connected by means of the
relation

(

D0F[i](xi),D
1F[i](xi), . . . ,D

(m−1)F[i](xi)
)T
= Ri

(

D0F[i−1](xi),D
1F[i−1](xi), . . . ,D

(m−1)F[i−1](xi)
)T
,

where eachRi , i = 1, . . . , k, is a properconnection matrixof orderm×m. We call any such space a spline
space with knots of zero multiplicity. Mazure [10] proved that, in analogy with the non-piecewise case, if
the piecewise spaceDS is an ECP-space, then the spline spaceS with knots of zero multiplicity is good for
design and so is any space obtained from it by insertion of knots. In the same paper, she also showed that
systems of piecewise weight functions generate ECP-spacesjust like systems of weight functions produce
EC-spaces. More precisely, she demonstrated that a spline space with knots of zero multiplicity is an ECP-
space if and only if it can be generated by a system of piecewise weight functions and she showed how to
build all the infinitely many possible such systems.

Given an arbitrary partition of an interval [a, b], a sequence of EC-spaces and a sequence of connection
matrices, in this paper we provide a practical method and an effective numerical procedure to determine
whether or not the corresponding spline space with knots of zero multiplicity is suitable for design. To
this aim, after introducing the fundamental notions and results (Section2), in Section3 we illustrate how
to compute a set of functions, calledtransition functions, that, when suitably combined, give rise to the
ONTP basis of the space (provided it exists). Exploiting thetransition functions we construct a particular
sequence of piecewise functions and show that, if the space in question is suitable for design, then they are
an associated system of piecewise weight functions. In Section 4 we develop a computationally efficient
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algorithm during which the sequence of candidate weight functions is recursively computed and, at each
step, a proper test on the transition functions is performedto decide whether to continue or not. In this way,
if the procedure reaches the final step, then the given space is suitable for design.

Because when a spline space with knots of zero multiplicity is suitable for design then so is any space
obtained from it by knot insertion, the proposed procedure also yields sufficient conditions for the existence
of ONTP bases in piecewise Chebyshevian spline spaces with knots of arbitrary multiplicity. Moreover,
it provides a tool to exploit spline spaces with knots of zeromultiplicity themselves for design purposes.
Indeed, it has already been demonstrated that the additional degrees of freedom provided by the connection
matrices can be exploited as shape parameters [14]. The effective numerical procedure proposed in the
present paper can be used to interactively tune these parameters so as to control the shape of parametric
curves, while staying in the class of suitable spaces.

Finally, we would like to mention the recent application of spline spaces with knots of zero multiplicity
to the construction of locally supported spline interpolants [15, 16].

2. Basic notions and notation

We start by introducing Extended Chebshev spaces (EC-spaces), that represent the building blocks of
piecewise Chebyshevian splines.

Definition 1 (Extended Chebyshev space). Let I ⊂ R be a closed bounded interval. Anm-dimensional
spaceUm ⊂ Cm−1(I ), m > 1, is anExtended Chebyshev space(EC-space, for short) onI if any nonzero
element ofUm vanishes at mostm−1 times inI , counting multiplicities as far as possible forCm−1 functions
(that is, up tom), or, equivalently, if any Hermite interpolation problem in mdata inI has a unique solution
inUm.

Throughout the paper we adopt the following notation. LetI = [a, b] ⊂ R be a closed and bounded
interval and∆ ≔ {xi , i = 1, . . . , k} a sequence of points, such thata ≡ x0 < x1 < . . . < xk < xk+1 ≡ b. In
particular∆ determines a sequence of subintervals of the formI i ≔ [xi , xi+1], i = 0, . . . , k.

We shall say thatF is apiecewise functionon (I ,∆) if F is defined separately on each intervalI i of ∆,
i = 0, . . . , k, meaning thatF(x−i ) andF(x+i ) are defined, but they may be different. In analogy, we shall say
thatF is apiecewise Cn function on (I ,∆) if F is Cn in each intervalI i .

Let us now consider an ordered set ofm-dimensional spacesUm ≔ {U0,m, . . . ,Uk,m}, such that every
Ui,m is an EC-space on the intervalI i , for i = 0, . . . , k. Moreover, let us associate to the elements of∆ a
multiplicity vector, namely a vector of positive integersM ≔ (m1, . . . ,mk), such that 06 mi 6 m− 1 for
all i = 1, . . . , k, and a sequence of connection matricesR ≔ {Ri , i = 1, . . . , k}, whereRi is lower triangular,
of orderm−mi, has positive diagonal entries and has first row and column equal to (1, 0, . . . , 0). Hence the
space of piecewise Chebyshevian spline functionsbased onUm, which we indicate byS(Um, M,∆, R), is
defined as follows.

Definition 2 (Piecewise Chebyshevian splines). We define the set of piecewise Chebyshevian splines
S(Um, M,∆, R) based onUm with knots∆ ≔ {x1, . . . , xk} of multiplicities M ≔ (m1, . . . ,mk) and connec-
tion matricesR ≔ {R1, . . . ,Rk} as the set of all piecewiseCm−1 functionsson (I ,∆) such that:

i) the restriction ofs to I i , denoted bys[i] , belongs toUi,m, for i = 0, . . . , k;

ii)
(

D0s[i](xi),D1s[i](xi), . . . ,D(m−mi−1)s[i](xi)
)T
= Ri

(

D0s[i−1](xi),D1s[i−1](xi), . . . ,D(m−mi−1)s[i−1](xi)
)T

,
i = 1, . . . , k.
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The requirement that the first row and column of each matrixRi be equal to the vector (1, 0, . . . , 0)
guarantees the continuity of the splines defined above. Whenall the matricesRi are the identity matrix,
such splines areparametrically continuous. Conversely, if the matricesRi are not the identity matrix, the
corresponding spline space is a space ofgeometrically continuouspiecewise Chebyshevian splines.

