A BIJECTIVE PROOF OF VERSHIK'S RELATIONS FOR THE KOSTKA NUMBERS

MINWON NA

ABSTRACT. We turn the tableau insertion algorithm for semistandard tableaux to a sequence called a buming route. We also define a reverse bumping route by the reverse insertion algorithm. These sequences are used to give a bijective proof of Vershik's relations for the Kostka numbers.

1. Introduction

Throughout this paper, n will denote a positive integer. We write $\lambda \vDash n$ if λ is a composition of n, that is, a sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_h)$ of nonnegative integers such that $|\lambda| = \sum_{i=1}^h \lambda_i = n$. In particular, if a sequence λ is non-increasing and $\lambda_i > 0$ for all $1 \le i \le h$, then we write $\lambda \vdash n$ and say that λ is a partition of n. Given a partition $\mu = (\mu_1, \dots, \mu_k) \vdash n$ and a composition $\lambda = (\lambda_1, \dots, \lambda_h) \vDash n$, we denote by D_{μ} the Young diagram of μ , and by $\mathrm{STab}(\mu, \lambda)$ the set of all semistandard tableaux of shape μ and weight λ . More precisely,

$$D_{\mu} = \{(i, j) \in \mathbb{Z}^2 \mid 1 \le i \le k, \ 1 \le j \le \mu_i \},$$

$$STab(\mu, \lambda) = \{T \mid T : D_{\mu} \to \{i \mid \lambda_i > 0\}, \ T(i, j) \le T(i, j + 1),$$

$$T(i, j) < T(i + 1, j), \ (|T^{-1}(\{i\})|)_{i \ge 1} = \lambda \}.$$

The Kostka number $K(\mu, \lambda)$ is defined to be the cardinality of $\operatorname{STab}(\mu, \lambda)$. We denote by $\tilde{\lambda}$ the partition obtained by rearranging components of λ , and by $\lambda^{(i)}$ the composition of n-1 defined by $\lambda_i^{(i)} = \lambda_i - 1$, and $\lambda_j^{(i)} = \lambda_j$ otherwise. For $\lambda = (\lambda_1, \ldots, \lambda_h) \vdash n$ and $\gamma \vdash n-1$, we write $\gamma \leq \lambda$ if $\gamma_i \leq \lambda_i$ for all i with $1 \leq i \leq h$, and define

$$C(\lambda, \gamma) = |\{i \mid 1 \le i \le h, \ \widetilde{\lambda^{(i)}} = \gamma\}|.$$

Vershik's relations for the Kostka numbers is as follows:

Theorem 1 ([1, p.143, Theorem 3.6.13] and [4, Theorem 4]). For any $\lambda \vdash n$ and $\rho \vdash n-1$, we have

$$\sum_{\substack{\mu \vdash n \\ \mu \succeq \rho}} K(\mu, \lambda) = \sum_{\substack{\gamma \vdash n-1 \\ \gamma \preceq \lambda}} C(\lambda, \gamma) K(\rho, \gamma).$$

Theorem 1 can be proved using representation theory. As previously stated, since $K(\mu, \lambda) = |\operatorname{STab}(\mu, \lambda)|$, it is natural to expect a bijective proof of Theorem 1. In

Date: January 2, 2016.

²⁰¹⁰ Mathematics Subject Classification. 05A19, 05E10, 20C30.

Key words and phrases. bumping route, insertion tableau, Vershik's relation, Kostka number, symmetric group.

fact, Vershik [4, Theorem 4] claims to give a bijection from

$$\mathcal{L} = \bigcup_{\substack{\mu \vdash n \\ \mu \succeq \rho}} \operatorname{STab}(\mu, \lambda)$$

to

$$\mathcal{R} = \bigcup_{1 \le x \le h} \operatorname{STab}(\rho, \lambda^{(x)}),$$

where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_h) \vdash n$ and $\rho \vdash n - 1$. In order to explain his proof, we call a tableau in $\operatorname{STab}(\mu, \lambda)$ a μ -tableau, and a tableau in $\operatorname{STab}(\rho, \lambda^{(x)})$ a ρ -tableau. Since μ -tableaux have one more box than ρ -tableaux, Vershik [4, Theorem 4] claims that removable of one box from μ -tableaux gives a bijection from \mathcal{L} to \mathcal{R} . Vershik [4, Section 4] gives examples, each of which comes with a bijection. However, if $\lambda = (3,3,2) \vdash 8$ and $\rho = (4,3) \vdash 7$ then there is no bijection from \mathcal{L} to \mathcal{R} arising from removable of one box. More precisely, we consider two tableaux in \mathcal{L} as follows:

