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QUADRATIC CHABAUTY AND RATIONAL POINTS I:

p-ADIC HEIGHTS

JENNIFER S. BALAKRISHNAN AND NETAN DOGRA

Abstract. We describe how p-adic heights can be used to find rational points
on higher genus curves by making explicit some aspects of Kim’s nonabelian
Chabauty program. We give the first examples beyond the Chabauty-Coleman
method where nonabelian Chabauty can be used to precisely determine the
set of rational points of a curve defined over Q or a quadratic number field.

Contents

1. Introduction 1
2. The Chabauty-Kim method 5
3. Non-density of the localisation map 9
4. Mixed extensions and Nekovář’s p-adic height function 11
5. Selmer varieties and mixed extensions 14
6. Chabauty-Kim theory and p-adic heights 20
7. p-adic heights on hyperelliptic curves 26
8. Computing X(Kp)U 29
Acknowledgements 38
Appendix A. Applying the Mordell-Weil sieve, by J. Steffen Müller 38
References 40

1. Introduction

Let X be a smooth projective curve of genus g > 1 defined over a number field
K. By Faltings’ work on the Mordell conjecture, the set of K-rational points on
X , denoted X(K), is known to be finite [17]. However, the method of proof is not
constructive and does not produce the set X(K). Nevertheless, in certain cases, it
is possible to compute X(K), and perhaps the most widely applicable technique is
the p-adic method of Chabauty and Coleman.

The Chabauty-Coleman method imposes linear conditions on the Jacobian of X ,
and in an essential way, requires that the Mordell-Weil rank of the Jacobian is less
than g. Kim has proposed that one can lift this restriction on rank by replacing
the Jacobian of X with an object known as the Selmer variety [22]. In this paper,
we discuss new techniques for studying Selmer varieties, which we translate into
methods for determining the set X(K) in a number of new cases. In particular, we
study certain curves whose Jacobians have Mordell-Weil rank equal to g.
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2 JENNIFER S. BALAKRISHNAN AND NETAN DOGRA

To give some context for our results, let us begin by recalling the Chabauty-
Coleman method. Let J denote the Jacobian of X , let p be a prime of good
reduction, and let p be a prime above p. Let

logJ : J(Kp)→ H0(Xp,Ω
1)∗

be the p-adic logarithm map for the abelian variety J . Suppose that X(K) 6= ∅,
and for convenience, that we know one point b in X(K). If the Mordell-Weil rank
of J is less than g, the method of Chabauty [9] produces a finite set of p-adic points
on X , which we shall denote X(Kp)1. The set X(Kp)1 is a subset of X(Kp), and
further, X(K) is a subset of X(Kp)1. Following Coleman [11] the set X(Kp)1 may
be interpreted as the zeroes of a p-adic path integral

X(Kp)1 =

{
z ∈ X(Kp) :

∫ z

b

ω = 0

}

for some differential ω in H0(XKp
,Ω1

X). By further interpreting this p-adic path
integral as a p-adic power series and solving for its zeros, in practice, one can often
recover X(K). This is known as the Chabauty-Coleman method.

The Chabauty-Coleman method requires that the Mordell-Weil rank of the Ja-
cobian be less than the genus, which is somewhat restrictive. As such one would
like to have a refinement of the Jacobian which remembers more information about
the set X(K). The insight of Kim [21] is that rather than trying to generalise the
Jacobian of X , it is easier its Galois cohomological avatar: the Selmer group. In
[22], Kim defined a family of Selmer varieties Sel(Un) giving a decreasing sequence
of subsets [2]

X(Kp)1 ⊃ X(Kp)2 ⊃ . . .

of X(Kp)n, which can be computed in terms of iterated p-adic path integrals.
The sets X(Kp)n contain X(K), so by proving finiteness of X(Kp)n and explicitly
computing it, one can hope to recover X(K). Note that when K = Q, conjectures
of Bloch and Kato imply that X(Qp)n is finite for n sufficiently large [22].

However, at present the only documented example of a curve X where X(Kp)n
has been proved to give more information than X(Kp)1 is when K = Q and X is
a curve whose Jacobian is isogenous to a product of CM abelian varieties. In this
case, Coates and Kim prove in [10] that for n ≫ 0, X(Qp)n is finite. Even in this
case it is not clear how to actually compute X(Qp)n.

In this paper, we give techniques to handle some cases beyond the scope of
classical Chabauty, by computing finite sets containing X(Kp)2. The methods
used are a generalisation of those employed to study integral points on hyperelliptic
curves using p-adic heights [6], combined with new methods for relating unipotent
path torsors to p-adic heights [16].

In [6], one works with a hyperelliptic curve X/Q of genus g with a model

(1) y2 = f(x) = x2g+1 + a2gx
2g + · · ·+ a0, ai ∈ Z.

Let T0 denote the set of primes of bad reduction for this model and let p be a prime
of good reduction. Suppose that the polynomial f does not reduce to a square in
(Z/q)[x] for any prime q. Let Y = Spec(Z[x, y]/(y2 − f(x))), so that Y (Z) denotes
the set of integral solutions to (1). Using p-adic heights, one can compute Y (Z):
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Theorem 1 (“Quadratic Chabauty”, [6]). Let Ω ⊂ Qp be the explicitly computable,
finite set of values taken by the sum of the local heights

−
∑

v∈T0

hv(zv −∞),

for (zv) in
∏

v∈T0
Y (Zv). Suppose that the Mordell-Weil rank of J is g. Then there

is a symmetric bilinear map

B : H0(XQp
,Ω1)∗ ×H0(XQp

,Ω1)∗ → Qp

such that Y (Z) ⊂ Y (Zp) is contained inside the finite set of solutions to

hp(z −∞) +B(logJ(z −∞), logJ(z −∞)) ∈ Ω.

In the present work, we give a generalisation of this theorem which also allows
us to study rational points in some special cases where the Mordell-Weil rank is
not less than the genus. To state our results more precisely, we fix some notation.
Let K be Q or an imaginary quadratic field, and let X/K be a smooth projective
curve of genus g > 1 with a K-rational point b. Let T0 be the set of primes of
bad reduction for X , let p be a prime of Q such that {v|p} ∩ T0 is empty, and let
T = T0 ∪ {v|p}. We show that X(Kp)2 is finite whenever the rank of J(K) minus
the rank of the Néron-Severi group of J , denoted NS(J), is less than g − 1 (see
Lemma 3).

In particular, the main example we consider is the situation when the rank of
the Jacobian of X is g and the rank of NS(J) is greater than 1 (for a result applying
when the rank is greater than the genus, see Proposition 2). We further assume
that the map

J(K)⊗Z Qp
≃−→ J(Kp)⊗Zp

Qp

is an isomorphism. Let X := X ×K K. By our assumptions on the Néron-Severi
group, there is a cycle Z in X ×X whose image in ∧2H1

ét(X) under

Qp(−1)→ H2
ét(X ×X,Qp)→ H1

ét(X,Qp)⊗H1
ét(X,Qp)→ ∧2H1

ét(X,Qp)

is nonzero (where the maps are, from left to right, the cycle class, the Kunneth
projector, and the antisymmetric projection), and such that the intersection number
of Z with ∆ − X × P1 − P2 × X is zero, where P1 and P2 are any points on X .
For distinct points b and z in X intersecting ∆−1

X Z properly, we associate a cycle
D(b, z) to the triple (b, z, Z) (see Definition 11).

Theorem 2. Let X/K be a smooth projective curve of genus g > 1. Let b, z,D(b, z)
be as above. Let X ′ := X − i−1

∆ |Z|.
(i): For each prime v ∤ p, hv(z,D(b, z)) takes only finitely many values for z in
X ′(Qv). If v is a prime of potential good reduction, then hv(z,D(b, z)) is identically
zero.
(ii): Suppose the rank of J(K) is g and the rank of NS(J) is greater than 1. Let
Ω ⊂ Qp be the finite set of values taken by the sum of local heights

−
∑

v∤p

hv(zv, D(b, zv))

for (zv) in
∏

v∤p X
′(Kv). Then there is a symmetric bilinear map

B : H0(XKp
,Ω1)∗ ×H0(XKp

,Ω1)∗ → Qp
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such that the set of z in X ′(Kp) for which

hp(z,D(b, z))−B(logJ(z − b), D(b, z)) ∈ Ω

is finite and contains X(Kp)2 ∩X ′(Kp).

To produce an algorithm using Theorem 2 to find a finite set containing X(Kp)2,
one needs to explicitly compute the cycle Z and the local heights hv. In this paper
we focus on the simplest such example, which we describe below.

Remark 1. There is also an affine version of this result (describing integral points
of X under weakened assumptions on the Néron-Severi group of J), and in §7 we
show that Theorem 1 can be recovered from this.

Remark 2. It should perhaps be emphasised that the link with p-adic heights is not
needed to prove finiteness of X(Kp)2. Indeed, the proof of finiteness of X(Kp)2,
given our assumptions on the ranks of the Mordell-Weil and Néron-Severi groups of
the Jacobian, is very short (see Lemma 3). Furthermore the method of producing
algebraic functions on the Albanese variety which contain the image of the Selmer
variety does not depend on the link with p-adic heights, although it is inspired by
Nekovář’s construction of the p-adic height pairing.

Let X/K be a genus 2 bielliptic curve with affine equation

y2 = x6 + ax4 + bx2 + c,

with a, b, c ∈ K. The problem of determining the rational points of X was previ-
ously considered by Flynn and Wetherell [18]. Let E1 and E2 be the elliptic curves
over K defined by the equations

E1 : y2 = x3 + ax2 + bx+ c E2 : y2 = x3 + bx2 + acx+ c2

and let f1 and f2 denote the corresponding maps

f1 : X −→ E1 f2 : X −→ E2

(x, y) 7→ (x2, y) (x, y) 7→ (cx−2, cyx−3).

Let hE1
and hE2

denote the height pairings on E1 and E2 corresponding to an
idele class character

χ : Gab
K → Qp

and an isotropic splitting of the Hodge filtration. In the case when K = Q, we
take p = (p) to be a prime of good reduction. In the case when K is an imaginary
quadratic extension, we take p to be a prime of Q which splits as pp in K, and take
χ to be a character which is trivial on O×

p
.

Theorem 3. Let X/K be a genus 2 bielliptic curve

y2 = x6 + ax4 + bx2 + c.

(i): For all v not above p,

hE1,v(f1(z))− hE2,v(f2(z))− 2χv(x(z))

takes only finitely many values, and for almost all v it is identically zero.
(ii): Let Ω denote the explicitly computable, finite set of values taken by

−
∑

v∤p

(hE1,v(f1(zv))− hE2,v(f2(zv))− 2χv(x(zv)))
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for (zv) in
∏

v∤p X(Kv). Suppose E1 and E2 each have Mordell-Weil rank 1, and

let Pi ∈ Ei(K) be points of infinite order. Let αi =
hEi

(Pi)

[K:Q] logEi
(Pi)2

. Then X(K) is

contained in the finite set of z in X(Kp) satisfying

hE1,p(f1(z))− hE2,p(f2(z))− 2χp(x(z)) − α1 logE1
(f1(z))

2 + α2 logE2
(f2(z))

2 ∈ Ω.

We show how Theorem 3 can be used in conjunction with other techniques to
determine the set X(K). In our first example, X is a hyperelliptic curve with affine
equation y2 = x6 − 2x4 − x2 + 1 over K = Q. Applying the theorem with p = 3
produces the finite set X(Q3)U , including a few “extra” points which do not appear
to be in X(Q). In fact, an argument invoking the 3-adic formal group of an under-
lying elliptic curve can eliminate these points from consideration, thereby finding
for us the set X(Q). In our second example, X = X0(37) and K = Q(i). Using
Theorem 3 for one prime p produces a number of extra p-adic points. Nevertheless,
applying the theorem for a suitably chosen collection of primes and then carrying
out the Mordell-Weil sieve (as done by J. Steffen Müller and described in Appendix
A) allows one to find X(K).

The organisation of the paper is as follows. In Section 2 we review the Chabauty-
Kim method. In Section 3 we describe the particular curves and quotients of funda-
mental groups we consider and explain why they give new instances of non-density
of the localisation map. In Section 4 we recall the notion of mixed extensions and
Nekovář’s construction of p-adic height functions on such objects. In Section 5,
we explain how to replace G-equivariant U -torsors with mixed extensions in the
category of G-representations and use this to construct local height functions on
the Selmer variety, and hence to give equations for the image of the localisation
map. Section 6 gives an algebro-geometric characterisation of the mixed extensions
constructed out of path torsors, and hence relates height functions on the Selmer
variety to Nekovář’s height pairing on algebraic cycles. In Section 7, we review some
properties of Coleman-Gross height pairings on hyperelliptic curves and use this to
relate our results to the results in [6]. We conclude in Section 8 by translating these
techniques into a quadratic Chabauty method for finding rational points on certain
bielliptic curves and present a few examples. Appendix A, by J. Steffen Müller,
discusses how the Mordell-Weil sieve can be used in conjunction with quadratic
Chabauty to find rational points and describes the sieving carried out to recover
X0(37)(Q(i)).

2. The Chabauty-Kim method

We begin by recasting the Chabauty-Coleman method in a motivic framework
and then use this to describe Kim’s generalisation. Nothing in the section is new,
although as far as we are aware, the statement of Lemma 1 is not in the literature.
In this section, X is a smooth projective curve of genus g over a number field K.
By a curve over a field K we shall always mean a separated, geometrically integral
scheme over K of dimension 1.

2.1. The Chabauty-Coleman method. Let T0 denote the set of primes of bad
reduction for X , let p be a prime of Q which splits completely in K and is coprime
to T0. Let T = T0 ∪ {v|p}, and fix a prime p lying above p. Let GT denote the
maximal quotient of the Galois group of K unramified outside T . Unless otherwise
indicated when we write G we will mean either GT or Gv for v a prime of K.
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Let V := H1
ét(X,Qp(1)) and define H1

f (GT , V ) to be the subspace of the space
of continuous cohomology classes in H1(GT , V ) which are crystalline at all primes
above p. Let

κ : Div0(X)⊗Qp → H1(GT , V )

be the map sending a divisor
∑

µizi to the Kummer class of [
∑

µizi] ∈ J(K)⊗Q
in H1(GT , TpJ)⊗Qp = H1(GT , V ). Then κ lands in the subspace H1

f (GT , V ), and
there is a commutative diagram

X(K) H1
f (GT , V )

X(Kp) H1
f (Gp, V ) DdR(V )/F 0

κ

locp
κp ≃

where the top map sends z to κ(z − b), and the bottom right isomorphism is
via p-adic Hodge theory. The composite map j : X(Kp) → DdR(V )/F 0 may be
described, via the isomorphism

DdR(V )/F 0 ≃ H1
dR(X)∗/F 0 ≃ H0(X,Ω1)∗,

as the functional sending a global differential η to the Coleman integral
∫ z

b
η. Since

the Mordell-Weil rank of J is less than g, there is a differential ω in H0(X,Ω1)∗

which annihilates the image of J(K) ⊗ Qp. Hence X(K) ⊂ X(Kp) lies in the set
of points for which

∫ z

b
ω = 0.

