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Abstract

We propose a four-loop induced radiative neutrino mass model inspired by the diphoton excess

at 750 GeV recently reported by ATLAS and CMS, in which a sizable diphoton excess is obtained

via photon fusion introducing multi doubly-charged scalar bosons. Also we discuss the muon

anomalous magnetic moment, and a dark matter candidate. The main process to explain the

observed relic density relies on the final state of the new particle at 750 GeV. Finally we show the

numerical results and obtain allowed region of several physical values in our model.
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I. INTRODUCTION

According to the recent announcements by ATLAS and CMS experiments, a new particle

could exist at around 750 GeV by the observation of the diphoton invariant mass spectrum

from the run-II data in 13 TeV [1, 2]. Subsequently a vast of paper along this line of

issue has been arisen in Ref. [3–134]. One of these interpretations is to identify a scalar

(or pseudoscalar) as the new particle (S), and the resonance occurs in the process; pp →
S +X → 2γ +X , where X is the missing particle. This can be interpreted as the following

13 TeV data in terms of the production cross section of S and its branching ratio of two

photons,

µATLAS = σ(2p → S +X)× BR(S → 2γ) = (6.2+2.4
−2.0) fb, (I.1)

µCMS = σ(2p → S +X)×BR(S → 2γ) = (5.6± 2.4) fb, (I.2)

which is extremely large compared to the previous observations from the run-I data at 8

TeV [135, 136]. Also the ATLAS experiment group [1] reported ΓS = 45 GeV that is the

best fit value of the decay width of S to the two photons, and ΓS = 5.3 GeV is given as

the experimental resolution obtained by the analysis [14]. To achieve such a large signal

strength, we have to enlarge the production cross section and (or) its branching ratio. One

of the simplest ways to enhance the production cross section is to introduce a vector like

exotic quark that couples to S, where such a quark induces the gluon fusion production of

S that can be always dominant process [11]. On the other hand, one of the simplest ways

to increase the branching ratio to photons is that S should couples to the isospin singlet

bosons or fermions with nonzero electric charges, because main modes such as a pair of W±

bosons can be forbidden. However once one can reach the enough branching ratio to the

two photons, (which is around ≈ 60 %), the dominant production cross section can also be

arisen from the photon fusion process, which is proposed by, i.e., Ref. [37]. This scenario is

in favor of leptonic models, especially, radiative seesaw models, when such charged particles

also interact with lepton sector. In this framework recent paper [126] has concluded that the

O(103−104) number of electrically charged bosons that propagate between S and two photons

have to be introduced as can be seen in Fig. 1, 1 in order to satisfy the condition of unitarity

1 The diphoton excess is analyzed by rather general way, introducing arbitral number of doubly charged

bosons with isospin singlet in this paper, although they fix a specific model in the neutrino sector. Hence
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bound via processes such as k±±S → k±± → k±±S and 2k±± → S → 2k±±. Therefore, the

trilinear term µS proportional to Sk±±k∓∓ should be nearly equal or less than mS ≈ 750

GeV. The relevant potential per k±± to generate the diphoton anomaly is simply given by

V = µSSk
++k−− +mkk

++k−− + c.c.. (I.3)

Then the total cross section with mS =750 GeV at 13 TeV is given by [37]

σγγ(≡ σ(2p → 2γ +X)) =

(

ΓS

45 GeV

)

× BR2(S → 2γ)× (73− 162) fb. (I.4)

In our case the cross section simplifies the following values due to BR(S → 2γ) ≈ 60%,

(3.0 fb . σγγ(ΓS = 5.3GeV) . 6.7 fb)− (25.5 fb . σγγ(ΓS = 45GeV) . 56.6 fb) , (I.5)

that satisfies the data in Eq. (I.2). Here we use the value 5.3 GeV . ΓS . 45 GeV coming

from the best fit value of ATLAS and the experimental resolution, and we find allowed

regions in terms of mk±± and µS to satisfy the decay width depending on the number of

charged bosons NCB as can be seen in Fig. 1.