The only ρ -tableau obtainable from A by removing one box is

$$Q = \begin{array}{cccc} 1 & 1 & 1 & 3 \\ 2 & 2 & 2 \end{array} .$$

Similarly, the only ρ -tableau obtainable from E by removing one box is Q.

In this paper, we describe a bijection between \mathcal{R} and \mathcal{L} using tableau insertion and reverse insertion algorithms (see [2] and [3]). We note that, in our bijection, λ is allowed to be a composition which is not necessarily a partition.

This paper is organized as follows. In Section 2, we define a bumping route using the tableau insertion algorithm. Similarly, we define a reverse bumping route using the reverse insertion algorithm in Section 3. Finally, in Section 4, we prove Theorem 1 by showing that the tableau insertion algorithm gives a bijection.

2. Insertion

Throughout this paper, $\lambda \vDash n$. For a positive integer i, we define $\lambda^i \vDash n+1$ as follows:

$$\lambda_j^i = \begin{cases} \lambda_j + 1 & \text{if } j = i, \\ \lambda_j & \text{otherwise.} \end{cases}$$

In this section, we let $\mu \vdash n$ and $T \in STab(\mu, \lambda)$. We also let x be a positive integer.

Definition 2. The bumping route of (T,x) is defined as the sequence $\overrightarrow{R}(T,x) = (j_1, j_2, \ldots)$ with integer entries defined as follows: first, $\overrightarrow{R}(T,x) = 0$ if $\{q \mid T(1,q) > x\} = \emptyset$. Otherwise, $j_1 = \min\{q \mid T(1,q) > x\}$ and for $p \geq 2$,

$$j_p = \begin{cases} 0 & \text{if } j_{p-1} = 0 \text{ or } T(p, \mu_p) \le T(p-1, j_{p-1}), \\ \min\{q \mid T(p, q) > T(p-1, j_{p-1})\} & \text{otherwise.} \end{cases}$$

If $j_p = 0$ for p > l then we write $\overrightarrow{R}(T, x) = (j_1, j_2, \dots, j_l)$. We denote by $l(\overrightarrow{R}(T, x))$ the length of $\overrightarrow{R}(T, x)$, that is, $l(\overrightarrow{R}(T, x)) = \max\{l \mid j_l \neq 0\}$. Note that if $\overrightarrow{R}(T, x) = 0$, then we define $l(\overrightarrow{R}(T, x)) = 0$.

By previous definition, clearly, we have

$$(1) T(1, j_1 - 1) \le x < T(1, j_1),$$

(2)
$$T(p, j_p - 1) \le T(p - 1, j_{p-1}) < T(p, j_p) \ (2 \le p \le l),$$

(3)
$$T(l+1, \mu_{l+1}) \le T(l, j_l),$$

whenever $T(\cdot, \cdot)$ is defined. Moreover, we get $j_p \geq j_{p+1}$ for all positive integers p. Indeed, we may assume p < l. Then we have $T(p+1, j_p) > T(p, j_p)$. Thus

$$j_p \ge \min\{q \mid T(p+1,q) > T(p,j_p)\}\$$

= j_{p+1} .

For the remainder of this section, we let $\overrightarrow{R}(T,x) = (j_1, j_2, \dots, j_l)$, where $l = l(\overrightarrow{R}(T,x))$.

Lemma 3. We have $\mu_{l+1} < j_l$. In particular, $\mu^{l+1} \vdash n+1$.

Proof. If l=0, then it is obvious. Suppose $l\geq 1$. Then by (3) we have $(l+1,j_l)\notin D_{\mu}$. Since $(l,j_l)\in D_{\mu}$, we have $\mu_{l+1}< j_l$. In particular, $\mu_{l+1}<\mu_l$.

