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Abstract

Latent or unobserved phenomena pose a significant difficulty in data analysis as they induce
complicated and confounding dependencies among a collection of observed variables. Factor
analysis is a prominent multivariate statistical modeling approach that addresses this challenge
by identifying the effects of (a small number of) latent variables on a set of observed variables.
However, the latent variables in a factor model are purely mathematical objects that are derived
from the observed phenomena, and they do not have any interpretation associated to them. A
natural approach for attributing semantic information to the latent variables in a factor model
is to obtain measurements of some additional plausibly useful covariates that may be related to
the original set of observed variables, and to associate these auxiliary covariates to the latent
variables. In this paper, we describe a systematic approach for identifying such associations.
Our method is based on solving computationally tractable convex optimization problems, and
it can be viewed as a generalization of the minimum-trace factor analysis procedure for fitting
factor models via convex optimization. We analyze the theoretical consistency of our approach
in a high-dimensional setting as well as its utility in practice via experimental demonstrations
with real data.

1 Introduction

A central goal in data analysis is to identify concisely described models that characterize the sta-
tistical dependencies among a collection of variables. Such concisely parametrized models avoid
problems associated with overfitting, and they are often useful in providing meaningful interpreta-
tions of the relationships inherent in the underlying variables. Latent or unobserved phenomena
complicate the task of determining concisely parametrized models as they induce confounding de-
pendencies among the observed variables that are not easily or succinctly described. Consequently,
significant efforts over many decades have been directed towards the problem of accounting for
the effects of latent phenomena in statistical modeling. A common shortcoming of approaches
to latent-variable modeling is that the latent variables are typically mathematical constructs that
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are derived from the originally observed data, and these variables do not directly have semantic
information linked to them. Discovering interpretable meaning underlying latent variables would
clearly impact a range of contemporary problem domains throughout science and technology. For
example, in data-driven approaches to scientific discovery, the association of semantics to latent
variables would lead to the identification of new phenomena that are relevant to a scientific process,
or would guide data-gathering exercises by providing choices of variables for which to obtain new
measurements.

In this paper, we focus for the sake of concreteness on the challenge of interpreting the latent
variables in a factor model [19]. Factor analysis is perhaps the most widely used latent-variable
modeling technique in practice. The objective with this method is to fit observations of a collection
of random variables y ∈ Rp to the following linear model:

y = Bζ + ε, (1.1)

where B ∈ Rp×k, k � p. The random vectors ζ ∈ Rk, ε ∈ Rp are independent of each other,
and they are normally distributed as1 ζ ∼ N (0,Σζ), ε ∼ N (0,Σε), with Σζ � 0,Σε � 0 and
Σε being diagonal. Here the random vector ζ represents a small number of unobserved, latent
variables that impact all the observed variables y, and the matrix B specifies the effect that the
latent variables have on the observed variables. However, the latent variables ζ themselves do
not have any interpretable meaning, and they are essentially a mathematical abstraction employed
to fit a concisely parameterized model to the conditional distribution of y|ζ (which represents the
remaining uncertainty in y after accounting for the effects of the latent variables ζ) – this conditional
distribution is succinctly described as it is specified by a model consisting of independent variables
(as the covariance of the Gaussian random vector ε is diagonal).

A natural approach to attributing semantic information to the latent variables ζ in a factor
model is to obtain measurements of some additional plausibly useful covariates x ∈ Rq (the choice
of these variables is domain-specific), and to link these to the variables ζ. However, defining and
specifying such a link in a precise manner is challenging. Indeed, a fundamental difficulty that arises
in establishing this association is that the variables ζ in the factor model (1.1) are not identifiable.
In particular, for any non-singular matrix W ∈ Rk×k, we have that Bζ = (BW−1)(Wζ). In
this paper, we describe a systematic and computationally tractable methodology based on convex
optimization that integrates factor analysis and the task of interpreting the latent variables. Our
convex relaxation approach generalizes the minimum-trace factor analysis technique, which has
received much attention in the mathematical programming community over the years [10, 16, 17,
18, 15].

1.1 A Composite Factor Model

We begin by making the observation that the column space of B – which specifies the k-dimensional
component of y that is influenced by the latent variables ζ – is invariant under transformations of
the form B → BW−1 for non-singular matricesW ∈ Rk×k. Consequently, we approach the problem
of associating the covariates x to the latent variables ζ by linking the effects of x on y to the
column space of B. Conceptually, we seek a decomposition of the column space of B into transverse
subspaces Hx,Hu ⊂ Rp, Hx ∩ Hu = {0} so that column-space(B) ≈ Hx ⊕ Hu – the subspace Hx
specifies those components of y that are influenced by the latent variables ζ and are also affected by
the covariates x, and the subspace Hu represents any unobserved residual effects on y due to ζ that

1The mean vector does not play a significant role in our development, and therefore we consider zero-mean random
variables throughout this paper.
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are not captured by x. To identify such a decomposition of the column space of B, our objective is
to split the term Bζ in the factor model (1.1) as

Bζ ≈ Ax+ Buζu, (1.2)

where the column space of A ∈ Rp×q is the subspace Hx and the column space of Bu ∈ Rp×dim(Hu)

is the subspace Hu, i.e., dim(column-space(A)) + dim(column-space(Bu)) = dim(column-space(B))
and column-space(A) ∩ column-space(Bu) = {0}. Since the number of latent variables ζ in the
factor model (1.1) is typically much smaller than p, the dimension of the column space of A is
also much smaller than p; as a result, if the dimension q of the additional covariates x is large,
the matrix A has small rank. Hence, the matrix A plays two important roles: its column space
(in Rp) identifies those components of the subspace B that are influenced by the covariates x, and
its rowspace (in Rq) specifies those components of (a potentially large number of) the covariates
x that influence y. Thus, the projection of the covariates x onto the rowspace of A represents the
interpretable component of the latent variables ζ. The term Buζu in (1.2) represents, in some sense,
the effects of those phenomena that continue to remain unobserved despite the incorporation of the
covariates x.

Motivated by this discussion, we fit observations of (y, x) ∈ Rp ×Rq to the following composite
factor model that incorporates the effects of the covariates x as well as of additional unobserved
latent phenomena on y:

y = Ax+ Buζu + ε̄ (1.3)

where A ∈ Rp×q with rank(A) � min{p, q}, Bu ∈ Rp×ku with ku � p, and the variables ζu, ε̄ are
independent of each other (and of x) and normally distributed as ζu ∼ N (0,Σζu), ε̄ ∼ N (0,Σε̄),
with Σζu � 0,Σε̄ � 0 and Σε̄ being a diagonal matrix. The matrix A may also be viewed as the
map specifying the best linear estimate of y based on x. In other words, the goal is to identify
a low-rank matrix A such that the conditional distribution of y|x (and equivalently of y|Ax) is
specified by a standard factor model of the form (1.3).

1.2 Composite Factor Modeling via Convex Optimization

Next we describe techniques to fit observations of y ∈ Rp and of (y, x) ∈ Rp × Rq) to the mod-
els (1.1) and (1.3) respectively. These methods are key subroutines in our algorithmic approach
for associating semantics to the latent variables in a factor model (see Section 3 for a high-level
discussion of our approach and Section 3 for a more detailed experimental demonstration). Fitting
observations of y ∈ Rp (or of (y, x) ∈ Rp×Rq) to the factor model (1.1) (or to (1.3)) is accomplished
by identifying a Gaussian model over y (or over (y, x)) with the covariance matrix of the model
satisfying certain algebraic properties. For background on multivariate Gaussian statistical models,
we refer the reader to [9]).

The covariance matrix of y in the factor model is decomposable as the sum of a low-rank matrix
BΣζB′ (corresponding to the k � p latent variables ζ) and a diagonal matrix Σε. Based on this
algebraic structure, a natural approach to factor modeling is to find the smallest rank (positive
semidefinite) matrix such that the difference between this matrix and the empirical covariance of
the observations of y is close to being a diagonal matrix (according to some measure of closeness,
such as in the Frobenius norm). This problem is computationally intractable to solve in general
due to the rank minimization objective [12]. As a result, a common heuristic is to replace the
matrix rank by the trace functional, which results in the minimum trace factor analysis problem
[10, 16, 17, 18]; this problem is convex and it can be solved efficiently. The use of the trace of a
positive semidefinite matrix as a surrogate for the matrix rank goes back many decades, and this
topic has received much renewed interest over the past several years [11, 7, 14, 3].

3



In attempting to generalize the minimum-trace factor analysis approach to the composite factor
model, one encounters a difficulty that arises due to the parametrization of the underlying Gaussian
model in terms of covariance matrices. Specifically, with the additional covariates x ∈ Rq in the
composite model (1.3), our objective is to identify a Gaussian model over (y, x) ∈ Rp × Rq with

the joint covariance Σ =

(
Σy Σyx

Σ′yx Σx

)
∈ Sp+q satisfying certain structural properties. One of these

properties is that the conditional distribution of y|x is specified by a factor model, which implies
that the conditional covariance of y|x must be decomposable as the sum of a low-rank matrix
and a diagonal matrix. However, this conditional covariance is given by the Schur complement
Σy −ΣyxΣ−1

x Σ′yx, and specifying a constraint on the conditional covariance matrix in terms of the
joint covariance matrix Σ presents an obstacle to obtaining computationally tractable optimization
formulations.

A more convenient approach to parameterizing conditional distributions in Gaussian models is
to consider models specified in terms of inverse covariance matrices, which are also called precision
matrices. Specifically, the algebraic properties that we desire in the joint covariance matrix Σ of
(y, x) in a composite factor model can also be stated in terms of the joint precision matrix Θ = Σ−1

via conditions on the submatrices of Θ =

(
Θy Θyx

Θ′yx Θx

)
. First, the precision matrix of the conditional

distribution of y|x is specified by the submatrix Θy; as the covariance matrix of the conditional
distribution of y|x is the sum of a diagonal matrix and a low-rank matrix, the Woodbury matrix
identity implies that the submatrix Θy is the difference of a diagonal matrix and a low-rank matrix.
Second, the rank of the submatrix Θyx ∈ Rp×q is equal to the rank of A ∈ Rp×q in non-degenerate
models (i.e., if Σ � 0) because the relation between A and Θ is given by A = −[Θy]

−1Θyx. Based
on this algebraic structure desired in Θ, we propose the following natural convex relaxation for
fitting a collection of observations {(y(i), x(i))} ⊂ Rp+q to the composite model (1.3):

(Θ̂, D̂y, L̂y) = arg min
Θ∈Sp+q , Θ�0
Dy ,Ly∈Sp

−`(Θ; {y(i), x(i)}ni=1) + λn[γ‖Θyx‖? + trace(Ly)]

s.t. Θy = Dy − Ly, Ly � 0, Dy is diagonal (1.4)

The term `(Θ; {y(i), x(i)}ni=1) is the Gaussian log-likelihood function that enforces fidelity to the
data, and it is given as follows (up to some additive and multiplicative terms):

`(Θ; {y(i), x(i)}ni=1) = log det(Θ)− trace

[
Θ · 1

n

n∑
i=1

(
y(i)

x(i)

)(
y(i)

x(i)

)′]
. (1.5)