2.1.1. Refinements over number fields. In [31], Siksek explains a refinement of the
classical Chabauty-Coleman method over number fields. As explained in loc. cit.,
heuristically one might expect that if X is a curve of genus g defined over a number
field K of degree d over Q, then the Chabauty-Coleman method works whenever
the rank of J(K) is less than or equal to d(g − 1) (as the Weil restriction of X
is now a g-dimensional subscheme of the Weil restriction of its Jacobian). In [31,
Theorem 2] a precise technical condition on linear independence of p-adic integrals
is given which is sufficient to ensure that the Chabauty-Coleman method produces
a finite set of points in

∏
p|pX(Kp).

2.2. The Chabauty-Kim method. We now explain how this motivic approach
generalises. Given a rational point b in X , let π

ét,Qp

1 (X, b) denote the unipotent
Qp-étale fundamental group of X with basepoint b [14]. Recall that this is equal to
the Qp-Malcev completion of the usual étale fundamental group. In particular, as a
pro-algebraic group (i.e. forgetting about the Galois action) it is isomorphic to the
quotient of a free pro-unipotent group on 2g generators by one quadratic relation.
Let U (0) := π

ét,Qp

1 (X, b), and for i > 0 define U (n) := [U (0), U (n−1)]. Define

Un = Un(b) = π
ét,Qp

1 (X, b)/U (n),

and define
U [n] := Ker(Un → Un−1).

We will mostly be interested in the case when n = 2. In this case, using the
standard presentation of the topological fundamental group of a surface of genus g
there is an exact sequence

(2) 0→ H2
ét(X,Qp)

∗ ∪∗

−→ ∧2V → U [2]→ 0.
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Define
Pn(b, z) := πét

1 (X ; b, z)×πét
1
(X,b) Un(b).

Then the assignment z 7→ [Pn(b, z)] defines a map

X(K)→ H1(GT , Un(b)).

One of the fundamental insights of the theory of Selmer varieties is that the co-
homology spaces H1(G,U(b)) carry a much richer structure than merely that of a
pointed set, and that this extra structure has Diophantine applications. For the
following theorem we take G to be either Gv or GT :

Theorem 4 (Kim [21]). Let U be a finite-dimensional unipotent group over Qp,
admitting a continuous action of G. Suppose H0(G,U i/U i+1)(Qp) = 0 for all i.
Then the functor

R 7→ H1(G,U(R))

is represented by an affine algebraic variety over Qp, such that the six-term exact
sequence in nonabelian cohomology is a diagram of schemes over Qp.

In this paper we will never distinguish between a cohomology variety and its
Qp-points. We now take U = U(b) to be a finite-dimensional GT -stable quotient of
Un(b) whose abelianisation equals V . Note that since the abelianisation of U(Qp)
has weight −1, it satisfies the hypotheses of the theorem, and hence H1(G,U) has
the structure of the Qp-points of an algebraic variety over Q. For z a point of X ,
we denote by P (z) = P (b, z) the push-out of Pn(b, z) by Un → U .

2.3. Local conditions. To go from the cohomology varieties H1(GT , U) to Selmer
varieties, one must add local conditions. For each v ∤ p, there is a local unipotent
Kummer map

jv : X(Kv)→ H1(Gv, U)

z 7→ [P (z)]

which is trivial when v is a prime of potential good reduction and has finite image
in general [23]. For v|p, by the work of Olsson [25], the assignment x 7→ [P (x)]
lands inside the subspace of crystalline torsors H1

f (Gp, U). We define

jp : X(Kp)→ H1
f (Gp, U).

There is then a commutative diagram

(3)

X(K) H1(GT , U)

∏
v∈T X(Kv)

∏
v∈T H1(Gv, U).

∏
locv

It is also shown in [21] that the localisation morphisms are morphisms of varieties,
and the set of crystalline cohomology classes has the structure of the Qp-points of
a variety. At any prime v ∤ p, the image of X(Kv) in H1(Gv, U(x)) is finite [23].
We would like to understand the following subscheme of H1(GT , U(x)):

Definition 1. The Selmer variety of U , denoted Sel(U), is the reduced scheme
associated to the subscheme of H1(GT , U) consisting of cohomology classes c sat-
isfying the following conditions:

(1) locv(c) comes from an element of X(Kv) for all v prime to p,
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(2) locv(c) is crystalline for all v above p,
(3) the projection of c to H1(GT , V ) lies in the image of Jac(X)(K)⊗Qp.

Remark 3. We have included the third condition to avoid any assumptions on the
finiteness of the Shafarevich-Tate group of the Jacobian of X in the statement of our
results. Consequently, our notation differs slightly from other work on Chabauty-
Kim theory.

Remark 4. In the present work, we are only interested in Qp-points; the only
relevance of the scheme structure is to ensure that certain maps are algebraic.

We shall denote by H1
OK

(GT , U) ⊂ Sel(U) the subvariety of cohomology classes
which are trivial at all v in T0. Hence H1

OK
(GT , U) consists of cohomology classes

which are trivial at all places prime to p, crystalline at primes above p, and whose
image in H1(GT , V ) lies in the image of J(K)⊗Qp.

2.4. Applications to Diophantine geometry. Let p be a prime above p. We
have a refinement of the commutative diagram (3):

X(K) Sel(U(b))

X(Kp) H1
f (Gp, U(b)).

j

jp
locp

The map jp is not algebraic, but is locally analytic, i.e., on each residue disk in
X(Kp), we have that jp is given by a p-adic power series. Furthermore by [22], jp has
Zariski dense image. Hence if locp is not dominant, then the set j−1

p (locp(Sel(U)))
is finite.

Definition 2. Define the set X(Kp)U ⊂ X(Kp) to be j−1
p (locp(Sel(U))). When

U = Un, we write X(Kp)Un
as X(Kp)n.

Remark 5. The sets X(Kp)n are contained in the set of points which are weakly
global of level n, defined in [2]. If the p-primary part of the Shafarevich-Tate group
of the Jacobian of X is finite, then the two sets are equal.

2.5. Properties of Sel(U). In this subsection we recall some properties of the
varieties Sel(U). We make repeated use of the twisting construction in nonabelian
cohomology, as in [30, I.5.3]. For topological groups U and W , equipped with a
continuous homomorphism U → Aut(W ), and a continuous U -torsor P , we shall
denote by W (P ) the group obtained by twisting W by the U -torsor P :

W (P ) := W ×U P.

Given a group U with an action of G and a continuous G-equivariant U -torsor P ,
we may form a group U (P ) which is the twist of U by the U -torsor P , where U acts
on itself by conjugation. There is a bijection

H1(G,U)→ H1(G,U (P ))

which sends G-equivariant U -torsors to G-equivariant U (P )-torsors. We will make
use of the following properties of the twisting constructions:
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• If U →W is a homomorphism of G-groups, then the diagram

H1(G,U) H1(G,U (P ))

H1(G,W ) H1(G,W (Q))

commutes, where P is a G-equivariant U -torsor and Q is the W -torsor
P ×U W .
• If H is a subgroup of G, U is a G-group and P is a G-equivariant U -torsor,

then the following diagram commutes:

H1(G,U) H1(G,U (P ))

H1(H,U) H1(H,U (P )).

In our cases of interest these morphisms will actually be morphisms of schemes, by
functoriality. It follows from the two commutative diagrams above that if P is a
crystalline U -torsor then the map

H1(Gp, U)→ H1(Gp, U
(P ))

sends crystalline U -torsors to crystalline U (P )-torsors, and that if P is a GT -
equivariant U -torsor whose image in H1(GT , V ) lies in J(K) ⊗ Qp, then twisting
by P sends the preimage of J(Q)⊗Qp in H1(G,U) to the preimage of J(Q)⊗Qp

in H1(G,U (P )). This is summarised in the following lemma.

Lemma 1. Via the twisting construction, Sel(U) is isomorphic to N disjoint copies
of H1

OK
(GT , U), where N is the size of the image of Sel(U) in

∏

v∈T0

jv(X(Kv)) ⊂
∏

v∈T0

H1(Gv, U).

3. Non-density of the localisation map

For the rest of this paper we take K to be Q or an imaginary quadratic extension
of Q. Unless otherwise stated, we will henceforth take U to be a quotient of U2

surjecting onto V . From the standard presentation of the topological fundamental
group of a smooth surface of genus g in terms of 2g generators and 1 quadratic
relation, the natural map

∧2V → U [2]

gives an exact sequence

(4) 0→ H2
ét(X)∗

∪∗

−→ ∧2V → U [2]→ 0.

Hence the quotients U intermediate between U2 and V correspond to Galois sub-
representations of ∧2V/H2

ét(X)∗. Note that for any such choice of U , there is an
inclusion X(Kp)2 ⊂ X(Kp)U . In this paper we restrict attention to the case where
[U,U ] is isomorphic to Qp(1)

n.
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3.1. Finiteness results. The reason for considering quotients of the fundamental
group which are extensions of V by Qp(1)

n is that

H1
f (GT ,Qp(1)) ≃ O×

K ⊗Qp = 0,

and
H1

f (Gp,Qp(1)) ≃ O×
p ⊗Qp ≃ Qp,

hence dimH1
f (GT ,Qp(1)) = 0 and dimH1

f (Gp,Qp(1)) = 1.

Remark 6. This is the only place where our restrictions on K are essential.

In many situations the Galois cohomology computation above is enough to prove
non-density of the localisation map for Sel(U).

Lemma 2. Let U be a quotient of U2 which is an extension of V by Qp(1)
n. Let

p be a prime of Q such that X has good reduction at all primes above p, and let p
be a prime above p.
(i): The dimension of Sel(U) is bounded by rkJ(K).
(ii): The dimension of H1

f (Gp, U) is equal to g + n.

Proof. (i): Consider the commutative diagram with exact rows

H1(GT , [U,U ]) H1(GT , U) H1(GT , V )

∏
v∈T H1(Gv, [U,U ])

∏
v∈T H1(Gv, U)

∏
v∈T H1(Gv, V ).

As explained in §2.5, to prove non-density of the localisation map, we may assume
that the local conditions at primes away from p are trivial. Hence we reduce to
proving non-density of the map

H1
OK

(GT , U)→ H1
f (Gp, U).

Via the exact sequence of pointed varieties

H1
f (GT , [U,U ])→ H1

f (GT , U)→ H1
f (GT , V )

the dimension of H1
OK

(GT , U) is bounded by rkJ(K).
(ii): The computation of the dimension of H1

f (Gp, U) follows [22, §2]. By p-adic
Hodge theory we have an isomorphism

H1
f (Gp, U) ≃ DdR(U)/F 0,

and this gives a short exact sequence

1→ DdR([U,U ])/F 0 → H1
f (Gp, U)→ DdR(V )/F 0 → 1.

Since [U,U ] ≃ Qp(1)
n, the dimension of H1

f (Gp, U) is g + n. �

Now we consider the problem of finding such a quotient of U2. Note that

HomGT
(Qp(1),∧2V ) ≃ HomGT

(Qp, H
2
ét(J,Qp(1)))

and hence the rank of this vector space is at least the rank of the Néron-Severi
group of J . (Furthermore this is an equality, since H2 of an abelian variety satisfies
the Tate conjecture [17].) On the other hand by §2, the representation U [2] is
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isomorphic to the cokernel of Qp(1)
∪∗

−→ ∧2V . Hence from Lemma 2 one may
deduce the following lemma.

Lemma 3. Suppose X is a curve of genus g, such that rkJ(K) < g+rkNS(J)−1.
Then X(Kp)U is finite.

The remainder of this article is concerned with making Lemma 3 more explicit.

4. Mixed extensions and Nekovář’s p-adic height function

In this section we introduce some notation for mixed extensions in an abelian
category, discuss the relationship between mixed extensions and cohomology with
values in unipotent groups, and then review Nekovář’s p-adic height function on
mixed extensions.

4.1. Mixed extensions. Let A be an abelian category. Let W0, . . . ,Wn be objects
of A, such that for all i < j

HomA(Wi,Wj) = 0.

Definition 3. We define a mixed extension with graded pieces W0, . . . ,Wn to be a
tuple (M, (Mi, αi)), where M is an object of A,

M = M0 ←֓ M1 ←֓ M2 ←֓ . . . ←֓ Mn+1 = 0

is a filtration in A and α0, . . . , αn are isomorphisms

αi : Mi/Mi+1 ≃Wi.

A mixed extension (M, (Mi, αi)) as above will sometimes be denoted simply by
M .

Definition 4. Let (M, (Mi, αi)) and (N, (Ni, βi)) be mixed extensions with graded
pieces W0, . . . ,Wn. A morphism of mixed extensions is a sequence of commuting
isomorphisms

ri : Mi
≃−→ Ni

such that if ri denotes the induced morphism Mi−1/Mi → Ni−1/Ni, then for all i,
βi ◦ ri = αi.

We denote by C(A;W0, . . . ,Wn) the category of mixed extensions with graded
pieces W0, . . . ,Wn, and by C(A;W0, . . . ,Wn) the set of isomorphism classes. Note
that our assumption on HomA(Wi,Wj) implies that an object of C(A;W0, . . . ,Wn)
has no nontrivial automorphisms. For any 0 ≤ i < j ≤ n we have a tautological
functor

ϕi,j : C(A;W0, . . . ,Wn)→ C(A;Wi, . . . ,Wj)

which induces a map

ϕi,j : C(A;W0, . . . ,Wn)→ C(A;Wi, . . . ,Wj).

Remark 7. The reason for the term “mixed extension” is as follows: if n = 2 and
M is an object in C(A;W0,W1,W2), then in the notation of [19] M is a mixed
extension of ϕ0,1(M) and ϕ1,2(M).
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In the case n = 1, we have an isomorphism

C(A;W0,W1) ≃ Ext1(W0,W1)

and in particular we can add mixed extensions with two graded pieces. For general
n, if M and N are objects in C(A;W0, . . . ,Wn) such that ϕ1,n−1(M) ≃ ϕ1,n−1(N),
then the Baer sum of M and N , denoted M +1,n−1 N , will again be an object in
C(A;W0, . . . ,Wn). Similarly, if ϕ2,n(M) ≃ ϕ2,n(N), then we can form M +2,n N .

