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We present analytical solutions to three qubits and a single-mode cavity coupling system beyond
the rotating-wave approximation (RWA). The zeroth order approximation gives correct solutions
when the qubits are far detuned from the cavity. The first order approximation, called generalized
rotating-wave approximation (GRWA), produces an effective solvable Hamiltonian with the same
form as the ordinary RWA one and exhibits substantial improvements of energy levels over the
RWA even on resonance. Based on these analytical eigen-solutions, we study both the bipartite
entanglement and genuine multipartite entanglement (GME). The dynamics of the concurrence and
the GME using the GRWA are in consistent with the numerical ones. Interestingly, the well known
sudden death of entanglement occurs in the bipartite entanglement dynamics but not in the GME
dynamics.

PACS numbers: 42.50.Pq, 42.50.Lc,64.70.Tg

I. INTRODUCTION

The interaction between qubits and a cavity is ubiq-
uitous in several branches of physics ranging from quan-
tum optics [1] to condensed matter and widespread ap-
plication to quantum information [2, 3]. In early work
on cavity quantum electrodynamics (QED), the qubit-
cavity coupling strength was much smaller than the cav-
ity transition frequency, the rotating-wave approxima-
tion (RWA) can be applied to produce a solvable treat-
ment [4]. With recent advances in the circuit QED using
superconducting qubit circuits, it is possible to engineer
systems for which the qubits are so far detuned from the
cavity, or are coupled to the cavity in a ultra-strong cou-
pling regime where the coupling strength is comparable
to the cavity transition frequency, that the RWA fails to
describe the system correctly [5–10].

Due to the breakdown of the RWA, the counter-
rotating-wave (CRW) interactions in the qubit-cavity
systems are expected to be taken into account, produc-
ing non-conserved excitation number. Under the RWA,
the ground state of the qubit-cavity system consists of
a product of the qubits’ ground state and the cavity’s
vacuum state. An inclusion of the CRW interactions
leads to a squeezed vacuum state containing virtual pho-
tons [11, 12]. It is challenging to give an analytical ex-
act treatment for the qubit-cavity system. There have
been numerous theoretical studies on one- and two-qubit
and cavity systems finding new phenomena in the ultra-
strong coupling regime, including the adiabatic approxi-
mation [13, 14], a Bargmann space technique [15, 16], an
extended coherent state method [17–20]. Motivated by
experimental developments and the importance of under-
standing collective quantum behavior, we will investigate
an analytical solution to a three-qubit Dicke model [21],
which describes the interaction of three qubits with a
single-mode cavity.

In recent years it has turned out that theoretical char-
acterization of entanglement has attracted much atten-
tions. Most of the existing studies of entanglement fo-
cus on bipartite entanglement [22, 23], which can be
quantified through the concurrence characterizing qubit-
qubit entanglement [24–26]. However, bipartite entan-
glement can only give a partial characterization, since
multipartite entanglement is known to be different from
entanglement between all bipartitions [27]. There is
on going interest in the genuine multipartite entangle-
ment (GME) of the Dicke states for collective qubits sys-
tems [27, 28, 30, 31]. It was found that the symmetric
three-qubit state is relatively robust to decoherence [32].
On the other hand, the bipartite entanglement decoher-
ence has been studied in connection with a phenomenon
termed entanglement sudden death, indicating that the
bipartite entanglement can decay to zero abruptly during
a finite period of time [37]. Whether this properties oc-
curs for the dynamics of GME remain unexplored. So it
is highly desirable to study both the bipartite entangle-
ment and the GME for the multipartite entanglement in
the more than two qubits system, where the three qubits
and cavity coupling system can be served as the most
simple paradigm.