In the particular case where the multiplicity vector has allelements equal to zero, we denote a piece-
wise Chebyshevian spline space byS(Um,∆, R) and call it aspline space with knots of zero multiplicity.
Therefore, a spline space with knots of zero multiplicity isanm-dimensional space obtained by joining a
number of differentm-dimensional EC-spaces with proper connection matrices. We also use the notation
DS(Um,∆, R) ≔ {DF | F ∈ S(Um,∆, R)}.

The fact that all matrices in Definition2 are assumed to be lower triangular and have positive diagonal
elements is essential to count zeros as well as to make Rolle’s theorem valid in the piecewise context [17].
In fact, the regularity and lower triangular structure of the connection matrices entail that, fori = 1, . . . , k,
x+i is a zero of multiplicityr 6 m of a given functionF ∈ S(Um,∆, R) if and only if so isx−i . Under the
stated assumptions on the connection matrices, we can therefore introduce the number of zerosZm(F) as
the total number of zeros ofF in I , counting multiplicities up tom, as for functions inCm−1(I ). This allows
us to generalize the notion of EC-space to the piecewise setting as follows [17].

Definition 3 (ECP-space). A spline spaceS(Um,∆, R) is anExtended Chebyshev Piecewise spaceon (I ,∆)
(ECP-space for short) if any of the two following propertiesis satisfied:

1. any nonzero elementF ∈ S(Um,∆, R) satisfiesZm(F) 6 m− 1;

2. any Hermite interpolation problem has a unique solution in S(Um,∆, R) in the sense that, for any pos-
itive integersµ1, . . . , µh, such that

∑h
j=1 µ j = m, any pairwise distinctτ1, . . . , τh ∈ I , anyǫ1, . . . , ǫh ∈

{+,−}, and any real numbersα j,r , r = 0, . . . , µ j − 1, j = 1, . . . , h, there exists a unique elementF of
S(Um,∆, R) such that

F(r)
(

τ
ǫ j

j

)

= α j,r , 0 6 r 6 µ j − 1, 1 6 j 6 h.

From the above definition, it can be seen that ECP-spaces share with polynomial and Extended Cheby-
shev spaces the same bound of zeros for their non-zero elements. Moreover, the class of ECP-spaces is
closed under integration and multiplication by positive piecewise functions [10]. Exploiting this property,
in the same work, it was proved that systems of piecewise weight functions produce ECP-spaces just like
systems of weight functions classically produce EC-spaces. More precisely, asystem of piecewise weight
functionsis a sequence of piecewise functions{w0, . . . ,wm−1} on (I ,∆) such that, for allj = 0, . . . ,m− 1,
w j is positive and piecewiseCm− j−1. Based on it, we can define a sequence of piecewise linear differential
operators, orgeneralized derivatives, as

L0F ≔
F
w0
, L jF ≔

1
w j

DL j−1F, j = 1, . . . ,m− 1,

whereD denotes ordinary differentiation (meant piecewisely) andF is any piecewiseCm−1 function on
(I ,∆). The following result holds [10].

Proposition 1. Let {w0, . . . ,wm−1} be a system of piecewise weight functions associated with piecewise
differential operators L0, L1, . . . , Lm−1. Then the set of all piecewise Cm−1 functions F on(I ,∆) such that

i) Lm−1(F) is constant on I;
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ii) L jF[i](xi) = L jF[i−1](xi), i = 1, . . . , k, j = 0, . . . ,m− 1;

is an m-dimensional ECP-space on(I ,∆).

We shall use the above result in the following way. Given a spline spaceS(Um,∆, R) with knots of zero
multiplicity, if there does exist a system of piecewise weight functions{w0, . . . ,wm−1} such that any spline
in the space satisfiesi) and ii) , thenS(Um,∆, R) is an ECP-space. In this case we say thatS(Um,∆, R) is
associated with the system of piecewise weight functions and write S(Um,∆, R) = ECP(w0, . . . ,wm−1).

The property of being an ECP-space is closely related to the concept of Bernstein basis.

Definition 4 (Bernstein-like and Bernstein basis). A Bernstein-like basis on I= [a, b] is a sequence of
functions{Bℓ,m, ℓ = 1, . . . ,m} in S(Um,∆, R) such thatBℓ,m vanishes exactlyℓ − 1 times ata and exactly
m− ℓ times atb and is positive on (a, b). A Bernstein-like basis is said to be aBernstein basis on[a, b] if it
is normalized, meaning that

∑m
ℓ=1 Bℓ,m(x) = 1,∀x ∈ [a, b].

On any interval [c, d] ⊂ [a, b] a Bernstein or Bernstein-like basis is a basis in the restriction ofS(Um,∆, R)
to [c, d] that satisfies the requirements of Definition4 at c andd.

The theory of EC- and ECP-spaces and the study of their link with the existence of Bernstein-type bases
were developed by Mazure and we refer the reader to [17, 18] for a proof of the following results.

Proposition 2. Given a piecewise Chebyshevian spline space S(Um,∆, R), with knots of zero multiplicity,
which contains constants, the following properties are equivalent:

i) S(Um,∆, R) is an ECP-space on I;

ii) S (Um,∆, R) possesses a Bernstein-like basis on any[c, d] ⊆ I.

Proposition 3. Given a piecewise Chebyshevian spline space S(Um,∆, R), with knots of zero multiplicity,
which contains constants, the following properties are equivalent:

i) DS(Um,∆, R) is an(m− 1)-dimensional ECP-space on I;

ii) S (Um,∆, R) possesses the Bernstein basis on any[c, d] ⊆ I.

