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Abstract:  

Many real-world networks such as the gene networks, protein-protein interaction networks and metabolic 

networks exhibit community structures, meaning the existence of groups of densely connected vertices in the 

networks. Many local similarity measures in the networks are closely related to the concept of the community 

structures, and may have positive effect on community detection in the networks. Here, various local similarity 

measures are used to extract the local structural information and then are applied to community detection in the 

networks by using the edge-reweighting strategy. The effect of the local similarity measures on community 

detection is carefully investigated and compared in various networks. The experimental results show that the 

local similarity measures are crucial to the improvement for the community detection methods, while the 

positive effect of the local similarity measures is closely related to the networks under study and the applied 

community detection methods.    
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1. Introduction  

Community detection is a common challenge in the study of complex networks [1]. Many 
real-world networks such as the gene networks, protein-protein interaction networks and metabolic 
networks exhibit community structures—groups of vertices that are densely interconnected while only 
sparsely connected with the rest of the network. It is widely believed that the ability to detect such 
communities in networks could be is of considerable interest for understanding the structures and 
functions of the complex networks, because they generally correspond to such functional units as the 
functional modules in the protein-protein interaction networks and the cycles and pathways in the 
metabolic networks [1-3]. 

Many community detection methods have been proposed, which are based on various approaches 
such as spectral analysis [4, 5], random walk dynamics [6, 7], (de-)synchronization [8-10], label 
propagation [11-14], statistical models [15, 16], and others [17-19] (see Refs [1, 20, 21] for reviews). 
Most of methods depend on the quality functions for community detection, such as modularity [22]. 
Modularity optimization has been a kind of popular strategy for analyzing the community structures in 
networks [23-28]. While it was found to encounter some problems, especially the resolution limit, that 
is, small communities below a certain scale will be undetectable [29-31]. To attack the resolution limit 
problem, many methods have been proposed, such as the recursive partitioning of networks [32], and 
the edge-reweighting strategy [33].  

In ref [34], the authors showed that, by using the local structural information to reconstruct the 
(structural) weight of existing edges in networks, the existing community detection method could 
identify the communities more effectively in the weighted networks than in the original networks. The 
edge-reweighting strategy is very simple and effective, and could directly apply to the existing 
community detection methods. In recent years, the edge-reweighting strategy again exhibits its 
powerful witchery in enhancing community detection [19, 33, 35]. Indeed, the appropriate 
edge-reweighting strategy could bring about the improvement of community detection, if the 
edge-reweighting strategy could increase the weight of the intra-community edges while decrease the 
weight of the inter-community edges, because: (a) this will increase the identifiability of the inter- and 
intra-community edges, making the community structures in networks more obvious, accelerating the 
effective search of the community structures in networks; (b) this leads to the relative decrease of the 
weight between communities, mitigating therefore the resolution limit problem of modularity. So the 
edge-reweighting is an effective strategy for enhancing the ability of the community detection methods 
in networks. 

In general, the groups of vertices with dense links and strong interactions correspond to the 
groups of vertices with similar properties or functions, vice versa. In this sense, many local similarity 
measures in networks are closely related to the concept of the community structures. They may have 
positive effect on community detection in networks. Here, a variety of local similarity measures, by 
using the edge-reweighting strategy, will be applied to community detection in networks. Concretely, 
we will use various local similarity measures to extract the local structural information in networks, 
and then preprocess the networks, this is to say, reweight the edges in networks by the local structural 
information. In this paper, we will focus on how these local similarity measures affect the community 
detection in different networks, and systematically compare the effect of different local similarity 
measures in the networks.  

 

2. Method  

2.1 Brief review of local similarity measures    

The communities are often defined as the groups of vertices with dense links and strong 

interactions. Therefore, many local similarity measures should be closely related to the concept of 

community structures in networks. Because of the positive correlation between the community 

structures and the local similarity measures, here, 12 typical similarity measures based on local 

topological structures are used to extract the local structural information that is related to community 

structures in networks, and redefine the weight of existing edges in the networks (See Table 1 for the 

definitions of the local similarity measures). 