The paper is outlined as follows. In Sec. II, we map
the three-qubit Dicke model with CRW interactions into
a solvable Hamiltonian by the zeroth and first order ap-
proximation, giving the analytical expression of the en-
ergy levels. In Sec.III, we discuss dynamics of the GME
for the multipartite entanglement, and the concurrence
of qubit-qubit entanglement by our method. Finally, a
brief summary is given in Sec. IV.

http://arxiv.org/abs/1601.00387v1
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II. AN ANALYTICAL TREATMENT TO THE

THREE-QUBIT CAVITY SYSTEM

The Hamiltonian of the three-qubit Dicke model,
which describes three identical qubits couple to a com-
mon harmonic cavity, is written as (~ = 1)

H = −∆Jz + ωa†a+
g

2
(a† + a)(J+ + J−), (1)

where a and a† are, respectively, the annihilation and
creation operators of the harmonic cavity with frequency
ω, Ji (i = z,±) are the angular momentum operators,
describing the three qubits of level-splitting ∆ in terms
of a pseudospin of length J = 3/2, g denotes the collective

qubit-cavity coupling strength.

In the RWA, the CRW terms a†J+ and aJ− are ne-
glected, the Hamiltonian becomes

HRWA = −∆Jz + ωa†a+
g

2
(a†J− + aJ+)

which is restricted to relatively weak coupling strength
g ≪ ω, and to qubit-cavity near resonance, ∆ ≈ ω. Now,
the interaction couples only | − 3

2 〉|n+ 2〉, | − 1
2 〉|n + 1〉,

| 12 〉|n〉, | 32 〉|n − 1〉 for each n and no other states. These
states form a subspace where the Hamiltonian can be
diagonalized analytically. It is easy to write the following
tri-diagonal matrix form

HRWA =




ω(n+ 2) + 3∆
2 Tn+1,n+2 0 0

Tn+1,n+2 ω(n+ 1) + ∆
2 Tn,n+1 0

0 Tn,n+1 ωn− ∆
2 Tn−1,n

0 0 Tn−1,n ω(n− 1)− 3∆
2


 . (2)

where

Tn+1,n+2 = g
√
3(n+ 2)/4, Tn,n+1 = g

√
n+ 1/4,

Tn−1,n = g
√
3n/4.

If CRW terms a†J+ and aJ− are included, the Hilbert
space can not be decomposed into the finite dimensional
spaces, because the total excitation number N = a†a +
Jz + 3/2 is non-conserved and the subspace for different
index n defined above is highly correlated. So analytical
solutions in this case should be highly non-trivial.
The full Hamiltonian ( 1) can be rewritten in the Jx-

representation as

H = ∆Jx + ωa†a+ g(a† + a)Jz (3)

By a rotation around y axis with the angle π/2. Introduc-
ing an unitary transformation U = exp

[
g
ωJz

(
a† − a

)]
,

one can obtain H = H0 +H1 where

H0 = ωa†a− g2

ω
J2
z (4)

H1 = ∆
{
Jx cosh

[ g
ω

(
a† − a

)]
+ iJy sinh

[ g
ω

(
a† − a

)]}

(5)

Since cosh(y) and sinh(y) are the even and odd
functions respectively, which can be expanded as

cosh
[
g
ω

(
a† − a

)]
= G0

(
a†a

)
+ G1

(
a†a

) (
a†
)2

+

a2G1

(
a†a

)
+ ... and sinh

[
g
ω

(
a† − a

)]
= F1

(
a†a

)
a† −

aF1

(
a†a

)
+ F2

(
a†a

) (
a†
)3 − a3F2

(
a†a

)
+ ..., containing

powers of the number operator a†a. Here Gi(a
†a)(i =

0, 1, ...) and Fj(a
†a)(j = 1, 2, ...) are the coefficients that

depend on the cavity number operator n̂ = a†a. Differ-
ent order of approximations can then be performed by
neglecting some terms in the expansions.

Zeroth order approximation: In the zeroth order ap-
proximation, we only keep the first term G0

(
a†a

)
in Eq.