In characterizing when a spline space is suitable for designpurposes, the concept of knot insertion plays
a key role. A spline spacêS is said to be obtained from a spline spaceS by knot insertion whenever̂S and
S have section spaces of the same dimension andS ⊂ Ŝ. In particular, when a new knot is inserted so as
to increase the multiplicity of an existing knot, the related connection matrix must be updated by removing
its last row and column. When a new knot is inserted in a location that does not correspond to any already
existing knot, then the corresponding connection matrix must be the identity matrix.

The following proposition shows the strong link between ECP-spaces and spline spaces that are suitable
for design.

Proposition 4 (Theorem 3.2 in [10]). Given a piecewise Chebyshevian spline space S(Um,∆, R), with
knots of zero multiplicity, which contains constants, the following properties are equivalent:

i) the space DS(Um,∆, R) is an ECP-space on I;

ii) S (Um,∆, R) is “good for design” (meaning existence of blossoms);

iii) for any [c, d] ⊆ [a, b], there exists a Bernstein basis in the restriction of S(Um,∆, R) to [c, d];
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iv) any spline space S(Um,∆, M, R) based on S(Um,∆, R) is “good for design”.

A consequence of the latter proposition is that, if any of thePropertiesi)–iv) holds, then the Bernstein
basis with respect to any subinterval [c, d] ⊆ [a, b] is the ONTP basis in the restriction ofS(Um,∆, R) to
such interval. Moreover, the B-spline basis in any spline space mentioned iniv) does exist and is the ONTP
basis.

The above proposition and the results previously recalled allow us to say that, whenever it is possible
to find a system of piecewise weight functions associated with the spaceDS(Um,∆, R), bothS(Um,∆, R)
andDS(Um,∆, R) are ECP-spaces and thus bothS(Um,∆, R) and any spline space with knots of arbitrary
multiplicity based on it are suitable for design. More precisely, if DS(Um,∆, R) = ECP(w1, . . . ,wm−1),
thenS(Um,∆, R) = ECP(1,w1, . . . ,wm−1).

In the next section we propose a practical method to construct the weight functions associated with a
given spline space with knots of zero multiplicity and to determine, depending on their existence, whether
the space in question is an ECP-space.

3. A simple process to construct the weight functions

Referring to the same setting and notation introduced in theprevious section, in the remainder of the
paper we assume that, for alli = 0, . . . , k, Ui,m is anm-dimensional EC-space which contains constants
and thatDUi,m is an (m− 1)-dimensional EC-space. By the non-piecewise version of Proposition3 [11],
these requirements are equivalent to the existence of the Bernstein basis of eachUi,m on I i . In addition, it
can be seen from Proposition4 that they are necessary conditions for constructing splinespaces suitable for
design.

Definition 5 (Transition functions). Let S(Um,∆, R) be a piecewise Chebyshevian spline space containing
constants. We calltransition functions relative to[a, b] the functionsfℓ,m ∈ S(Um,∆, R), such thatf1,m ≡ 1
and fℓ,m, ℓ = 2, . . . ,m, satisfies

Dr fℓ,m(a) = 0, r = 0, . . . , ℓ − 2,

Dr fℓ,m(b) = δr,0, r = 0, . . . ,m− ℓ.
(1)

Furthermore, for any interval [c, d] ⊂ [a, b], we call transition functions relative to [c, d] the functionsfℓ,m
in the restriction ofS(Um,∆, R) to [c, d] that satisfy (1) atc andd.

For a given spline spaceS(Um,∆, R), each transition functionfℓ,m, ℓ = 2, . . . ,m relative to [a, b] can
be determined as the solution of a suitable linear system. Inparticular, letUi,m be the space spanned by the
functions{u[i]

1,m, u
[i]
2,m, . . . , u

[i]
m,m}, with u[i]

1,m = 1, and let f [i]
ℓ,m ∈ Ui,m be the restriction offℓ,m to the intervalI i ,

i = 0, . . . , k. Therefore, there will be coefficients such thatf [i]
ℓ,m(x) =

∑m
h=1 b[i]

h,ℓ,mu[i]
h,m(x), x ∈ [xi , xi+1]. By

imposing conditions (1) ata andb and by requiring that, fori = 1, . . . , k,

(

D0 f [i]
ℓ,m(xi),D

1 f [i]
ℓ,m(xi), . . . ,D

(m−1) f [i]
ℓ,m(xi)

)T
= Ri

(

D0 f [i−1]
ℓ,m (xi),D

1 f [i−1]
ℓ,m (xi), . . . ,D

(m−1) f [i−1]
ℓ,m (xi)

)T
,

we get the linear system
Ab = c, (2)
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with

A≔





Ã0(x0)
R1A0(x1) −A1(x1)

R2A1(x2) −A2(x2)
. . .

. . .

RkAk−1(xk) −Ak(xk)
Ãk(xk+1)





,

b ≔ (b[0]
1,ℓ,m, . . . , b

[0]
m,ℓ,m, . . . , b

[k]
1,ℓ,m, . . . , b

[k]
m,ℓ,m)T , c ≔ (0, . . . , 0, 1, 0, . . . , 0

︸  ︷︷  ︸

m−ℓ times

)T .

For all i = 1, . . . , k, the blocksAh(xi), h = i−1, i, haverth row equal to
(

Dr−1u[h]
1,m(xi), . . . ,Dr−1u[h]

m,m(xi)
)

,

r = 1, . . . ,m. The two blocksÃ0(x0) and Ãk(xk+1) are sub-matrices ofA0(x0) andAk(xk+1) of dimension
(ℓ − 1)×m and (m− ℓ + 1)×m respectively.