This function is concave as a function of the joint precision matrix2 Θ. The matrices Dy, Ly
represent the diagonal and low-rank components of Θy. As with the idea behind minimum-trace
factor analysis, the role of the trace norm penalty on Ly is to induce low-rank structure in this
matrix. Based on a more recent line of work originating with the thesis of Fazel [7, 14, 3], the
nuclear norm penalty ‖Θyx‖? on the submatrix Θyx (which is in general a non-square matrix) is
useful for promoting low-rank structure in that submatrix of Θ. The parameter γ provides a tradeoff
between the observed/interpretable and the unobserved parts of the composite factor model (1.3),
and the parameter λn provides a tradeoff between the fidelity of the model to the data and the
overall complexity of the model (the total number of observed and unobserved components in the

2An additional virtue of parametrizing our problem in terms of precision matrices rather than in terms of covariance
matrices is that the log-likelihood function in Gaussian models is not concave over the cone of positive semidefinite
matrices when viewed as a function of the covariance matrix.
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composite model (1.3)). In summary, for λn, γ ≥ 0 the regularized maximum-likelihood problem
(1.4) is a convex program. From the optimal solution (Θ̂, D̂y, L̂y) of (1.4), we can obtain estimates
for the parameters of the composite factor model (1.3) as follows:

Â = −[Θ̂y]
−1Θ̂yx

B̂u = any squareroot of (D̂y − L̂y)−1 − D̂−1
y such that B̂u ∈ Rp×rank(L̂y),

(1.6)

with the covariance of ζu being the identity matrix of appropriate dimensions and the covariance
of ε̄ being D̂−1

y .
One can specialize the convex relaxation (1.4) for the composite factor model to obtain an

approach for fitting observations {y(i)}ni=1 to the factor model (1.1) without additional covariates:

( ˆ̃Dy,
ˆ̃Ly) = arg min

D̃y ,L̃y∈Sp
D̃y−L̃y�0

−`(D̃y − L̃y; {y(i)}ni=1) + λ̃ntrace(L̃y)

s.t. L̃y � 0, D̃y is diagonal. (1.7)

The parameter λ̃n provides a tradeoff between fidelity of the model to the observations and the
complexity of the model (i.e., the number of latent variables). In contrast to minimum-trace factor
analysis – in which the objective is to decompose a covariance matrix as the sum of a diagonal matrix
and a low-rank matrix [10, 16, 17, 18]– the regularized maximum-likelihood convex program (1.7)
fits factor models by decomposing a precision matrix as the difference between a diagonal matrix
and a low-rank matrix. As with the composite factor model, one can obtain estimates for the

parameters of the factor model (1.1) based on the optimal solution ( ˆ̃Dy,
ˆ̃Ly) of (1.7) as follows:

B̂ = any squareroot of
(

ˆ̃Dy − ˆ̃Ly

)−1
− ˆ̃D−1

y such that B̂ ∈ Rp×rank( ˆ̃Ly), (1.8)

with the covariance of ζ being the identity matrix of appropriate dimensions and the covariance of

ε being ˆ̃D−1
y .

The convex programs (1.4) and (1.7) are log-determinant semidefinite programs that can be
solved efficiently using existing numerical solvers such as the LogDetPPA package [20].

1.3 Our Results

Our discussion thus far has assumed that a factor model underlying a collection of variables y ∈ Rp
is given, and the objective is to obtain semantic interpretation of the latent variables. However, in
many situations, a factor model underlying y ∈ Rp may not be available in advance, and it must be
learned from observations of y ∈ Rp. We consider this latter more general setting for our theoretical
development as well as our experimental demonstration.

Conceptually, a natural (meta-)procedure for learning a factor model and then interpreting the
latent variables in this factor model is to proceed in two stages. In the first step, the analyst
identifies a factor model (1.1) based solely on observations of the variables y ∈ Rp using the
convex relaxation (1.7), which results in an estimate for a factor model underlying the variables
y. To attribute interpretable meaning to the latent variables in this factor model, the analyst
then obtains simultaneous measurements of the variables y as well as some additional covariates
x ∈ Rq of plausibly relevant phenomena. Based on these joint observations, the second step
consists of identifying a suitable composite factor model (1.3) via the convex program (1.4). In
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particular, we sweep over the parameters λn, γ in (1.4) to identify composite models that achieve
a suitable decomposition – in terms of effects attributable to the additional covariates x and of
effects corresponding to remaining unobserved phenomena – of the effects of the latent variables in
the factor model obtained in the first stage.

In Section 2 we carry out a theoretical analysis to investigate whether a two-stage framework
as outlined above can possibly succeed. If one identifies a factor model for a collection of variables
in the first step, are there conditions under which one can identify composite models satisfying the
requirements of the second stage, which would then serve to provide interpretations of the latent
variables? To address such questions, we discuss a model problem, which serves as the basis for the
main theoretical result in Section 2. Suppose we have Gaussian random vectors (y, x) ∈ Rp × Rq
that are related to each other via a composite factor model (1.3). Note that this composite factor
model induces a factor model underlying the variables y ∈ Rp upon marginalization of the covariates
x. Now consider the following two questions:

1. Given observations jointly of (y, x) ∈ Rp+q, does the convex relaxation (1.4) (for suitable
choices of regularization parameters λn, γ) estimate the composite factor model underlying
these two random vectors accurately?

2. Given observations of only the variables y, does the convex relaxation (1.7) (for an appropriate
choice of regularization λ̃n) estimate the factor model underlying y accurately?

An affirmative answer to both of these questions demonstrates the success of the two-stage
procedure outlined in the preceding paragraph. First, assume for simplicity that we are given the
factor model underlying y (obtained by marginalizing the covariates x). In other words, we are
supposing for now that we do not need to perform stage 1 in the approach outlined above. A
positive answer to Question (1) implies that we can decompose the effects of the latent variables in
the factor model underlying y using the convex relaxation (1.4), as the accurate estimation of the
composite model underlying (y, x) implies a successful decomposition of the effects of the latent
variables in the factor model underlying y. That is, stage 2 in the algorithmic framework above is
successful. Next, a positive answer to Question (2) implies that we can in fact estimate the factor
model underlying y from observations of the only the variables y (i.e., we do not need some sort of
oracle knowledge of this factor model in advance), and therefore stage 1 of our method described
above can be performed successfully.

In Section 2, we show that under suitable identifiability conditions on the population model
of the combined random vector (y, x), the convex programs (1.4) and (1.7) succeed in solving
these two questions. Our analysis is carried out in a high-dimensional asymptotic scaling setup in
which the dimensions p, q, the number of observations n, and other model parameters may all grow
simultaneously [2, 22].

The implementation of such a two-stage approach in practice requires the specification of several
further details, especially for the second step. In Section 3 we give a full algorithmic description of
our methodology as well as a concrete demonstration with experiments on real-world financial data.
Specifically, we consider as our variables y the monthly averaged stock prices of p = 66 companies
from the Standard and Poor index over the period June 1990 to July 2014, and we identify a
factor model (1.1) over y with 13 latent variables influencing the stock return. We then obtain
observations of q = 11 covariates on quantities related to oil trade, employment levels, etc. (see
Section 3 for the full list), as these plausibly influence the stock returns. By suitably employing the
convex relaxation (1.4) for composite factor modeling, we identify a two-dimensional projection of
these 11 covariates that represent an interpretable component of the 13 latent variables in the factor
model, as well as a remaining set of 11 latent variables that constitute phenomena not observed

6



via the covariates x. In further analyzing the characteristics of the two-dimensional projection, we
find that EUR to USD exchange rate and inflation rate are the most relevant of the 11 covariates
considered in our experiment, while gold prices and oil exports are less useful. See Section 3 for
complete details.

1.4 Related Work

Elements of our approach bear some similarity with canonical correlations analysis [8], which is a
classical technique for identifying relationships between two sets of variables. In particular, for a
pair of jointly Gaussian random vectors (y, x) ∈ Rp×q, canonical correlations analysis may be used
as a technique for identifying the most relevant component(s) of x that influence y. However, the
composite factor model (1.3) allows for the effect of further unobserved phenomena not captured via
observations of the covariates x. Consequently, our approach in some sense incorporates elements
of both canonical correlations analysis and factor analysis. It is important to note that algorithms
for factor analysis and for canonical correlations analysis usually operate on covariance and cross-
covariance matrices. However, we parametrize our regularized maximum-likelihood problem (1.7)
in terms of precision matrices, which is a crucial ingredient in leading to a computationally tractable
convex program.

The nuclear-norm heuristic has been employed widely over the past several years in a range of
statistical modeling tasks involving rank minimization problems; see [22] and the references therein.
The proof of our main result in Section 2 incorporates some elements from the theoretical analyses
in these previous papers, along with the introduction of some new ingredients. We give specific
pointers to the relevant literature in Section 4.

1.5 Notation

Given a matrix U ∈ Rp1×p2 , the norm ‖U‖`∞ denotes the largest entry in magnitude of U , and
the norm ‖U‖2 denotes the spectral norm (the largest singular value of U). We define the linear
operators F : Sp × Sp × Rp×q × Sq → S(p+q) and its adjoint F† : S(p+q) → Sp × Sp × Rp×q × Sq as
follows:

F(M,N,K,O) ,

(
M −N K
KT O

)
, F†

(
Q K
KT O

)
, (Q,Q,K,O) (1.9)

Finally, for any subspace H, the projection onto the subspace is denoted by PH.

2 Theoretical Results

In this section, we state theorems that address Questions (1) and (2) from Section 1.3. These
theorems require assumptions on the population precision matrix, which are discussed in Section 2.1,
with the theorem statements given in Section 2.2. The proofs of these theorems are given in Section 4
with some details deferred to the supplementary material. We confirm the theoretical predictions
of with numerical simulations on synthetic data in Section 2.3.

2.1 Technical Setup

As discussed in Section 1.3, our theorems are premised on the existence of a population composite
factor model (1.3) y = A?x + B?uζu + ε underlying a pair of random vectors (y, x) ∈ Rp × Rq,
with rank(A?) = kx, B?u ∈ Rp×ku , and column-space(A) ∩ column-space(Bu) = {0}. As the convex
relaxations (1.4) and (1.7) are solved in the precision matrix parametrization, the conditions for
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our theorems are more naturally stated in terms of the joint precision matrix Θ? ∈ Sp+q, Θ? � 0 of
(y, x). The algebraic aspects of the parameters underlying the factor model translate to algebraic
properties of submatrices of Θ?. In particular, the submatrix Θ?

yx has rank equal to kx, and the
submatrix Θ?

y is decomposable as D?
y − L?y with D?

y being diagonal and L?y � 0 having rank equal
to ku. Finally, the transversality of column-space(A) and column-space(Bu) translates to the fact
that column-space(Θ?

yx) ∩ column-space(L?y) = {0} have a transverse intersection.