 (1) Common-Neighbor similarity measure (CN) [36]: CN denotes the number of common 

neighbors between two vertices. In recent years, this measure has widely been applied to the link 

prediction in complex networks. In fact, two vertices sharing many common neighbors may have more 
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common features, and thus they are more likely to belong to the same grouping and have the stronger 

interaction and larger weight of edge. Several local similarity measures are based on the number of 

common neighbors, yet with different normalization methods.  

(2) Salton similarity measure (Salton) [37]: It is defined as the number of common neighbors 

dividing by
x y

k k , where kx is the degree of node x. Salton is also called the cosine similarity in the 

some literatures.  

(3) Jaccard similarity measure (Jaccard) [38]: It is defined as the number of common neighbors 

divided by the sum of the number of two vertices’ neighbors, which was proposed by Jaccard 

originally in the context of sets while not networks (it is equal to the ratio of the cardinality of the 

intersection of two vertices’ neighbors sets to the cardinality of the set union).   

(4) Sørensen similarity measure (Sørensen) [39]: It is defined as the number of common 

neighbors dividing by the average of two vertices’ degrees, which is used mainly for ecological 

community data.   

(5) Hub-Promoted similarity measure (HP) [40]: It is defined as the number of common 

neighbors dividing by the minimum of the number of two vertices’ neighbors, which is proposed for 

quantifying the topological overlap of pairs of substrates in metabolic networks. Under this 

measurement, the links adjacent to hubs are likely to be assigned high scores since the denominator is 

determined by the lower degree only.  

(6) Hub-Depressed similarity measure (HD) [36]: It is defined as the number of common 

neighbors dividing by the maximum of the number of two vertices’ neighbors. Analogously to HP, it 

considers the opposite effect on hubs.  

(7) Leicht-Holme-Newman similarity measure (LHN) [41]. It assigns high similarity to vertex 

pairs that have many common neighbors compared not to the possible maximum, but to the expected 

number of such neighbors. Here (see Table 1), the denominator is proportional to the expected number 

of common neighbors of two vertices in the configuration model (a random graph model which has the 

same degree distribution as the network under study). 

(8) Preferential-Attachment similarity measure (PA) [36]: The preferential attachment similarity 

obtained discussion, due to the two possible reasons: (a) it requires the least information since it only 

depends on the degrees of related vertices; (b) it is originated from the popular preferential attachment 

evolving mechanism of generating the scale-free network, where the probability that this new link will 

connect two vertices is proportional to the product of the degrees of the two vertices.    

(9) Adamic-Adar similarity measure (AA) [42]: It refines the simple counting of common 

neighbors by assigning the less-connected neighbors more weight (See Table 1). 

(10) Resource-Allocation similarity measure (RA) [36]: Motivated by the resource allocation 

process taking place on networks, Zhou et al. designed the resource allocation similarity to refine the 

simple counting of common neighbors (see Table 1). In fact, RA is not only closely related to the 

resource allocation process, but also can successfully suppress the contribution of common neighbors 

with high degree by assigning them less weight. 

(11) Local-Path similarity measure (LP) [36, 43]: It takes consideration of local paths, with wider 

horizon than CN (see Table 1). This measure reduces to CN if ε=0. (A
2
)xy is the number of common 

neighbors of vertices x and y, which is equal to the number of different paths with length 2 connecting 

x and y, and if x and y are not directly connected, (A
3
)xy is equal to the number of different paths with 

length 3 connecting x and y. Although it needs more information than CN, it is still a local measure 

with relatively lower complexity.  

(12) Lai-Lu-Nardini similarity measure (LLN) [33]: In general, the dynamic processes triggered 

on vertices in the same community possess similar behavior patterns, but dissimilar on vertices in 

different communities. Based on the observation, Lai et al. proposed the similarity measure based on 

local random walk dynamics. The probability of a walker from one vertex to another in t-step random 

walk is determined by matrix P
t
 (t is random walk length, determining the range of the local structure 

that will be browsed). In general networks, good results can often be obtained by using a small t-value 

(t=2, 3, …). The element xyp of the transition matrix P is the ratio between the weight of 

edge ( , )x y and the weighted degree of vertex x, i.e. xy xy xp w w . The behavior patterns of the 

random walk dynamics from each vertices can be quantified by a N-dimensional vector xv (x=1 to 
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N)—the row of the matrix 
1

t
P

   where all of random walks whose steps vary from 1 to t are taken 

into account to reinforce the contributions from the vertices near the target vertices currently 

considered. See Table 1 for the definition of LLN. If the behavior vectors 
xv  and yv  are highly 

consistent, then 1LLN

xyS  , 0 otherwise. Generally, the pairs of vertices in the same communities have 

higher values of the similarity than those between communities.  