By definition each transition function is determined as the solution of an Hermite interpolation problem
in m-data in them-dimensional spline spaceS(Um,∆, R). Therefore, it is always possible to find a set of
transition functionsfℓ,m, ℓ = 2, . . . ,mwhenS(Um,∆, R) is an ECP-space. WhenDS(Um,∆, R) is an ECP-
space too, then eachfℓ,m, ℓ = 2, . . . ,m vanishes ata or b exactly as many times as required by Definition5
and therefore the transition functions are linearly independent. On the other hand, it shall be noted that the
systems (2) may have a unique solution, and thus we may be able to computeall the transition functions,
also whenS(Um,∆, R) is not an ECP-space. Moreover, also whenDS(Um,∆, R) is not an ECP-space, we
may find a set of linearly independent transition functions.

The following characterization holds.

Proposition 5. Let S(Um,∆, R) be a piecewise Chebyshevian spline space containing constants and sup-
pose that DS(Um,∆, R) is an ECP-space. Then the transition functions fℓ,m, ℓ = 2, . . . ,m relative to any
[c, d] ⊆ [a, b] are monotonically increasing, and the set{D fℓ,m, ℓ = 2, . . . ,m} is a Bernstein-like basis in the
restriction of DS(Um,∆, R) to [c, d].

Proof. SinceDS(Um,∆, R) is an (m−1)-dimensional ECP-space, any nonzero function containedin it can
have at mostm−2 zeros. In particular, for anyℓ = 2, . . . ,m, D fℓ,m belongs toDS(Um,∆, R), vanishesℓ−2
times atc andm− ℓ times atd, and therefore cannot be zero anywhere else in [c, d]. Moreover, sincefℓ,m
takes the values 0 and 1 respectively atc andd, D fℓ,m is positive in (c, d). There follows that the functions
D fℓ,m, ℓ = 2, . . . ,m form a Bernstein-like basis in the restriction ofDS(Um,∆, R) to [c, d].

Under the hypotheses of the above proposition, it can be verified that the setBℓ,m = fℓ,m − fℓ+1,m,
ℓ = 1, . . . ,m− 1, Bm,m = fm,m is a Bernstein basis in the restriction ofS(Um,∆, R) to any [c, d] ⊆ [a, b],
namely it fulfills the properties in Definition4. As a consequence, such basis is the ONTP basis.

For a given spaceS(Um,∆, R), under the assumption that the transition functionsfℓ,m, ℓ = 1, . . . ,m,
relative to [a, b], are linearly independent, we consider the sequence of functionsw j, j = 0, . . . ,m−1, where
w0 = 1 and, for all j = 1, . . . ,m− 1, w j is constructed recursively by the formula

w j =

m− j+1∑

ℓ=2

D fℓ,m− j+1, (3)

fℓ,m− j =

∑m− j+1
h=ℓ+1 D fh,m− j+1

w j
, ℓ = 1, . . . ,m− j. (4)
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If the functionsw j generated by (3) are positive for all j = 1, . . . ,m − 1, then the set{ fℓ,m− j , ℓ =

1, . . . ,m− j} computed through (4) is well-defined and made of linearly independent functions. In par-
ticular { fℓ,m− j, ℓ = 1, . . . ,m− j} are the transition functions for the spaceL jS(Um,∆, R) ≔ {L jF | F ∈
S(Um,∆, R)}.

It can also be verified that, for anyF ∈ S(Um,∆, R), the functionsw j generated by (3) are such that
L jF[i−1](xi) = L jF[i](xi), for all i = 1, . . . , k. Moreover, by applying (4) with j = m− 1, it can be seen that
Lm−1S(Um,∆, R) is the space spanned byf1,1 ≡ 1. There follows thatS(Um,∆, R) is an ECP-space (see
Proposition1). In addition, all the intermediate spacesL jS(Um,∆, R), j = 1, . . . ,m− 2 are ECP-spaces
and in particularDS(Um,∆, R) = w1L1S(Um,∆, R) is an ECP-space too. The above observations can be
summarized in the following proposition.

Proposition 6. Let S(Um,∆, R) be a spline space containing constants and suppose that all the functions
w j j = 1, . . . ,m− 1, generated by formula(3) are positive. Then S(Um,∆, R) is an ECP-space associated
with the system of piecewise weight functions{1,w1, . . . ,wm−1}. Moreover, DS(Um,∆, R) is an ECP-space
associated with{w1, . . . ,wm−1}.

Remark 1. Another way to see that S(Um,∆, R) is the ECP-space associated with the functions wj, j =
1, . . . ,m− 1 in (3), subject to their positivity, is to consider the set of functions

ψ1(x) = w0(x)

ψ2(x) = w0(x)
∫ x

a
w1(ξ1)dξ1,

ψr+1(x) = w0(x)
∫ x

a
w1(ξ1)

∫ ξ1

a
. . .

∫ ξr−1

a
wr(ξr )dξr . . . dξ2dξ1, r = 2, . . . ,m− 1.

By substituting(3) and (4) into the above expressions and recalling that, by definition, fℓ,m− j(a) = 0,
ℓ = 2, . . . ,m− j, we get

ψ1(x) = 1, ψ2(x) =
m∑

ℓ=2

fℓ,m(x), ψr+1(x) =
m∑

ℓ=r+1

(

ℓ − 2
r − 1

)

fℓ,m(x), r = 2, . . . ,m− 1,

where, in particular,ψm = fm,m. Therefore{ψ j , j = 1, . . . ,m} is a canonical basis for S(Um,∆, R).

The following Proposition7 shows that, when the spaceDS(Um,∆, R) is an ECP-space, then formula
(3) always yields an associated system of piecewise weight functions. As a consequence, it turns out that,
when at least one of the functionsw j is nonpositive, then bothDS(Um,∆, R) andS(Um,∆, R) cannot be
ECP-spaces. A preliminary lemma is needed to prove the main result.