Definition 5. Let A be an abelian group. A function

α : C(A;W0, . . . ,Wn)→ A

is said to be bi-additive if, whenever ϕ1,n−1(M) = ϕ1,n−1(N), we have

α(M +1,n−1 N) = α(M) + α(N),

and whenever ϕ2,n(M) = ϕ2,n(N), we have

α(M +2,n N) = α(M) + α(N).

4.2. Relation to nonabelian cohomology. Now suppose that A = RepQp
(G)

is the category of continuous p-adic representations of a profinite group G. Let
W0, . . . ,Wn be objects in RepQp

(G).

Definition 6. Define U(W0, . . . ,Wn) to be the subset of ⊕0≤i,j≤nW
∗
i ⊗Wj con-

sisting of elements whose W ∗
i ⊗Wj component is zero if i > j and the identity

endomorphism if i = j.

Note that U(W0, . . . ,Wn) is a unipotent group with a compatible action of G.

Definition 7. Let (M, (Mi, αi)) be an object in C(RepQp
(G);W0, . . . ,Wn). Define

Φ(M) to be the set of isomorphisms of vector spaces

ρ : M
≃−→W0 ⊕ . . .⊕Wn

such that ρ(Mi) = Wi ⊕ . . .⊕Wn and the induced quotient homomorphism

ρi : Mi/Mi+1 →Wi

is equal to αi.

Φ(M) has the structure of a G-equivariant U(W0, . . . ,Wn) torsor, and this in-
duces a map

Φ : C(RepQp
(G);W0, . . . ,Wn)→ H1(G,U(W0, . . . ,Wn)).

Lemma 4. Φ is a bijection.

Proof. To construct an inverse to Φ, define Φ′ to be the functor from the category of
equivalence classes of G-equivariant U -torsors to C(RepQp

(G);W0, . . . ,Wn) sending
a torsor P to the twist of W0 ⊕ . . .⊕Wn by P . �

Under this correspondence, when G = Gp, the subcategory of crystalline Gp

representations is sent to H1
f (Gp, U(W0, . . . ,Wn)), and similarly for semistable rep-

resentations. Define

H1
st(GT , U(W0, . . . ,Wn)) ⊂ H1(GT , U(W0, . . . ,Wn))

to be the subvariety of U -torsors which are semistable at all primes above p (with no
conditions at the primes in T0). We will henceforth use C(RepQp

(G);W0, . . . ,Wn)

and H1(G,U(W0, . . . ,Wn)) interchangeably.
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4.3. Nekovář’s p-adic height pairing on mixed extensions. In this section we
recall the construction of Nekovář’s p-adic height pairing [24]. We will only work in
the context of a smooth projective curve over K and p a prime of good reduction.
Our categories will be G representations (for G = GT or Gv) and our objects will
be W0 = Qp,W1 = V ,W2 = Qp(1). The variety C(RepQp

(G);Qp, V,Qp(1)) has a
natural involution defined by

M 7→M∗(1).

We say a function
α : C(RepQp

(G);Qp, V,Qp(1))→ Qp

is symmetric if α(M) = α(M∗(1)). Nekovář’s p-adic height pairing is defined via a
family of local height functions

hv : H1(Gv , U(Qp, V,Qp(1)))→ Qp,

for v prime to p, and

hv : H1
st(Gv, U(Qp, V,Qp(1)))→ Qp

for v above p, which are continuous, bi-additive and symmetric. The input for
Nekovář’s construction is a class χ in H1(GT ,Qp) and a splitting

(5) s : H1
dR(XKv

,Qp)→ F 1H1
dR(XKv

,Qp)

of the Hodge filtration of H1
dR(XKv

) at every prime v above p.

4.3.1. v prime to p. For v not above p, the construction of local height pairings is
immediate given the weight monodromy conjecture for curves [27], which implies
that

H0(Gv, V ) = H1(Gv, V ) = 0,

and hence by the six-term exact sequence in nonabelian cohomology,

H1(Gv, U(Qp, V,Qp(1))) ≃ H1(Gv,Qp(1)).

This gives a function

. ∪ χv : H1(Gv, U(Qp, V,Qp(1)))→ Qp

via the isomorphism H2(Gv,Qp(1)) ≃ Qp coming from local class field theory.

4.3.2. v above p. For v above p, the construction of local height pairings uses p-
adic Hodge theory. As we will only be interested in the crystalline case, we restrict
attention to describing Nekovář’s functional on crystalline mixed extensions

hv : H1
f (Gv , U(Qp, V,Qp(1)))→ Qp.

The construction is analogous to the case when v was prime to p: given a mixed
extension M in the category of filtered φ-modules, with graded pieces Qp, Dcr(V )
and Dcr(1), one constructs an extension c of Qp by Dcr(1), identifies this as an
element c′ of H1

f (Gp,Qp(1)), and then defines

h(M) := c′ ∪ χv.

We now sketch the construction of c. Note that (in the category of admissible
filtered φ-modules) Ext1(Qp, Dcr(1)) ≃ DdR(1), so one may equivalently think of c
as an element of DdR(Qp(1)). Let (M, (Mi, αi)) be a mixed extension with graded
pieces Qp, Dcr(V ) and Dcr(Qp(1)). The extension class of M in Ext1(Qp,M1)
defines an element of M1/F

0. Using the splitting s specified in (5), one lifts this to
an element of M1. For weight reasons there is a canonical φ-equivariant splitting of
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the inclusion M2 →֒M1, and hence via α2 one obtains an element c of DdR(Qp(1)),
as required.

In the language of [22] we may define the local height of a crystalline mixed
extension as follows. There is an isomorphism [22, §2]:

H1
f (Gv, U(Qp, V,Qp(1))) ≃ DdR(U(Qp, V,Qp(1)))/F

0.

As for G-representations, we define a unipotent group U(Qp, Dcr(V ), Dcr(Qp(1)))
with filtration and φ-action and a filtered unipotent group U(Qp, DdR(V ), DdR(Qp(1))).
These are then isomorphic to Dcr(U(Qp, V,Qp(1))) and DdR(U(Qp, V,Qp(1))) re-
spectively. The quotient U(Qp, DdR(V ), DdR(Qp(1)))/F

0 parametrises mixed ex-
tensions with graded pieces Qp, Dcr(V ) and Dcr(Qp(1)) in the category of filtered
φ-modules. Arguing as above, a splitting of the Hodge filtration determines an
algebraic function

U(Qp, DdR(V ), DdR(Qp(1)))/F
0 → DdR(Qp(1)).

In particular we obtain the following lemma.

Lemma 5. The local height function

hv : H1
f (Gv, U(Qp, V,Qp(1)))→ Qp

is algebraic.

4.3.3. Global heights. We define

h : H1
st(GT , U(Qp, V,Qp(1)))→ Qp

to be the composite of

H
1
st(GT , U(Qp, V,Qp(1)))

∏
v∈T locv−−−−−−−→

∏

v∈T0

H
1(Gv, U(Qp, V,Qp(1)))×

∏

v|p

H
1
st(Gv , U(Qp, V,Qp(1)))

with
∏

v∈T0

H1(Gv, U(Qp, V,Qp(1))) ×
∏

v|p
H1

st(Gv, U(Qp, V,Qp(1)))
∏

hv−−−→ Qp.

By Poitou-Tate duality, h factors through

ϕ0,1 × ϕ1,2 : H1
st(GT , U(Qp, V,Qp(1)))→ H1

f (GT , V )×H1
f (GT , V ),

using the fact that H1
st(GT , V ) ≃ H1

f (GT , V ). By additivity, symmetry and conti-
nuity, it hence factors through

H1
st(GT , U(Qp, V,Qp(1)))→ Sym2 H1

f (GT , V )

M 7→ ϕ0,1(M)(ϕ1,2(M)∗(1)).

5. Selmer varieties and mixed extensions

We now return to Selmer varieties. Here U will be an extension of V by Qp(1).
To obtain equations for X(Kp)2, we use Nekovář’s construction to define a map

Sel(U)→ Qp.

A natural analogue of Nekovář’s construction is to start with the input of a coho-
mology class χ in H1(GT ,Qp), and to define, at all primes v in T0, an algebraic
function

H1
∗ (Gv, U)→ Qp

which, restricted to H1(Gv,Qp(1)), is simply the cup product with χ.
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Given a splitting of the Hodge filtration, one may certainly do this, but from
the point of view of finding equations for Selmer varieties, it is better to have a
construction with some kind of linearity properties analogous to those of the global
height pairing. For this reason, in this section we define a way to embed Sel(U)
into H1

st(GT , U(Qp, V,Qp(1)) via twisting. We then apply Nekovář’s construction,
giving (via composition) local functions Sel(U) → Qp. Note that if Qp(1) is re-
placed by a different Galois representation W of motivic weight −2 arising in U [2],
one may mimic Nekovář’s construction with the cohomology class χ replaced by
a cohomology class in H1(GT ,W

∗(1)) which is nontrivial and noncrystalline at p

(assuming one can prove such a class exists). This will be pursued in future work.

5.1. Twisting the enveloping algebra. To construct a mixed extension associ-
ated to an element of H1(G,U), we define a G-representation with an equivariant
U -module structure, which will be denoted A(b), and then send a U -torsor P to
the twist of A(b) by P .

A(b) will be defined to be a certain finite-dimensional quotient of the universal
enveloping algebra of πét,Qp

1 (X, b). By the theory of Malcev completion, this has a
very concrete description, which we now recall. Let I denote the kernel of

Qp[π
ét
1 (X, x)]→ Qp
∑

λγγ 7→
∑

λγ .

Since πét
1 (X, x) is isomorphic to the profinite completion of a free group F2g

on 2g generators modulo one relation lying in [F2g, F2g], we have that A∞(x) is
isomorphic to the completion of an algebra obtained by quotienting a free associative
Qp-algebra R2g on 2g generators by a 2-sided ideal generated by an element e ∈ I2.

Definition 8. Let An(b) = Qp[π
ét
1 (X, x)]/In+1.

An(b) is equipped with the structure of a Galois-equivariant πét
1 (X, x)-module,

since it is a quotient of the group algebra by a Galois stable ideal. Hence for any
Galois-equivariant πét

1 (X, x) torsor P we can twist An(b) by P to get a Galois rep-
resentation An(b)

(P ). When P = πét
1 (X;x, y), An(b)

(P ) may be identified with the
Galois-equivariant An(b)-module An(b, z) obtained by tensoring Qp[π

ét
1 (X ;x, y)],

thought of as a Qp[π
ét
1 (X, x)]-module, with An(b). For this reason we refer to it

An(b, z) as a path module. It follows from the theory of Malcev completion that the
action of πét

1 (X, b) on An(b) factors through the homomorphism

πét
1 (X, b)→ Un(b).

Furthermore, An(b) is a quotient of the enveloping algebra of Un(b), and a faithful
representation of Un(b). More generally we can view the Qp-vector space generated
by the torsor of paths from b to z, denoted Qp[π

ét
1 (X; b, z)], as a G-equivariant free

rank 1 module over Qp[π
ét
1 (X, b)]. Hence we may make the following definition.

Definition 9. Let An(b, z) be the G-equivariant free rank 1 An(b) module

Qp[π
ét
1 (X; b, z)]×Qp[πét

1
(X;b,z)] An(b).

Note that An(b, z) is naturally equipped with a G-stable filtration

An(b, z) ⊃ IAn(b, z) ⊃ . . . ⊃ In+1An(b, z) = 0.
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coming from the I-adic filtration on Qp[π
ét
1 (X ; b, z)], and that the action of An(b)

respects this action. We define

A[k] := IkAn(b)/I
k+1An(b).

A second viewpoint is that An(b, z) is the twist of An(b) by [πét
1 (X ; b, z)] via the

left action of πét
1 (X, b) on An(b). There is also a more general construction: for all

k, IkAn(b) admits compatible actions of Un(b) and G. Hence for any G-equivariant
Un(b) torsor P we may construct the twist An(b)

(P ) of An(b) by P . In the case

when P is πét
1 (X; b, z)×πét

1
(X,b)Un(b), we have that A(P )

n is just An(b, z). The action

of Un on Ik/Ik+1 is trivial, hence for any such P we have an isomorphism

IkAn(b)
(P )/Ik+1An(b)

(P ) ≃ IkAn(b)/I
k+1An(b).

Hence we obtain a well-defined map

[ . ] : H1(G,Un)→ H1(G,U(A[0], A[1], . . . , A[n]))

P 7→ [An(b)
(P )].

An equivalent definition of this map would be to define Aut(An(b)) to denote the
group of unipotent automorphisms of An(b) as a filtered vector space (i.e. automor-
phisms of An(b) which respect the filtration and are the identity on the associated
graded). Then there is a group homomorphism

Un(b)→ Aut(An(b))

and an induced map on cohomology

H1(G,Un)→ H1(G,Aut(An(b))).

There is also an isomorphism

H1(G,Aut(An(b)))→ H1(G,U(Qp, A[1], . . . , A[n]))

coming from the G-equivariant (Aut(An(b)), U(Qp, A[1], . . . , A[n]))-bitorsor of iso-
morphisms of filtered vector spaces

An(b)
≃−→ ⊕n

k=0A[k],

(see [30], Proposition 35). The map [ . ] defined above is simply the composite.
We now focus on the depth 2 case. There is a short exact sequence

0→ A[2]→ A2(b)→ A1(b)→ 0

compatible with the action of G and U . A[2] is canonically isomorphic to [U2, U2]⊕
Sym2 V .

Definition 10. Suppose the rank of NS(J) is bigger than 1. Let

ξ : A[2]→ Qp(1)

be a surjection whose restriction to [U2, U2] is nonzero and factors through [U2, U2]→
[U,U ]. Define A(b) to be the mixed extension with graded pieces Qp, V and Qp(1)
obtained by pushing out A[2] →֒ A2(b) by ξ : A[2]→ Qp(1). We define IA(b) to be
the kernel of the projection

A(b)→ Qp.
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The representationA(b) has a compatible U -action, and hence for any U -torsor P
we obtain a mixed extension A(b)(P ) with graded pieces Qp, V and Qp(1). Since the
projection map A(b)→ Qp and the inclusion map Qp(1)→ A(b) are U -equivariant,
for any P we have exact sequences

0→ IA(b)(P ) → A(b)(P ) → Qp → 0

and
0→ Qp(1)→ A(b)(P ) → A1(b)

(P ) → 0.