Note that, in order to avoid the edge weight of the value of zero between vertices without 

common neighbors, the number of common neighbors between two vertices adds a value of 1 for CN, 

Salton, Jacard, Sørensen, HP, HD, LHN as well as LP, while the original definitions of AA and RA will 

add a factor of 1/log(kmax) and a factor of 1/kmax respectively, which should not affect markedly the 

original definitions.  

 
Table 1: The definition of the local similarity measures. Г(x) and Г(y) denote the sets of 

neighbors of vertices x and y respectively; |*| is the cardinality of the set *; kx and ky denote the 

degrees of vertex x and vertex y respectively; xv  and yv  are the behavior vectors of vertices 

x and y in the random walks, while ( xv , yv ) denotes the dot product of the two vectors.   

Name Definition Name Definition 

CN 
CN

xys x y  LHN LHN

xy

x y

x y
s

k k
 

Salton Salton

xy

x y

x y
s

k k

 PA 
PA

xy x ys k k  

Jaccard Jaccard

xy

x y
s

x y
 AA 

1

log ( )

AA

xy

z x y

s
k z

 

Sørensen 
( + ) / 2

S rensen

xy

x y

x y
s

k k
 RA 

1

( )

RA

xy

z x y

s
k z

 

HP 
min{ , }

HP

xy

x y

x y
s

k k
 LP 

2 3( )LP

xy xys A A  

HD 

max{ , }

HD

xy

x y

x y
s

k k
 LLN 

( , )

( , ) ( , )

x yLLN

xy

x x y y

v v
s

v v v v
  

 

2.2 Application of local similarity measures to community detection 

Here, several classical modularity-based community detection methods are analyzed: 

Girvan-Newman algorithm (GN) — a typical divisive algorithm based on edge betweenness [44], 

which generally used the modularity as the stopping principle and is also a popular reference of many 

community detection methods; Newman’s fast greedy algorithm (NF) — a typical agglomerative 

algorithm based on greedy optimization of modularity, which has low computational complexity but 

low accuracy for searching the optimal modularity [45]; (3) Fast algorithm of Blondel et al (BF) based 

on modularity optimization, which has low computational complexity and very high accuracy for 

searching the optimal modularity [25]. Moreover, we also test several community detection methods 

based on different strategies: Infomap [46], which uses random walks for information flows and 

detects community structure by compressing them; COPRA [47], which is based on the label 

propagation concept in [13] where each vertex is assigned initially a unique label, then the labels 

propagate by vertex neighbors and finally the vertices in each community are to have the same label 

after several iterations; OSLOM [48], which is based on the local optimization of a fitness function 

describing the statistical significance of communities with respect to random fluctuations. 

The local similarity measures are applied to the community detection in networks by the 

following procedure: 

Step 1: Calculate the local similarity measure between vertices that are connected by edges in a 
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network;  

Step 2: Redefine the weight of the existing edges in the network by the local similarity measure 

between the ends of the edges;  

Step 3: Feed the finally weighted network into the corresponding community detection algorithm, 

and output the community division of the network. 

This procedure can be divided into two main phases: preprocessing the original network (step 1-2) 

and dividing the newly obtained network into communities (step 3). Because the extraction of the local 

information has low computational complexity, the complexity of the procedure depends on the 

community detection algorithm itself.  