This result could drastically changes the situation of any radiative seesaw models that

include electrically charged bosons such as Zee-Babu model [137], which is the first proposal

including the doubly charged boson, because the scale of neutrino masses must be enhanced

by NCB. To show this issue more clearly, let us consider the Zee-Babu model. The model

has the following relevant terms per k±±:

−L ⊃ yℓℓLΦeR + yℓℓLΦeR + ℓ̄cLℓLh
+ + gēcReRk

++ + µh+h+k−− + c.c.. (I.6)

Then the resulting neutrino mass has to be multiplied by NCB, and can be estimated as

mν ≈ 16NCB

(4π)4
µg∗(fmℓ)

2 × (loop factor) .
O(103 − 104)

16π4
µg∗f 2 ≈ O(1− 10)µg∗f 2, (I.7)

where we have used mℓ = mτ ≈ O(1) GeV, and loop factor is order 1. It suggests that

the neutrino mass scale is determined by the trilinear coupling µ and the Yukawa couplings,

and NCB that almost compensates the two loop suppression effect. Therefore the two loop

neutrino mass scale is equivalent to the tree level scale. Applying this fact, we will discuss our

radiative neutrino model at the four loop level in the next section, which could be equivalent

to a typical two loop radiative model. Then we will conclude and discuss in Sec. III.

one can apply some results to any kind of leptonic models that include charged bosons with isospin singlet

even when singly charged bosons.
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FIG. 1: The figures represent the allowed region between the mass of k±± and the trilinear term

of µS to satisfy 5.3 GeV . ΓS . 45 GeV coming from the experimental resolution and the best

fit value of ATLAS respectively, where each of colored region (yellow for NCB = 6000 and blue for

NCB = 9000) is allowed only and the upper line corresponds to ΓS = 45 GeV and the lower line

corresponds to ΓS = 5.3 GeV.

Lepton Fields Scalar Fields

LL eR E NR Φ S h+ k++

SU(2)L 2 1 1 1 2 1 1 1

U(1)Y −1 −1 −2 0 0 0 1 2

U(1) ℓ ℓ 3ℓ ℓ
3

0 2ℓ
3

−2ℓ −10ℓ
3

TABLE I: Contents of fermion and scalar fields and their charge assignments under SU(2)L ×

U(1)Y × U(1).

II. MODEL SETUP AND ANALYSIS

In this section, we explain our model with global U(1) symmetry. The particle contents

and their charges are shown in Tab. I. We add a vector-like exotic doubly charged fermion

E, a Majorana fermion NR, a singly charged scalar h±, the NCB number of doubly charged

4



scalars k±±, and a neutral scalar S to the SM, where all these new fields are iso-spin singlet,

and S is identified as a new scalar with 750 GeV mass. We assume that only the SM Higgs Φ

and S have vacuum expectation values (VEVs), which are respectively symbolized by v/
√
2

and vS/
√
2. The quantum number ℓ 6= 0 of U(1) symmetry is arbitrary, but its assignment

for each field is unique to realize our four loop neutrino model.

The relevant Lagrangian and Higgs potential under these symmetries per k±± are given

by

−LY ⊃ yℓL̄LΦeR + fL̄c
Liτ2LLh

+ + gĒLeRh
− + hN̄RE

c
Rk

−− +
yN
2
S∗N̄ c

RNR +MEĒLER

− λhkS
∗h−h−k++ − λSk|S|2k++k−− + h.c., (II.1)

where τ2 is a second component of the Pauli matrix. After the global U(1) spontaneous

breaking of S, we obtain trilinear terms as well as the Majorana masses as follows:

−LY ⊃ MN

2
N̄ c

RNR − µh−h−k++ − µSSk
++k−− + h.c., (II.2)

where MN ≡ yNvS/
√
2, µ ≡ λhkvS/

√
2, and µS ≡ λSkvS/

√
2. The first term of LY generates

the SM charged-lepton masses mℓ ≡ yℓv/
√
2 after the electroweak spontaneous breaking of

Φ. We work on the basis where all the coefficients are real and positive for simplicity. The

isospin doublet scalar field can be parameterized as Φ = [w+, v+φ+iz√
2

]T where v ≃ 246 GeV

is VEV of the Higgs doublet, and w± and z are respectively absorbed by the longitudinal

component of W and Z boson. The isospin singlet scalar field can be parameterized as

S = vS+s√
2
eiG/vS . Here we assume φ is the SM Higgs, therefore we neglect the mixing between

φ and s for simplicity. We also assume that the lightest Majorana fermion NR|lightest = X

does not couple to ER and k±± in the fourth term of LY and does not mix with other NR

so that it can be stable and a DM candidate. Such a situation for DM can easily be realized

by imposing additional Z2 odd assignment.