When P = P (b, z) we denote A(b)(P ) by A(b, z) and IA(b)(P ) by IA(b, z). When
we want to emphasise the dependence on X , we write A(X)(b) and A(X)(b, z).
By our assumptions on the homomorphism A[2] → Qp(1), A(b) is a faithful U -
representation. Note that since the U -action on A[2] is trivial, we could define
A(b)(P ) to be the pushout of A[2] →֒ A2(b)

(P ) by A[2] → Qp(1). As in the above
discussion of the map [ . ], the map from H1(G,U) to H1(G,U(Qp, V,Qp(1))) is
algebraic.

5.2. Description of h(A(b, z)). Let U be a quotient of U2 which is an extension
of V by Qp(1). Let A(b) be the corresponding quotient of the enveloping algebra
of U . We now consider the maps

H1(Gv, U)→ Qp

P 7→ hv(A(b)
(P ))

H1(GT , U)→ Qp

P 7→ h(A(b)(P )).

The following lemma follows from the work of Kim and Tamagawa [23].

Lemma 6. Let v be a prime of K that is coprime to p. Then the map

X(Kv)→ Qp

z 7→ hv(A(b, z))

is identically zero when v is a prime of potential good reduction and has finite image
in general.

Proof. If v is a prime of potential good reduction then there is a finite Galois
extension L|Kv such that for every L-point z, the U -torsor P (z) admits a GL-
equivariant trivialisation. From [30, §I.5.8], there is a short exact sequence

1→ H1(Gal(L|Kv), U
GL)→ H1(GKv

, U)→ H1(GL, U),

and hence every GKv
-equivariant U -torsor is trivial, since UGL = 1.

For the general case, we use [23, Corollary 0.2], which says that the map

jv : X(Kv)→ H1(GKv
, U)

has finite image. This implies the lemma, as the map z 7→ hv(A(b, z)) factors
through jv. �

We now consider global properties of A(b, z). The mixed extension A(b, z) is a
mixed extension of A1(b, z) and IA(b, z)∗(1). To understand the height of A(b, z),
we first need to understand the map

H1(G,U)→ Ext1(V,Qp(1))
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defined by sending a torsor P to the twist of IA(b) by P (when P = P (b, z), the
twist of IA(b) by P is IA(b, z)). Let 〈, 〉 : V × V → Qp(1) be the homomorphism
induced from the Weil pairing and let 0 : V → Hom(V,Qp(1)) denote the homo-
morphism sending v to w 7→ 〈w, v〉. Let τ = τZ : V → Hom(V,Qp(1)) denote the
homomorphism sending v to w 7→ [w̃, ṽ], where w̃ and ṽ are lifts of w and v to U .
Let τ∗ denote the induced homomorphism

H1(G,U)→ H1(G, V )→ Ext1(V,Qp(1)).

We will also denote by τ∗ the map H1(G, V )→ Ext1(V,Qp(1)) through which the
above map factors. Then by definition of the twisting construction there is an
equality of extensions of Qp(1) by V :

[IA(b, z)] = [IA(b)] + τ∗([P (b, z)]).

Let a(Z) denote the linear map

H1
f (GT , V )→ H1

f (GT , V )

defined by a(Z) := τ−1
0 ◦ τ∗. Then by §4.3.3 we have the following lemma.

Lemma 7. Suppose D1, . . . , Dn, E1, . . . , En are divisors in Div0(X) satisfying
∑

κ(Di)κ(Ei) = κ(z − b)(τ−1
0 (IA(b)) + a(Z)(κ(z − b)))

in Sym2 H1
f (GT , V ). Then

∑
h(Di, Ei) = h(A(b, z)).

Using the above lemmas, one obtains equations for the finite set X(Kp)U . First
we should be a bit more specific about our choice of p-adic height. If K = Q then
up to scalars, there is a unique choice of character χ. Recall that in the imaginary
quadratic case, we have a decomposition pOK = pp. We henceforth take χ to be an
idele class character which vanishes on O×

p
. By class field theory the space of such

characters is one-dimensional, and hence χ is uniquely determined up to scalars.
Since the mixed extensions A(b, z) are crystalline at all primes above p, this means
that

h(A(b, z)) = hp(A(b, z)) +
∑

v∈T0

hv(A(b, z)).

Let ω0, . . . , ωg−1 be a basis of H0(Xp,Ω
1).

Proposition 1. Suppose rk J(K) = g, that rkNS(J) > 1, and that the map

(6) J(K)⊗Z Qp → H1
f (Gp, V )

is an isomorphism. Let b be a K-rational point of X. Then the set

Ω = {−
∑

v∈T0

hv(A(b, zv)) : (zv) ∈
∏

v∈T0

X(Kv)}.

is finite, and there are constants cij , di (for 0 ≤ i ≤ g − 1) such that X(Kp)U is
finite, and equal to the set of z in X(Kp) satisfying

hp(A(b, z)) +
∑

i,j

cij

(∫

z−b

ωi

)(
dj +

∑
a(Z)jk

∫ z

b

ωk

)
∈ Ω.
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Proof. By injectivity of (6) for all 0 ≤ i ≤ g − 1 there is a κi in H1
f (GT , V ) such

that locp(κi) = ω∗
i via the isomorphism H1

f (Gp) ≃ H0(Xp,Ω
1)∗. Let Hi,j be a

mixed extension with graded pieces Qp, V and Qp(1) such that ϕ0,1(Hij) = κi and
ϕ1,2(Hij) = κ∗

j (1). Define cij = −h(Hij). Define di by

locp(IA(b)
∗(1)) =

∑
diω

∗
i .

Then since (6) is an isomorphism, we have

ϕ0,1(A(b, z)) =
∑(∫ z

b

ωi

)
κi

and

ϕ1,2(A(b, z)) =
∑

i

(
di +

∑
a(Z)jk

∫ z

b

ωk

)
κ∗
i (1).

Hence in Sym2 H1
f (GT , V ),

ϕ0,1(A(b, z))ϕ1,2(A(b, z)) =
∑(∫

z−b

ωi

)(
dj +

∑
a(Z)jk

∫ z

b

ωk

)
κiκj ,

giving an equality of global heights

h(A(b, z)) =
∑

i,j

(∫

z−b

ωi

)(
dj +

∑
a(Z)jk

∫ z

b

ωk

)
h(Hij).

This establishes that K-rational points satisfy the above equation. By §4.3.2 and
§5.1, for any β in Qp, and any functional

B : H1
f (Gp, V )⊗H1

f (Gp, V )→ Qp,

the equation
hp(A(b)

(P )) +B(A1(b)
(P ), (IA(b)(P ))∗(1)) = β

defines a codimension one subvariety Wα of H1
f (Gp, U). For P = A(b, z), the left

hand side of this equation is equal to

hp(A(b, z)) +
∑

i,j

(∫

z−b

ωi

)(
dj +

∑
a(Z)jk

∫ z

b

ωk

)
B(ω∗

i ⊗ ω∗
j ) = β.

Then, as in [22], j−1
p (Wα) is finite, completing the proof of the proposition. �

To complete the proof of Theorem 2, we need to relate h(A(b, z)) to a height
pairing between algebraic cycles. This identification is explained in §6.
5.3. Equations for X(Kp)U when the Mordell-Weil rank is bigger than

the genus. We briefly consider the case where the rank is bigger than the genus.
Then the formula becomes more complicated, as to get constraints on the height
of A(b, z), one needs to know the class of A1(b, z) in H1

f (GT , V ), and this can
no longer be recovered directly from its image in H1

f (Gp, V ). Instead one shows
that the the class of a point in H1(GT , V ) is “overdetermined" by the linear and
quadratic relations it satisfies and produces an equation just involving functions on
X(Kp) by taking an appropriate resultant.

For convenience we fix a connected component of Sel(U2) corresponding to

α = (αv) ∈
∏

v∈T0

j2(X(Kv)),
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and describe
X(Kp)α := j−1

p locp((
∏

v∈T0

jv)
−1(α)) ⊂ X(Kp)U .

Suppose that rkJ(K) = n = g + k, and that rkNS(J) > k. Let

(Z0, . . . , Zk) : Qp(−1)k+1 →֒ Ker(∧2H1
ét(X)

∪−→ H2
ét(X)).

be an injective Galois-equivariant homomorphism, let UZm
be the quotient of U2

corresponding to Zm, and let AZm
(b) denote the corresponding quotient of A2(b).

For 0 ≤ m ≤ k, define αm to be minus the sum of the local heights of AZm
(b)(P )

away from p:

αm := −
∑

v∈T0

hv(AZm
(b)(αv)).

Let D0, . . . , Dn−1 be elements of Pic0(X) generating Pic0(X)⊗Q. For 0 ≤ m ≤ k,
let (a(Zm)ij)0≤i,j<n denote the matrix of the endomorphism of J(K)⊗Q induced
by Zm, and let the image of IAZm

(b) in H1(GT , V ) equal
∑

c(Zm)iκ(Di). Define
polynomials F0, . . . , Fn in Qp[S0, . . . , Sn−1, T0, . . . , Tn−1] by

Fm = Tm −
n−1∑

j=0

Sj

∫

Dj

ωm

for 0 ≤ m ≤ g − 1, and

Fm = Tm − αm−g −
∑

0≤i,j<n

h(Di, Dj)Si(c(Zm−g)jSj +
∑

0≤l<n

a(Zm−g)ljSl)

for g ≤ m ≤ n.

Proposition 2. Let F = Res(F0, . . . , Fn) ∈ Qp[T0, . . . , Tn] be the resultant of the
polynomials F0, . . . , Fn. Then the set of z in X(Kp) such that

F

(∫ z

b

ω0, . . . ,

∫ z

b

ωg−1, hp(AZ0
(b, z)), . . . , hp(AZk

(b, z))

)
= 0

is finite, and contains X(Kp)α.

6. Chabauty-Kim theory and p-adic heights

This section is concerned with relating the mixed extensions A(b, z) defined above
to the mixed extensions arising from the theory of motivic height pairings as de-
veloped by Nekovář [24] and Scholl [29]. Such relations have been established in
the case of fundamental groups of affine elliptic curves in work of Balakrishnan and
Besser [3] and Balakrishnan, Dan-Cohen, Kim and Wewers [2] and in the case of
affine hyperelliptic curves in work of Balakrishnan, Besser and Müller [6].

6.1. Notation. In this section we will repeatedly consider various Ext groups of
constructible Qp-sheaves on X ×X . As all cohomology will be étale, we will omit
subscripts. For codimension 1 cycles Z1, Z2 ⊂ X ×X , we will write Hi(X ×X −
|Z1|; |Z2|) to mean

Exti(j1!j
∗
1Qp, j2!j

∗
2Qp) := Qp ⊗ lim←−Exti(j1!j

∗
1Z/p

nZ, j2!j
∗
2Z/p

nZ),

where j1 and j2 are the open immersions of the complements of Z1 and Z2 into
X ×X , and the Ext groups are in the category of constructible sheaves on X ×X.
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We write D.E to mean the intersection number of the cycles. For a smooth variety
S and a cycle E in Zi(S) we write c̃lE to mean the induced homomorphism

Qp(−k)→ H2k
E (S)

and write clE to mean the composite map

Qp(−k)→ H2k
E (S)→ H2k(S).

6.2. The height pairing on algebraic cycles. To relate fundamental groups to
p-adic heights, we first explain what the local height functions defined above have
to do with height pairings. We restrict attention to the case of the p-adic height
pairing on the curve X . Given a pair (Z,W ) of cycles in Div0(X) with disjoint
support |Z| and |W |, we construct a mixed extension H(Z,W ) with graded pieces
Qp, V and Qp(1) as a subquotient of H1(X − |Z|; |W |)(1) as follows [24, §5.6].
The representation H1(X − |Z|; |W |)(1) is a mixed extension with graded pieces
Ker(H2

|Z|(X)→ H2(X))(1), V and Ker(H2
|W |(X)→ H2(X))∗. Pulling back by

Qp
c̃lZ−→ Ker(H2

|Z|(X)→ H2(X))(1)

and then pushing out by the dual of

Qp(−1) c̃lW−→ Ker(H2
|W |(X)→ H2(X))

gives a mixed extension with graded pieces Qp, V and Qp(1), denoted HX(Z,W ).
Composing with hv gives, at each prime, a functional

(Z,W ) 7→ hv(H(Z,W )).

By [24, §2], this is bi-additive, symmetric, and if Z = div(f) then

hv(Z,W ) = χv(f(W )).

We denote hv(HX(Z,W )) simply by hv(Z,W ). Given cycles Z and W in Div0(XK)
with disjoint support one defines the global p-adic height h(Z,W ) associated to χ, s
to be the sum over all v of hv(Z,W ). The function h is bilinear and factors through
Pic0(X)× Pic0(X) (unlike the local heights).

6.3. Beilinson’s formula. The proof of the relation to p-adic heights is to use
a motivic interpretation of An(b, z), due to Beilinson [15, Proposition 3.4], and
then do a little diagram chasing. To state Beilinson’s theorem, let Y be a smooth
geometrically connected variety over a field K of characteristic zero. Let b and z
be K-points of Y . As before let

An(Y )(b) := Qp[π
ét
1 (Y , b)]/In+1

and
An(Y )(b, z) := Qp[π

ét
1 (Y , b, z)]⊗Qp[πét

1
(Y ,b)] An(Y )(b).

Theorem 5 (Beilinson, [15], Proposition 3.4 ). Let Y n denote the n-fold product
of Y over K. Let D0 denote b × Y n−1, Dn denote Y n−1 × z, and for 0 < i < n,
define Di to be the codimension one subscheme of Y n on which the ith and (i+1)th
co-ordinates are equal.
(i): When b 6= z, there is an isomorphism of GK -representations

An(Y )(b, z) ≃ Hn(Y
n
;

n⋃

i=0

Di)
∗.
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(ii): When b = z there is an isomorphism of GK -representations

An(Y )(b) ≃ Hn(Y
n
;

n⋃

i=0

Di)
∗ ⊕Qp.

We will be interested in applying Theorem 5 in the case when n = 2, for the
smooth projective curve X and for the affine curve Y := X−x obtained by removing
a K-point of X . Define S := Y × Y .