(5), and have

H
0th

= ωa†a− g2

ω
J2
z +∆JxG0

(
a†a

)
. (6)

In the basis of the photonic number state, we can easily
find that the term G0

(
a†a

)
only has nonvanishing diag-

onal elements. Keeping the terms containing the number
operator n̂ in cosh

[
g
ω

(
a† − a

)]
, we can evaluate

G0(n) = 〈n| cosh
[ g
ω

(
a† − a

)]
|n〉 = e−

g2

2ω2 Ln(
g2

ω2
),

where Laguerre polynomials Lm−n
n (x) =∑min{m,n}

i=0 (−1)n−i m!xn−i

(m−i)!(n−i)!i! . Note that only the

oscillator number operator n̂ = a†a appears, so the
Hilbert space can be decomposed into same n manifolds
spanned by the spin and cavity basis of | − 3

2 〉|n〉,
| − 1

2 〉|n〉, | 12 〉|n〉 and | 32 〉|n〉. In the subspace contain
only the n-th manifold, the Hamiltonian takes the form
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H
0th

=




ωn− 9g2

4ω

√
3
2 ∆G0(n) 0 0√

3
2 ∆G0(n) ωn− g2

4ω ∆G0(n) 0

0 ∆G0(n) ωn− g2

4ω

√
3
2 ∆G0(n)

0 0
√
3
2 ∆G0(n) ωn− 9g2

4ω


 . (7)

The corresponding eigenvalues εk,n ( k = 1, 2, 3, 4) are
easily given by

ε1,n = ωn+ 5A− 1

2
Bn − 2χ1,n,

ε2,n = ωn+ 5A+
1

2
Bn − 2χ2,n,

ε3,n = ωn+ 5A− 1

2
Bn + 2χ1,n,

ε4,n = ωn+ 5A+
1

2
Bn + 2χ2,n, (8)

and eigenvectors |ϕk,n〉 are

|ϕ1,n〉 ∝




−1
K1,n

−K1,n

1


 , |ϕ2,n〉 ∝




1
−K2,n

−K2,n

1


 ,

|ϕ3,n〉 ∝




−1
K3,n

−K3,n

1


 , |ϕ4,n〉 ∝




1
−K4,n

−K4,n

1


 , (9)

where

Ki,n =
1√
3B

(−2g2

ω
− (−1)i∆G0(n) + 4χi,n), (i = 1, 2)

Ki,n =
1√
3B

(−2g2

ω
(−1)i∆G0(n)− 4χi−2,n), (i = 3, 4)

(10)

with

χi,n =

√
g4

4ω2
+ (−1)i

g2

4ω
∆G0(n) +

[∆G0(n)]
2

4
, (i = 1, 2)

We can discuss the analytical expression of the ground

state, n = 0. For a weak coupling strength, A = − g2

4ω ∼ 0

and K1,0 =
√
3, the ground state is given explicitly as

|ϕ1,0〉 = |0〉(−| − 3
2 〉 +

√
3| − 1

2 〉 −
√
3| 12 〉 + | 32 〉)/2

√
2,

corresponding to the ground state in the Jz-represention
as

|ψ1,0〉 = | − 3

2
〉|0〉. (11)

The Dicke state | − 3
2 〉 corresponds that three qubits are

all in the spin-down state in the weak coupling regime.
Similarly, in the strong coupling regimes, K1,0 ∼ 0, the

ground state in the Jx-represention is approximated as a
three-qubit GHZ state 1√

2
(| − 3

2 〉 − | 32 〉)|0〉.
The zeroth order approximation can yield good ap-

proximate results if the qubits are far detuned from the
cavity, ∆ ≪ ω. In the zero detuning limiting, ∆ = 0,
within the same manifold n, | ± 3

2 〉|n〉 and | ± 1
2 〉|n〉 are

nearly degenerate in the ultra-strong coupling regime.
For a finite and small detuning ∆ ≪ ω , it is reasonable
to consider transitions between the four states that be-
long to the same manifold, resulting the eigenstates in
Eq.( 9). For a weak coupling strength g/ω ≪ 1, the an-
alytical eigen-energies ( 8) are simplified as nω ± 3Bn/2
and nω ±Bn/2.
Energy levels by the zeroth order approximation are

plotted in Fig. 1 with blue dotted lines. In small detun-
ing regime ∆/ω = 0.1, the zeroth order results agree well
with the numerical ones even for strong coupling strength
in Fig. 1 (a). But the RWA fails to give correct energies.
It exhibits improvements of the zeroth order approxima-
tion over the RWA. It ascribes to the cavity states are dis-
placed Fock states |n〉j = exp[ jgω (a†−a)]|n〉(j = ± 3

2 ,± 1
2 )

in the zeroth order approximation. However, there is a
noticeable deviation of the zeroth order approximated
results for the resonance case ∆/ω = 1, indicating that
the higher order terms in Eq.(5) should be taken into
account. Physically, states with different oscillator exci-
tations manifolds should be coupled.