To address the requirements raised in Question (1) in Section 1.3, we seek an estimate (Θ̂, D̂y, L̂y)
from the convex relaxation (1.4) such that rank(Θ̂yx) = rank(Θ?

yx), rank(L̂y) = rank(L?y), and that

‖Θ̂ − Θ?‖2 is small. To satisfy the requirements of Question (2) in Section 1.3, we first need to
consider the factor model underlying the random vector y ∈ Rp that is induced upon marginaliza-
tion of x. In particular, the precision matrix of y is given by Θ̃?

y = D?
y − L?y −Θ?

yx(Θ?
x)−1Θ?

xy, and

Question (2) asks whether we can obtain an estimate ( ˆ̃Dy,
ˆ̃Ly) such that rank( ˆ̃Ly) = rank(L?y +

Θ?
yx(Θ?

x)−1Θ?
xy), and the errors ‖( ˆ̃Dy −D?

y‖2, ‖
ˆ̃Ly)− [L?y + Θ?

yx(Θ?
x)−1Θ?

xy]‖2 are small.
Building on both classical statistical estimation theory [1] as well as the recent literature on

high-dimensional statistical inference [2, 22], we describe our conditions in terms of assumptions
on the Fisher information at the population model parametrized by the precision matrix Θ?:

I? = Θ?−1 ⊗Θ?−1.

Here the symbol ⊗ refers to the tensor product, and the Fisher information may be viewed as an
operator from the parameter space Sp+q to itself. From a mathematical programming perspective,
the importance of the Fisher information can be seen from the fact that the Hessian of the negative-
log-likelihood function (1.4) evaluated at Θ? is given by I?.

To ensure that the error term ‖Θ̂ − Θ?‖2 is small, a classical condition from the statistical
estimation literature is to control the minimum gain of the Fisher information I? [1]:

η?1 , min
M∈Sp+q ,‖M‖2=1

‖I?M‖2. (2.1)

From an optimization viewpoint, the condition that η?1 is large is useful in ensuring that the negative-
log-likelihood function at Θ? is sufficiently curved.

To further satisfy the requirements that rank(Θ̂yx) = rank(Θ?
yx), rank(L̂y) = rank(L?y) with the

convex relaxation (1.4) for the composite approach and that rank( ˆ̃Ly) = rank(L?y +Θ?
yx(Θ?

x)−1Θ?
xy)

with the relaxation (1.7) for the factor modeling approach, bounding the minimum gain quantity η?1
(2.1) from below is insufficient. To this end, we need to control two additional quantities associated
with the Fisher information I?. The first of these is the maximum inner-product between orthogonal
elements in Sp+q in the metric induced by the Fisher information I?:

η?2 , max
W⊂Sp+q

W is a subspace

max
M∈W,‖M‖2≤1

‖PW⊥I?PW(M)‖2 (2.2)

Assuming that η?2 is small ensures that errors in the estimation of the submatrix Θ?
yx do not impact

the estimation of the Θ?
y submatrix (and vice versa). Indeed, in the absence of an upper bound

on η?2, the effect of the term A?x (represented by the column space of the submatrix Θ?
yx) would

not be distinguishable from the effects of the conditional factor model B?uζu + ε (represented by the
submatrix Θ?

y).
The final parameter associated to the Fisher information that we need to control for our main

theorem is motivated by two concerns. First, we need to ensure that the diagonal and low-rank
components D?

y and L?y that compose the submatrix Θ?
y can be distinguished from each other
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(for Question (2)). For example, if the matrix L?y consists of just a single nonzero in one of
the diagonal entries and is zero elsewhere, identifying such a low-rank matrix from the difference
D?
y − L?y is impossible. Second, we require that the components D?

y and L?y + Θ?
yx(Θ?

x)−1Θ?
xy are

identifiable given D?
y−L?y−Θ?

yx(Θ?
x)−1Θ?

xy. These identifiability issues arising in the decomposition
of sums of diagonal (and, more generally, sparse) and low-rank matrices have been investigated
thoroughly [4, 15]. Specifically, the geometric insights in these papers imply that a natural condition
to ensure identifiability in such decomposition problems is to assume the transversality of the
intersection between the subspace of diagonal matrices in Sp and the tangent space with respect
to the algebraic variety of low-rank matrices at L?y (for the composite factor model, i.e. Question
(1)) or at L?y + Θ?

yx(Θ?
x)−1Θ?

xy (for the factor model, i.e., Question (2)). In particular, the tangent
space at a rank-r matrix N with respect to the algebraic variety of p1 × p2 matrices with rank less
than or equal to r is given by:

T (N) , {NR +NC |NR, NC ∈ Rp1×p2 ,
row-spaceNR ⊆ row-spaceN, column-spaceNC ⊆ column-spaceN}

The tangent space at L?y + Θ?
yx(Θ?

x)−1Θ?
xy contains inside it the tangent space at L?y as the

row/column spaces of L?y are contained inside the row/column spaces of L?y + Θ?
yx(Θ?

x)−1Θ?
xy (due

to the assumption above that
column-space(Θ?

yx) ∩ column-space(L?y) = {0}); consequently, we assume that the set of diagonal
matrices has a transverse intersection with the tangent space at L?y + Θ?

yx(Θ?
x)−1Θ?

xy (which allows
us to address the identifiability issues for both questions) by controlling the following parameter
associated to the Fisher information I? for some ω > 0 and for all subspaces T̃ ⊂ Sp “close to
T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy):

η3(T̃ ;ω) = max

{
max
M∈T̃
‖M‖2≤1

‖PdiagI?YM‖2, max
M is diagonal
‖M‖2≤1

‖PT̃ I
?
YM‖2

}
(2.3)

Here the operator Pdiag represents projection onto the space of diagonal matrices, and I?y = Θ̃−1
y ⊗

Θ̃−1
y represents the Fisher information with respect to the precision matrix Θ̃y of the random vector

y. The reason for considering the Fisher information with respect to the marginal precision matrix
corresponding to y is that the transversality conditions pertain only to the components of the
precision matrix of y. We bound the quantity η3(T̃ ;ω) for all spaces T̃ that are within a small
distortion of T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy):

η?3(ω) = max
ρ(T̃ ,T (L?y+Θ?yx(Θ?x)−1Θ?xy))≤ω

η3(T̃ ;w),

where the distortion ρ is measured via the following induced norm:

ρ(T1, T2) , max
‖N‖2≤1

‖(PT1 − PT2)(N)‖2.

The reason for considering such distortions around the tangent space T (L?y + Θ?
yx(Θ?

x)−1Θ?
xy) is

that the variety of low-rank matrix are locally curved around their smooth points. Consequently,
the tangent spaces at matrices in a neighborhood around L?y+Θ?

yx(Θ?
x)−1Θ?

xy having the same rank

are generally not the same as T (L?y + Θ?
yx(Θ?

x)−1Θ?
xy). In particular, the estimate ˆ̃Ly produced by
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the convex program (1.7) for the population low-rank matrix L?y + Θ?
yxΘ−1

x Θ?
xy may be such that

ˆ̃Ly ≈ L?y + Θ?
yxΘ−1

x Θ?
xy and rank( ˆ̃Ly) = rank(L?y + Θ?

yxΘ−1
x Θ?

xy), but it is generically the case that

T ( ˆ̃Ly) 6= T (L?y + Θ?
yxΘ−1

x Θ?
xy). Consequently, it is critical to control the quantity η3(T̃ ;ω) in (2.3)

for all T̃ near the tangent space T (L?y + Θ?
yx(Θ?

yx)−1Θ?
xy).

2.2 Theorem Statements

We now describe the performance of the regularized maximum-likelihood programs (1.4) and (1.7)
under suitable conditions on the quantities introduced in the previous section. Before formally
stating our main result, we introduce some notation. Let σy denote the minimum nonzero singular
value of L?y, let σyx denote the minimum nonzero singular value of Θ?

yx, and finally let σ denote

the minimum nonzero singular value of L?y + Θ?
yxΘ?

x
−1Θ?

yx
′. In the following theorem statements,

suppose that there exists α > 0, β ≥ 8, and ω ∈ (0, 1) such that the population Fisher information
I? satisfies the following properties: (i) η?1 ≥ 3α, (ii) η?2 ≤ 8α

3β , and (iii) η?3(ω) ≤ 2α
β . Theorem 2.1

pertains to the consistency of the estimator (1.4), and Theorem 2.2 relates to the consistency of
the estimator (1.7).

Theorem 2.1. Let m , max{1, 1
γ }, m̄ , max{1, γ}, and ψ , ‖(Θ?)−1‖2. Further, C1 = 24

α + 1
ψ2 ,

C2 = 4
α( 1

3β + 1), CσY = C2
1ψ

2 max{12β + 1, 2
C2ψ2 + 1}, CσYX = C2

1ψ
2 max{18β, 2

C2ψ2 + 6β},
Csamp = max{ 1

48ψβ , 48βψ3C2
1 , 8ψC2,

64ψ3C2

α }, and λupper = 1
mm̄2Csamp

. Suppose that the following

conditions hold:

1. n ≥ 4608ψ2β2m2(p+q)
λ2upper

; that is n &
[
β4

α2m
4m̄4

]
(p+ q)

2. λn ∈
[√

4608ψ2β2m2(p+q)
n , λupper

]
; e.g. λn ∼ βm

√
p+q
n

3. γ ∈
[
1, 8α

3βη?2

]
4. σY ≥ m

ω CσY λn; that is σY & β2

α2ω
m
√

p+q
n if λn ∼ βm

√
p+q
n

5. σY X ≥ m2CσYXγ
2λn; that is σY X & β2γ2α2m2

√
p+q
n if λn ∼ βm

√
p+q
n

Then with probability greater than 1− 2 exp{− nλ2n
4608β2m2ψ2 }, the optimal solution (Θ̂, D̂y, L̂y) of

(1.4) with i.i.d. observations {y(i), x(i)}ni=1 of (y, x) satisfies the following properties:

1. rank(L̂y) = rank(L?y), rank(Θ̂yx) = rank(Θ?
yx)

2. ‖D̂y −D?
Y ‖2 ≤ C1λn, ‖L̂y −L?y‖2 ≤ C1λn, ‖Θ̂yx −Θ?

yx‖2 ≤ C1λnγ, and ‖Θ̂x −Θ?
x‖2 ≤ C1λn;

that is ‖D̂y − D?
y‖2 . β

αm
√

p+q
n , ‖L̂y − L?y‖2 . β

αm
√

p+q
n , ‖Θ̂yx − Θ?

yx‖2 . β
αγm

√
p+q
n ,

‖Θ̂x −Θ?
x‖2 . β

αm
√

p+q
n if λn ∼ βm

√
p+q
n .

Theorem 2.2. Denote ψ̃ , ‖(Θ̃?
y)
−1‖2. Let C1 = 24

α + 1
ψ̃2

, C2 = 4
α( 1

3β +1), Cσ = C2
1 ψ̃

2 max{12β+

1, 2
C2ψ̃2

+ 1}, Csamp = max{ 1
48ψ̃β

, 48βψ̃3C2
1 , 8ψ̃C2,

64ψ̃3C2

α }, and λupper = 1
Csamp

. Suppose that the

following conditions hold:
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1. n ≥ 4608ψ̃2β2m2p
λ2upper

; that is n & β4

α2 p

2. λ̃n ∈
[√

4608ψ̃2β2p
n , λupper

]
; e.g. λ̃n ∼ β

√
p
n

3. σ ≥ 1
ωCσ λ̃n; that is σ & β2

α2ω

√
p
n if λ̃n ∼ β

√
p
n

Then with probability greater than 1− 2 exp{− nλ̃2n
4608β2ψ̃2

}, the optimal solution ( ˆ̃Dy,
ˆ̃Ly) of (1.7)

with i.i.d. observations {y(i)}ni=1 of y satisfies the following properties:

1. rank( ˆ̃Ly) = rank(L?y + Θ?
yxΘ?

x
−1Θ?

yx
−1)

2. ‖ ˆ̃Dy − D?
y‖2 ≤ C1λ̃n; ‖ ˆ̃Ly − L?y − Θ?

yxΘ?
x
−1Θ?

yx‖2 ≤ C1λ̃n; that is ‖ ˆ̃Dy − D?
y‖2 . β

α

√
p
n and

‖ ˆ̃Ly − L?y −Θ?
yxΘ?

x
−1Θ?

yx‖2 . β
α

√
p
n .