Definition 4. We define a *insertion* or *bumping* tableau T_x of shape μ^{l+1} and weight λ^x as follows: if l=0, then define T_x by

(4)
$$T_x(p,q) = \begin{cases} T(p,q) & \text{if } (p,q) \in D_{\mu}, \\ x & \text{if } (p,q) = (1,\mu_1 + 1). \end{cases}$$

Otherwise, define T_x by

(5)
$$T_x(p,q) = \begin{cases} x & \text{if } (p,q) = (1,j_1), \\ T(p-1,j_{p-1}) & \text{if } q = j_p, \ 2 \le p \le l, \\ T(l,j_l) & \text{if } (p,q) = (l+1,\mu_{l+1}+1), \\ T(p,q) & \text{otherwise.} \end{cases}$$

Lemma 5. We have $T_x(p, j_p) < T(p, j_p)$ for all p with $1 \le p \le l$.

Proof. We have

$$T_x(p, j_p) = \begin{cases} x & \text{if } p = 1, \\ T(p - 1, j_{p-1}) & \text{if } 2 \le p \le l \end{cases}$$
 (by (5))

$$< T(p, j_p)$$
 (by (1) and (2)).

Lemma 6. We have $T_x \in STab(\mu^{l+1}, \lambda^x)$.

Proof. By Lemma 3, we have $\mu^{l+1} \vdash n+1$. To show that T_x is a semistandard tableau, it suffices to prove

$$T_x(p, j_p - 1) \le T_x(p, j_p) \le T_x(p, j_p + 1),$$

$$T_x(l+1,\mu_{l+1}) \le T_x(l+1,\mu_{l+1}+1),$$

$$T_x(p-1,j_p) < T_x(p,j_p) < T_x(p+1,j_p),$$

$$T_x(l,\mu_{l+1}+1) < T_x(l+1,\mu_{l+1}+1),$$
(6)

whenever $T_x(\cdot,\cdot)$ is defined.

For all p with $1 \le p \le l$, we have

$$T_{x}(p, j_{p} - 1) = T(p, j_{p} - 1)$$

$$\leq \begin{cases} x & \text{if } p = 1, \\ T(p - 1, j_{p-1}) & \text{if } 2 \leq p \leq l \end{cases}$$

$$= T_{x}(p, j_{p})$$

$$< T(p, j_{p})$$

$$\leq T(p, j_{p} + 1)$$

$$= T_{x}(p, j_{p} + 1).$$
(by (1) and (2))
(by Lemma 5)

Also,

$$T_x(l+1, \mu_{l+1}) = T(l+1, \mu_{l+1})$$

$$\leq \begin{cases} x & \text{if } \overrightarrow{R}(T, x) = 0, \\ T(l, j_l) & \text{otherwise} \end{cases}$$

$$= T_x(l+1, \mu_{l+1} + 1)$$
 (by (4) and (5)).

For all p with $2 \le p \le l$, we have

$$T_{x}(p-1,j_{p}) = \begin{cases} x & \text{if } p=2, \ j_{1}=j_{2}, \\ T(1,j_{2}) & \text{if } p=2, \ j_{1}>j_{2}, \\ T(p-2,j_{p-2}) & \text{if } 3 \leq p \leq l, \ j_{p-1}=j_{p}, \\ T(p-1,j_{p}) & \text{if } 3 \leq p \leq l, \ j_{p-1}>j_{p} \end{cases}$$

$$< \begin{cases} T(1,j_{1}) & \text{if } p=2, \\ T(p-1,j_{p-1}) & \text{if } 3 \leq p \leq l \end{cases}$$

$$= T_{x}(p,j_{p}) \qquad (by (1) \text{ and } (2))$$

$$= T_{x}(p,j_{p}) \qquad (by (5)).$$

For all p with $1 \le p \le l$, we have

$$T_x(p, j_p) < T(p, j_p)$$
 (by Lemma 5)

$$\leq \begin{cases} T(p, j_p) & \text{if } j_p = j_{p+1}, \\ T(p+1, j_p) & \text{if } j_p > j_{p+1} \end{cases}$$