 

0 1 2 3 4 5 6 7

0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
M

I

 GN

 NF

 BF

 Infomap

 COPRA

 OSLOM

1 2 3 4 5 6 7

-0.4

-0.2

0.0

0.2

0.4

(a) (b) 

(c) GN 

 HD

 LHN

 PA

 AA

 RA

 LP

 LLN

 None

 CN

 Salton 

 Jaccard 

 Sorensen 

 HP

Average number of inter-community edges per vertex, k
out

 

 

N
M

I-
n

m
i

1 2 3 4 5 6 7
-0.2

-0.1

0.0

0.1

0.2
(d) NF 

 

 

0 1 2 3 4 5 6 7
-0.2

-0.1

0.0

0.1

0.2
(e) BF 

 

 

1 2 3 4 5 6 7
-0.2

0.0

0.2

0.4

 

 

(f) Infomap (g) COPRA (h) OSLOM 

0 1 2 3 4 5 6 7

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

 

 

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

 

 

 

 

Figure 1. (a) The normalized mutual information (NMI) [21] between the real and found communities in the 

Girvan-Newman networks as a function of the average number kout of inter-community edges per vertex, obtained 

by the original methods. (b) Each symbol denotes the combination of the similarity measure with the 

corresponding methods in (c)-(h), that is, to preprocess the original networks firstly by the similarity measure 

and then use the corresponding methods to discover the community structures in the networks; ‘None’ denotes 

the results of the original methods themselves. (c)-(h) The increment of the normalized mutual information (i.e. 

NMI-nmi) after the introduction of the similarity measure for each method. In the following figures 1, 4 and 7, 

the symbols denote the same meanings.  
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Figure 2. Each bar denotes the NMI of the corresponding community detection methods with the corresponding 

similarity measure in the Girvan-Newman networks with kout= 7. ‘None’ denotes the results of the original 

methods themselves.   
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Figure 3. Comparison of overall performance: (Left) the sum of △NMI (i.e. NMI-nmi) and (Right) the sum of 

NMI, in all the Girvan-Newman networks with kout≤7, for each community detection method with different 

similarity measures. 
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3. Experimental results 

3.1. Girvan-Newman networks  

The Girvan-Newman networks [44], a type of representative homogeneous networks with community 
structures, consist of four communities of 32 vertices. Each vertex in the networks has the total 
expected degree kin+kout=16, where kin is the average number of edges connecting it to vertices in the 
same community and kout is the average number of edges to vertices in other communities. With kout 

increasing from zero, the communities in the networks become more and more difficult to identify. In 
figure 1, we show the performance of different community detection methods in the networks and the 
effect of the local similarity measure on each method, as a function of the average number of 
inter-community edges per vertex in the networks.  

It is not our purpose to compare the methods themselves, while figure 1(a) provides the 
performance comparison of the original methods in the test networks. The methods can give good 
results in the networks. To clearly display the effect of the local structural similarity measures on 
community detection methods, we calculate the increment (NMI-nmi) of the normalized mutual 
information [21] for each method caused by the introduction of the local structural similarity measures, 
where NMI and nmi denote the normalized mutual information obtained respectively by the 
corresponding method with the similarity measure and by the original method. The values of 
NMI-nmi>0 denote that the local structural similarity measure has the positive effect on the methods; 
NMI-nmi<0 means a negative effect; while NMI-nmi=0 means no effect. As shown in figures 1(c)-(h), 
on the whole, the local information extracted by most of the local similarity measures can indeed help 
in improving the community detection in the networks. However, PA is an exception. The addition of 
PA cannot generate better results for most methods in the networks. Especially, PA badly weakens the 
performance of GN even for small values of kout. Maybe, PA itself cannot provide enough and useful 
information for community structures to the methods. 

The similarity measures of intra-community edges generally have larger values than the 
inter-community edges in networks. So they may help GN in identifying the inter-community edges in 
the networks. For GN, these similarity measures indeed bring better results except for PA. The top 
improvement of performance is obtained by LHN, HP, Jaccard, Sorensen and Salton (see figure 1(c) 
and figure 2 for GN). Especially LHN seems to be very excellent for GN. 

For NF, the similarity measures can help the greedy optimization procedure of NF to agglomerate 
vertices into communities more exactly. Therefore, similarly, the similarity measures, except for PA, 
can clearly improve results of NF in the networks (see figure 1(d) and figure 2 for NF). As we see, 
most of the similarity measures have similar behaviors. Moreover, compared to other similarity 
measures, CN can only bring a few improvements in the networks, though it is the base of several 
similarity measures (e.g. Salton and Jacard).  