Lemma 1. Let S(Um,∆, R) be a piecewise Chebyshevian spline space containing constants and suppose
that DS(Um,∆, R) is an ECP-space. Then any function w which has positive coefficients in a Bernstein-like
basis of DS(Um,∆, R) on [a, b] can be represented with positive coefficients in a Bernstein-like basis in the
restriction of DS(Um,∆, R) to any[c, d] ⊂ [a, b].

Proof. By Proposition5, sincew has positive coefficients in a Bernstein-like basis ofDS(Um,∆, R), it can
be represented asw =

∑m−1
i=1 αiD fi+1,m, whereαi > 0, for all i = 1, . . . ,m− 1 and fi,m, i = 1, . . . ,m are the

transition functions ofS(Um,∆, R) relative to [a, b]. Let u be a function such thatDu = w. Without loss of
generality, we can write

u =
m∑

i=1

αi fi,m =
m∑

i=1

αi

m∑

ℓ=i

Bℓ,m =
m∑

i=1

i∑

ℓ=1

αℓBi,m,
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where{Bi,m, i = 1, . . . ,m} is the Bernstein basis ofS(Um,∆, R). There follows that, in such basis,u has
increasing coefficients.

As a consequence of Proposition4, for any [c, d] ⊆ [a, b] the Bernstein basis in the restriction of
S(Um,∆, R) to [c, d] is an ONTP basis. Thus, the functionu has increasing coefficients in the Bernstein
basis{B̂i,m, i = 1, . . . ,m} in the restriction ofS(Um,∆, R) to any [c, d] ⊂ [a, b]. In particular, let

u|[c,d] =

m∑

i=1

γi B̂i,m, γi+1 − γi > 0, for all i,

whereB̂i,m = f̂i,m − f̂i+1,m, i = 1, . . . ,m− 1, B̂m,m = f̂m,m and f̂i,m are the transition functions relative to
[c, d]. By Proposition5, the transition functions are monotonically increasing and their derivatives are a
Bernstein-like basis in the restriction ofDS(Um,∆, R) to [c, d]. The statement then follows by observing
that

Du|[c,d] = w|[c,d] =

m−1∑

i=1

(γi+1 − γi)D f̂i+1,m.

Proposition 7. Let S(Um,∆, R) be a piecewise Chebyshevian spline space containing constants and sup-
pose that DS(Um,∆, R) is an ECP-space. Then the sequence of functions{1,w1, . . . ,wm−1} determined
by (3)–(4) is a system of piecewise weight functions associated with S(Um,∆, R). Moreover the sequence
{w1, . . . ,wm−1} is a system of piecewise weight functions associated with DS(Um,∆, R).

Proof. The functionsw j, j = 0, . . . ,m− 1, are by construction piecewiseCm− j−1 on (I ,∆). We shall then
prove that they are positive. Letfℓ,m, ℓ = 1, . . . ,m be the transition functions ofS(Um,∆, R) relative to
[a, b]. From Proposition5, D fℓ,m, ℓ = 2, . . . ,m, is a Bernstein-like basis forDS(Um,∆, R) and therefore
w1 in (3) is positive onI and the sequence{ fℓ,m−1, ℓ = 1, . . . ,m− 1} defined by (4) is a Bernstein basis for
L1S(Um,∆, R).

Being DS(Um,∆, R) an ECP-space on [a, b], there exists a Bernstein-like basis in the restriction of
DS(Um,∆, R) to any [c, d] ⊂ [a, b] and, by Lemma1, w1 can be represented with positive coefficients
in such basis. Hence, if we normalize this Bernstein-like basis by w1, we get a Bernstein basis in the
restriction ofL1S(Um,∆, R) to [c, d]. This shows that there exists a Bernstein basis in the restriction of
L1S(Um,∆, R) to any [c, d] ⊆ [a, b] and thus, by Proposition3, DL1S(Um,∆, R) is an ECP-space on [a, b].
As a consequence (see Proposition5) the functionsfℓ,m−1, ℓ = 2, . . . ,m− 1, are monotonically increasing
and hencew2 > 0 on I . The positivity ofw2 allows us to repeat the above reasoning to conclude that
L2S(Um,∆, R) is an ECP-space.

By applying the same argument iteratively, it can be proven that all the spacesDL jS(Um,∆, R) and
L jS(Um,∆, R) generated by the procedure (3)–(4) are ECP-spaces and that the functionsw j are positive for
all j = 1, . . . ,m− 1.

4. A numerical procedure to determine if a spline space with knots of zero multiplicity is suitable for
design

Let S(Um,∆, R) be a given spline space where the underlying local EC-spacesUi,m contain constants
and whereDUi,m is an EC-space onI i , for all i = 0, . . . , k. Our objective is to exploit the results presented
in the previous section to develop a numerical procedure fordetermining whether the considered space is
suitable for design.
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The first step of the procedure consists in computing the transition functions relative to [a, b]. At this
stage, if any of the systems (2) does not have a unique solution, thenS(Um,∆, R) is not an ECP-space and
therefore it cannot be suitable for design.

Successively, we need to verify that the transition functions are linearly independent. When this is
not the case, we can directly conclude thatDS(Um,∆, R) is not an ECP-space (see Proposition5), and
it is unnecessary to carry out the next steps. The linear independence of the transition functions can be
easily assessed by checking that each of them vanishes ata (or equivalently atb) exactlyas many times
as required by definition. Therefore, when the transition functions are linearly independent, we must have
D(ℓ−1) fℓ,m(a) , 0, andD(m−ℓ+1)(1 − fℓ,m)(b) , 0, for all ℓ = 2, . . . ,m. Conversely, if there is an integer
r ∈ {2, . . . ,m}, such thatfr,m vanishes more thanr − 1 times ata (or 1− fr,m vanishes more thanm− r + 1
times atb), then the transition functions are linearly dependent.