$$= T_x(p+1, j_p) \qquad \text{(by (5))}.$$

Finally, we have $\mu_{l+1} < j_l$ by Lemma 3, so

$$T_x(l, \mu_{l+1} + 1) = \begin{cases} T(l-1, j_{l-1}) & \text{if } \mu_{l+1} + 1 = j_l, \\ T(l, \mu_{l+1} + 1) & \text{if } \mu_{l+1} + 1 < j_l \end{cases}$$

$$< T(l, j_l) \qquad (by (2))$$

$$= T_x(l+1, \mu_{l+1}+1)$$
 (by (5)).

Thus we proved (6).

3. Reverse insertion

In this section, let $\rho \vdash n-1$ and let l be a nonnegative integer such that $\rho^{l+1} \vdash n$. We also let $S \in \operatorname{STab}(\rho^{l+1}, \lambda)$.

Definition 7. The reverse bumping route of (S, l) is defined as the sequence $\overline{R}(S, l) = (j'_1, j'_2, \ldots, j'_l)$ with integer entries defined as follows: first, $\overline{R}(S, l) = 0$ if l = 0. Otherwise, $j'_l = \max\{q \mid S(l, q) < S(l + 1, \rho_{l+1} + 1)\}$ and

$$j_p' = \max\{q \mid S(p,q) < S(p+1, j_{p+1}')\}$$

for all p with $1 \le p < l$.

By previous definition, clearly, we have

(7)
$$S(p, j'_n) < S(p+1, j'_{n+1}) \le S(p, j'_n + 1) \ (1 \le p < l),$$

(8)
$$S(l, j'_l) < S(l+1, \rho_{l+1} + 1) \le S(l, j'_l + 1).$$

Moreover, we get $j_p' \ge j_{p+1}'$ for all p with $1 \le p < l$. Indeed, since $S(p, j_{p+1}') < S(p+1, j_{p+1}')$, we have

$$j'_p = \max\{q \mid S(p,q) < S(p+1, j'_{p+1})\}$$

 $\geq j'_{p+1}.$

For the remainder of this section, we let $\overline{R}(S,l) = (j_1', j_2', \dots, j_l')$.

Definition 8. We define

$$x(S,l) = \begin{cases} S(1, \rho_1 + 1) & \text{if } l = 0, \\ S(1, j'_1) & \text{otherwise.} \end{cases}$$

We define a reverse insertion or reverse bumping tableau S^l of shape ρ and weight $\lambda^{(x(S,l))}$ as follows: if l=0, then define $S^l=S|_{D_o}$. Otherwise, define S^l by

(9)
$$S^{l}(p,q) = \begin{cases} S(p+1,j'_{p+1}) & \text{if } q = j'_{p}, \ 1 \leq p < l, \\ S(l+1,\rho_{l+1}+1) & \text{if } (p,q) = (l,j'_{l}), \\ S(p,q) & \text{otherwise.} \end{cases}$$

Lemma 9. We have $S(p, j'_p) < S^l(p, j'_p)$ for all p with $1 \le p \le l$.

Proof. We have

$$S(p, j'_p) < \begin{cases} S(p+1, j'_{p+1}) & \text{if } 1 \le p < l, \\ S(l+1, \rho_{l+1} + 1) & \text{if } p = l \end{cases}$$
 (by (7) and (8))
= $S^l(p, j'_p)$ (by (9)).

Lemma 10. Let x = x(S, l). Then

(i)
$$S^l \in \operatorname{STab}(\rho, \lambda^{(x)}),$$

(ii)
$$\overrightarrow{R}(S^l, x) = \overleftarrow{R}(S, l),$$

(iii) $(S^l)_x = S.$

Proof. (i) If l = 0 then $S^l = S|_{D_\rho}$ and $x = S(1, \rho_1 + 1)$, so $S^l \in STab(\rho, \lambda^{(x)})$. Suppose $l \ge 1$. By Definition 8, S^l is a tableau of shape ρ and weight $\lambda^{(x)}$. It suffices to prove that

(10)
$$S^{l}(p, j'_{p} - 1) \leq S^{l}(p, j'_{p}) \leq S^{l}(p, j'_{p} + 1),$$
$$S^{l}(p - 1, j'_{p}) < S^{l}(p, j'_{p}) < S^{l}(p + 1, j'_{p}),$$

whenever $S^l(\cdot,\cdot)$ is defined.