Let b and z be distinct, and both not equal to x. Define X1 := {b} ×X,X2 :=
X × {z}, and define

i1, i2, i∆ : X →֒ X ×X

to be the closed immersions of X1, X2 and ∆ respectively into X ×X. For future
use we also let

π1, π2 : X ×X → X

denote the projection maps. We use the same notation for the corresponding maps
with X and X ×X replaced by Y and Y × Y .

We first describe the difference between H2(Y × Y ;X1 ∪X2 ∪∆) and
H2(X ×X;X1 ∪X2 ∪∆). There is a short exact sequence

0→ H1(Y ; b ∪ z)→ H2(Y × Y ;X1 ∪X2 ∪∆)→ H2(Y × Y ;X1 ∪X2)→ 0.

There is also an isomorphism

H2(S;X1 ∪X2) ≃ H1(X)⊗H1(X)

coming from the composite of the Kunneth decomposition

H2(S;X1 ∪X2) ≃ H1(Y ; b)⊗H1(Y ; z)

together with the isomorphisms

H1(Y ; b) ≃ H1(Y ; z) ≃ H1(Y ) ≃ H1(X).

Hence we get a short exact sequence

0→ H1(Y ; b ∪ z)→ H2(Y × Y ;X1 ∪X2 ∪∆)→ H1(X)⊗H1(X)→ 0.

The dual of A2(X)(b, z) is isomorphic to H2(X × X;X1 ∪ X2 ∪∆), which sits in
an exact sequence

0→ H1(X ; b∪z)→ H2(X×X;X1∪X2∪∆)→ H2(X×X)
(i∗

1
,i∗

2
,i∗

∆
)−→ H2(X)⊕3 → 0.

The natural map

H2(X ×X;X1 ∪X2 ∪∆)→ H2(Y × Y ;X1 ∪X2 ∪∆)

is injective and gives a short exact sequence

0→ H2(X ×X ;X1 ∪X2 ∪∆)→ H2(Y × Y ;X1 ∪X2 ∪∆)→ H2(X)→ 0.

Via the above, if Z is a cycle in X×X whose image in H2(Y ×Y ) is nonzero then Z
defines a subobject of H2(Y ×Y ;X1∪X2∪∆). If the intersection number of Z with
∆−X1−X2 is zero then this subobject is in the image of H2(X×X;X1∪X2 ∪∆)
(specifically, its image in H2(X ×X) is the Kunneth projector of Z).
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6.4. h(A(b, z)) as a height pairing between algebraic cycles. Via Beilinson’s
cohomological characterisation of the mixed extension A2(Y )(b, z), characterising
the local heights of A(b, z) in terms of the height pairings on algebraic cycles is
reduced to relating subquotients of H1(Y − |Z1|; |Z2|) to subquotients of H2(Y ×
Y ; |W |), where the divisors W arise from Beilinson’s theorem.

Let Z be a divisor of S intersecting X1, X2 and ∆ properly. We somewhat
abusively denote the composite map

Qp(−1) clZ−→ H2(S)→ H1(X)⊗2 ≃−→ H2(S;X1 ∪X2)

by clZ , where the last map is the isomorphism induced by

H2(S;X1 ∪X2)→ H2(S).

Definition 11. Define D(b, z) ∈ Div0(X) to be the cycle i∗∆Z−i∗1Z−i∗2Z+(Z.X1+
Z.X2 − Z.∆)x.

Let EZ = EZ(b, z) be the mixed extension with graded pieces obtained by pulling
back H2(S;X1 ∪X2 ∪∆)(1) by the image of Z:

EZ Qp

H2(S;X1 ∪X2 ∪∆)(1) H1(Y )⊗H1(Y )(1).

clZ

As in §5.1, if clZ is nonzero it defines a surjection A[2](Y ) → Qp(1) and hence a
quotient A(b, z) of A2(Y )(b, z). The representation A(b, z) is the dual of EZ . If the
intersection number of Z with ∆−X1−X2 is zero then A(b, z) in fact comes from
a quotient of A2(X)(b, z). The following theorem says that the mixed extension
A(b, z) is exactly the one built out of the zero divisors z − b and D(b, z). In [13,
Theorem 2.2], Darmon, Rotger and Sols proved that the Abel-Jacobi class of D(b, z)
is equal to the extension of Z-mixed Hodge structure corresponding to the motive
whose étale realisation is IA(b, z). This generalised previous work of Kaenders [20].
The theorem below refines this to determine A(b, z) as a mixed extension of κ(z−b)
and IA(b, z)∗(1).

Theorem 6. Let Z be any codimension 1 cycle in X×X whose image in H2(Y ×Y )
is nonzero. The mixed extension EZ is isomorphic to HX(z− b, i∗∆Z − i∗1Z − i∗2Z +
mx)(−1), where m is the intersection number of Z with X1 +X2 −∆.

Proof. For any cycle W we have a commutative diagram with exact columns and
rows

H1
|i∗
∆

W |
(Y ; {b} ∪ {z}) H2

|W |
(S;X1 ∪X2 ∪∆) H2

|W |
(S;X1 ∪X2)

H1(Y ; {b} ∪ {z}) H2(S;X1 ∪X2 ∪∆) H2(S;X1 ∪X2)

H1(Y − |i∗
∆
W |;{b} ∪ {z}) H2(S − |W |;X1 ∪X2 ∪∆) H2(S − |W |;X1 ∪X2).

To prove the theorem, we first find a cycle W such that the image of clZ(Qp(−1))
in H2(S − |W |;X1 ∪X2) is zero. This identifies EZ with a subspace of
H1(Y − |i∗∆W |; {b} ∪ {z}). One then determines the subspace exactly by giving a
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cohomological interpretation of the inclusion of the weight 2 part of EZ inside the
weight 2 part of H1(Y − |i∗∆W |; {b} ∪ {z}).

Let π∗
2i

∗
1Z denote the divisor obtained by fibering the divisor i∗1Z of X with

X (so that if i∗1Z =
∑

nixi, then π∗
2i

∗
1Z =

∑
nixi ×X). Similarly define π∗

1 i
∗
2Z.

Define
W := Z − π∗

2 i
∗
1Z − π∗

1 i
∗
2Z.

Lemma 8. The image of clZ(Qp(−1)) in H2(S − |W |;X1 ∪X2) is zero.

Proof. Let D := X×X−S. It is enough to show that clZ(Qp(−1)) is in the image
of

H2
|W |∪D(X ×X;X1 ∪X2)→ H2(S;X1 ∪X2).

Let W1 := |i∗1W |∪ i−1
1 D and W2 := |i∗2W |∪ i−1

2 D. There is a commutative diagram
with exact rows

0 H2
|W |∪D

(X ×X ;X1 ∪X2) H2
|W |∪D

(X ×X) H2
W1

(X) ⊕H2
W1

(X)

H2(X ×X;X1 ∪X2) H2(X ×X) H2(X1)⊕H2(X2).

The class of Z in H2(X×X) lifts to an element of H2
W∪D(X×X) by construction.

Hence to show clZ(Qp(−1)) lifts to an element of H2
W∪D(X × X;X1 ∪ X2) it is

enough to show it lies in the kernel of

H2
W∪D(X ×X)

i∗
1
⊕i∗

2−→ H2
W1

(X)⊕H2
W1

(X).

This is the case since, in H2
W1

(X) , i∗1π
∗
2 i

∗
1Z = i∗1Z and i∗1π

∗
1i

∗
2Z = 0, and similarly

for H2
W2

(X). �

Hence we deduce that EZ is a subobject of H1(Y − |i∗∆W |; b ∪ z), and all that
remains is to determine the homomorphism

Qp(−1)→ H2
|W |∪x(X)

induced by this identification. Let δ : Ker(γ) → Coker(α) denote the connecting
homomorphism associated to

H1(Y ; b∪z) H2(S;X1∪X2∪∆) H2(S;X1∪X2) 0

0 H1(Y − |i∗∆W |; b∪z) H2(S − |W |;X1∪X2∪∆) H2(S − |W |;X1∪X2).

α β γ

Then by construction EZ is isomorphic to the pullback of H1(Y − |i∗∆W |; b∪ z) by
the homomorphism

Qp(−1)→ Ker(γ)
δ−→ Coker(α)→ H2

|i∗
∆
W |(Y ; b ∪ z).

We claim that the diagram

Ker(γ) Coker(α)

H2
|W |(S;X1 ∪X2) H2

|i∗
∆

W |(Y ; b ∪ z)
i∗∆

δ
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commutes. This follows from the definition of the long exact sequence in cohomol-
ogy associated to a short exact sequence of sheaves: for example it is implied by
the following lemma, whose proof we sketch.

Lemma 9. For 1 ≤ i, j ≤ 3, let I•i,j be complexes of abelian groups, and let

0 0 0

0 I•1,1 I•1,2 I•1,3 0

0 I•2,1 I•2,2 I•2,3 0

0 I•3,1 I•3,2 I•3,3 0

0 0 0

be a commutative diagram of abelian groups with exact columns and rows. Define

J1 := Ker(Hi(I•2,3)→ Hi+1(I•2,1))

J2 := Coker(Hi−1(I•3,3)→ Hi(I•3,1))

K1 := Ker(Hi(I•1,3)→ Hi+1(I•2,1))

K2 := Coker(Hi−1(I•3,3)→ Hi+1(I•1,1)).

Let
δ : Ker(J1 → Hi(I•3,3))→ Coker(Hi(I•2,1)→ J2)

be the connecting homomorphism associated to

Hi(I2,1) Hi(I2,2) J1 0

0 J2 Hi(I3,2) Hi(I3,3).

Then the diagram

Ker(J1 → Hi(I3,3)) Coker(Hi(I2,1)→ J2)

K1 K2

Hi(I1,3) Hi+1(I1,1)

δ

commutes.

Proof. Let dki,j be the differential Iki,j → Ik+1
i,j and let Zk

i,j = Ker(dki,j). Consider the
following function from K1 and K2: start with v1 in K1, lift to v2 in Zi

1,3, lift that
to get v3 in Ii2,2, take differentials to get v4 in Zi+1

2,2 , check that this can be lifted
to v5 in Zi+1

1,1 , take its image in K2. We claim the top and bottom maps from K1
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to K2 are both instances of this construction. In the top map, one starts with an
element in Zi

1,3, maps it to an element of Zi
2,3, lifts it to an element of Zi

2,2, maps
it down to Zi

3,2, lifts it to an element of Zi
3,1, lifts that to an element of Ii2,1, maps

it to an element of Zi+1
2,1 and finally lifts that to an element of Zi+1

1,1 . In the bottom
map, one starts with an element in Zi

1,3, lifts it to an element of Ii1,2, maps that
down to an element of Zi+1

1,2 , and then lifts that to an element of Zi+1
1,1 . This proves

the claim, since I•1,2 and I•2,1 are both subcomplexes of I•2,2, and the differentials on
I•1,2 and I•2,1 are just the restriction of the differential on I•2,2. �

By commutativity of the diagram

H2
|W |(S;X1 ∪X2) H2

|W |(S)

H2
|i∗

∆
W |(Y ; b ∪ z) H2

|i∗
∆
W |(Y )

i∗∆
≃

i∗∆

we deduce that EZ is isomorphic to the pullback of H1(Y − |i∗∆W |; b ∪ z) by

c̃li∗
∆
W : Qp(−1)→ H2

|i∗
∆
W |(Y ).

Finally, we show that this implies that the map

Qp(−1)→ Ker(H2
|i∗

∆
W |∪x(X)→ H2(X))

is equal to

c̃li∗
∆
W−(W.∆)x → H2

|i∗
∆
W |∪x(X).

Via the isomorphism
H1(X; b ∪ z) ≃ H1(Y ; b ∪ z),

one obtains an isomorphism

H2
|i∗

∆
W |(Y ) ≃ Ker(H2

|i∗
∆
W |∪x(X)→ H2(X))

which sends the class of a cycle
∑

di(zi) with support in W∩Y to
∑

di(zi)−(
∑

di)x.
This completes the proof of the theorem. �

7. p-adic heights on hyperelliptic curves

In this section we recall facts about height pairings and use them to relate the
height pairing of the cycles z − b and D(b, z) to the height pairings arising in
Theorems 1 and 3. We fix a choice of idele class character χ and an isotropic
splitting of the Hodge filtration on H1

dR(XKp
).

By the work of Besser [7], Nekovář’s p-adic height pairing is equal to the p-adic
height pairing of Coleman and Gross defined in [12]. In [3, §2], it is shown that one
may extend the Coleman-Gross local height pairing to divisors with non-disjoint
support, although as in the case of the real-valued height pairing such an extension
will in general depend on a choice of a global tangent vector at each point. As
explained in [6] there is a canonical choice of such a tangent vector when X is a
hyperelliptic curve with a fixed odd degree model.

We write hv(D) to mean hv(D,D), and h(D) to mean
∑

v hv(D). When X = E
is an elliptic curve with origin ∞, for z in E(Kv) we define

hv(z) := hv((z)− (∞)).
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7.1. Height identities. Let X be a hyperelliptic curve, and let w denote the
hyperelliptic involution on X . In this subsection we briefly review the theory of
height pairings on hyperelliptic curves [3, 4].

Definition 12. For a divisor D on X , define D+ := D+w∗D and D− := D−w∗D.

Lemma 10. For any divisors D1, D2 ∈ Div0(X),

hv(D1, D2) =
1

4
hv(D

+
1 , D

+
2 ) +

1

4
hv(D

−
1 , D

−
2 ).

Part (i) of the next lemma is proved in [6] (see (4.3) and the subsequent discus-
sion). Part (ii) also follows straightforwardly from the proof.

Lemma 11. Let X be a hyperelliptic curve of genus g, defined by an equation of
the form

y2 = x2g+1 +

2g∑

i=0

aix
i.

Let ∞ denote the point at infinity.
(i) Let z be a point of X not equal to ∞, with y(z) 6= 0. Then

hv(z
+ − 2∞) = 2χv(y(z)) + 2χv(2).

(ii) Let z1, z2 be points of X not equal to ∞. Suppose x(z1) 6= x(z2). Then

hv(z
+
1 − 2∞, z+2 − 2∞) = 2χv(x(z1)− x(z2)).

Proof. As explained in [6, §4], one finds normalised parameters at z and w(z) are
given by x − x(z)/2y(z), and that −y/xg+1 is a normalised parameter at infinity.
The lemma now follows from the definition of the Coleman-Gross pairing on divisors
of non-disjoint support. �

As a corollary we deduce

Lemma 12. Let E be an elliptic curve

y2 = x3 + ax2 + bx+ c.