Hence, we shall proceed under the assumption that the transition functions fℓ,m, ℓ = 1, . . . ,m exist and
are linearly independent. In the remaining part of the section we discuss how to determine whether or not
the spaceS(Um,∆, R) is suitable for design in a computationally efficient way.

Let L jUi,m, j = 0, . . . ,m − 1, be the space obtained by generalized differentiation restricted to the
interval I i and let{B[i]

ℓ,m− j, ℓ = 1, . . . ,m− j} be its Bernstein basis on the same interval.
For any j = 1, . . . ,m−1, we represent theith piece offℓ,m− j+1 in the (local) Bernstein basis ofL j−1Ui,m

on I i , i = 0, . . . , k as

f [i]
ℓ,m− j+1 =

m∑

h=1

b[i]
h,ℓ,m− j+1B[i]

h,m− j+1, ℓ = 1, . . . ,m− j + 1. (5)

Our working assumptions (namely thatUi,m contains constants and thatUi,m andDUi,m are EC-spaces)
guarantee the existence of the Bernstein basis forUi,m = L0Ui,m on I i . Such basis is given by{B[i]

ℓ,m =

g[i]
ℓ,m− g[i]

ℓ+1,m, ℓ = 1, . . . ,m− 1, B[i]
m,m = g[i]

m,m}, whereg[i]
ℓ,m, ℓ = 1, . . . ,m, are the transition functions for the

considered space relative toI i . The latter can be computed by imposing the conditions (1) at xi andxi+1. For
any other spaceL j−1Ui,m, j = 2, . . . ,m− 1 the Bernstein basis onI i , whenever it exists, can be computed
recursively, as we will see in the following.

Now, for any j = 1, . . . ,m− 1, set

f̃ℓ,m− j ≔

m− j+1∑

r=ℓ+1

D fr,m− j+1, ℓ = 1, . . . ,m− j,

in such a way that the functionw j defined in (3) is precisely equal tõf1,m− j. In I i , i = 0, . . . , k, we can
substitute (5) into the above equation, obtaining

f̃ [i]
ℓ,m− j =

m− j+1∑

r=ℓ+1

m− j+1∑

h=1

b[i]
h,r,m− j+1DB[i]

h,m− j+1 =

m− j+1∑

r=ℓ+1

m− j+1∑

h=1

b[i]
h,r,m− j+1

(

Dg[i]
h,m− j+1 − Dg[i]

h+1,m− j+1

)

,

whereg[i]
ℓ,m− j+1, ℓ = 1, . . . ,m− j + 1, are the transition functions ofL j−1Ui,m relative toI i . Recalling that

g[i]
1,m− j+1 ≡ 1 andg[i]

m− j+2,m− j+1 ≡ 0 for all j, we get

f̃ [i]
ℓ,m− j =

m− j∑

h=1

m− j+1∑

r=ℓ+1

(

b[i]
h+1,r,m− j+1 − b[i]

h,r,m− j+1

)

Dg[i]
h+1,m− j+1

=

m− j∑

h=1

b̃[i]
h,ℓ,m− jDg[i]

h+1,m− j+1, (6)
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where we have set

b̃[i]
h,ℓ,m− j ≔

m− j+1∑

r=ℓ+1

(

b[i]
h+1,r,m− j+1 − b[i]

h,r,m− j+1

)

, h = 1, . . . ,m− j. (7)

From (4) and (6) we get

f [i]
ℓ,m− j =

f̃ [i]
ℓ,m− j

w j
=

∑m− j
h=1 b̃[i]

h,ℓ,m− jDg[i]
h+1,m− j+1

∑m− j
h=1 b̃[i]

h,1,m− jDg[i]
h+1,m− j+1

=

m− j∑

h=1

b̃[i]
h,ℓ,m− j

b̃[i]
h,1,m− j

B[i]
h,m− j =

m− j∑

h=1

b[i]
h,ℓ,m− j B

[i]
h,m− j, (8)

where

B[i]
h,m− j ≔

b̃[i]
h,1,m− jDg[i]

h+1,m− j+1
∑m− j

r=1 b̃[i]
r,1,m− jDg[i]

r+1,m− j+1

, h = 1, . . . ,m− j, (9)

and

b[i]
h,ℓ,m− j ≔

b̃[i]
h,ℓ,m− j

b̃[i]
h,1,m− j

. (10)

Note that the denominator in (9) is precisely the functionw j restricted toI i .
To verify if the spaceS(Um,∆, R) is suitable for design, we can proceed iteratively. For each step

j = 1, . . . ,m − 1, we test if the differencesb[i]
h+1,r,m− j+1 − b[i]

h,r,m− j+1 in equation (7) are nonnegative for
all h = 1, . . . ,m− j, r = 2, . . . ,m− j + 1. If the test is successful, all the transition functionsfℓ,m− j+1,
ℓ = 1, . . . ,m− j+1 have non-decreasing coefficients in the Bernstein bases ofL j−1Ui,m on I i , for i = 0, . . . , k.
As a consequence, the functionw j =

∑m− j+1
ℓ=2 D fℓ,m− j+1 is positive on the whole ofI and we can proceed to

the successive step. In addition, the success of the test at step j implies that all the coefficientsb̃[i]
h,ℓ,m− j on

the left-hand side of equation (7) are positive and therefore equation (9) yields the Bernstein basis ofL jUi,m

on I i .
Conversely, if at any stepj the test fails, this means that there is at least oneℓ = 2, . . . ,m− j + 1 and

one intervalI i such that the coefficients of f [i]
ℓ,m− j+1 in the Bernstein basis ofL j−1Ui,m on I i do not form

a non-decreasing sequence. In this case, we can immediatelyconclude that the spaceS(Um,∆, R) is not
suitable for design and stop the testing procedure.