For all p with $1 \le p \le l$, we have

$$S^{l}(p, j'_{p} - 1) = S(p, j'_{p} - 1)$$

$$\leq S(p, j'_{p})$$

$$< S^{l}(p, j'_{p}) \qquad \text{(by Lemma 9)}$$

$$= \begin{cases} S(p+1, j'_{p+1}) & \text{if } 1 \leq p < l, \\ S(l+1, \rho_{l+1} + 1) & \text{if } p = l \end{cases} \qquad \text{(by (9))}$$

$$\leq \begin{cases} S(p, j'_{p} + 1) & \text{if } 1 \leq p < l, \\ S(l, j'_{l} + 1) & \text{if } p = l \end{cases} \qquad \text{(by (7) and (8))}$$

$$= S^{l}(p, j'_{p} + 1) \qquad \text{(by (9))}.$$

For $2 \le p \le l$, we have

$$S^{l}(p-1,j'_{p}) = \begin{cases} S(p-1,j'_{p}) & \text{if } j'_{p-1} > j'_{p}, \\ S(p,j'_{p}) & \text{if } j'_{p-1} = j'_{p} \end{cases}$$

$$\leq S(p,j'_{p})$$

$$\leq S^{l}(p,j'_{p})$$
(by Lemma 9).

If l = 1, then $\rho_2 + 1 \le j'_1$ since $S(1, \rho_2 + 1) < S(2, \rho_2 + 1)$, so $(2, \rho_2 + 1) \notin D_{\rho}$. Suppose $l \ge 2$. For $1 \le p < l$, we have

$$S^{l}(p, j'_{p}) = S(p+1, j'_{p+1})$$

$$< \begin{cases} S(p+1, j'_{p}) & \text{if } j'_{p} > j'_{p+1}, \ 1 \leq p \leq l-2, \\ S(p+2, j'_{p+2}) & \text{if } j'_{p} = j'_{p+1}, \ 1 \leq p \leq l-2, \\ S(l, j'_{l-1}) & \text{if } j'_{p} > j'_{p+1}, \ p = l-1, \\ S(l+1, \rho_{l+1}+1) & \text{if } j'_{p} = j'_{p+1}, \ p = l-1 \end{cases}$$

$$= S^{l}(p+1, j'_{p}).$$
 (by (7) and (8))

Thus we proved (10).

(ii) Let $\overrightarrow{R}(S^l, x) = (j_1, \dots, j_{l'})$ where $l' = l(\overrightarrow{R}(S^l, x))$. If l = 0 then $x = x(S, l) = S(1, \rho_1 + 1)$ and $S^l = S|_{D_\rho}$. Since $S^l \in \operatorname{STab}(\rho, \lambda^{(x)})$, we have $S^l(1, q) = S(1, q) \leq x$ for all q with $1 \leq q \leq \rho_1$, so $\{q \mid S^l(1, q) > x\} = \emptyset$. Thus $\overrightarrow{R}(S^l, x) = 0$.

Suppose $l \geq 1$. Note that, for all p with $1 \leq p \leq l$, we have

(11)
$$S^{l}(p, j'_{p} - 1) = S(p, j'_{p} - 1) \le S(p, j'_{p}).$$

We prove $j_p = j'_p$ by induction on p. If p = 1 then

$$j_{1} = \min\{q \mid S^{l}(1,q) > x\}$$

$$= \min\{q \mid S^{l}(1,q) > S(1,j'_{1})\}$$

$$= j'_{1}$$
 (by Lemma 9 and (11)).