Then for any z1, z2 in E both not equal to ∞, and with x(z1) 6= x(z2),

2hv(z1 −∞) + 2hv(z2 −∞)− hv(z1 − z2)− hv(z1 − w(z2)) = 2χv(x(z1)− x(z2)).

Proof. We first break the left hand side into symmetric and antisymmetric parts.
The antisymmetric part equals

1

2
hv(z

−
1 ) +

1

2
hv(z

−
2 )− 1

4
hv(z

−
1 − z−2 )− 1

4
hv(z

−
1 + z−2 ).

By expanding out this can be seen to be zero. The symmetric part equals
1

2
hv(z

+
1 − 2∞) +

1

2
hv(z

+
2 − 2∞)− 1

2
hv(z

+
1 − z+2 ).

Expanding, this equals
1

2
hv(z

+
1 − 2∞, z+2 − 2∞) +

1

2
hv(z

+
2 − 2∞, z+1 − 2∞),

hence the result now follows from Lemma 11. �

Lemma 13. For any z not equal to ∞,

hv(z −∞, w(z)−∞) + hv(z −∞, z −∞) = χv(2y(z)).
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Proof. The antisymmetric parts of hv(z−∞, w(z)−∞) and hv(z−∞, z−∞) cancel
out, hence the left hand side is equal to 1

2hv(z
+ − 2∞), which equals χv(2y(z)) by

Lemma 11. �

7.2. Integral points on hyperelliptic curves. Let X be a hyperelliptic curve
given by an equation of the form

y2 = f(x)

where f(x) is a monic polynomial in OK [x] of degree 2g+1. Let Y = X−∞. Take
Z to be the cycle Γw = {(z, w(z))} ⊂ X ×X . Let {z1, . . . , zn} denote the set of K
points of X with y-coordinate zero, and let W denote the divisor

∑
i zi. Let b and

z be points of Y with nonzero y-coordinate. Then

i∗1Γw = w(b)

i∗2Γw = w(z)

i∗∆Γw = W +∞
hence D(b, z) = W − w(b) − w(z) − (2g − 1)∞. So the class of A(Y )(b, z) is dual
to HX(z − b,W − w(b)−w(z)− (2g − 1)∞), by Theorem 6. The following lemma
illustrates how Theorem 1 may be deduced from Theorem 6 together with the affine
version of Theorem 2.

Lemma 14. For any prime v,

hv(z − b,D(b, z)) = hv(z −∞)− hv(b −∞).

Proof. First, note that additivity yields

hv(z − b,D(b, z)) = hv(z − b,W − (2g + 1)∞)− hv(z − b, 2∞− w(z)− w(b)).

Since 2(g+1)∞−W = div(y), the first term is equal to χ(y(z))−χ(y(b)). For the
second term, since z − b and 2∞− w(z)− w(b) are disjoint,

hv(z−b, 2∞−w(z)−w(b)) =
1

2
hv(z−b, 2∞−w(z)−w(b))+

1

2
hv(2∞−w(z)−w(b), z−b).

By additivity

hv(z − b, 2∞− w(z)− w(b)) = hv(z −∞,∞− w(z)) + hv(z −∞,∞− w(b))

+ hv(∞− b,∞− w(z)) + hv(∞− b,∞− w(b))

and similarly for hv(2∞− w(z) − w(b), z − b). Using the fact that hv(D1, D2) =
hv(w(D1), w(D2)), this gives

hv(z − b, 2∞− w(z)− w(b)) = hv(z −∞,∞− w(z)) + hv(∞− b,∞− w(b)).

The result now follows from Lemma 13. �

7.3. Rational points on bielliptic curves. In this subsection we return to the
case where X is a genus 2 curve of the form

y2 = x6 + ax4 + bx2 + c,

and explain how to deduce Theorem 3 from Theorem 2. Let hv and h denote (local
and global, resp.) heights on X , hE1,v and hE1

heights on E1, and hE2,v and hE2

heights on E2. Recall from the introduction the associated elliptic curves Ei and
morphisms fi : X → Ei. Define Z1 ⊂ X ×X to be the graph of the automorphism

g1 : (x, y) 7→ (−x, y)
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and Z2 to be the graph of

g2 : (x, y) 7→ (−x,−y).

As explained in §6.4, the fact that the intersection number of Z1 − Z2 with ∆ −
X1 −X2 is zero implies that Z defines a quotient of the fundamental group of X,
and a quotient A(b, z) of A(X)(b, z). Note that

i∗1(Z1 − Z2) = g1(z)− g2(z)

i∗2(Z1 − Z2) = g1(b)− g2(b)

i∗∆(Z1 − Z2) = (0,
√
c) + (0,−√c)−∞− w(∞)

so D(b, z) = (0,
√
c) + (0,−√c) −∞ − w(∞) − g1(z) + g2(z) − g1(b) + g2(b). The

following lemma completes the proof of Theorem 3.

Lemma 15. For any b and z with x(b) 6= x(z) and both not equal to zero or infinity,

hv(z − b,D(b, z)) = hE1,v(f1(z)−∞)− hE1,v(f1(b)−∞)− hE2,v(f2(z)−∞)

+ hE2,v(f2(b)−∞) + 2χ(x(b))− 2χ(x(z)).

Proof. Define divisors D1 and D2 on E1 and E2 respectively by

D1 = w(f1(z)) + w(f1(b))− 2∞
D2 = w(f2(z)) + w(f2(b))− 2∞.

Then

∞+w(∞)− (0,
√
c)− (0,−√c)− g1(z) + g2(z)− g1(b) + g2(b) = f∗

1 (D1)− f∗
2 (D2),

hence

hv(z − b,D(b, z)) = hE1,v(f1(z)− f1(b), w(f1(z)) + w(f1(b))− 2∞)

− hE2,v(f2(z)− f2(b), w(f2(z)) + w(f2(b))− 2∞).

As in the proof of Lemma 14,

hE1,v(f1(z)− f1(b), w(f1(z)) + w(f1(b))− 2∞) = hE1,v(f1(z)−∞)− hE1,v(f1(b)−∞)

+ χ(y(f1(z)))− χ(y(f1(b)))

and similarly for f2. Hence

hv(z − b,D(b, z)) = hE1,v(f1(z)−∞)− hE1,v(f1(b)−∞)− hE2,v(f2(z)−∞)

+ hE2,v(f2(b)−∞) + χ(y(f1(z))y(f2(b))/y(f1(b))y(f2(z))).

The lemma now follows from recalling that y(f1(z))/y(f2(z)) = cx(z)2. �

The proof of Theorem 2 now follows from Theorem 6 together with Lemma 15.

8. Computing X(Kp)U

In this section, we explain how to use Theorem 3 in practice and describe the
computation of X(Kp)U . We give two numerical examples of X(Kp)U and further
discuss how one might effectively extract X(K) from X(Kp)U .
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8.1. Another formula for X(Kp)U . We record the following slight variant of
Theorem 3, which turns the computation into one which can be carried out over
two affine patches covering X(K).

Corollary 1. Let X/K be a genus 2 bielliptic curve

y2 = x6 + ax4 + bx2 + c

over K = Q or an imaginary quadratic field.
(i): For all v ∤ p,

hE1,v(f1(z) + (0,
√
c)) + hE1,v(f1(z) + (0,−√c))− 2hE2,v(f2(z))

and
hE2,v(f2(z) + (0, c)) + hE2,v(f2(z) + (0,−c))− 2hE1,v(f1(z))

each take only finitely many values, and for almost all v are identically zero.
(ii): Suppose rkE1(K) = rkE2(K) = 1, and let Pi ∈ Ei(K) be points of infinite

order. Let αi =
hEi

(Pi)

[K:Q] logEi
(Pi)2

. Let Ω1 denote the finite set of values taken by

∑

v∤p

(
hE1,v(f1(z) + (0,

√
c)) + hE1,v(f1(z) + (0,−√c))− 2hE2,v(f2(z))

)
,

for (zv) in
∏

v∤p X(Kv). Then X(K) is contained in the finite set of z in X(Kp)

satisfying

ρ1(z) := 2hE2,p(f2(z))− hE1,p(f1(z) + (0,
√
c))− hE1,p(f1(z) + (0,−√c))(7)

− 2α2 logE2
(f2(z))

2 + 2α1(logE1
(f1(z))

2 + logE1
((0,
√
c))2) ∈ Ω1.

Let Ω2 denote the finite set of values taken by
∑

v∤p

(hE2,v(f2(z) + (0, c)) + hE2,v(f2(z) + (0,−c))− 2hE1,v(f1(z))) .

Then X(K) is contained in the finite set of z in X(Kp) satisfying

ρ2(z) := 2hE1,p(f1(z))− hE2,p(f2(z) + (0, c))− hE2,p(f2(z) + (0,−c))(8)

− 2α1 logE1
(f1(z))

2 + 2α2(logE2
(f2(z))

2 + logE2
((0, c))2) ∈ Ω2.

Proof. This follows from Theorem 3 together with Lemma 12. �

8.2. Finding all points in X(Kp)U . Now using Corollary 1, we calculate X(Kp)U
as the union of points found in the following two computations:

X(Kp)U = {z ∈ X(Kp)U : x(z) /∈ p, ρ1(z) ∈ Ω1}∪{z ∈ X(Kp)U : x(z) ∈ p, ρ2(z) ∈ Ω2}.
We explain in Algorithm 1 below how to compute each of the following terms:

ρ1(t) = 2hE2,p(f2(t))︸ ︷︷ ︸
Steps 7d,e,f

− hE1,p(f1(t) + (0,
√
c))︸ ︷︷ ︸

Steps 7b,e,f

− hE1,p(f1(t) + (0,−√c))︸ ︷︷ ︸
Steps 7c,e,f

)

− 2α2︸︷︷︸
Step 3

logE2
(f2(t))

2

︸ ︷︷ ︸
Step 7g

+ 2α1︸︷︷︸
Step 3

(logE1
(f1(t))

2

︸ ︷︷ ︸
Step 7g

+ logE1
((0,
√
c))2

︸ ︷︷ ︸
Step 3

)

as power series over Kp, which allows us to search for the points z ∈ X(Kp)U that
are solutions to the equation ρ1(z) = β for β ∈ Ω1.

We recall an interpretation of the local height hp as a double Coleman integral,
which is used in Algorithm 1:
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Lemma 16. We have that hEi,p(z) =
∫ z

∞ ω0ω̄0, where ω̄0 is the dual to ω0 = dx
2y

under the cup product pairing on H1
dR

(Ei).

Proof. See [6, §4], where the the local height hp of z −∞ is denoted as τ(z). �

Algorithm 1 (Computing the set {z ∈ X(Kp)U : x(z) /∈ p, ρ1(z) ∈ Ω1}).
Input: Genus 2 curve X/K defined by an equation y2 = x6+ax4+bx2+c such that
the corresponding E1(K), E2(K) each have Mordell-Weil rank 1, a good ordinary
prime p, finite set of values Ω1.
Output: The following subset of X(Kp)U : {z ∈ X(Kp)U : x(z) /∈ p, ρ1(z) ∈ Ω1}.

(1) Compute points P1 ∈ E1(K) and P2 ∈ E2(K) of infinite order.
(2) Compute global p-adic heights hE1

(P1) and hE2
(P2), using minimal models

for E1, E2.
(3) Compute

logE1
((0,
√
c))2 =

(∫ (0,
√
c)

∞
ω0

)2

, αi =
hEi

(Pi)

[K : Q](
∫ Pi

∞ ω0)2
, i = 1, 2.

(4) Compute the cup product pairing between elements in H1
dR

(E1) and also
between elements in H1

dR
(E2); use this to compute ω̄0 for E1 and ω̄0 for

E2, to write hEi,p =
∫
ω0ω̄0.

(5) Enumerate the list of points D = X(Fp) \ {(0,±
√
c)}.

(6) Initialise an empty set R.
(7) For each D ∈ D:

(a) Compute Q, a lift of D, and a local coordinate (x(t), y(t)) at Q.
(b) Compute S1 := f1(Q) + (0,

√
c). Likewise compute f1((x(t), y(t))) +

(0,
√
c) using the addition law on the elliptic curve, which sends the

local coordinate to this residue disk.
(c) Compute f1(Q) − (0,

√
c). Likewise compute f1((x(t), y(t))) − (0,

√
c)

using the addition law on the elliptic curve, which gives a local coordi-
nate in the residue disk.

(d) Compute f2(Q). We have f2(x(t)) = (x(t))−2 gives the x-coordinate
of a local coordinate in the residue disk of f2(Q).

(e) Compute the following local heights at p of the points in Steps 7b - 7d:
hE1,p(f1(Q) + (0,

√
c)), hE1,p(f1(Q)− (0,

√
c)), hE2,p(f2(Q)).

(f) Using Step 4, for each of the points in Steps 7b - 7d, use the local
coordinates computed to calculate a power series expansion of hEi,p in
the disk of the respective point, using Step 7e to set the global constant
of integration. For example, for S1, first compute a local coordinate
S1(t) = (x1(t), y1(t)) at S1 (if S1 is non-Weierstrass, x1(t) = t+x(S1))
and use it to compute

hE1,p(S1(t)) = hE1,p(S1)− 2

(∫ S1(t)

S1

ω0ω̄0 +

∫ S1(t)

S1

ω0

∫ S1

∞
ω̄0

)
.

Then use the parametrisation computed in Step 7b so that this power
series within the disk of S1 uses the correct parameter, that induced by
the local parameter at Q.
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(g) Compute logEi
(fi(Q)(t)) = logEi

(fi(Q)) +
∫
fi(Q)(t)

ω0 ; e.g., compute

the constant of integration logEi
(fi(Q)), then compute a local parame-

ter fi(Q)(t) = (xi(t), yi(t)) at fi(Q) to compute
∫
fi(Q)(t)

ω0, then cor-

rect the parametrisation so that this power series with the disk of fi(Q)
uses the correct parameter, that induced by the local parameter at Q,
as in Step 7f.

(h) Finally, let ρ1(t) be the appropriately weighted sum of contributions
from Steps 3, 7f, and 7g, as in Equation 7.

(i) For each β ∈ Ω1, compute the set of roots of ρ1(t) = β. For each root
r, append X(x(r), y(r)) ∈ X(Kp) with multiplicity to the set R.

(8) Output R, the subset {z ∈ X(Kp)U : x(z) /∈ p, ρ1(z) ∈ Ω1} ⊂ X(Kp)U .