First-order approximation: Keeping the linear terms
in a and a† and neglecting all higher order terms in Eq.
(5) gives

H1 = ∆{JxG0

(
a†a

)
+ iJy[F1

(
a†a

)
a† − aF1

(
a†a

)
]}.
(12)

The term F1

(
a†a

)
a† describes the photon hopping from

state |n〉 to |n+ 1〉. Setting

Rn+1,n = 〈n+ 1| sinh
[ g
ω

(
a† − a

)]
|n〉 /

√
n+ 1

=
1

n+ 1

g

ω
e−

g2

2ω2 L1
n(
g2

ω2
), (13)

Rn+1,na
†and F1

(
a†a

)
a† play the same role in physics

processes. While, the term aF1

(
a†a

)
only has value in

〈n |n+ 1〉. It follows that the term F1

(
a†a

)
a† creates

and aF1

(
a†a

)
eliminates a single photon of the cavity

in sinh
[
g
ω

(
a† − a

)]
, similar to the process described in
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FIG. 1: (Color online) Energy levels obtained by the GRWA method (red solid lines) for different ∆/ω = 0.1 (a), and ∆/ω = 1
(b). The energies by the numerically exact diagonalization (black solid lines), results of RWA (green dashed lines) and results
obtained by the zeroth-order approximation (blue dotted lines) are plotted for comparison.

the RWA model, which facilitates the further analytic
treatment.
The renormalized Hamiltonian is H = H

′

0 +H
′

1:

H
′

0 = ωa†a− g2

ω
J2
z +∆βJx, (14)

H
′

1 = ∆Jx[G0

(
a†a

)
− β] + iJy∆[F1

(
a†a

)
a† − aF1

(
a†a

)
]

with β = G0 (0) = e−
g2

2ω2 . Since the qubit and cavity in

noninteracting partH
′

0 are decoupled, we apply a unitary

transformation S to diagonalize the qubit part in H
′

0

S =




− 1
C1

1
C2

− 1
C3

1
C4

K1

C1
−K2

C2

K3

C3
−K4

C4

−K1

C1
−K2

C2
−K3

C3
−K4

C4
1
C1

1
C2

1
C3

1
C4


 , (15)

where Ki has been defined in Eq.( 10) for n = 0, and the

normalized parameter is Ci =
√
2 + 2K2

i .

The effective Hamiltonian of the three-qubit Dicke
model by the transformation S can be approximated as

HGRWA = ωa†a+ µ1| −
3

2
〉〈−3

2
|+ µ2| −

1

2
〉〈−1

2
|+ µ3|

1

2
〉〈1
2
|+ µ4|

3

2
〉〈3
2
|

+∆F1

(
a†a

)
[
−
√
3K2 +K1(

√
3 + 2K2)

C1C2
(a| − 1

2
〉〈−3

2
|+ h.c)

+
−
√
3K3 +K2(

√
3− 2K3)

C2C3
(a|1

2
〉〈−1

2
|+ h.c)

+
−
√
3K4 +K3(

√
3 + 2K4)

C3C4
(a|3

2
〉〈1
2
|+ h.c)], (16)

where µi(a
†a) = εi,0 − ∆2Ki[

√
3−(−1)iKi]

C2
i

[G0

(
a†a

)
− β].