Assume $j_{p-1} = j'_{p-1}$ for some $2 \le p \le l$. Then

$$\begin{split} j_p &= \min\{q \mid S^l(p,q) > S^l(p-1,j_{p-1})\} \\ &= \min\{q \mid S^l(p,q) > S^l(p-1,j'_{p-1})\} \\ &= \min\{q \mid S^l(p,q) > S(p,j'_p)\} \\ &= j'_p \end{split} \tag{by (9)} \\ &= j'_p \end{aligned}$$

Since

$$S^{l}(l+1, \rho_{l+1}) = S(l+1, \rho_{l+1})$$

$$\leq S(l+1, \rho_{l+1} + 1)$$

$$= S^{l}(l, j'_{l})$$

$$= S^{l}(l, j_{l}),$$
(by (9))

we have $j_p = 0$ for p > l, so l' = l. (iii) By (ii), we have $\overrightarrow{R}(S^l, x) = \overleftarrow{R}(S, l)$. Then $(S^l)_x \in \operatorname{STab}(\rho^{l+1}, \lambda)$ by (i) and Lemma 6. Suppose first l=0. For $(p,q)\in D_{\rho^1}$, we have

$$(S^{l})_{x}(p,q) = \begin{cases} S^{l}(p,q) & \text{if } (p,q) \in D_{\rho}, \\ x & \text{if } (p,q) = (1,\rho_{1}+1) \end{cases}$$
$$= \begin{cases} S(p,q) & \text{if } (p,q) \in D_{\rho}, \\ S(1,\rho_{1}+1) & \text{if } (p,q) = (1,\rho_{1}+1) \end{cases}$$
$$= S(p,q).$$

Suppose $l \geq 1$. For $(p,q) \in D_{\rho^{l+1}}$, we have

$$(S^{l})_{x}(p,q) = \begin{cases} x & \text{if } (p,q) = (1,j_{1}), \\ S^{l}(p-1,j_{p-1}) & \text{if } q = j_{p}, \ 2 \leq p \leq l, \\ S^{l}(l,j_{l}) & \text{if } (p,q) = (l+1,\rho_{l+1}+1), \\ S^{l}(p,q) & \text{otherwise} \end{cases}$$

$$= \begin{cases} x & \text{if } (p,q) = (1,j'_{1}), \\ S^{l}(p-1,j'_{p-1}) & \text{if } q = j'_{p}, \ 2 \leq p \leq l, \\ S^{l}(l,j'_{l}) & \text{if } (p,q) = (l+1,\rho_{l+1}+1), \\ S^{l}(p,q) & \text{otherwise} \end{cases}$$

$$= S(p,q).$$

4. Vershik's relations for the Kostka numbers

Lemma 11. Let $\mu \vdash n$, $\lambda \models n$ and $T \in STab(\mu, \lambda)$. Let x be a positive integer and l = l(R(T, x)). Then

(i)
$$\overline{R}(T_x, l) = \overline{R}(T, x)$$
.
(ii) $(T_x)^l = T$.

(ii)
$$(T_x)^l = T$$

Proof. If l=0, then (i) clearly holds, and $(T_x)^l=T_x|_{D_\mu}=T$. Suppose $l\geq 1$ and let $\overleftarrow{R}(T_x, l) = (j'_1, \dots, j'_l)$ and $\overrightarrow{R}(T, x) = (j_1, \dots, j_l)$. (i) Note that, for all p with $1 \le p \le l$, we have

(12)
$$T_x(p, j_p + 1) = T(p, j_p + 1) \ge T(p, j_p).$$

We prove $j'_p = j_p$ by induction on l - p. If p = l then

$$j'_{l} = \max\{q \mid T_{x}(l,q) < T_{x}(l+1,\mu_{l+1}+1)\}$$

$$= \max\{q \mid T_{x}(l,q) < T(l,j_{l})\}$$
 (by (5))
$$= j_{l}$$
 (by Lemma 5 and (12)).