We outline the proof of Theorem 2.1 in Section 4. We omit the proof of Theorem 2.2 as it
follows a very similar sequence of steps to that of Theorem 2.1. The quantities α, β, ω as well as
the choices of parameters γ play a prominent role in our results. Indeed larger values of α, ω and
smaller values of β (leading to a better conditioned Fisher information even for large distortions
around the tangent space T (L?y + Θ?

yxΘ−1
x Θ?

xy)) lead to less stringent requirements on the sample
complexity, on the minimum nonzero singular value of σy of L?y, on the minimum nonzero singular
value of σ of L?y + Θ?

yxΘ−1
x Θ?

xy, and on the minimum nonzero singular value σyx of Θ?
yx.

2.3 Synthetic Simulations

In this section, we give experimental evidence for the consistency of our convex program (1.4)
and (1.7) on synthetic examples. Our choices of regularization parameters λn and γ (in the convex
program (1.4)) and λ̃n (in the convex program (1.7)) are guided by Theorem 2.1 and Theorem 2.2.
Specifically, the parameters λn and λ̃n are to be set in a manner that depends on the number of

observations n, and we choose these to be proportional to
√

p+q
n and

√
p
n , respectively. Further, the

theorems suggest that we should expect the ranks of the estimated solutions L̂y and Θ̂yx to be the
same for a range of values of γ when the correct underlying model structure is identified. Therefore,
we solve the convex program (1.4) for several values of γ, and choose a value for which the structure
of the estimated model remains the same for the largest contiguous range of values of γ. To solve
the convex programs (1.4) and (1.7) numerically, we use the special-purpose solver LogDetPPA [20].

We generate the population model Θ? =

(
D?
y − L?y Θ?

yx

Θ?
yx
′ Θ?

x

)
as follows: we fix the number of

responses to be p = 40 and the number of covariates to be q = 10. We then generate a random
Gaussian matrix W ∈ Rp×ku and let L?y = WW ′. We let D?

y = µIp where µ is chosen to be twice the

largest eigenvalue of L?y. We also generate random Gaussian matrices W̃ ∈ Rp×ku and Z ∈ Rq×ku
and let Θ?

yx = W̃Z ′. Finally, we let Θ?
x = Θ?

xyΘ
?
y
−1Θ?

yx + δIq where δ is chosen large enough so
that the overall matrix Θ? has a condition number that is relatively small (in our examples, we
chose δ so that the condition number is less than 20). This approach generates a composite factor
model (1.3) with rank(A) = kx and B̃ ∈ Rp×ku , and a factor model (1.1) with k = kx + ku latent
factors. We obtain three models with (kx, ku) = (1, 1), (kx, ku) = (1, 2), and (kx, ku) = 2. For each

11



model, we generate n samples of responses y and covariates x, and use these observations as input to
convex programs (1.4) and (1.7). Figure 1(a) shows the probability of obtaining structurally correct

estimates of the factor model parameters using (1.7) (i.e. rank( ˆ̃Ly) = rank(L?y +Θ?
yxΘ−1

x Θ?
yx
′)) and

Figure 1(b) shows the probability of obtaining structurally correct estimates of the composite factor
model (i.e. rank(L̂y) = rank(L?y) and rank(Θ?

yx) = rank(Θ̂yx)). These probabilities are evaluated
over 10 experiments for each value of n. These results agree with our theoretical results that given
(sufficiently many) samples of responses/covariates, the convex programs (1.7) and (1.4) provide
structurally correct estimates of a factor model (1.1) and composite factor model (1.3), respectively.
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Figure 1: Synthetic data: plot shows probability of correct structure recovery in factor model and composite
factor model. The three models studied are (i) (kx, ku) = (1, 1), (ii) (kx, ku) = (2, 1), and (iii) (kx, ku) =
(2, 2). For each plotted point, the probability of structurally correct estimation is obtained over 10 trials.

3 Identifying Latent Factors Influencing Stock Returns

Recall from Section 1.3 that our approach to associate semantics to latent variables in a factor
model is a two-stage process. In the first stage, we identify a factor model based on observa-

tions of y using the convex relaxation (1.7), which results in an estimate ( ˆ̃Dy,
ˆ̃Ly). In the the

second step, we use simultaneous observations of y and some additional covariates x to identify
a composite factor model using the convex relaxation (1.4) with the resulting estimates being
(Θ̂, D̂y, L̂y). As discussed in Section 2 the composite factor model of (y, x) offers an interpretation

of the latent variables of the factor model underlying y if (i) rank( ˆ̃Ly) = rank(L̂y + Θ̂yxΘ̂−1
x Θ̂xy),

(ii) column-space(Θ̂yx) ∩ column-space(L̂y) = {0}, and

(iii) max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y − Θ̂yxΘ̂−1
x Θ̂xy]‖2/‖ ˆ̃Ly‖2} is small. These observations nat-

urally lead to the following algorithmic approach:
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Algorithm 1 Interpreting Latent Variables in a Factor Model

1: Input: A collection of observations {(y(i), x(i))}ni=1 ⊂ Rp × Rq of the variables y and of some
auxiliary covariates x.

2: Factor Modeling: Supply observations {y(i)}ni=1 to the convex program (1.7) to learn a factor

model with parameters ( ˆ̃Dy,
ˆ̃Ly).

3: Composite Factor Modeling: For each d = 1, . . . , q, sweep over parameters (λn, γ) in the
convex program (1.4) (with {y(i), x(i))}ni=1 as input) to identify composite models with estimates

(Θ̂, D̂y, L̂y) that satisfy the following three properties: (i) rank(Θ̂yx) = d, (ii) rank( ˆ̃Ly) =

rank(L̂y) + rank(Θ̂yx), and (iii) rank( ˆ̃Ly) = rank(L̂y + rank(Θ̂yxΘ̂−1
x Θ̂xy)).

4: Identifying Subspace: For each d = 1, . . . , q and among the candidate composite mod-
els (from the previous step), choose the composite factor model that minimizes the quantity

max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y − Θ̂yxΘ̂−1
x Θ̂xy]‖2/‖ ˆ̃Ly‖2}.

5: Output: For each d = 1, . . . q, the d-dimensional projection of x into the row-space of Θ̂yx

represents the interpretable component of the latent variables in the factor model.

We note that in some cases, a factor model is obtained off-line based on scientific considerations.
In these situations, one would proceed to step 3 of the algorithm. Typically, however, factor models
are learned in a data-driven approach based on observations of responses {(y(i)}ni=1. We from
step 2 of the algorithm that our approach to learn a factor model via the convex program (1.7)
requires the specification of the regularization parameter λ̃n. In our experimental results on the
financial asset dataset, we choose this parameter via cross-validation techniques. Further, we note
that the effectiveness of this algorithm in identifying semantics to latent variables in the input

factor model is largely dependent on the size of the quantity max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y −
Θ̂yxΘ̂−1

x Θ̂xy]‖2/‖ ˆ̃Ly‖2}. Indeed, the smaller this quantity, the more confidence one should have
that the composite factor model has attributed meaning to some component of the latent variables
in the factor model.

3.1 Experimental Results on Financial Asset Data

We demonstrate the utility of our algorithmic approach in a financial asset data analysis problem.
Specifically, we consider as our responses y the monthly stock return of p = 66 companies from
the Standard and Poor index over the period June 1990 to July 2014, which leads to a total of
n = 277 observations. We also obtain monthly observations over the same period of the following
q = 11 covariates, consumer price index, EUR to USD exchange rate, federal reserve rate, gold
prices, industrial production, inflation rate, mortgage rate, oil exports, oil imports, treasury rate,
and unemployment rate. These covariates were chosen because they plausibly influence the values
of stock prices. For the purposes of our experiments, we set aside a random subset of ntrain = 227
of these observations as a training set and the remaining subset of ntest = 50 as the test set. Similar
to synthetic simulations in Section 2.3, we solve the convex program (1.4) and (1.7) numerically
using the LogDetPPA package [20].

We begin by the second step of our algorithm which is to identify a factor model (1.1) that
is well-suited for modeling stock returns. We find such a factor model by solving the convex
program (1.7) where the regularization parameter λ̃n is chosen via cross-validation. Concretely,
for a particular choice of λ̃n, we use the training set {yjtrain}222

j=1 ∈ R67 as input to the convex
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program (1.4), and solve (1.4) to obtain a factor model specified by ( ˆ̃Dy,
ˆ̃Ly). We then compute the

average log-likelihood over the testing set {yjtest}50
j=1 ∈ R67 using the distribution specified by the

precision matrix ˆ̃Dy− ˆ̃Ly. We perform this procedure as we vary λ̃n from 0.04 to 4 in increments of

0.004. Figure 2 shows a plot of rank( ˆ̃Ly)) (i.e. number of latent factors) vs. average log-likelihood
performance on the testing set. Notice that fixing the number of latent factors does not lead to
a unique factor model as varying the regularization parameter λ̃n may lead to a change in the

estimated model, but no change in its structure (i.e. rank( ˆ̃Ly) remains the same). As larger values
of average log-likelihood are indicative of a better fit to test samples, these results suggest that 12
or 13 latent factors influence stock prices. We thus focus on associating semantics to the factor
model with the largest average log-likelihood performance that consists of 12 latent factors, and the
factor model with the largest average log-likelihood performance that consists of 13 latent factors.
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Figure 2: Number of latent factors vs. average log-likelihood over testing set. These results are obtained by
sweeping over parameters λ̃n ∈ [0.04, 4] in increments of 0.004 and solving the convex program (1.7)

.

We now proceed with the third step of our algorithm. Using joint observations of responses
and covariates {yjtrain, x

j
train}227

j=1 as input to the convex program (1.4) , we perform an exhaustive

sweep over parameter space (λn, γ) to learn composite models with estimates (Θ̂, D̂y, L̂y) such that
rank(Θ̂) = 1, 2, . . . 11, and rank(L̂y) = 1, 2, . . . 12. As we are interested comparing these composite
models to the factor model with 12 or 13 latent variables, we finely grid the parameter space
(λn, γ) so that there are a large number of models for which rank(Θ̂) + rank(L̂y) is equal to 12 or
13. Among these models, we restrict to those that satisfy the conditions of step 3 of the algorithm.
Table 1 shows the number of models that satisfy these conditions for rank(Θ̂yx) = 1, . . . , 5. For
each d = 1, . . . , 11, we then identify the composite factor model which minimizes the quantity

max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y − Θ̂yxΘ̂−1
x Θ̂′yx]‖2/‖ ˆ̃Ly‖2}. Table 2 and Table 3 show the values

of this quantity for rank(Θ̂yx) = 1, . . . , 5 with respect to the factor model with 12 and 13 latent
variables, respectively.
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(rank(Θ̂yx), rank(L̂y)) # models satisfying conditions of step 2.