The computation of ρ2(z) ∈ Ω2 is carried out in an analogous manner and only
involves the two residue disks of X(Kp) not considered in Step 5 of Algorithm 1.
Putting this together yields the following algorithm to compute X(Kp)U :

Algorithm 2 (Computing X(Kp)U ).
Input: Genus 2 curve X/K given by an equation y2 = x6+ax4+ bx2+ c such that
the corresponding E1(K), E2(K) each have Mordell-Weil rank 1, a good ordinary
prime p, finite set of values Ω1,Ω2.
Output: The set X(Kp)U , which is a finite set containing X(K).

(1) Carry out Algorithm 1 as written to compute the set {z ∈ X(Kp)U : x(z) /∈
p, ρ1(z) ∈ Ω1}.

(2) Carry out Algorithm 1 with the appropriate modifications: input Ω2, com-
pute the power series expansions of terms present in ρ2, and take D to be
the remaining points in X(Fp), i.e., the points z with x(z) ∈ p. The output
is the set {z ∈ X(Kp)U : x(z) ∈ p, ρ2(z) ∈ Ω2}.

(3) Return the union of points found in Steps 1 and 2. This is X(Kp)U .

We now give two examples illustrating Algorithm 2, carried out using Sage [33].

8.3. Example 1: Rational points on a genus 2 bielliptic curve with rank

2 Jacobian. We compute X(Q), where X is the genus 2 curve

X : y2 = x6 − 2x4 − x2 + 1.

Let E1 and E2 be the corresponding elliptic curves, which each have Mordell-
Weil rank 1 over Q and integral j-invariant. On E1, the point P1 = (0, 1) is of
infinite order, and on E2, the point P2 = (0, 1) is of infinite order. We take χ to
be the cyclotomic character, normalised so that χp(z) = logp(z) and for v 6= p,
χv(z) = −v(z) logp(v). Moreover, E1 and E2 each have good ordinary reduction
at p = 3. We determine a finite set containing X(Q3)2 and use this to determine
X(Q) exactly. We are not able to determine whether X(Q3)2 = X(Q).

8.3.1. Local contributions away from p. The curve X has bad reduction at 2, poten-
tial good reduction at 7 and good reduction at all other primes. Hence to determine
the set Ω we need to determine the possible values of

hE1,2(f1(z))− hE2,2(f2(z))− 2χ2(x(z)).

First note that X(Q2) has no Q2 points whose x-co-ordinate has valuation zero
(e.g. by checking mod 8). It will turn out that the above functions can (each) only
take two possible values, corresponding to v(x) > 0 and v(x) < 0, where v denotes
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the 2-adic valuation. We compute local heights on E1. The equation given above
for E1 is not minimal at 2. A minimal equation is given by

y2 = v3 + v2 − 2v − 1

(so x = v+1). E1 has type II reduction, which means that the singular point mod
2 doesn’t lift to a Q2 point. Hence

hE1,2(f1(z)) = 2max{0,−v2(x(z))} logp(2).
We compute local heights on E2. The equation given for E2 is minimal, and it
has type IV reduction. The unique singular point of the special fibre is (0, 1). By
Silverman, the formula for the local height at points (x0, y0) of bad reduction is
given by

hE2,2((x0, y0)) = −
2

3
(1 + v(y0)) logp(2).

Hence the possible values of hE2,2(f2(z)) are 2max{0, v(x(z))} logp(2) when the
valuation of x(z) is positive, and − 2

3 logp(2) when the valuation of x(z) is negative.
Hence

hE1,2(f1(z))− hE2,2(f2(z))− 2χ2(x(z)) =

{
0 v(x(z)) < 0

− 2
3 logp(2) v(x(z)) > 0.

Finally hE2,2((0, 1)) = − 2
3 logp(2) and hE1,2((0, 1)) = 0.

Hence by Lemma 12

hE1,2(f1(z)+(0, 1))+hE1,2(f1(z)−(0, 1))−2hE2,2(f2(z)) =

{
0 v(x(z)) < 0

4
3 logp(2) v(x(z)) > 0

and

hE2,2(f2(z)+(0, 1))+hE2,2(f2(z)−(0, 1))−2hE1,2(f1(z))− =

{
− 4

3 logp(2) v(x(z)) < 0
− 8

3 logp(2) v(x(z)) > 0.

We deduce Ω1 = {0, 43 logp(2)} and Ω2 = {− 4
3 logp(3),− 8

3 logp(3)}.
8.3.2. Local contributions at p = 3. Now we consider the contributions at p = 3.
In the residue disks of ∞±, we have

ρ1(z) = 2hE2,p(f2(z))− hE1,p(f1(z) + (0, 1))− hE1,p(f1(z)− (0, 1))

− 2α2 logE2
(f2(z))

2 + 2α1(logE1
(f1(z))

2 + logE1
((0, 1))2) ∈ Ω1.

In the disks with x(z) = 0, we have

ρ2(z) = 2hE1,p(f1(z))− hE2,p(f2(z) + (0, 1))− hE2,p(f2(z)− (0, 1))

− 2α1 logE1
(f1(z))

2 + 2α2(logE2
(f2(z))

2 + logE2
((0, 1))2) ∈ Ω2.

We carry out Algorithm 1 twice: for the residue disks corresponding to ∞±,
we find z with ρ1(z) ∈ Ω1. Then to work with the residue disks corresponding to
(0,±1) we find z with ρ2(z) ∈ Ω2. This gives X(Q3)U :

X(F3) recovered x(z) in residue disk z ∈ X(Q) ρi(z) = β

∞± 3−1 + 1 + 33 + 2 · 34 +O(36) ρ1(z) = 0
2 · 3−1 + 1 + 2 · 3 + 2 · 32 + 33 + 2 · 35 +O(36) ρ1(z) = 0

∞± ∞± ρ1(z) =
4

3
log3(2)

(0,±1) 2 · 3 + 32 + 33 + 34 + 35 +O(36) ( 3
2
,± 1

8
) ρ2(z) = − 8

3
log3(2)

3 + 32 + 33 + 34 + 35 +O(36) (− 3

2
,± 1

8
) ρ2(z) = − 8

3
log3(2)

O(36) (0,±1) ρ2(z) = − 4

3
log3(2)
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Theorem 7. We have X(Q) =
{
(0,±1),

(
3
2 ,± 1

8

)
,
(
− 3

2 ,± 1
8

)
,∞±} .

Proof. We wish to compute X(Q) from X(Q3)U . To do this, we must do two things:
prove that the points in X(Q3)U which do not appear to be rational actually are
not rational and check the multiplicities of all recovered points, to rule out the
possibility that the table collapses multiple points that are just 3-adically close
to the points in the table to the indicated precision. We start with the second
task. Our computation shows that the solution x(z) = O(36) occurs as a root
of ρ(z) = − 4

3 log3(2) with multiplicity two, which gives the known global points
(0,±1) and two points 3-adically close to (0,±1). Likewise, solving ρ(z) = 4

3 log3(2)
yields ∞± on X and two points 3-adically close to ∞±. The other points in
the table, however, occur as roots with multiplicity 1. Note that ρ(z) is an even
function, so by considering the local expansion of ρ at each of the global points
(0, 1), (0,−1),∞+,∞−, we see that its power series expansion must have a global
double root at each of these points.

Now we show that the “extra” Q3 points recovered in the disks of∞± cannot be
rational, for the following formal group consideration. Consider z ∈ X(Q3) with
v3(x(z)) = −1. Then the corresponding point f1(z) on E1 has v3(x(f1(z))) = −2.
However, note that E1(F3) has order 3 and E1(Q) is generated by P , where P =
(0, 1). Thus the smallest multiple of P in the formal group is 3P = (− 8

81 ,− 757
729 ),

which implies that the v3(x(Q)) ≤ −4 for any Q ∈ 〈3P 〉. So f1(z) cannot be rational
and thus z 6∈ X(Q). Thus we conclude X(Q) =

{
(0,±1),

(
3
2 ,± 1

8

)
,
(
− 3

2 ,± 1
8

)
,∞±} .

�

8.4. Example 2: X0(37)(Q(i)). Over Q, X0(37) has the model

y2 = −x6 − 9x4 − 11x2 + 37.

Recall that X0(37) has good reduction away from 37. For convenience we make the
change of variables (x, y) 7→ (ix, y) so that we take as our working model

X : y2 = x6 − 9x4 + 11x2 + 37.

Let J denote the Jacobian of X . Note that X0(37) and X are isomorphic over
K = Q(i) and that rkJ(Q) = rkJ0(37)(Q(i)) = 2. We thank Daniels and Lozano-
Robledo [1] for bringing this example to our attention.

In this subsection we construct finite sets of p-adic points containing X(Kp)2
for various primes p of good ordinary reduction. Using the Mordell-Weil sieve, as
carried out by J. Steffen Müller and described in Appendix A, this is then used to
determine X(Q(i)). For convenience, we work with the following models of E1 and
E2:

E1 : y2 = x3 − 16x+ 16 E2 : y2 = x3 − x2 − 373x+ 2813

with maps from X to E1 and E2:

f1 : X −→ E1 f2 : X −→ E2

(x, y) 7→ (x2 − 3, y) (x, y) 7→ (37x−2 + 4, 37yx−3).

We take P1 = (0, 4) ∈ E1(K) and P2 = (4, 37) ∈ E2(K). We use primes p which
are good, ordinary, and, so that we work over Qp and not a quadratic extension,
split in K and Q(

√
37): we take p = 41, 73, and 101. For each of these primes p,

we choose a prime p lying above it in OK , and take χ to be a non-trivial idele class
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character of K which is trivial on O×
p

. Hence hp(A(b, z)) will be identically zero.
We normalise χ so that χ37(37) = − logp(37).

8.4.1. Local calculations at 37. In this subsection we prove that for all b, z ∈ X(Q37)
with x(z) and x(b) not equal to infinity,

hE1,37(f1(z))− hE1,37(f1(b))− hE2,37(f2(z))+

hE2,37(f2(b)) + 2χ37(x(z))− 2χ37(x(b)) = 0.

Recall that by Lemma 15 this is equivalent to the statement that the inertia sub-
group of GQ37

acts trivially on A(b, z). In [16] this is proved directly. As that proof
involves other tools we do not want to introduce, we shall prove this by determining
the local heights explicitly.

Lemma 17. For all z in X(Q37), we have
(i): hE1,37(f1(z)) = 2χ37(x(z)).
(ii): hE2,37(f2(z)) =

2
3χ37(37).

Proof. Note that there are no Q37 points of X for which x(z) has positive 37-
adic valuation. The Weierstrass equations given for E1 and E2 are both minimal
at 37. The Weierstrass equation for E1 is also regular hence all Q37 points are
points of good reduction. This establishes part (i). The elliptic curve E2 has split
multiplicative reduction of type I3. The singular point of E2(F37) is (4, 0), and
all points of E2,Q37

in the image of X(Q37) reduce to this point. By Silverman’s
algorithm [32, Theorem 5.2], we deduce that for all z in X(Q37), hE2,37(f2(z)) =
2
3χ37(37). This completes the proof of part (ii). �

By Lemmas 12 and 15, this gives

2hE2,37(f2(z))− hE1,37(f1(z) + (−3,
√
37))− hE1,37(f1(z)− (−1,

√
37))

= 2hE2,37(f2(z))− 2hE1,37(f1(z))− 2hE1,37((−3,
√
37)) + 2χ37(x(f1(z))− 3)

=
4

3
χ37(37)− 4χ37(x(z)) + 4χ37(x(z)) =

4

3
χ37(37).

Similarly

2hE1,37(f1(z))− hE2,37(f2(z) + (4, 37))− hE2,37(f2(z) + (4,−37))
= 2hE1,37(f1(z))− 2hE2,37(f2(z))− 2hE2,37((4, 37)) + 2χ37(x(f2(z))− 4)

= 4χ37(x(z)) −
8

3
χ37(37) + 2χ37(37x(z)

−2) = −2

3
χ37(37).

This gives Ω1 = { 43 logp(37)} and Ω2 = {− 2
3 logp(37)}.

Hence X(Kp)U may be computed by determining the solutions to

ρ1(z) = 2hE2,p(f2(z))− hE1,p(f1(z) + (−3,
√
37))− hE1,p(f1(z) + (−3,−

√
37))

− 2α2hE2
(f2(z)) + 2α1(hE1

(f1(z)) + logE1
((−3,

√
37))2) ∈ Ω1,

ρ2(z) = 2hE1,p(f1(z))− hE2,p(f2(z) + (4, 37))− hE2,p(f2(z) + (4,−37))
− 2α1hE1

(f1(z)) + 2α2(hE2
(f2(z)) + logE2

((4, 37))2) ∈ Ω2.