Unexpectedly, none of the similarity measures shows the improvement for BF. They even reduce 
the performance of BF obviously in the networks. This may be because BF itself has had very 
excellent performance in the networks; there is less room for improvement, while the similarity measures 
may disturb the optimization procedure of BF itself (note that the disturbance of LLN is the weakest). 
However, GN and NF still have large rooms for improvement in the networks, so the local similarity 
measures can help improve the performance of them.  
 For Infomap, the behaviors of the similarity measures is similar in community detection, while 
the similarity measures seem to go against Infomap when kout=5 and 6 (see figure 1(f) for Infomap). This 
may be because the original Infomap is being at unstable status and the performance of it also begins to 
decline in the cases (figure 1(a)). When kout=7, Infomap itself becomes very poor (NMI is only 0.4), while 
the similarity measures are able to greatly enhance the performance of it, and LLN seems to give best 
results, followed by LP and CN (figure 2 for Infomap).  

For COPRA, the similarity measures also show the similar behaviors in the networks, and have a 
slight disturbance for small kout-values (see figure 1(g)). This may be also because COPRA is unstable 
in the cases (figure 1(a)). With the increase of kout(≥3), the improvement becomes more and more 
obvious. And the excellent performance for kout=7 seems to be given by LHN, Sorenson and CN, 
followed by LP and RA (figure 2 for COPRA). 

For OSLOM, the similarity measures can generate obvious improvement when kout>5. In the 
networks with kout=7, the similarity measures can be classified into four sets: (Jaccard, LHN, RA, AA 
and HD), (LP, HP, Sorenson, Salton and CN), (LLN) and (PA). LLN is clearly weaker than the first 
and second sets. Interestingly, PA seems to be able to generate slight improvement too.  

Finally, we display the comprehensive effect of the local structural similarity measures on 
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different methods. Figure 3 shows the cumulative improvement of performance and the cumulative 
performance of the methods. We can find that, for all the local structural similarity measures, the 
largest cumulative improvement is obtained by COPRA, while the smallest cumulative improvement 
is obtained by BF (negative effect). The best cumulative performance is obtained by Infomap with 
LLN as well as the original BF.  

 

3.2. Lancichinetti-Fortunato-Rachicchi (LFR) networks 

Differently from the above Girvan-Newman networks, the LFR networks [49] consider the 

heterogeneity of vertex degrees and community sizes in realistic networks. The power-law 

distributions of vertex degrees and community sizes in the networks are controlled by the exponents 

  and   respectively, and the common mixing parameter   controls the ratio between the 

external degree of each vertex with respect to its community and the total degree of the vertex. Other 

parameters of the networks: N is the number of vertices, <k> and kmax are the average and maximum 

degree, Cmin and Cmax are the minimum and maximum community sizes. Here, we will construct two 

sets of the LFR networks with:  

(1) moderate heterogeneity of community sizes ( 2   , 2   , Cmin=20 and Cmax=50) and  

(2) strong heterogeneity of community sizes ( 2   , 2   , Cmin=10 and Cmax=100).  

Other parameters: N=1000, <k>=20, and kmax =50.   
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Figure 4. (a) The normalized mutual information (NMI) between the real and found communities, in the LFR 

networks with moderate heterogeneity of community sizes, as a function of the mixing parameter μ, obtained by 

the original methods. (b)-(h) The meanings of other symbols are the same as in figure 1.   
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Figure 5. The bars denote the NMI in the LFR networks with moderate heterogeneity of community sizes, 
obtained by GN, NF, BF and COPRA (μ=0.6) and by Infomap and OSLOM (μ=0.7).  
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NMI, in all the LFR networks with moderate heterogeneity of community sizes and µ≤0.7, for each community 

detection method with different similarity measures.  
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3.2.1. LFR networks with moderate heterogeneity of community sizes  

In figure 4, we show the performance of different methods in the LFR networks and the effect of 

the local similarity measures on different methods, as a function of the mixing parameter . With the 

increase of µ, the communities in the networks become more and more difficult to identify. For the 

original methods, the best performance is given by Infomap and OSLOM, followed by BF, while the 

improvements resulting from the similarity measures are closely related to the original methods (figure 

4). The improvement of BF, Infomap and OSLOM is not clear, until µ=0.7. This may be because they 

have excellent performance in the networks and the local similarity measures cannot give the methods 

enough reliable information about the community structures. For all the methods, PA still brings the 

poorest results in the networks.  