(1,11) 261
(1,12) 174
(2,10) 84
(2,11) 126
(3,9) 112
(3,10) 84
(4,8) 144
(4,9) 72
(5,7) 4
(5,8) 64

Table 1: Number of composite factor models with rank(Θ̂yx) = 1, . . . , 5 that satisfy the requirements of step
2 in the algorithm description at the beginning of this section (for the factor model with 12 or 13 latent
variables).

(rank(Θ̂yx), rank(L̂y)) max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y − Θ̂yxΘ̂−1
x Θ̂′yx]‖2/‖ ˆ̃Ly‖2}

(1,11) 0.08
(2,10) 0.17
(3,9) 0.26
(4,8) 0.31
(5,7) 0.43

Table 2: Deviation of the candidate composite factor model from the factor model consisting of 12 latent
variables

(rank(Θ̂yx), rank(L̂y)) max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y − Θ̂yxΘ̂−1
x Θ̂′yx]‖2/‖ ˆ̃Ly‖2}

(1,12) 0.004
(2,11) 0.08
(3,10) 0.17
(4,9) 0.26
(5,8) 0.31

Table 3: Deviation of the candidate composite factor model from the factor model consisting of 13 latent
variables

Focussing on the case corresponding to which we identified a 13-factor model underlying y,
the results of Table 3 suggest that we identify a 2-dimensional interpretable component of the 13

latent variables as the deviation max{‖ ˆ̃Dy − D̂y‖2/‖ ˆ̃Dy‖2, ‖ ˆ̃Ly − L̂y − Θ̂yxΘ̂−1
x Θ̂′yx]‖2/‖ ˆ̃Ly‖2} on

the right-hand-side of this table is small as long as rank(Θ̂yx) = 1, 2. For rank(Θ̂yx) = 3, 4, 5, the
deviation appears to be quite large and may not lead to meaningful conclusions.

As a final step of the algorithm, we investigate the properties of the two-dimensional row-space
of Θ̂yx to shed some light on those covariates that appear to play a significant role in capturing
some of the latent phenomena in the 13-factor model. In particular, for the composite factor model
with (rank(Θ̂yx), rank(L̂y)) = (2, 11) (second row in Table 3), we let V ∈ R11×2 denote a matrix
with orthogonal, unit-norm columns such that V the columns of V form a basis for the row space of
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Θ̂yx (such a matrix may be computed, for example, via the singular value decomposition). Recall
that V x represents the component of the 13 latent variables that is interpretable via the covariates
x. We then consider the Euclidean-squared-norm of the i-th row of V , as this specifies the relative
strength of the i-th covariate. As shown in Table 4, all covariates have some contribution (as we
allow general linear combinations of the covariates x in the composite factor model (1.3)). However,
the covariates exchange rate, inflation rate, and oil imports seem to be the most relevant, and the
covariates gold prices and oil exports seem to be the least relevant.

covariate strength

CPI 0.07
exchange rate 0.18

federal reserve rate 0.06
gold prices 0.04

industrial production 0.09
inflation rate 0.15
mortgage rate 0.07

oil exports 0.02
oil imports 0.15

treasury rate 0.08
unemployment 0.07

Table 4: Strength of each covariate in the composite factor model with 2-dimensional projection of covariates
and 11 latent variables

4 Proofs of Main Results

4.1 Proof Strategy

Under assumptions of Theorem 1, we construct appropriate primal feasible variables (Θ̂, D̂y, L̂y)
that satisfy the conclusions of the theorem - i.e., Θ̂yx, L̂y are low-rank (with the same ranks as the
underlying population quantities Θ?

yx and L?y) - and for which there exists a corresponding dual
variable certifying optimality. This proof technique is sometimes also referred to as a primal-dual
witness or certificate approach [21]. The high-level proof strategy is similar in spirit to the proofs
of consistency results for sparse graphical model recovery [5] and latent variable graphical model
recovery [2], although our convex program and the conditions required for its success are different
from these previous results‘. Consider the following convex program

(Θ̂, D̂y, L̂y) = arg min
Θ∈Sp+q , Θ�0
Dy ,Ly∈Sp

−`(Θ; {y(i), x(i)}ni=1) + λn[γ‖Θyx‖? + ‖Ly‖?]

s.t. Θy = Dy − Ly, Dy is diagonal (4.1)

Comparing (4.1) with the convex program (1.4), the difference is that we no longer constrain
Ly to be a positive semidefinite matrix. In particular, if Ly � 0, then the nuclear norm of the
matrix Ly in the objective function of (6.5) reduces to the trace of Ly. We show in the appendix
that with high probability, the matrix L̃y is positive semidefinite. Standard convex analysis states
that (Θ̂, D̂y, L̂y) is the solution of the convex program (4.1) if there exists a dual variable Λ ∈ Sp
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with the following optimality conditions being satisfied:

[Σn − Θ̂−1]y + Λ = 0 ; [Σn − Θ̂−1]y ∈ λn∂‖L̂y‖?
[Σn − Θ̂−1]yx ∈ −λnγ∂‖Θ̂yx‖? ; [Σn − Θ̂−1]x = 0

Θ̂y = D̂y − L̂y; D̂y is diagonal ; Λi,i = 0 for i = 1, 2, . . . p

Recall that elements of the subdifferential with respect to nuclear norm at a matrix M have the
key property that they decompose with respect to the tangent space T (M). Specifically, the
subdifferential with respect to the nuclear norm at a matrix M with (reduced) SVD given by
M = UQV T is as follows:

N ∈ ∂‖M‖? ⇔ PT (M)(N) = UV T , ‖PT (M)(N)‖2 ≤ 1,

where P denote a projection operator. Let us denote the subspace W ∈ Sp as the set of diagonal
matrices with nonnegative entries. Let SVD of L̂y and Θ̂yx be given by L̂y = ŪQ̄V̄ ′ and Θ̂yx =
ŬQ̆V̆ ′ respectively, and Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0). Setting Λ = [Σn − Θ̂−1]Y,off diagonal, and

letting H = W × T (L̂y)× T (Θ̂yx)× Sq, the optimality conditions of (4.1) can be reduced to:

1. PHF†(Σn − Θ̂−1) = Z

2. ‖PT (L̂y)⊥(Σn − Θ̂−1)y‖2 < λn; ‖PT (Θ̂yx)⊥(Σn − Θ̂−1)yx‖2 < λnγ

Our analysis proceeds by constructing variables (Θ̂, D̂y, L̂y) that satisfy the optimality condi-
tions specified above. Consider the optimization program (4.1) with additional (nonconvex) con-
straints that Ly and Θyx belong to algebraic variety of low rank matrices specified by L?y and Θ?

yx.
While this new program is nonconvex, it has a very interesting property that at the global optimal
solution (and indead at any locally optimal solution) L̃y and Θ̃yx are smooth points of their re-
spective algebraic varieties. This observation suggests that the Lagrange multipliers corresponding
to the additional variety constraints belongs to T (L̃y)

⊥ and T (Θ̃yx)⊥ respectively. We show under
suitable conditions that (Θ̃, D̃y, L̃y) also satisfy the second optimality condition of (4.1) correspond-
ing to the tangent spaces T (L̃y)

⊥ and T (Θ̃yx)⊥. Thus (Θ̃, D̃y, L̃y) is a unique solution of (1.4) and
as constructed, is algebraically consistent (i.e. rank(L̃y) = rank(L?y) and rank(Θ̃yx) = rank(Θ?

yx))

4.2 Results proved in the supplementary material

To ensure that the estimate Θ̂ is close to the population quantity Θ?, the quantity E = Θ̂ − Θ?

must be small. Since the optimality conditions of (4.1) are stated in terms of Θ̂−1, we bound the
deviation between Θ̂−1 and Θ?−1. Specifically, the Taylor series expansion of Θ̂−1 around Θ? is
given by:

Θ̂−1 = (Θ? + E)−1 = Θ?−1 + Θ?−1EΘ?−1 +RΣ?(E)

where, RΣ?(E) = Σ?
[∑∞

k=2(−EΘ?)k
]
. Recalling that I? = Θ? ⊗ Θ?, we note that Θ̂−1 − Θ?−1 =

I?E + RΣ?(E). In Section 2, we imposed a set of conditions on η?1, η
?
2 in (2.1) and (2.2) so that I?

is globally well-conditioned, as well a condition on η?3(ω) in (2.3) to address identifiability issues in
the diagonal-minus-low-rank decomposition. These conditions allow us to control I?(E) when E is
restricted to certain directions. We bound the remainder term RΣ?(E) in Proposition 4.1 where E
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is restricted to live in a certain space. Specifically, consider the following constrained optimization
program:

(Θ̃, D̃y, L̃y) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ; {x(i), y(i)}ni=1) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Dy, Ly,Θyx,Θx) ∈ H′ (4.2)

Here H′ = W × T ′y × T ′yx × Sq, where T ′y is a subspace in Sp, and T ′yx is a subspace in Rp×q. Let

∆ = (D̃y −D?
y, L̃y − L?y, Θ̃yx − Θ?

yx, Θ̃x − Θ?
x) denote the error in the estimated variables. In the

following proposition, we bound the remainder term RΣ?(F(∆)) defined earlier. Before we proceed,
we define the following norm on Sp × Sp × Rp×q × Sq that is useful in our analysis:

Φγ(Dy, Ly,Θyx,Θx) = max
{
‖Dy‖2, ‖Ly‖2,

1

γ
‖Θyx‖2, ‖Θx‖2

}
. (4.3)

Notice this norm is a slight variant of the dual norm of the regularizer ‖Ly‖? + γ‖Θ‖? in (4.2).

Proposition 4.1. Let C ′ = (3 + γ)ψ. If Φγ [∆] ≤ 1
2C′ , then Φγ [F†RΣ?(F(∆))] ≤ 2mψC ′2Φδ,γ [∆]2.

Notice the bound on RΣ?(F(∆)) is dependent on the error term Φγ [∆]. In the following
proposittion, we bound this error so that we can control the remainder term. Specifically, sup-
pose we let T ′y and T ′yx be tangent spaces to the low-rank matrix varieties and ρ(T ′y, T (L?y)) ≤ ω.
Let En = Σ? − Σn denote the difference between the true joint covariance and the sample covari-
ance and let CT = (0 ,PT ′y⊥(L?y),PT ′yx⊥(Θ?

yx), 0). The proof of the following result uses Brouwer’s

fixed-point theorem, and is inspired by the proof of a similar result in [5, 2].

Proposition 4.2. Define:

r = max
{ 4

α

(
Φγ [F†En] + Φγ [F†I?FCT ] + λn

)
, Φγ [CT ]

}
(4.4)

If r ≤ min{ 1
4C′ ,

α
16mψC′2 }, then Φγ [F†∆] ≤ 2r.

In the following proposition, we prove algebraic correctness of program (6.9). The statement
theorem relies on the following constants:

C ′σyx = C2
1ψ

2 max{12β + 6β
γ ,

2
C2ψ2 + 6β

γ }, and C ′samp = max{ 1
48ψβ , 4C2C

′, 32mψC′2C2

α ,

12βmψC ′2C2
2}.