There are only the energy-conserving terms (a|− 1
2 〉〈− 3

2 |+

h.c), (a| 12 〉〈− 1
2 |+h.c) and (a| 32 〉〈12 |+h.c) with renormal-

ized coefficients. The dominated effect of the original
CRW terms are considered here. Because it is three-qubit
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Dicke model Hamiltonian in the RWA with renormalized
coefficients, and thus called as generalized rotating-wave
approximation (GRWA).
Note that the individual bosonic creation (annihila-

tion) operator a† (a) also appears in the GRWA, so the

transitions between states belonging to 4 different man-
ifolds should be involved. In the basis of | − 3

2 〉|n + 2〉,
| − 1

2 〉|n+1〉, | 12 〉|n〉 and | 32 〉|n− 1〉 (n > 0), the Hamilto-
nian can be written in the matrix form as

HGRWA =




ω(n+ 2) + µ1(n+ 2) R′
n+1,n+2 0 0

R′
n+1,n+2 ω(n+ 1) + µ2(n+ 1) R′

n,n+1 0
0 R′

n,n+1 ωn+ µ3(n) R′
n−1,n

0 0 R′
n−1,n ω(n− 1) + µ4(n− 1)


 , (17)

with R′
n+1,n+2 = −

√
3K2+K1(

√
3+2K2)

C1C2
Rn+1,n+2

√
n+ 2,

R′
n,n+1 = −

√
3K3+K2(

√
3−2K3)

C2C3
Rn,n+1

√
n+ 1 and

R′
n−1,n = −

√
3K4+K3(

√
3+2K4)

C3C4
Rn−1,n

√
n.

To this end, the GRWA can be also analytically per-
formed without more efforts than that in the original
RWA study in the three-qubit Dicke model. The dis-
placed Fock states in the cavity |n〉m, |n ± 1〉m and
|n + 2〉m depend upon the Dicke state |j,m〉, which are
definitely different from the RWA ones. Different man-
ifold n + 2, n ± 1 and n are coupled in the GRWA, in
contrast with the only one manifold in the zeroth order
approximation.
The ground-state energy for the ground state | − 3

2 〉|0〉
is

E0 = 5A− B0

2
− 2χ1,0. (18)

The first and second excited energies {Ek
0} (k = 1, 2)

can be given by expanding the GRWA Hamiltonian in
the basis | − 3

2 〉|1〉, | − 1
2 〉|0〉

HGRWA =

(
ω + µ1(1) R′

0,1

R′
0,1 µ2(0)

)
. (19)

Similarly, HGRWA is given in terms of | − 3
2 〉|2〉, | − 1

2 〉|1〉,
| 12 〉|0〉 as

HGRWA =




2ω + µ1(2) R′
1,2 0

R′
1,2 ω + µ2(1) R′

0,1

0 R′
0,1 µ3(0)


 , (20)

which provides three analytical excited energies {Ek
0 }

(k = 3, 4, 5).
Energies obtained by the GRWA are presented in red

solid lines in Fig. 1. Especially, for the resonance case
∆ = ω in Fig. 1(b), the GRWA results are much better
than the zeroth order results (blue dotted lines) due to
the coupling between states belonging to different oscilla-
tor manifolds, |n〉, |n± 1〉 and |n+2〉. The level crossing
is present in both the GRWA results and the exact ones.
The GRWA includes the dominant contribution of the

GRW terms by the first order approximation, exhibiting
substantial improvement of energy levels over the RWA
one. The RWA fails in particular to describe the eigen-
states, which should be more sensitive in the quantum
entanglement presented in the next section.

III. QUANTUM ENTANGLEMENT

We study the GME of three qubits, and the concur-
rence for the bipartite entanglement in this model. Since
a fully separable three-particle state contains no entan-
glement. If the state is not fully separable, then it con-
tains some entanglement, but it might be still separable
with respect to two-party configurations. For genuine
multiparticle entangled states, all particles are entangled
and therefore GME is also interesting if not most impor-
tant among various entanglement.
The GME measuring the multipartite entanglement

has been detected efficiently using positive partial trans-
pose (PPT) mixtures [33]. If a bipartite state is sepa-
rable, its partial transpose is positive semidefinite. The
separable state is PPT. Similar to the definition of a sep-
arable state, a PPT mixture of a three-party state is de-
fined as a convex combination of PPT states. The set
of PPT mixtures contains the set of biseparable states,
combining states which are biseparable with respect to
a specific bipartition. Consequently, if a state is not
a PPT mixture, it is genuinely multipartite entangled.
PPT mixtures can be fully characterized by the method
of semidefinite programming (SDP) [34], which makes it
an easy-to-implement criterion to detect GME. A state ρ
is a PPT mixture if and only if the following optimization
problem,