Neutrino mass matrix:

Then the leading contribution to the active neutrino masses mν is given at four-loop level

as shown in Figure 2, and we can respectively estimate the order of masses as follows:

mν = mI
ν +mII

ν +mIII
ν +mIV

ν , (II.3)

mI
ν ≈ [NCBµmℓMEfg

∗h]2

(4π)8M4
maxMN

GI(xℓ, xE , xh, xk), (II.4)

mi
ν ≈ N2

CBMR[µmℓMEfg
∗h]2

(4π)8M6
max

Gi(xℓ, xE , xh, xk, xN), (i = II − IV ), (II.5)

5



FIG. 2: Neutrino masses at the one-loop level.

where the left-top side of figure corresponds to mI
ν , the right-top side of figure corresponds

to mII
ν , the left-bottom side of figure corresponds to mIII

ν , the right-bottom side of figure

corresponds to mIV
ν , and we define xi ≡ (mi/Mmax)

2 and Mmax = Max[ME , mh, mk,MN ].

GI consists of two pairs of the Zee-Babu like two-loop function. Obviously mI
ν can be greater

than mII−IV
ν under the condition GI ≈ Gi, since the ratio is given by

mI
ν

mII−IV
ν

≈
(

Mmax

MN

)2

≫ 1. (II.6)

Hence we can approximate the neutrino masses as

mν = mI
ν ≈ [NCBµmℓMEfg

∗h]2

(4π)8M4
maxMN

, (II.7)

where we take GI = O(1), and mν should be 0.001 eV . mν . 0.1 eV from the neutrino

oscillation data [138].

Muon anomalous magnetic moment:
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The muon anomalous magnetic moment (muon g− 2) has been measured at Brookhaven

National Laboratory that suggests there is a discrepancy between the experimental data

and the prediction in the SM. The difference ∆aµ ≡ aexpµ − aSMµ is respectively calculated in

Ref. [139] and Ref. [140] as

∆aµ = (29.0± 9.0)× 10−10, ∆aµ = (33.5± 8.2)× 10−10. (II.8)

The above results given in Eq. (II.8) correspond to 3.2σ and 4.1σ deviations, respectively.

Our formula of muon g − 2 is given by

∆aµ ≈
NCBm

2
µ

(4π)2

[

(g∗g)22F (E, h)− (f ∗f)22
m2

h±

]

, (II.9)

F (E, h) ≈
4M6

E − 9M4
Em

2
h± + 5m6

h± + 6M2
E(M

2
E − 2m2

h±)m2
h± ln

[

m2

h±

M2

E

]

12(M2
E −m2

h±)4
. (II.10)

Dark matter:

Assuming the lightest Majorana particle of NR as our DM candidate, which is denoted

by X , we find the dominant mode to explain the observed relic density Ωh2 ≈ 0.12 [141].

Our dominant non-relativistic cross section comes from 2X → 2s with t- and u-channels 2,

and its formula is given by

σvrel ≈
M6

X

3πv4S

√

1− m2
S

M2
X

(

41M4
X − 38M2

Xm
2
S + 9m4

S

)

v2rel ≡ bv2rel. (II.11)

Then the relic density is formulated by

Ωh2 ≈ 1.07× 109

6
√
g∗MP

∫∞
xf

b
x3

, (II.12)

where MP ≈ 1.22 × 1019 GeV is the Planck mass, g∗ ≈ 100 is the total number of effective

relativistic degrees of freedom at the time of freeze-out, and xF ≈ 25. In our numerical

analysis below, we set the allowed region to be

0.11 . Ωh2 . 0.13, (II.13)

where mass relation MX < {ME , mh±, mk±±} is expected to stabilize DM.

Numerical results:

2 Even when there is NCB enhancement for the processes of γγ or γZ final state modes, these cross sections

are still subdominant.
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Now we randomly select values of the twelve parameters within the corresponding ranges

vS ∈ [2 TeV, 3TeV], µ = µS ∈ [0 , 1][TeV], MX ∈ [mS , vS],

mk±± ∈ [MX , 5TeV], ME = MN = mh± ∈ [MX , 10TeV],

mℓ ∈ [me , mτ ], f = g = h ∈ [−1, 1], (II.14)

to reproduce the neutrino mass scale 0.001 eV . mν . 0.1 eV, the anomalous magnetic

moment 2.0 × 10−9 . ∆aµ . 4.2 × 10−9 in Eq. (II.8), the measured relic density 0.11 .