Assume $j'_{p+1} = j_{p+1}$ for some $1 \le p < l$. Then

(ii) By (i), we have $\overleftarrow{R}(T_x, l) = \overrightarrow{R}(T, x)$. Then $x(T_x, l) = T_x(1, j_1') = T_x(1, j_1) = x$, so $(T_x)^l \in \operatorname{STab}(\mu, \lambda)$ by Lemma 10 (i). For $(p, q) \in D_\mu$, we have

$$(T_x)^l(p,q) = \begin{cases} T_x(p+1,j'_{p+1}) & \text{if } q = j'_p, \ 1 \le p < l, \\ T_x(l+1,\mu_{l+1}+1) & \text{if } (p,q) = (l,j'_l), \\ T_x(p,q) & \text{otherwise} \end{cases}$$

$$= \begin{cases} T_x(p+1,j_{p+1}) & \text{if } q = j_p, \ 1 \le p < l, \\ T_x(l+1,\mu_{l+1}+1) & \text{if } (p,q) = (l,j_l), \\ T_x(p,q) & \text{otherwise} \end{cases}$$

$$= T(p,q).$$
 (by (9))

Before proving the main result, for $\lambda \vDash n$, we let

$$\operatorname{Supp}(\lambda) = \{i \mid \lambda_i > 0\}.$$

Theorem 12. Let $\lambda \vDash n$ and $\rho \vdash n-1$. Then the map

$$\bigcup_{x \in \operatorname{Supp}(\lambda)} \operatorname{STab}(\rho, \lambda^{(x)}) \quad \to \quad \bigcup_{\substack{\mu \vdash n \\ \mu \succeq \rho}} \operatorname{STab}(\mu, \lambda)$$

$$T \qquad \qquad \mapsto \qquad T_x$$

is a bijection.

Proof. The map is well-defined by Lemma 6. Suppose $S \in STab(\mu, \lambda)$ for some $\mu \vdash n$ with $\mu \succeq \rho$. Then $\mu = \rho^{l+1}$ for some l. Set x = x(S, l). By Lemma 10, $S^l \in STab(\rho, \lambda^{(x)})$ and $(S^l)_x = S$, so the map is a surjection.

Let $T \in \operatorname{STab}(\rho, \lambda^{(x)})$ and $S \in \operatorname{STab}(\rho, \lambda^{(x')})$. Suppose $T_x = S_{x'} \in \operatorname{STab}(\mu, \lambda)$ for some $\mu \vdash n$ with $\mu \succeq \rho$. Then $\mu = \rho^{l+1}$ for some l, so $l = l(\overrightarrow{R}(T, x)) = l(\overrightarrow{R}(S, x'))$. By Lemma 11, we have $T = (T_x)^l = (S_{x'})^l = S$, so the map is an injection. \square

Remark 13. Let $\mu \vdash n$ and let X be a set of positive integers. Define

$$\mathcal{W}(X, n) = \{ \lambda \vDash n \mid \lambda_i \ge 0, \operatorname{Supp}(\lambda) \subseteq X \},$$

$$\operatorname{STab}_X(\mu) = \bigcup_{\lambda \in \mathcal{W}(X, n)} \operatorname{STab}(\mu, \lambda).$$

For $\rho \vdash n-1$, the map

(13)
$$\operatorname{STab}_{X}(\rho) \times X \to \bigcup_{\substack{\mu \vdash n \\ \mu \succeq \rho}} \operatorname{STab}_{X}(\mu)$$

$$(T, x) \mapsto T_{x}$$

is a bijection (see [3, p.399, 10.60]). This follows from Theorem 12. Indeed, collecting the bijections of Theorem 12 for all $\lambda \in \mathcal{W}(X, n)$, we obtain a bijection

(14)
$$\bigcup_{\lambda \in \mathcal{W}(X,n)} \bigcup_{x \in \text{Supp}(\lambda)} \text{STab}(\rho, \lambda^{(x)}) \times \{x\} \to \bigcup_{\lambda \in \mathcal{W}(X,n)} \bigcup_{\substack{\mu \vdash n \\ \mu \succeq \rho}} \text{STab}(\mu, \lambda) \\ T_x$$

Then the codomain of the bijection (14) equals that of (13), while

$$\bigcup_{\lambda \in \mathcal{W}(X,n)} \bigcup_{x \in \text{Supp}(\lambda)} \text{STab}(\rho, \lambda^{(x)}) \times \{x\} = \bigcup_{\nu \in \mathcal{W}(X,n-1)} \text{STab}(\rho, \nu) \times X$$
$$= \text{STab}_X(\rho) \times X.$$