minTr(Wρ), (21)

whereW is an operator as a decomposable entanglement
witness for any semidefinite. For solving the minimum
Eq.( 21) by the SDP, we use the semidefinite programs,
which are freely available [35, 36]. For a negative mini-
mum, the state ρ is not a PPT mixture and is genuinely
multipartite entangled.
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FIG. 2: (Color online) Dynamics of the GME for three-
qubit entanglement with the initial W state for the ultra-
strong coupling strength g/ω = 0.1 with the different detun-
ing ∆/ω = 0.1 (a) and ∆/ω = 1 (b) by the GRWA method
(red dashed dotted lines), numerically exact diagonalization
(black solid lines), RWA (green dashed lines), and by the
zeroth-order approximation (blue dashed lines).

There is ongoing interest in the dynamics of the bipar-
tite entanglement and multipartite entanglement. We
choose the initial three-qubit state as W state with
respected to the original Hamiltonian ( 1) in the Jz-
representation

|W 〉 = 1√
3
(|100〉+ |010〉+ |001〉), (22)

which can be expressed as the Dicke state |D3〉 = | − 1
2 〉.

In the Jx-representation by the unitary transformation
e−iπJy/2, the initial three-qubit Dicke state can be writ-
ten as

|D3〉 =
1√
8
[−

√
3| − 3

2
〉 − | − 1

2
〉+ |1

2
〉+

√
3|3
2
〉]. (23)

And the initial cavity state is the vacuum state |0〉. Based
on the eigenstates

{
|ϕn〉k

}
and eigenvalues

{
Ek

n

}
by the

GRWA and the zeroth order approximation, the wave-
function evolves from the initial W state as |φ(t)〉 =∑

n e
−iEk

nt|ϕk
n〉〈ϕn|D3〉. To calculate the GME dynam-

ics by solving the minimum Eq.( 21), the three-qubit re-
duced state ρ(t) can be given by tracing out the cavity
degrees of freedom ρ(t) = Trcavity(|φ(t)〉〈φ(t)|).
Fig. 2 shows evolution of the GME E(ρ) for the three-

qubit entanglement for a ultra-strong coupling strength
g/ω = 0.1 for different detuning case. For compari-
son, results from numerical exact diagonalization and
RWA are also shown. We observe a quasi-periodic be-
havior of the GME dynamics. E(ρ) decays from the
initial entangled W state and fall off to non-zero mini-
mum value. The GME dynamics obtained by the GRWA
are consistent with the numerical results, while the RWA

results are qualitatively incorrect for the off-resonance
case ∆/ω = 0.1 in Fig. 2 (a). The validity of the
GRWA ascribes to the inclusion of the CRW interaction
iJyF1

(
a†a

)
(a† − a), which leads to transitions between

states in the different photon manifold spanned by |n〉,
|n± 1〉 and |n+ 2〉. For the zeroth order approximation,
where only states within the same manifold are included,
works well for the off-resonance case ∆ = 0.1 in Fig. 2
(a) but not for the on-resonance case as shown in Fig. 2
(b). The onset of the decay of the entanglement is due to
the information loss of qubit dynamics to the cavity. On
the other hand, it is the interaction with the cavity that
lead to the entanglement resurrection. The lost infor-
mation will come back to the qubit subsystem in finite
times. Fig. 2 (b) shows the GME E(ρ) for the three-
qubit entanglement recovers from a non-zero minimum
entanglement after a period time.
For the bipartite entanglement, the concurrence char-

acterizes the entanglement between two qubits. Due
to the symmetric Dicke states in the three-qubit col-
lective model, the concurrence is evaluated in terms of
the expectation values of the collective spin operators as
C = max{0, Cy, Cz}, where the quantity Cn is defined
for a given direction n(= y, z) as Cn = 1

2N(N−1){N2 −
4〈S2

n〉 −
√
[N(N − 2) + 4〈S2

n〉]2 − [4(N − 1)〈Sn〉]2} [25].
From the dynamical wavefunction |φ(t)〉, it is easily to
evaluate the coefficients for the qubit to remain in the
|j,m〉 state as