Proposition 4.3. Suppose γ is chosen in the range specified in Theorem 2.1 and σy ≥ m
ω Cσyλn,

σyx ≥ mγ2C ′σyxλn. Further, suppose λn is chosen so that λn ≤ 1
C′samp

. Then, there exists tangent

space T ′y ⊂ Sp in the rank-ku variety (ku = rank(L?y)) and tangent space T ′yx ⊂ Rp×q in rank kx-

variety (kx = rank(Θ?
yx)) where ρ(T ′y, T (L?y)) ≤ ω such that the corresponding solution (Θ̂, Ŝy, L̂y)

satisfies the following properties:

1. rank(L̂y) = rank(L?y) and rank(Θ̂yx) = rank(Θ?
yx)

2. Letting CT = (0 , PT ′y⊥(L?y) , PT ′yx⊥(Θ?
yx) , 0), we have that Φγ [F†I?F(CT )] ≤ λn

6β and

Φγ [CT ] ≤ 16α
3β λn

3. Φγ [∆] ≤ 2C1λn
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Furthermore, suppose that Φγ(A†En) ≤ λn
6β and Φγ [F†RΣ?(F(∆))] ≤ λn

6β . Then the tangent space

constraints (Dy, Ly,Θyx,Θx) ∈ H′ in (4.2) is inactive, so that (Θ̃, D̃y, L̃y) is the unique solution of
the original convex program (1.4).

Thus far, the analysis of the convex program so has been deterministic in nature. In the following
proposition, we present the probabilistic component of our analysis by showning the rate at which
the sample covariance matrix Σn converges to Σ? in spectral norm. This result is well-known and
is a specialization of a result proven by [3].

Proposition 4.4. Suppose that the number of observed samples obeys
n ≥ 4608β2m2ψ2C2

samp(p+ q), and the regularization parameter λn is chosen in the range specified

by Theorem 1. Then, with probability greater than 1− 2exp
{
− nλ2n

4608β2m2ψ2

}
, Φγ [F†En] ≤ λn

6β .

4.3 Proof of Theorem 1

Noting that C ′ ≤ 4ψm̄, the constants CσYX′ and Csamp′ in Proposition 4.3 can be related to
constants Cσyx and Csamp in Theorem 1 as follows: Cσ′yx ≤ mCσyx and C ′samp ≤ mm̄2Csamp. Using
these relations, it is easy to check that the assumptions of Theorem 1 imply that the assumptions
of Proposition 4.3 are satisfied. Thus we can conclude that the optimal solution (Θ̃, D̃y, L̃y) of (6.5)
(with a particular choice of tangent spaces T ′y and T ′yx) satisfy results of Proposition 4.3. Further, by

appealing to Proposition 4.4, we have that Φγ(F†En) ≤ λn
6β . If we show that Φγ [F†RΣ?(∆)] ≤ λn

6β ,

then we conclude that the unique optimum (Θ̂, D̂y, L̂y) of the original convex program (1.4) has
structurally correct structure (i.e. rank(L̂y) = rank(L?y) and rank(Θ̂yx) = rank(Θ?

yx)). To show

that Φγ [F†RΣ?(∆)] ≤ λn
6β , we note that

4

α

(
Φγ [F†En] + Φγ [F†I?FCT ] + λn

)
≤ 4

α

(λn
6β

+
λn
6β

+ λn

)
≤ 16α

3β
λn

≤ min{ 1

4C ′
,

α

16mψC ′2
}

Here, we used the bound on Φγ [F†I?FCT ] provided by Proposition 4.3 and the bound on λn. Fur-
thermore, appealing to Proposition 4.3 once again, we have Φγ [CT ] ≤ 16α

3β λn ≤ min{ 1
4C′ ,

α
16mψC′2 }.

Thus Proposition 4.2 provides us with the bound Φγ [∆] ≤ 32α
3β λn ≤

1
2C′ . We subsequently apply

the results of Proposition 4.1 to obtain:

Φγ [F†RΣ?(F(∆))] ≤ 2mψC ′2Φδ,γ [∆]2 ≤
[
2mψC ′2(

32α

3β
)2λn

]
λn ≤

λn
6β

The last inequality follows from the bound on λn.

5 Discussion

In this paper we describe a new approach for interpreting the latent variables in a factor model. Our
method proceeds by obtaining observations of auxiliary covariates that may plausibly be related
to the observed phenomena, and then suitably associating these auxiliary covariates to the latent
variables. The procedure involves the solutions of computationally tractable convex optimization
problems, which are log-determinant semidefinite programs that can be solved efficiently. We give
both theoretical as well as experimental evidence in support of our methodology. Our technique
generalizes transparently to other families beyond factor models such as latent-variable graphical
models [2], although we do not pursue these extensions in the present article.
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6 Supplementary Material

In the following Proposition, we appeal to conditions on η?1, η
?
2, η

?
3 to prove a set of irrepresentability-

type conditions on the population Fisher information I?.

Proposition 6.1. Suppose that η?1 ≥ 3α, η?2 ≤ 8α
3β and η?3(ω) ≤ 2α

β (where these conditions were
defined in Section 2.2). Further, suppose that the regularization parameter γ is chosen in the
range specified in Theorem 2.1. Then we have that the following two conditions hold for H′ =
W ×T ′y ×T ′yx× Sq ⊂ Sp× Sp×Rp×q × Sq where ρ(T (L?y), T

′
y) ≤ ω and T ′yx is any subspace in Rp×q:

1. The minimum gain of I? restricted to H′ is bounded below:

min
(Dy ,Ly ,Θyx,Θx)∈H′

Φγ(Dy ,Ly ,Θyx,Θx)=1

Φγ [PH′I†I?IPH′(Dy, Ly,Θyx,Θx)] ≥ α (6.1)

2. The effect of elements in H′ on the orthagonal complement H′⊥ is bounded above:

max
Z∈H′; Φγ(Z)=1

Φγ [PH′⊥I†I?IPH′(PH′I†I?IPH′)−1(Z)] ≤ 1− 3

β + 1
(6.2)

Although conditions (6.1) and (6.2) are satisfied for all subspaces T ′yx ⊂ Rp×q, we specialize
these to tangent spaces of low-rank matrix variety. Conditions (6.1) and (6.2) are analogous to con-
ditions that play an important role in the analysis of the Lasso for sparse linear regression, graphical
model selection via the Graphical Lasso [5], and in several other approaches for high-dimensional
estimation. As a point of comparison with respect to analyses of the Lasso, the role of the Fisher
information I? is played by ATA, where A is the underlying design matrix. In analyses of both
the Lasso and the Graphical Lasso in the papers referenced above, the analog of the subspace H
is the set of models with support contained inside the support of the underlying sparse population
model. Assumptions 1 and 2 are also similar in spirit to conditions employed in the analysis of
convex relaxation methods for latent-variable graphical model selection [2].

Proof. First, consider an arbitrary subspace S ∈ Sp+q. Let M ∈W with ‖M‖2 = 1. Then,

‖PSI?M‖2 ≥ ‖I?(M)‖2 − ‖PW⊥I?PW(M)‖2 ≥ 3α− α(1− 3

β + 1
) ≥ 2α

In the subsequent discussion in this section, we employ the following notation to denote restrictions
of a subspace H = H1×H2×H3×H4 ⊂ Sp× Sp×Rp×q × Sq (here H1, H2, H3, H4 are subspaces in
Sp,Sp,Rp×q,Sq, respectively) to its individual components. The restriction to the first component
of H is given by H[1] = H1×{0}×{0}×{0} ⊂ Sp×Sp×Rp×q×Sq. The restrictions H[2],H[3],H[4]
to the other components of H are defined in an analogous manner. Let H′ = W × T ′y × Rp×q × Sq
with ρ(T ′y, T (L?y)) ≤ ω. Recall, the subspace W is the set of diagonal matrices with nonnegative
entries. Consider a set of variables (Dy, Ly,Θyx,Θx) ∈ H′ with ‖Dy‖2 ≤ 1, ‖Ly‖2 ≤ 1, ‖Θyx‖2 ≤
γ, and ‖Θyx‖2 ≤ 1. Suppose equality holds in at least one of these set of inequalities so that
Φγ(Dy, Ly,Θyx,Θx) = 1. Then, at least one of the following cases is active (the following results
use conditions on η?1, η?2 and η?3(ω) and Proposition 1 (main paper)) :
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1. If ‖Dy‖2 = 1, then

‖PH′[1]I?F(Dy, Ly,Θyx,Θx)]‖2 ≥
[
‖PW I?y(Dy)‖2 − ‖PW I?y(L)‖2

−‖PH′[1]I?F(0, 0,Θyx,Θx)‖2
]
≥ 2α− η?3 − 2η?2 max{γ, 1}

≥ 2α− 8α

β

2. If ‖Ly‖2 = 1, then

‖PH′[2]I?F(Dy, Ly,Θyx,Θx)]‖2 ≥
[
‖PT ′yI

?
y(Ly)‖2 − ‖PT ′yI

?
y(Dy)‖2

−‖PH[2]I?F(0, 0,Θyx,Θx)‖2
]
≥ 2α− η?3 − 2η?2 max{γ, 1}

≥ 2α− 8α

β

Similarly, one can show

3. If ‖Θyx‖2 = γ, then 1
γ ‖PH[3]I?F(Dy, Ly,Θyx,Θx)]‖2 ≥ 2α− 8α

β

4. If ‖Θx‖2 = 1, then ‖PH[4]I?F(Dy, Ly,Θyx,Θx)]‖2 ≥ 2α− 8α
β

Combining these results, one can conclude that

Φγ [PH′A†I?APH′(Dy, Ly,Θyx,Θx)] ≥ 2α− 8α

β
≥ α (6.3)

Using a similar decoupling technique, it is easy to check that:

Φγ

[
PH′⊥ [F†I?F(Dy, Ly,Θyx,Θx)]

]
≤ η?2 +

8α

β
≤ 8α

3β
+

8α

β
(6.4)

Letting Z = (Dy, Ly,Θyx,Θx), we use (6.3) and (6.4) to conclude:

Φγ [PH′⊥A†I?APH′(PH′A†I?APH′)−1(Z)] ≤
8α
3β + 8α

β

2α − 8α
β

≤ 1− 3

1 + β

6.1 Proof of main paper Proposition 1 – bounding curvature of the matrix
inverse

Let (D̃y, L̃y, Θ̃yx, Θ̃x) be an estimate for the population quantities
(D?

y, L
?
y,Θ

?
yx,Θ

?
x), and let ∆ = (D̃y − D?

y, L̃y − L?y, Θ̃yx − Θ?
yx, Θ̃x − Θ?

x) ⊂ Sp × Sp × Rp×q × Sq,
recall that the taylor expansion of the inverse of matrix perturbation is specified by:

Θ̃−1 = (Θ? + F(∆))−1 = Θ?−1 + Θ?−1F(∆)Θ?−1 +RΣ?(F(∆))

where,

RΣ?(F(∆)) = Σ?
[ ∞∑
k=2

(−F(∆)Σ?−1)k
]
.

The following proposition provides a bound on this second order term:
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Proposition 6.2. If Φγ [∆] ≤ 1
2C′ , then Φγ [F†RΣ?(F(∆))] ≤ 2mψC ′2Φγ [∆]2.