Corollary 14 (Vershik's relations for the Kostka numbers). For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_h) \vdash n$ and $\rho \vdash n-1$, we have

$$\sum_{\substack{\mu \vdash n \\ \mu \succ \rho}} K(\mu, \lambda) = \sum_{\substack{\gamma \vdash n - 1 \\ \gamma \prec \lambda}} C(\lambda, \gamma) K(\rho, \gamma).$$

Proof.

$$\sum_{\substack{\mu \vdash n \\ \mu \succeq \rho}} K(\mu, \lambda) = \sum_{\substack{\mu \vdash n \\ \mu \succeq \rho}} |\operatorname{STab}(\mu, \lambda)|$$

$$= \sum_{\substack{1 \le x \le h \\ \gamma \le \lambda}} |\operatorname{STab}(\rho, \lambda^{(x)})|$$

$$= \sum_{\substack{\gamma \vdash n-1 \\ \gamma \le \lambda}} \sum_{\substack{1 \le x \le h \\ \lambda(x) = \gamma}} |\operatorname{STab}(\rho, \lambda^{(x)})|$$

$$= \sum_{\substack{\gamma \vdash n-1 \\ \gamma \le \lambda}} \sum_{\substack{1 \le x \le h \\ \lambda(x) = \gamma}} |\operatorname{STab}(\rho, \gamma)|$$
(by [1, Lemma 3.7.1])

$$\begin{split} &= \sum_{\substack{\gamma \vdash n-1 \\ \gamma \preceq \lambda}} |\{x \mid 1 \leq x \leq h, \ \widetilde{\lambda^{(x)}} = \gamma\}||\operatorname{STab}(\rho, \gamma)| \\ &= \sum_{\substack{\gamma \vdash n-1 \\ \gamma \preceq \lambda}} C(\lambda, \gamma) K(\rho, \gamma). \end{split}$$

Now, we compare Vershik's bijection with ours using [4, Example 1].

Example 15 ([4, Example 1]). Let $\lambda = (3, 2, 1) \vdash 6$ and $\rho = (4, 1) \vdash 5$. Then

We remove one box from the first row in A and B, one box from the second row in C and D, and one box (3,1) in E in order to obtain ρ -tableaux. Then we have a bijection as follows:

$$A \leftrightarrow L$$
; $B \leftrightarrow M$; $C \leftrightarrow N$; $D \leftrightarrow P$; $E \leftrightarrow Q$.

The bijection given by Theorem 12 is:

$$L \leftrightarrow L_1 = E; \quad M \leftrightarrow M_1 = D;$$

 $N \leftrightarrow N_2 = A; \quad P \leftrightarrow P_2 = C;$
 $Q \leftrightarrow Q_3 = B.$

Finally, we give an example, for which there is no bijection arising from removable of one box.

Example 16. Let $\lambda = (3, 3, 2) \vdash 8 \text{ and } \rho = (4, 3) \vdash 7$. Then

As mentioned in Section 1, μ -tableaux A and E result in ρ -tableau Q, so there is no bijection between μ -tableaux and ρ -tableaux arising from removable of one box. The bijection given by Theorem 12 is:

$$L \leftrightarrow L_1 = E;$$
 $M \leftrightarrow M_1 = F;$
 $N \leftrightarrow N_2 = D;$ $P \leftrightarrow P_2 = C;$
 $Q \leftrightarrow Q_3 = A;$ $R \leftrightarrow R_3 = B.$

References

- [1] T. Ceccherini-Silverstein, F. Scarabotti and F. Tolli, Representation Theory of the Symmetric Groups, Cambridge University Press, 2010.
- [2] W. Fulton, Young Tableaux, London Mathematical Society Student Texts 35, 1997.
- [3] Nicholas A. Loehr, Bijective Combinatorics, Chapman and Hall/CRC Press, 2011.
- [4] A. M. Vershik, A new approach to the representation theory of the symmetric groups, III: Induced representations and Frobenius-Young correspondence, Mosc. Math. J. 6 (2006), no. 3, 567–585.

RESEARCH CENTER FOR PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCES, TOHOKU UNIVERSITY, SENDAI 980–8579, JAPAN

E-mail address: minwon@ims.is.tohoku.ac.jp