Using the two automorphisms of the bielliptic curve, we reduce the number of
residue disks considered. In the tables below, for each disk corresponding to the four
choices (±x,±y) we give details for the disk corresponding to (x, y) with x, y < p

2 .
We fix an identification X(Kp) ≃ X(Qp). Here is data for X(Q41)U :
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X(F41) recovered x(z) in residue disk z ∈ X(K)

(1, 9) 1 + 16 · 41 + 23 · 412 + 5 · 413 + 23 · 414 +O(415)
1 + 6 · 41 + 23 · 412 + 30 · 413 + 14 · 414 +O(415)

(2, 1) 2 +O(415) (2, 1)
2 + 19 · 41 + 36 · 412 + 15 · 413 + 26 · 414 +O(415)

(4, 18)

(5, 12) 5 + 25 · 41 + 26 · 412 + 26 · 413 + 31 · 414 +O(415)
5 + 14 · 41 + 12 · 413 + 33 · 414 +O(415)

(6, 1) 6 + 18 · 412 + 31 · 413 + 6 · 414 +O(415)
6 + 30 · 41 + 35 · 412 + 11 · 413 +O(415)

(7, 15)

(9, 4) 9 + 9 · 41 + 34 · 412 + 22 · 413 + 24 · 414 +O(415) (i, 4)
9 + 39 · 41 + 14 · 412 + 6 · 413 + 17 · 414 +O(415)

(12, 5)

(13, 19) 13 + 10 · 41 + 2 · 412 + 15 · 413 + 29 · 414 +O(415)
13 + 7 · 41 + 8 · 412 + 32 · 413 + 14 · 414 +O(415)

(16, 1) 16 + 13 · 41 + 6 · 413 + 18 · 414 +O(415)
16 + 12 · 41 + 8 · 412 + 9 · 413 + 32 · 414 +O(415)

(17, 20) 17 + 24 · 41 + 37 · 412 + 16 · 413 + 28 · 414 +O(415)
17 + 19 · 41 + 20 · 412 + 7 · 413 + 7 · 414 +O(415)

(18, 20) 18 + 3 · 41 + 7 · 412 + 9 · 413 + 38 · 414 +O(415)
18 + 41 + 34 · 412 + 3 · 413 + 32 · 414 +O(415)

(19, 3)

(20, 6) 20 + 7 · 41 + 40 · 412 + 22 · 413 + 7 · 414 +O(415)
20 + 23 · 41 + 26 · 412 + 17 · 413 + 22 · 414 +O(415)

∞+ ∞+ ∞+

(0, 18) 32 · 41 + 13 · 412 + 16 · 413 + 8 · 414 +O(415)
9 · 41 + 27 · 412 + 24 · 413 + 32 · 414 +O(415)

Here we compute X(Q73)U :

X(F73) recovered x(z) in residue disk z ∈ X(K) (or X(Q(
√
3)))

(2, 1) 2 + 61 · 73 + 50 · 732 + 71 · 733 + 56 · 734 +O(735)
2 +O(735) (2, 1)

(5, 26) 5 + 63 · 73 + 4 · 732 + 42 · 733 + 25 · 734 +O(735)
5 + 39 · 73 + 65 · 732 + 33 · 733 + 60 · 734 +O(735)

(7, 16) 7 + 62 · 73 + 31 · 732 + 33 · 733 + 44 · 734 +O(735)
7 + 29 · 73 + 67 · 732 + 69 · 733 + 17 · 734 +O(735)

(9, 34)

(10, 30) 10 + 53 · 73 + 35 · 732 + 21 · 733 + 67 · 734 +O(735)
10 + 39 · 73 + 40 · 732 + 17 · 733 + 59 · 734 +O(735)

(18, 17)

(19, 2)

(20, 15)

(21, 4) 21 + 17 · 73 + 70 · 732 + 42 · 733 + 18 · 734 +O(735)

21 + 52 · 73 + 67 · 732 + 20 · 733 + 27 · 734 +O(735) (
√
3, 4)

(23, 31) 23 + 18 · 73 + 59 · 732 + 23 · 733 + 2 · 734 +O(735)
23 + 70 · 73 + 53 · 732 + 21 · 733 + 50 · 734 +O(735)

(25, 25)

(27, 4) 27 + 62 · 73 + 28 · 732 + 56 · 733 + 58 · 734 +O(735) (i, 4)
27 + 24 · 73 + 30 · 732 + 20 · 733 + 65 · 734 +O(735)
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X(F73) recovered x(z) in residue disk z ∈ X(K)

(29, 8) 29 + 70 · 73 + 21 · 732 + 56 · 733 + 5 · 734 +O(735)
29 + 34 · 73 + 42 · 732 + 19 · 733 + 54 · 734 +O(735)

(30, 20)

(36, 17) 36 + 70 · 73 + 19 · 732 + 11 · 733 + 54 · 734 +O(735)
36 + 32 · 73 + 23 · 732 + 23 · 733 + 28 · 734 +O(735)

∞+ ∞+ ∞+

(0, 16) 61 · 73 + 63 · 732 + 51 · 733 + 16 · 734 +O(735)
12 · 73 + 9 · 732 + 21 · 733 + 56 · 734 +O(735)

Here we compute X(Q101)U :

X(F101) recovered x(z) in residue disk z ∈ X(K)

(2, 1) 2 +O(1017) (2, 1)
2 + 38 · 101 + 11 · 1012 + 99 · 1013 + 26 · 1014 +O(1015)

(8, 36) 8 + 90 · 101 + 39 · 1012 + 80 · 1013 + 70 · 1014 +O(1015)
8 + 40 · 101 + 84 · 1012 + 74 · 1013 + 15 · 1014 +O(1015)

(10, 4) 10 + 5 · 101 + 29 · 1012 + 66 · 1013 + 10 · 1014 +O(1015) (i, 4)
10 + 49 · 101 + 80 · 1012 + 74 · 1013 + 8 · 1014 +O(1015)

(12, 7) 12 + 12 · 101 + 95 · 1012 + 55 · 1013 + 48 · 1014 +O(1015)
12 + 36 · 101 + 62 · 1012 + 97 · 1013 + 27 · 1014 +O(1015)

(14, 21) 14 + 62 · 101 + 62 · 1012 + 41 · 1013 + 51 · 1014 +O(1015)
14 + 80 · 101 + 72 · 1012 + 32 · 1013 + 75 · 1014 +O(1015)

(15, 11)

(17, 18) 17 + 65 · 101 + 37 · 1012 + 80 · 1013 + 45 · 1014 +O(1015)
17 + 50 · 101 + 61 · 1012 + 89 · 1013 + 61 · 1014 +O(1015)

(18, 45)

(20, 47)

(22, 3) 22 + 59 · 101 + 78 · 1012 + 43 · 1013 + 53 · 1014 +O(1015)
22 + 96 · 101 + 29 · 1012 + 43 · 1013 + 86 · 1014 +O(1015)

(24, 19)

(27, 39)

(28, 37) 28 + 30 · 101 + 83 · 1012 + 5 · 1013 + 23 · 1014 +O(1015)
28 + 37 · 101 + 24 · 1012 + 78 · 1013 + 35 · 1014 +O(1015)

(30, 46)

(31, 23) 31 + 23 · 101 + 11 · 1012 + 67 · 1013 + 39 · 1014 +O(1015)
31 + 29 · 101 + 68 · 1012 + 29 · 1013 + 24 · 1014 +O(1015)

(34, 45) 34 + 91 · 101 + 46 · 1012 + 28 · 1013 + 34 · 1014 +O(1015)
34 + 51 · 101 + 73 · 1012 + 34 · 1013 + 14 · 1014 +O(1015)

(37, 22)

(38, 28)

(39, 46) 39 + 76 · 101 + 86 · 1012 + 18 · 1013 + 64 · 1014 +O(1015)
39 + 31 · 101 + 43 · 1012 + 10 · 1013 + 48 · 1014 +O(1015)

(46, 6)

(47, 32)

(48, 27) 48 + 43 · 101 + 100 · 1012 + 47 · 1013 + 19 · 1014 +O(1015)
48 + 21 · 101 + 38 · 1012 + 80 · 1013 + 95 · 1014 +O(1015)

(50, 5) 50 + 59 · 101 + 19 · 1012 + 64 · 1013 + 36 · 1014 +O(1015)
50 + 74 · 101 + 69 · 1012 + 80 · 1013 + 21 · 1014 +O(1015)

∞+ ∞+ ∞+

(0, 21)
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Now using a slightly modified Mordell-Weil sieve on the sets X(Q41)U , X(Q73)U ,
and X(Q101)U as described in Appendix A, we find that

X(Q(i)) = {(±2 : ±1 : 1), (±i : ±4 : 1), (1 : ±1 : 0)},
or in other words,

Theorem 8. We have X0(37)(Q(i)) = {(±2i : ±1 : 1), (±1 : ±4 : 1), (i : ±1 : 0)}.
Remark 8. It is perhaps interesting to note that the computation of X(Q73)U
recovered the points (±

√
−3,±4) ∈ X0(37)(Q(

√
−3)) as well.
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Appendix A. Applying the Mordell-Weil sieve, by J. Steffen Müller

The Mordell-Weil sieve. Let K be a number field with ring of integers OK and
let X/K be a smooth projective geometrically irreducible curve of genus g ≥ 2 with
Jacobian J/K of rank r = rk(J/K). Fix an embedding ι : X →֒ J defined over
K. The Mordell-Weil sieve is a technique for obtaining information about rational
points on X by combining information about the image of X(kv) inside J(kv) under
ι for several primes v of OK , where kv is the residue field at v. It was introduced
by Scharaschkin [28]; further information on the case K = Q can be found, for
instance, in [8] and [26]. Siksek [31] describes a variant of the Mordell-Weil sieve
over number fields which is adapted to work well with his explicit Chabauty method
over number fields introduced in loc. cit.

The general idea of the Mordell-Weil sieve is as follows: Suppose for simplicity
that there are no nontrivial K-torsion points on J (see [5, Remark 6.1] on how
to remove this assumption). Also suppose that we know generators P1, . . . , Pr of
J(K). Let M > 1 be an integer and let CM ⊂ J(K)/MJ(K) be a set of residue
classes c for which we want to show that the image of X(K) under ι does not map
to c under the canonical epimorphism π : J(K)→ J(K)/MJ(K). Let S be a finite
set of primes of OK such that X has good reduction at these primes and consider
the commutative diagram

X(K)
π◦ι

//

��

J(K)/MJ(K)

αS

��∏
v∈S X(kv)

βS

//
∏

v∈S J(kv)/MJ(kv) .

Here αS = (αv)v∈S and βS = (βv)v∈S , where αv is induced by reduction J(K) →
J(kv) and βv = πv ◦ ιv is the composition of the canonical epimorphism πv :
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J(kv) → J(kv)/MJ(kv) and the embedding ιv : X(kv) →֒ J(kv). To prove that
π(ι(X(K))) ∩ CM = ∅ it suffices to show that

αS(CM ) ∩ im(βS) = ∅ .

One can also include information at bad primes and “deep” information, see [8].
Now suppose that P1, . . . , Pr ∈ J(K) generate a subgroup of J(K) of finite

index. It is often difficult to deduce generators of J(K) from this. In fact, this is
impossible at present if r > 0 and g > 3. Instead one typically proceeds by first
saturating G at small primes and then pretending that G = J(K). The final step is
to show that the orders #J(kv) are coprime to the index (J(K) : G) for all v ∈ S,
which implies that G and J(K) have the same image in J(kv) for all v ∈ S.

Sometimes, however, it is advantageous to work directly with a subgroup G,
which is known to be not saturated. In this case, one can use the following strategy,
suggested by Besser. Suppose that v ∈ S is a prime such that gcd (#J(kv), (J(K) : G)) >
1. Let q1, . . . , qs be the primes dividing this gcd. For i ∈ {1, . . . , s} we let
ℓi = vqi(#J(kv)) and set n =

∏s
i=1 q

ℓi
i . Then the reduction of nJ(K) := {nP :

P ∈ J(K)} is contained in the reduction of G modulo v, so the multiple nιv(P ) is
contained in the reduction of G modulo v for every P ∈ X(kv). Therefore, instead
of checking whether βv(P ) ∈ αv(CM ), we check whether nβv(P ) ∈ αv(nCM ), where
nCM = {nc : c ∈ CM}.

Quadratic Chabauty and the Mordell-Weil sieve. The p-adic techniques de-
scribed in the main part of the present text yield congruence conditions for rational
points on X . More precisely, they can be used to compute, for good ordinary
primes p of OK , a finite subset X(Kp)U ⊂ X(Kp) (to finite precision) which con-
tains X(K). After identifying the rational points among X(Kp)U , one is left with
the task of showing that the remaining elements do not correspond to a rational
point.

It is discussed in [5] how to use the Mordell-Weil sieve for this purpose: Suppose
for now that J(K)tors is trivial and that P1, . . . , Pr generate J(K). Using linearity
of single Coleman integrals, we can compute, for every point z ∈ X(Kp)U , a tuple
(ã1, . . . , ãr) ∈

(
Z/pNZ

)r
so that if ι(z) = a1P1 + . . .+ arPr for integers a1, . . . , ar,

then ai ≡ ãi (mod pN ) for all i ∈ {1, . . . , r}. We can apply the p-adic approxi-
mation techniques for several primes p1, . . . , ps to N1, . . . , Ns respective digits of
precision, and set M = m · pN1

1 · · · pNs
s , where m is an auxiliary integer. Dis-

carding rational points and using the Chinese Remainder Theorem, we find tuples
(ã1, . . . , ãr) ∈ (Z/MZ)

r with the following property: If the set CM of residue classes
in J(K)/MJ(K) corresponding to these tuples does not contain the image of a K-
rational point on X , then the known K-rational points are the only ones on X .
The Mordell-Weil sieve can be used to prove this.

Suppose now that G ⊂ J(K) is a subgroup of finite index that is generated by the
classes of the differences of all known K-rational points on X . The p-adic methods
described in the main part of this paper require the computation of p-adic integrals
and the current implementation requires this to take place over Qp, as opposed to
an extension field. Since, for the combination with the Mordell-Weil sieve, we need
to do this for several primes of good ordinary reduction, we would like to work
directly with the group G, and not with its saturation at small primes. This is
possible using the approach introduced at the end of the previous subsection.
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See [5, §§6 − 8] for more details about fine-tuning the Mordell-Weil sieve when
used in combination with quadratic Chabauty; after some slight modifications the
statements given there remain valid in the situation considered here.

Computing X0(37)(Q(i)). We use the Mordell-Weil sieve, combined with the p-
adic methods described in the main text, to compute the set of K-rational points on
X0(37), where K = Q(i). Recall from Section 8.4 that X : y2 = x6−9x4+11x2+37
is a model for X0(37) over K and that we have r = rk(J/K) = 2. Note that

A := {(±2,±1), (±i : ±4),∞±} ⊂ X(K) ,

where the sign of Y/X is ± for∞±; we want to show that we actually have equality.
We use the point (2, 1) as our base point for the Abel-Jacobi map ι : X →֒ J .

The subgroup G of J(K) generated by the differences of points in A can be
generated by P , Q and R, where P = [(−2,−1)− (2,−1)] and Q = [(2, 1)− (i,−4)]
are non-torsion points, and R = [(−i, 4)− (i, 4)] is a generator of J(K)tors ∼= Z/3Z.
The group G is not saturated at 2; for instance, we have

16[∞+ − (2, 1)] = P − 10Q−R .

As discussed in the previous subsection, we nevertheless prefer to work with G
directly, without first saturating at 2.

A detailed account of the computation of the sets X(Kpi
)U for i = 1, 2, 3, where

pi is a prime of OK lying above pi and p1 = 41, p2 = 73 and p3 = 101, is given
in §8.4. After taking out the elements corresponding to the known rational points,
we get a set of tuples (ã1, ã2) ∈ (Z/MZ)2, where M = 9 · 413 · 732 · 1013, and a
corresponding set CM ⊂ G/MG containing 2099520 residue classes.

To this end, we run the Mordell-Weil sieve (modified as above) with S containing
primes above 7, 13, 17, 29, 101, 109, 199, 239, 313, 373, 677, 757. We finally show that
no odd prime divides both lcm ({#J(kv) : v ∈ S}) and (J(K) : G); this proves
that we indeed have X(K) = {(±2 : ±1 : 1), (±i : ±4 : 1),∞±}.
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