For different methods, the excellent performance is obtained by different local similarity measures. 

In Figure 5, the excellent local similarity measures are, respectively, LHN, HP, Sorenson, Jaccard and 

Salton for GN (NMI>0.4 for µ=0.6), LP, RA, AA, HP, Jaccard and CN for NF (NMI>0.65 for µ=0.6), 

LLN and LP for BF, LLN, LP and CN for Infomap (NMI>0.7 for µ=0.7), LLN, LP and CN for 

COPRA (NMI>0.9 for µ=0.6), as well as RA, AA, LP and CN for OSLOM (NMI≥0.35 for µ=0.7). 

Unexpectedly, PA also shows the slight improvement for NF.  

Figure 6 (Left) shows the largest cumulative increment of performance is obtained by NF. NF 

itself is the poorest in the networks. It cannot correctly find the predefined community structures, even 

for the small μ-values. The main reason is not due to the resolution limit of modularity but the very 

weak ability of searching community structures especially in the large-size networks. So it leaves large 

room for improvement. As expected, the results show that the effect of the similarity measures on NF 

is extraordinary. By using the similarity measures, NF can generate similar or even better results than 

GN in the networks. On the whole, the local similarity measures can help in improving the 

performance of the methods in the networks. For the cumulative performance (figure 6 (Right)), 

Infomap seems to generate the best results (especially for LLN) while GN is the poorest on the whole.  

 

3.2.2. LFR networks with strong heterogeneity of community sizes 

In the LFR networks with strong heterogeneity of community sizes, one of typical problems is that the 

resolution limit of modularity becomes more serious (see figure 7). Even if μ is very small, the 

modularity optimization cannot also identify all embedded communities in the networks. Both of NF 

and BF are very poor in the networks, though BF itself has excellent performance for searching 

optimal modularity. GN only partly depends on the modularity, so it still has good results until μ>0.4. 

In these LFR networks, GN, NF BF as well as COPRA have the great rooms for improvement. While 

Infomap and OSLOM still have excellent performance in the networks, which means that the 

resolution limit of modularity does not seem to affect the two methods.  

As expected, the local similarity measures indeed bring the great improvement for GN, NF, BF 

and COPRA (figure 7 and figure 8), while, for Infomap and OSLOM, the behaviors of the local 

similarity measures are similar to those in figure 4. Of course, PA still brings the poorest results. For 

small μ-values (e.g. μ=0.2 and 0.3), modularity optimization (NF and BF) cannot identify the 

predefined community structures due to the resolution limit problem of modularity. In this case, the 

problem can be solved completely by the similarity measures, resulting NMI=1 for NF and BF 

(including GN). With the increase of μ, the resolution limit of modularity becomes more and more 

serious (because the connections between communities increase). And the community structures also 

become more and more indistinct, so the search for the community structures in the networks (or the 

optimization of modularity) becomes more and more difficult. As a result, for example, when μ=0.6 or 

0.7, NMI<1 for most methods, even with the help of the local similarity measures (figure 8). But the 

effect of the similarity measures is still positive.  

There are several possible reasons for the positive effect: (1) the increase of the identifiability of 

communities, (2) the enhancement of the search procedure for optimal modularity (especially for the 

methods that the ability of searching optimal modularity is not well, like NF) and (3) the improvement 

of the resolution limit of modularity (for all modularity-based methods). This main reason for BF is 



Draft to J STAT MECH-THEORY E  1/4/2016 

 11 / 18 
 

the mitigation of the resolution limit of modularity, because the optimal search for BF, as shown in the 

above section, cannot obviously been improved. For other methods, the main reason may be that the 

local similarity measures make the community structures more obvious, increasing the identifiability 

of communities.  