To explain the latter statement, we shall recall that, ifS(Um,∆, R) is suitable for design, then so is
each spaceL j−1S(Um,∆, R), j = 2, . . . ,m − 1 generated by an associated system of piecewise weight
functions. In any of these spaces, by Proposition5, the transition functionsfℓ,m− j+1, ℓ = 1, . . . ,m− j + 1
relative to [a, b] are monotonically increasing and their coefficients in the related Bernstein basis{Bℓ,m− j+1 =

fℓ,m− j+1 − fℓ+1,m− j+1, ℓ = 1, . . . ,m− j − 1+ 1, Bm− j+1,m− j+1 = fm− j+1,m− j+1} are non-decreasing. Moreover,
the latter property holds considering the Bernstein basis in the restriction ofL j−1S(Um,∆, R) to any I i ,
i = 0, . . . , k. Therefore, when the Bernstein coefficients violate this property, norL j−1S(Um,∆, R) or
S(Um,∆, R) can be suitable for design. It is interesting to note that, in this way, even thoughw j could be
positive, the numerical procedure anticipates the non-positivity of one of the successive functionswh, h > j.

From the computational point of view, the transition functions can be efficiently computed in an iterative
way, where at each stepj = 1, . . . ,m− 1 the functionsfℓ,m− j, ℓ = 1, . . . ,m− j for L jS(Um,∆, R) are
generated. In particular, equations (7), (8) and (10) show that, for anyj = 1, . . . ,m− 1, the coefficients
of f [i]

ℓ,m− j in the Bernstein basis ofL jUi,m on I i can be recursively computed from the coefficients of the

transition functionsf [i]
ℓ,m− j+1, ℓ = 1, . . . ,m− j + 1, in the Bernstein basis of the previous spaceL j−1Ui,m on

the same interval.

11



The following MATLAB function takes as input a matrixb of dimensionm × m × (k + 1), where
b(l,h,i)= b[i]

h,ℓ,m are the coefficients of f [i]
ℓ,m in equation (5). It returns a variabletest, which is equal to

zero if at any step the test on the monotonicity of the Bernstein coefficients fails. In this function the loops
in the variablesl, h, i iterate respectively over the transition functions, the Bernstein coefficients and the
knot intervals.

function test=SfD_test(b)

[m,m,kp1]=size(b);

test=1;

j=0;

while (j<=m-2 & test)

mj=m-j;

for i=1:kp1

% difference of subsequent Bernstein coefficients

for l=2:mj

for h=1:mj-1

b(l,h,i)=b(l,h+1,i)-b(l,h,i);

if (b(l,h,i)<0) test=0;

return

end

end

end

% summation step according to formula (7)

for l=mj-1:-1:2

for h=1:mj-1

b(l,h,i)=b(l,h,i)+b(l+1,h,i);

end

end

% division step according to formula (10)

for l=2:mj

b2hi=b(2,h,i);

for h=1:mj-1

b(l-1,h,i)=b(l,h,i)/b2hi;

end

end

end

j=j+1;

end

We conclude by presenting two application examples.

Example 1. Let us consider a spline spaceS(U4,∆, R) based on the sequence of section spacesU4 =

{U0,4,U1,4,U2,4,U3,4}, withU0,4 = U2,4 = span{1, x, cosx, sinx},U1,4 = U3,4 = span{1, x, coshx, sinhx},
knot partition{x0, x1, x2, x3, x4} = {0, 2, 4, 5, 6} and connection matrices

R1 = R3 =





1 0 0 0
0 2 0 0
0 0 2 0
0 0 1 4





, R2 = I4. (11)

The necessary condition to guarantee that each spaceDUh,4, h = 0, 2 is an EC-space on [xh, xh+1] is
xh+1 − xh < 2π, which is fulfilled by the given knots, whileDUh,4, h = 1, 3 are EC-spaces onR. It can be
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observed that the transition functionsfℓ,4− j, ℓ = 2, . . . , 4− j are monotonically increasing in all the spaces
L jS(U4,∆, R), j = 0, 1, 2, (Figures1(a)–1(c)) and that, accordingly, the functionsw j =

∑4− j
ℓ=2 D fℓ,4− j,

j = 1, 2, 3 are positive (Figure1(d)–1(f), where the functionsw j are depicted in bold). As a consequence,
the considered spline space is suitable for design.

If we now take the same sequence of section spacesU4 and the same connection matrices with knots
{0, 0.5, 5.3, 10.1, 14.9}, we get the situation illustrated in Figure2. Also in this case the knot intervals fulfill
the aforementioned necessary conditionxh+1 − xh < 2π, h = 0, 2. It is interesting to observe that the
transition functionsfℓ,4, ℓ = 2, 3, 4 are monotonically increasing (Figure2(a)), which entails thatw1 is
positive (Figure2(b)) and that the set{Bℓ,4 = fℓ,4 − fℓ+1,4, ℓ = 1, . . . , 3, B4,4 = f4,4} is a Bernstein basis
in the sense of Definition4 (Figure2(c)). Nevertheless the considered space is not suitable for design. In
particular the Bernstein coefficients off [2]

2,4 do not form a non-decreasing sequence inI2 and therefore, at this
stage, our numerical test stops returning a negative response. If we were to proceed further, we would find
that w2 is nonpositive (Figure2(e)) and that the transition functionsfℓ,3, ℓ = 2, 3, are non-monotonically
increasing (Figure2(d)).