P 0th
m =

∞∑

n=0

4∑

k=1

fn(t)e
−iEk

nt|n〉m, (24)

with the zeroth order approximation and as

P GRWA
m = f0(t)e

−iE0t|0〉+
5∑

k=3

fk
0 (t)e

−iEk
0 t|2〉m

+
5∑

k=1

fk
0 (t)e

−iEk
0 t(|0〉m + |1〉m)

+
∞∑

n>1

4∑

k=1

fk
n(t)(e

−iEk
n−2t + e−iEk

n−1t

+e−iEk
nt + e−iEk

n+1t)|n〉m, (25)

with the GRWA. fk
n(t) is a dynamical parameter asso-

ciated with the initial state and the k-th eigenstates for
each n. It is easily to obtain the concurrence C in terms
of the average value of collective spin operators, such
as 4〈S2

y〉 = 4
√
3(− 3

2
〈n − 2|n〉 1

2
P− 3

2
P 1

2
+ − 1

2
〈n − 1|n +

1〉 3
2
P− 1

2
P 3

2
) − 4(P 2

− 1
2

+ P 2
1
2

) + 3. Since four basis states

|n〉, |n± 1〉 and |n+ 2〉 involved in the GRWA, we could
expect energy transitions among Ek

n−2, E
k
n±1 and Ek

n,
which produce essential improvement over the zeroth or-
der ones.
We plot the dynamics of the concurrence in the ultra-

strong coupling strength g/ω = 0.1 for two detunings
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FIG. 3: (Color online) Dynamics of the concurrence for the
qubit-qubit entanglement with the initial W state for the ul-
trastrong coupling strength g/ω = 0.1. The parameters are
the same as in Fig. 2.

∆/ω = 0.1 and 1 in Fig. 3. The initial W state gives
the maximum pairwise concurrence of any Dicke state
C = 2/3. Fig. 3 (a) shows that dynamics of the concur-
rence by the zeroth order approximation are similar to
the numerical ones in the off-resonance case ∆/ω = 0.1,
in which the RWA results are invalid. The sudden death
of the bipartite entanglement is observed in the resonance
case in Fig. 3 (b). The dynamics of the concurrence ob-
tained by the GRWA are similar to the numerical re-
sults, exhibiting an disappearance of the entanglement
for a period of time. However, there is no sudden death
of the entanglement in the RWA study, indicating that
RWA can not display qualitatively correct dynamics of
the concurrence for the ultra-strong coupling g/ω = 0.1.
Interestingly, the entanglement by the numerical

method can fall abruptly to zero, and will return zero
for a period of time before entanglement revivals. The
vanishment of entanglement implies that the state stay
in the disentangled separable state. It is in sharp con-

trast with dynamics of the GME for the three-qubit en-
tanglement. It is shown in Fig. 2(b) that GME never
vanishes. More interestingly, during the vanishment of
concurrence, the GME is also generally small, but still
finite. This is one advantage to use GME as a quantum
information resource.

IV. CONCLUSION

In this work, we analytically study the three-qubit
Dicke model in the ultra-strong coupling regime where
the RWA is invalid. For the large detuning ∆ ≪ ω,
the zeroth order approximation is suited for all coupling
strengths. The first-order approximation, also called
GRWA, can describe this model almost for the whole
parameter space
By the newly proposed GRWA scheme, we have also

calculated the dynamics of concurrence for the bipartite
entanglement and the GME for the multipartite entan-
glement. The quasi-periodic behavior of the dynamics of
the concurrence displays the sudden death of the entan-
glement, and revivals due to the interaction of the cavity.
It is distinguished from the GME dynamics, which ex-
hibits the non-zero minimum entanglement. It manifest
that there still contains some entanglement in multipar-
tite system even through there is no bipartite entangle-
ment. It is found that the GME is a strong entanglement
criteria to detect multiparticle entanglement. The dy-
namical behaviors for two kinds of entanglement may be
explored in the multi-qubits realized in the recent circuit
QED systems in the ultra-strong coupling.
In the end of the preparation of the present work, we

noted a recent paper by Mao et al [38] for the same
model. We should say that the approach used there is
the adiabatic approximation of the present work, i.e. the
zeroth order approximation.
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