Proof. We note that:

‖∆‖2 ≤ ‖∆Dy‖`∞ + ‖∆Ly‖2 + ‖∆Θyx‖2 + ‖∆Θx‖2 ≤ (3 + γ)Φγ(∆)

Using this observation and some algebra, we have that:

Φγ [F†RΣ?(F(∆))] ≤ mψ
[ ∞∑
k=2

(ψ‖∆‖2)k
]
≤ mψ3 (3 + γ)2Φγ [∆]2

1− (3 + γ)Φγ [∆]ψ

≤ 2mψC ′2Φγ [∆]2

6.2 Proof of main paper Proposition 2

Next, we analyze the following convex program subject to certain additional tangent space con-
straints:

(Θ̃, S̃y, L̃y) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ; {X(i), Y (i)}ni=1) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Dy, Ly,Θyx,Θx) ∈ H′ (6.5)

where H′ = W × T ′y × T ′yx × Sq and T ′y ⊂ Sp and T ′yx ⊂ Rp×q are subspaces. In the following
proposition, we show that if T ′y and T ′yx are tangent spaces with respect to the variety of low-rank

matrices with ρ(T ′y, T (L?y)) ≤ ω, then we can bound the error ∆ = (D̃y − D?
y, L̃y − L?y, Θ̃yx −

Θ?
yx, Θ̃x − Θ?

x). We denote En = Σ? − Σn as the difference between the population covariance
matrix and the sample covariance matrix. Further, CT = (0 , PT ′⊥y (L?y), PT ′⊥yx (Θ?

yx) , 0).

Proposition 6.3. Finally, define:

r = max
{ 4

α

(
Φγ [F†En] + Φγ [F†I?FCT ] + λn

)
, Φγ [CT ]

}
(6.6)

If r ≤ min{ 1
4C′ ,

α
16mψC′2 }, then Φγ [∆] ≤ 2r.

Proof. The proof of this result uses Brouwer’s fixed-point theorem, and is inspired by the proof
of a similar result in [5, 2]. The optimality conditions of (6.5) suggest that there exist Lagrange
multipliers QDy ∈W , QTy ∈ T ′y

⊥, and QTyx ∈ T ′yx
⊥ such that

[Σn − Θ̃−1]y +QDy = 0; [Σn − Θ̃−1]y +QTy ∈ λn∂‖L̃y‖?
[Σn − Θ̃−1]yx +QTyx ∈ −λnγ∂‖Θ̃yx‖?; [Σn − Θ̃−1]x = 0

Letting the SVD decomposition of L̃ and Θ̃yx be given by L̃y = ŪD̄V̄ ′ and Θ̃yx = ŬD̆V̆ ′ respec-
tively, and Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0), we can restrict the optimality conditions to the space
H′ to obtain, PH′F†(Σn − Θ̃−1) = Z. Further, by appealing to the matrix inversion lemma, this
condition can be restated as PHMF†(En − RΣ?(∆) + I?F(∆)) = Z. Based on the Fisher informa-
tion condition (6.1), the optimum of (6.5) is unique (this is because the Hessian of the negative
log-likelihood term is positive definite restricted to the tangent space constraints). Moreover, us-
ing standard Lagrangian duality, one can show that the set of variables (Θ̃, D̃y, L̃y) that satisfy
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the restricted optimality conditions are unique. We now appeal to Brouwer’s fixed-point theorem
to bound Φγ [∆]. Consider the following function G(δ) restriced to δ ∈ W × T ′y × T ′yx × Sq with
ρ(T (L?y), T

′
y) ≤ ω:

G(δ) = δ − (PHF†I?FPH)−1
(
PHF†[En − RΣ?F(δ + CT)

+I?F(δ + CT)]− Z
)

The function G(δ) is well-defined since the operator PH′F†I?FPH′ is bijective due to Fisher infor-
mation condition 1 in Proposition 2 (main paper). As a result, δ is a fixed point of G(δ) if and
only if PH′F†[En −RΣ?(F(δ +CT)) + I?F(δ +CT)] = Z. Since the pair (Θ̃, S̃y, L̃y) are the unique
solution to (6.5), the only fixed point of G is PH′ [∆]. Next we show that this unique optimum lives
inside the ball Br = {δ | Φγ(δ) ≤ r, δ ∈ H′}. In particular, we show that under the map G, the
image of Br lies in Br and appeal to Brouwer’s fixed point theorem to conclude that PH′ [∆] ∈ Br.
For δ ∈ Br, Φγ [G(δ)] can be bounded as follows:

Φγ [G(δ)] = Φγ

[
(PH′F†I?FPH′)−1

(
PHMF

†[En −RΣ?(F(δ + CT))

+ I?FCT ]− Z
)]
≤ 2

α

[
Φγ [F†(En + I?F(CT))] + λn

]
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ r

2
+

2

α
Φγ [F†RΣ?(δ + CT )]

The first inequality holds because of Fisher information condition (6.1), and the properties that
Φγ [PHM(.)] ≤ 2Φγ(.) (since projecting into the tangent space of a low-rank matrix variety increases
the spectral norm by a factor of at most two) and Φγ(Z) = λn. Moreover, since r ≤ 1

4C′ , we have
Φγ(δ + CT) ≤ Φγ(δ) + Φγ(CT) ≤ 2r ≤ 1

2C′ . We can now appeal to Proposition 1 to obtain:

2

α
Φγ [F†RΣ?(δ + CT)] ≤ 4

α
mψC ′2[Φγ(δ + CT)]2 ≤ r

2

Thus, we conclude that Φγ [G(δ)] ≤ r and by Brouwer’s fixed-point theorem, Φγ [PHM(∆)] ≤ r.
Furthermore, Φγ [∆] ≤ Φγ [PH′(∆)] + Φγ(CT ) ≤ 2r

6.3 Proof of main paper Proposition 4 - bounding deviation of population
covariance matrix and sample covariance matrix

Proposition 6.4. Suppose that the number of observed samples obeys
n ≥ 4608β2m2ψ2C ′2samp(p+q), and the regularization parameter λn is chosen in the range specified by

Theorem 1 (main paper). Then, with probability greater than 1−2exp
{
− nλ2n

4608β2m2ψ2

}
, Φγ [F†En] ≤

λn
6β .

Proof. First, note that Φγ [F†En] ≤ m‖Σn−Σ?‖2. Using the results in [3] and the fact that λn
6β ≤ 8ψ

and n ≥ 2304(p+q)m2ψ2

λ2n
, the following bound holds: Pr[m‖Σn−Σ?‖2 ≥ λn

6β ] ≤ 2exp
{
−nλ2n

4608m2ψ2

}
. Thus,

Φγ [F†En] ≤ λn
6β with probability greater than 1− 2exp

{
− nλ2n

4608β2m2ψ2

}
.
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6.4 Proof of the main paper Proposition 3

Consider the following convex optimization program:

(Θ̄, D̄y, L̄y) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ; {X(i), Y (i)}ni=1) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly; Dy is diagonal (6.7)

Comparing (6.7) with the convex program (1.4) (main paper), the difference is that we no longer
constrain Ly to be a positive semidefinite matrix. In particular, if Ly � 0, then the nuclear norm
of the matrix Ly in the objective function of (6.7) reduces to the trace of Ly. We show that the
unique optimum (Θ̄, S̄y, L̄y) of (6.7) has the property that with high probability, L̃y is positive
semidefinite. As a result, with high probability, the variables (Θ̄, S̄y, L̄y) are also the optimum of
(1.4). Below, we outline our proof strategy:

1. We proceed by analyzing (6.7) with additional constraints that the variables Ly, and Θyx

belong to the algebraic varieties low-rank matrices (specified by rank of L?y, and Θ?
yx) ,

and that the tangent spaces T (Ly), T (Θyx) are close to the nominal tangent spaces T (L?y),
and T (Θ?

yx) respectively. We prove that under suitable conditions on the minimum nonzero
singular value of L?y, and minimum nonzero singular value of Θ?

yx, any optimum pair of
variables (Θ, Dy, Ly) of this non-convex program are smooth points of the underlying varieties;
that is rank(Ly) = rank(L?y) and rank(Θyx) = rank(Θ?

yx). Further, we show that Ly has the
same inertia as L?y so that Ly � 0.

2. Conclusions of the previous step imply the the variety constraints can be “linearized” at
the optimum of the non-convex program to obtain tangent-space constraints. Under suitable
conditions on the regularization parameter λn, we prove that with high probability, the unique
optimum of this “linearized” program coincides with the global optimum of the non-convex
program.

3. Finally, we show that the tangent-space constraints of the linearized program are inactive
at the optimum. Therefore the optimal solution of (6.7) has the property that with high
probability: rank(L̄y) = rank(L?y) and rank(Θ̄yx) = rank(Θ?

yx). Since L̄y � 0, we conclude
that the variables (Θ̄, D̄y, L̄y) are the unique optimum of (1.4).

6.4.1 Variety Constrained Program

We begin by considering a variety-constrained optimization program:

(ΘM, DMy , LMy ) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ; {X(i), Y (i)}ni=1) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Θ, Dy, Ly) ∈M. (6.8)

Here, the set M is given by:

M ,
{

(Θ, Dy, Ly) ∈ S(p+q) × Sp × Sp
∣∣∣Dy is diagonal, rank(Ly) ≤ rank(L?y)

rank (Θyx) ≤ rank(Θ?
yx); ‖PT (L?y)⊥(Ly − L?y)‖2 ≤

λn
2mψ2

‖PT (Θ?yx)⊥(Θyx −Θ?
yx)‖2 ≤

λn
2mψ2

; Φγ [F†I?F∆] ≤ 5λn

}
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The optimization program (6.8) is non-convex due to the rank constraints rank(Ly) ≤ rank(L?y)
and rank(Θyx) ≤ rank(Θ?

yx) in the setM. These constraints ensure that the matrices Ly, and Θyx

belong to appropriate varieties. The constraints in M along T (L?y)
⊥ and T (Θ?

yx)⊥ ensure that the
tangent spaces T (Ly) and T (Θyx) are “close” to T (L?y) and T (Θ?

yx) respectively. Finally, the last
condition roughly controls the error. We begin by proving the following useful proposition:

Proposition 6.5. Let (Θ, Dy, Ly) be a set of feasible variables of (6.8). Let ∆ = (Dy −D?
y, Ly −

L?y,Θyx −Θ?
yx,Θx −Θ?

x) and C1 = 12
α + 1

ψ2 . Then, Φγ [∆] ≤ C1λn

Proof. Let H? = W × T (L?y)× T (Θ?
yx)× Sq. Then,

Φγ [F†I?FPH?(∆)] ≤ Φγ [F†I?F(∆)] + Φγ [F†I?FPH?⊥(∆)]

≤ 5λn +mψ2
( ωλn

2mψ2
+

ωλn
2mψ2

)
≤ 6λn

Since Φγ [PH?(·)] ≤ 2Φγ(·), we have that Φγ [PH?F†I?FPH?(∆)] ≤ 12λn. Consequently, we apply
the Fisher information condition (6.1) to conclude that Φγ [PH?(∆)] ≤ 12λn

α . Moreover:

Φγ [∆] ≤ Φγ [PH?(∆)] + Φγ [PH?⊥(∆)] ≤ 12λn
α

+
λn
ψ2

= C1λn

Proposition 6.5 leads to powerful implications. In particular, under additional conditions on the
minimum nonzero singular values of L?y and Θ?

yx, any feasible set of variables (Θ, Dy, Ly) of (6.8)
has two key properties: (a) The variables (Θyx, Ly) are smooth points of the underlying varieties,
(b) The constraints in M along T (L?y)

⊥ and T (Θ?
yx)⊥ are locally inactive at Θyx and Ly. These

properties, among others, are proved in the following corollary.