Example 2. We consider some samples of parametric curves from spline spaces with knots of zero multi-
plicity, where the connection matrices can be used to obtaintension effects useful in geometric modeling.
All the curves illustrated in Figure3 are represented in the Bernstein basis of a spline spaceS(Um,∆, R),
given by the sequence{Bℓ,m = fℓ,m− fℓ+1,m, ℓ = 1, . . . ,m−1, Bm,m = fm,m}. In the three subfigures the knots
are the same{x0, x1, x2} = {0, 1, 2}, whereas the local spacesUm = {U0,m,U1,m} have different dimension
m= 4, 5, 6. In all the figures,U0,m = U1,m and there is only one connection matrix atx1, which we indicate
by R(a)

1 , R(b)
1 andR(c)

1 for the three subfigures. In particular

R(a)
1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 β 1





, R(b)
1 =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 β 1





, R(c)
1 =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 β 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





, (12)

in such a way that the variable parameterβ in the above matrices influences the value of higher order
derivatives.

In Figure3(a) the local section spaces areU0,4 = U1,4 = span{1, x, x2, x3} and the displayed curves
correspond toβ = −3.9, 0, 10, 100. In Figure3(b), U0,5 = U1,5 = span{1, x, x2, cosx, sinx} and β =
−3.5, 0, 10, 100 for each curve. In Figure3(c),U0,6 = U1,6 = span{1, x, cosx, sinx, xcosx, xsinx} and the
different curves are obtained forβ = −6.5,−5, 0, 100.

The necessary condition that allDUi,m be EC-spaces is fulfilled in all the considered examples. In
particular, the latter condition holds whenxi+1 − xi is smaller than 8.9868189 forUi,5 [11] and when
xi+1 − xi is smaller than 2π forUi,6. According to the proposed numerical test, for all the considered values
of β the underlying spline spaces are suitable for design.

In these examples, one element of the connection matrix actsas a shape or tension parameter, namely,
the higher its value, the closer the curve lies to the controlpolygon. In such a situation, it is important to
be able to progressively increase or decrease the parameterwhile staying in the class of spaces suitable for
design. The numerical procedure presented in this section is well suited to this purpose, since it allows
for testing in a computationally efficient way whether a specific value ofβ gives rise to an admissible
spline space. This means that the test can be performed whilethe user interactively modifies the parameter
according to the shape to be modelled.
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Moreover, our test allowed us to determine experimentally that there is a minimum valueβmin beyond
which the corresponding space is no longer suitable for design. Conversely, for anyβ > βmin we obtain a
space which is suitable for design. Figure4 illustrates the transition functions and the Bernstein basis for
the spline spaceU4 with β = −3.9,U5 with β = −3.5 andU6 with β = −6.5. Despite these values still
correspond to admissible spaces, they are close toβmin. Accordingly, as it can be observed from the figures,
the transition functions and the Bernstein basis functionsare close to becoming linearly dependent.
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(d) f̃ℓ,3 =
∑4

h=ℓ+1 D fh,4, ℓ = 1, 2,3, w1 =

f̃1,3
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(e) f̃ℓ,2 =
∑3

h=ℓ+1 D fh,3, ℓ = 1,2, w2 =

f̃1,2
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(f) f̃1,1 = D f2,2 = w3

Figure 1: Functions generated from formulas (3) and (4) for a spline spaceS(Um,∆, R), with knots {x0, x1, x2, x3, x4} =

{0,2,4, 5,6}, connection matrices given by equation (11) and whereU0,4 = U2,4 = span{1, x, cosx, sinx}, U1,4 = U3,4 =

span{1, x, coshx, sinhx}. In Figures1(d)-1(f) the functionswj are depicted in bold.
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(a) fℓ,4, ℓ = 1, . . . ,4
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(b) f̃ℓ,3 =
∑4

h=ℓ+1 D fh,4, ℓ = 1, 2,3, w1 =

f̃1,3
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(c) fℓ,2, ℓ = 1, . . . ,2
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(d) fℓ,3, ℓ = 1, . . . ,3
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(e) f̃ℓ,2 =
∑3

h=ℓ+1 D fh,3, ℓ = 1,2, w2 = f̃1,2

Figure 2: Functions generated from formulas (3) and (4) for a spline spaceS(Um,∆, R), with knots {x0, x1, x2, x3, x4} =

{0,0.5,5.3, 10.1, 14.9}, connection matrices given by equation (11) and whereU0,m = U2,m = span{1, x, cosx, sinx}, U1,m =

U3,m = span{1, x, coshx, sinhx}. In Figures2(b) and2(e)the functionswj are depicted in bold.

(a) (b) (c)

Figure 3: Parametric curves from spline spaces with knots ofzero multiplicity. The underlying spline spaces are described in detail
in Example2.
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(a) fℓ,4, ℓ = 1, . . . ,4
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(b) fℓ,5, ℓ = 1, . . . , 5
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(c) fℓ,6, ℓ = 1, . . . ,6
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(d) Bℓ,4, ℓ = 1, . . . ,4
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(e) Bℓ,5, ℓ = 1, . . . ,5
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(f) Bℓ,6, ℓ = 1, . . . , 6

Figure 4: Transition functions and Bernstein basis relative to the spline spacesS(Um,∆, R), m = 4,5, 6, considered in Example
2. The connection matrices are given in (12). Figure4(a)-4(d): section spacesU4, with connection matrixR(a)

1 whereβ = −3.9.
Figure4(b)-4(e): section spacesU5, with connection matrixR(b)

1 whereβ = −3.5. Figure4(c)-4(f): section spacesU6, with
connection matrixR(c)

1 whereβ = −6.5.
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