In the LFR networks, the excellent performance of different methods is also obtained by different 

local similarity measures (figure 8): e.g. LHN, HP, Sorenson, Jaccard and Salton for GN (NMI>0.8); 

LP, RA, AA, Jaccard and CN for NF (NMI>0.8); all similarity measures for BF (NMI>0.8, except for 

PA); LLN, LP, AA and CN for Infomap (NMI>0.7); LLN, LP, AA, Sorenson and CN for COPRA; and 

LP, RA, AA and Salton for OSLOM (NMI>0.45).   

Finally, we examine the cumulative effect of the local similarity measures on the methods (figure 

9). The largest cumulative improvement of the performance is still obtained by NF. For Infomap and 

COPRA, the local similarity measures can generate a great increment of NMI for large μ-values, so 

they have no large difference in the cumulative increment. For the cumulative performance, Infomap 

still gives the best results (especially for LLN). 
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Figure 7. (a) The normalized mutual information (NMI) between the real and found communities, in the LFR 

networks with strong heterogeneity of community sizes, as a function of the mixing parameter μ, obtained by the 

original methods. (b)-(h) The meanings of other symbols are the same as in figure 1.   
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Figure 8. The bars denote the NMI in the LFR networks with strong heterogeneity of community sizes, obtained 

by GN, NF, BF and COPRA (μ=0.6) and by Infomap and OSLOM (μ=0.7).  
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Figure 9. Comparison of overall performance: (Left) the sum of △NMI (i.e. NMI-nmi) and (Right) the sum of 

NMI, in all the LFR networks with strong heterogeneity of community sizes and µ≤0.7, for each community 

detection method with different similarity measures.  
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3.2.3. Mitigating the resolution limit of modularity  

As shown above, the local similarity measures are helpful for the resolution limit problem of 

modularity, but cannot solve the problem thoroughly. Here, we further discuss the problem in a set of 

the regular networks and a set of the general networks by gradually increasing the network size (see 

figure 7). The networks have clear community structures, but modularity optimization (as well as other 

methods that depend on modularity) is unable to correctly identify the embedded community 

structures in the networks when the network size is very large, due to the resolution limit problem of 

modularity.  

The appropriate edge-reweighting could strengthen the weight of the intra-community edges, 

while weaken the weight of the inter-community edges, so it will be able to enhance the ability of the 

modularity-based methods to put up with the resolution problem of modularity. As shown in figure 10, 

the local similarity measures can effectively help solve the resolution limit problem of modularity in 

the small-size networks, but they only are able to mitigate the problem in the large-size networks 

(because the problem still exist). In this case, one can consider to repeatedly weighting the edges in the 

networks by the local similarity measures, where the definitions of the similarity measures need to 

extend to the weighted case). However, because of the lack of the information, it is not easy to 

determine how many times the edge-weighting process should be repeated. Which similarity measure 

is the best choice for mitigating the resolution limit of modularity? This seems related to the networks 

under study. While we note that LLN (as well as CN and LP) seems not to be good at dealing with the 

resolution limit problem of modularity in the networks; PA makes the problem of modularity 

optimization worse.  

Moreover, GN itself does not depend on modularity, and thus it is not affected by the resolution 

limit problem of modularity. In the above networks, GN is able to produce a clear dendrogram that 

contains all the groups, while it needs reasonable stopping criteria to determine the final community 

division as output. If modularity is used as the stopping criterion, then the resolution limit problem of 

modularity will still appear. To avoid the problem, one can consider to make use of other quality 

functions or principles of communities, such as the local modularity [50] and the strong or weak 

definitions of communities [51]. 
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Figure 10. Effect of local similarity measures on the resolution limit of modularity. n-nreal denotes the difference 
between the number of the identified groups and the real groups. When n-nreal =0, the predefined community 
structures are identified; when n-nreal <0, there exists the merger of the predefined groups in the networks under 
study. (a) The networks consisting of cliques with 5 vertices, where the network size (N) increases by increasing 
the number of the cliques. (b) The LFR networks with strong community-size heterogeneity (γ=-2, β=-2, μ=0.4, 
Cmin=10, Cmax=100, <k>=20, and kmax =50, while N will vary). The two kinds of networks both have clear 
community structures, while the resolution limit problem of modularity will become more and more serious with 
the increase of the network size (here, BF is used, due to its low computational complexity and high 
accuracy for modularity optimization).   
 