Corollary 6.6. Consider any feasible variables (Θ, Dy, Ly) of (6.8). Let σy be the smallest nonzero
singular value of L?y and σyx be the smallest nonzero singular value of Θ?

yx. Let H′ = W ×T (Ly)×
T (Θyx) × Sq and CT ′ = PH′⊥(0, L?y,Θ

?
yx, 0). Furthermore, let C1 = 12

α + 1
ψ2 , C2 = 4

α (1 + 1
3β ),

Cσy = C2
1ψ

2 max{12β+ 1, 2
C2ψ2 + 1} and C ′σyx = C2

1ψ
2 max{12β+ 6β

γ ,
2

C2ψ2 + 6β
γ }. Suppose that the

following inequalities are met: σy ≥ m
ω Cσyλn,

σyx ≥ mγ2C ′σyxλn. Then,

1. Ly and Θyx are smooth points of their underlying varieties, i.e. rank(Ly) = rank(L?y),
rank(Θyx) = rank(Θ?

yx); Moreover Ly has the same inertia as L?y.

2. ‖PT (L?y)⊥(Ly − L?y)‖2 ≤ λnω
48mψ2 and ‖PT (Θ?yx)⊥(Θyx −Θ?

yx)‖2 ≤ λnω
48mψ2

3. ρ(T (Ly), T (L?y)) ≤ ω; that is, the tangent spaces at Ly is “close” to the tangent spaces L?y

4. Φγ [CT ′ ] ≤ min{ λn
6βψ2 , C2λn}

Proof. We note the following relations before proving each step: C1 ≥ 1
ψ2 ≥ 1

mψ2 , ω ∈ (0, 1), and
β ≥ 8. We also appeal to the results of regarding perturbation analysis of the low-rank matrix
variety [1].
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1. Based on the assumptions regarding the minimum nonzero singular values of L?y and Θ?
yx,

one can check that:

σy ≥
C2

1λn
ω

mψ2(12β + 1) ≥ C1λn
ω

(12β + 1) ≥ 8‖L− L?y‖2

σyx ≥ C2
1λnγ

2mψ2
(6β

γ
+ 12β

)
≥ 8‖Θyx −Θ?

yx‖2

Combining these results and Proposition 6.5, we conclude that Ly and Θyx are smooth points of
their respective varieties, i.e. rank(Ly) = rank(L?y), and rank(Θyx) = rank(Θ?

yx). Furthermore, Ly
has the same inertia as L?y.

2. Since σy ≥ 8‖Ly − L?y‖2, and σyx ≥ 8‖Θyx −Θ?
yx‖2, we can appeal to Proposition 2.2 of [2]

to conclude that the constraints in M along PT (L?y)⊥ and PT (Θ?yx)⊥ are strictly feasible:

‖PT (L?y)⊥(Ly − L?y)‖2 ≤
‖Ly − L?y‖22

σy
≤ λn

48mψ2

‖PT (Θ?yx)⊥(Θyx −Θ?
yx)‖2 ≤

‖Θyx −Θ?
yx‖22

σyx
≤ λn

48mψ2

3. Appealing to Proposition 2.1 of [2], we prove that the tangent spaces T (Ly) and T (Θyx) are
close to T (L?y) and T (Θ?

yx) respectively:

ρ(T (Ly), T (L?y)) ≤
2‖Ly − L?y‖2

σy
≤ 2C1λnω

C2
1λnmψ

2(12β + 1)
≤ ω

4. Letting σ′y and σ′yx be the minimum nonzero singular value of L and Θyx respectively, one
can check that:

σ′y ≥ σy − ‖Ly − L?y‖2 ≥ 8C1λn ≥ 8‖Ly − L?y‖2

σ′yx ≥ σyx − ‖Θyx −Θ?
yx‖2 ≥ 8C1λnγ ≥ 8‖Θyx −Θ?

yx‖2

Once again appealing to Proposition 2.2 of [2] and simple algebra, we have:

Φγ(CT ′) ≤ m‖PT (Ly)⊥(Ly − L?y)‖2 +m‖PT (Θyx)⊥(Θyx −Θ?
yx)‖2

≤ m
‖Ly − L?y‖22

σ′y
+m
‖Θyx −Θ?

yx‖22
σ′yx

≤ min{ λn
6βψ2

, C2λn}

6.4.2 Variety Constrained Program to Tangent Space Constrained Program

Consider any optimal solution (ΘM, DMy , LMy ) of (6.8). In Corollary 6.6, we concluded that the

variables (ΘMyx , L
M
y ) are smooth points of their respective varieties. As a result, the rank con-

straints rank(Ly) ≤ rank(L?y) and rank(Θyx) ≤ rank(Θ?
yx) can be “linearized” to Ly ∈ T (LM)

and Θyx ∈ T (ΘMyx ) respectively. Since all the remaining constraints are convex, the optimum of
this linearized program is also the optimum of (6.8). Moreover, we once more appeal to Corol-
lary 6.6 to conclude that the constraints in M along PT (L?y)⊥ and PT (Θ?yx)⊥ are strictly feasible at

(ΘM, DMy , LMy ). As a result, these constraints are locally inactive and can be removed without
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changing the optimum. Finally, we claim that the constraint Φγ [F†I?F∆] ≤ 5λn in (6.8) can also re-
moved in this “linearized” convex program. In particular, letting HM ,W×T (LMy )×T (ΘMyx )×Sq,
consider the following convex optimization program with the constraint Φγ [F†I?F∆] ≤ 5λn re-
moved :

(Θ̃, D̃y, L̃y) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ; {X(i), Y (i)}ni=1) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Dy, Ly,Θyx,Θx) ∈ HM (6.9)

We prove that under conditions imposed on the regularization parameter λn, the pair of vari-
ables (ΘM, DMy , LMy ) is the unique optimum of (6.9). That is, we show that Φγ [F†I?F(S̃y −
D?
y, L̃y −L?y, Θ̃yx−Θyx, Θ̃x−Θ?

x)] < 5λn. Appealing to Corollary 6.6 and Proposition 6.4, we have

that Φγ [F†I?FCTM ] ≤ λn
6β , Φγ [CTM ] ≤ C2λn and (with high probability) Φγ [F†En] ≤ λn

6β . Conse-
quently, based on the bound on λn in assumption of Theorem 4.3, it is straightforward to show that
r ≤ min{ 1

4C′ ,
α

16mψC′2 }. Hence by Proposition 6.3, Φγ [∆] ≤ 1
2C′ . Finally, we can appeal to Proposi-

tion 6.2 and the bound on λn to conclude Φγ [F†RΣ?(F(∆))] ≤ 2mψC ′2Φγ [∆]2 ≤ 2mψC ′2C2
1λ

2
n ≤

λn
6β . Based on the optimality condition of (6.9), the property that Φγ [PHM(.)] ≤ 2Φγ(.), and the
fact that β ≥ 8, we have:

Φγ [PHMF
†I?FPHM(∆)] ≤ 2λn + Φγ [PHMF

†RΣ?(∆)] + Φγ [PHMF
†I?FCTM ]

+ Φγ [PHMF
†En]

≤ 2λn + 2λn

( 1

6β
+

1

6β
+

1

6β

)
≤ 2λn +

λn
β
≤ 17λn

8

Furthermore, by appealing to Fisher information condition (6.2), we have:

Φγ [F†I?F(∆)] ≤ Φγ [PHMF
†I?FPHM(∆)] + Φγ [PH⊥MF

†I?FPHM(∆)]

+ Φγ [F†I?FPH⊥M(∆)]

≤ Φγ [PHMF
†I?FPHM(∆)] + (1− 3

β + 1
)Φγ [PHMF

†I?FPHM(∆)]

+ Φγ [F†I?FCTM ] ≤ 17λn
8

+
17λn

8
(1− 3

β + 1
) +

λn
6β

< 5λn

6.4.3 From Tangent Space Constraints to the Original Problem

The optimality conditions of (6.9) suggest that there exist Lagrange multipliers QDy ∈ W , QTy ∈
T (LMy )⊥, and QTyx ∈ T (ΘMyx )⊥ such that

[Σn − Θ̃−1]y +QDy = 0; [Σn − Θ̃−1]y +QTy ∈ λn∂‖L̃y‖?
[Σn − Θ̃−1]yx +QTyx ∈ −λnγ∂‖Θ̃yx‖?; [Σn − Θ̃−1]x = 0

Letting the SVD decomposition of L̃y and Θ̃yx be given by L̃y = Ū ŌV̄ ′ and Θ̃yx = Ŭ ŎV̆ ′ respec-
tively, and Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0), we can restrict the optimality conditions to the space
HM to obtain, PHMF†(Σn − Θ̃−1) = Z. We proceed by proving that the variables (Θ̃, D̃y, L̃y)
satisfy the optimality conditions of the original convex program (1.4). That is:

1. PHMF†(Σn − Θ̃−1) = Z

29



2. max
{
‖PT ′⊥y (Σn − Θ̃−1)y‖2, 1

γ ‖PT ′⊥yx (ΣN − Θ̃−1)yx‖2
}
< λn

Here, UDV ′ is the SVD decomposition of L̃y and ŬD̆V̆ ′ is the SVD of Θ̃yx. It is clear that the
first condition is satisfied since the pair (Θ̃, S̃y, L̃y) is optimum for (6.9) To prove that the second
condition, we prove a stronger statement that Φγ [PH⊥MF

†(Σn−Θ̃−1)] < λn. In particular, denoting

∆ = (D̃y −D?
y, L̃y − L?y, Θ̃yx −Θ?

yx, Θ̃x −Θ?
x), we show that:

Φγ [PH⊥MF
†I?FPHM(∆)] < λn − Φγ [PH⊥MF

†En]

− Φγ [PH⊥MF
†RΣ?(F(∆))]− Φγ [PH⊥MF

†I?FCTM ]

Using the first optimality condition and the fact that projecting into tangent spaces with respect
to rank variety increase the spectral norm by at most a factor of two (i.e. Φγ [PH′(.)] ≤ 2Φγ [.]), we
have that:

Φγ [PHMF
†I?FPHM(∆)] ≤ λn + 2Φγ [F†RΣ?(∆)] + 2Φγ [F†I?FCTM ]

+ 2Φγ [F†En] ≤ λn +
λn
β

=
(β + 1)λn

β

Applying (6.2), we obtain:

Φδ[PH⊥MF
†I?FPHM(∆)] ≤ (β + 1)λn

β

(
1− 3

β + 1

)
= λn −

2λn
β

< λn −
λn
2β

≤ λn − Φγ [F†RΣ(F(∆))]− Φγ [F†I?FCTM ]− Φγ [F†En]

≤ λn − Φγ [PH⊥MF
†RΣ?(F(∆))]− Φγ [PH⊥MF

†I?FCTM ]

− Φγ [PH⊥MF
†En]

Here, we used the fact that ‖PT⊥(.)‖2 ≤ ‖.‖2 for a tangent space T of the low-rank matrix variety.
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