Ωh2 . 0.13 in Eq. (II.13), and the decay rate to the two photons of the doubly charged

bosons k±± observed by the 750 GeV diphoton excess 5.3 GeV . ΓS . 45 GeV in Eq. (I.5).

Here we fix NCB = [6000, 9000], mS = 750 GeV is the new particle, me = 0.51 MeV is the

electron mass, and mτ = 1.776 GeV is the tauon mass. Then we have obtained the following

constrained parameters with five millions random sampling points:

NCB = 6000 :

vS ∈ [2 , 2.8 ] [TeV], µS ∈ [0.3 , 1][TeV], MX ∈ [0.8, 1.8] [TeV],

mk±± ∈ [0.9 , 2 ] [TeV], ME ∈ [MX , 6TeV], mh± ∈ [MX , 8TeV],

|f | = |g| ∈ [0.5, 1], (II.15)

NCB = 9000 :

µS ∈ [0.2 , 1][TeV], MX ∈ [0.8, 2.1] [TeV],

mk±± ∈ [1.0 , 2.5 ] [TeV], ME ∈ [MX , 8TeV], mh± ∈ [MX , 9TeV],

|f | = |g| ∈ [0.5, 1]. (II.16)

These above results suggest that NCB = 9000 gives larger number of solutions than those of

NCB = 6000, that is expected from Fig. 1. Also both the allowed regions of mk±± and µS

directly reflect the results of this figures. The Yukawa couplings of f and g needs rather large

values that are required to satisfy muon anomalous magnetic moment. It is worth mentioning

that there exist lepton flavor violating processes (LFVs) whenever we have the contributions

of the muon g − 2 as discussed in Eq. (II.9), although serious analysis is beyond our scope

due to the very complicated neutrino sector. These processes provide some constraints such

as Yukawas (f and g in our case) and/or the mediating particles (mk±±, mh±, MN , and ME

in our case). Even when our Yukawa couplings f and g are relatively large, we expect that
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FIG. 3: Sum of cross sections for doubly charged scalar production pp → γ∗/Z∗ → k++
i k−−

i at

the LHC 13(14) TeV.

LFVs could be suppressed by the mediating particles; mk±±, mh± , MN , ME , all of which

are O(1) TeV.

We also estimate the cross section of doubly charged scalar production, i.e. pp →
γ∗/Z∗ → k++k−−. Although each pair production cross section is small the sum of the

cross section for NCB pair can be sizable. The production cross section is numerically esti-

mated by CalcHEP [142] implementing relevant interactions and using CTEQ6L PDF [143].

The left(right) plots in Fig. 3 show the sum of the k++k−− production cross section at

the LHC 13(14) TeV applying NCB = 6000. Note that the total cross section is simply

NCB×(each k++k−− production cross section). We thus find that the doubly charged scalar

could be produced at the LHC run-II with O(100) fb cross section when mk±± ∼ 1 TeV.

The doubly charged scalar then decays as k±± → h±h± → ℓ±ℓ±νν̄ where ℓ = e, µ and

τ . Therefore the signal of the k++k−− pair is four charged lepton plus missing transverse

energy.

III. CONCLUSIONS AND DISCUSSIONS

We have proposed a four-loop induced radiative neutrino mass model inspired by the

diphoton excess at 750 GeV recently reported by ATLAS and CMS, in which a sizable dipho-

ton excess is obtained via photon fusion introducing multi doubly-charged scalar bosons. The
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sizable neutrino mass scale has been obtained due to the enhancement of the number of dou-

bly charged bosons NCB. Also we have discussed the muon anomalous magnetic moment,

and a dark matter candidate of the lightest fermion X , and we have found that the main

process to explain the correct relic density relies on the final state of the new particle at 750

GeV through the t- and u-channels. Finally we have shown the numerical results and have

obtained allowed region of several physical values in our model, as can be seen in Eqs (II.15)

forNCB = 6000 and Eqs (II.16) for NCB = 9000 respectively. The doubly charged scalar pro-

duction cross section has been numerically estimated. Then we have found that sum of the

pair production cross section can be as large as O(100) fb for mk±± ∼ 1 TeV. Therefore our

model could be tested at the LHC run-II by searching for the signal of four charged lepton

plus missing transverse energy which is obtained as k++k−− → h+h+h−h− → ℓ+ℓ+ℓ−ℓ−+4ν.

Further analysis of the signal is left as future work.
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