3.3. Real-world networks 

Finally, we apply the above methods to the real-word networks: Football [44], Jazz [52], Email [53] 
and Yeast [54]. For convenience of quantitative examination, we calculate the modularity obtained by 
the above methods on the real-world networks (figure 11). Clearly, the modularity in the networks 
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obtained by almost all the methods can increase due to the introduction of the local similarity 
measures, except for PA. The results show that the local similarity measures can lead to obvious 
improvement for the methods, if the modularity is used as the evaluation criterion for the community 
quality (though it is not the best choices). The best local similarity measures may be different for 
different methods and different networks, while LHN seems to be able to bring relatively higher 
modularity for the methods in the above networks.       
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Figure 11. Modularity in real-world networks, obtained by different community detection methods with different 

structural similarity measures.  
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Table 2: Comparison of cumulative increment of performance (i.e. Sum of NMI-nmi) over all the above 

test networks, for all the combinations of the methods with the similarity measures.  

Similarity GN NF BF Infomap COPRA OSLOM 

None 0.00 0.00 0.00 0.00 0.00 0.00 

CN 1.97 6.75 1.31 1.75 3.98 0.64 

Salton 3.19 6.69 1.39 1.46 3.71 0.63 

Jaccard 3.11 6.84 1.31 1.32 3.76 0.69 

Sorensen 3.08 6.67 1.31 1.39 3.83 0.59 

HP 3.41 6.87 1.22 1.53 3.00 0.66 

HD 2.61 6.68 1.19 1.15 3.57 0.64 

LHN 3.25 6.32 0.83 0.91 3.36 0.69 

PA -6.07 0.31 -1.55 -0.27 -2.53 -0.01 

AA 2.10 7.06 1.37 1.58 4.12 0.74 

RA 2.30 7.07 1.18 1.24 4.01 0.84 

LP 1.93 6.95 1.33 1.75 4.13 0.64 

LLN 1.97 5.34 1.46 2.15 3.47 0.25 

 

Table 3: Comparison of cumulative performance (i.e. Sum of NMI) over all the above test networks, for 

all the combinations of the methods with the similarity measures. 

Similarity GN NF BF Infomap COPRA OSLOM 

None 14.92 11.68 17.64 18.46 14.41 18.21 

CN 16.89 18.43 18.95 20.21 18.38 18.85 

Salton 18.11 18.37 19.02 19.92 18.12 18.85 

Jaccard 18.02 18.52 18.94 19.79 18.17 18.90 

Sorensen 18.00 18.35 18.94 19.86 18.24 18.81 

HP 18.33 18.55 18.85 19.99 17.41 18.87 

HD 17.53 18.36 18.82 19.61 17.98 18.85 

LHN 18.17 18.00 18.47 19.37 17.76 18.90 

PA 8.84 11.99 16.08 18.19 11.88 18.20 

AA 17.02 18.74 19.00 20.04 18.52 18.96 

RA 17.22 18.75 18.82 19.70 18.42 19.05 

LP 16.85 18.63 18.97 20.21 18.54 18.85 

LLN 16.88 17.02 19.10 20.61 17.88 18.46 

 

4. Conclusion and discussion  

In general, groups of vertices with similar properties are also to be groups of vertices with denser 
links and stronger interactions, so many similarity measures may be closely related to the community 
structures in networks. Because of the positive correlation between the community structures and the 
similarity measures in networks, the similarity measures may be of help in community detection. We 
investigate systematically how various local similarity measures affect the community detection in 
various networks and compare the effect of different local similarity measures on community 
detection.   

On the whole, the application of the local similarity measures can help in identifying the 
inter-community edges (e.g. for GN), searching the optimal modularity (e.g. for NF), mitigating the 
resolution limit problem of modularity (e.g. for BF and NF), and more importantly, making the 
community structures more obvious (e.g. for Infomap, OSLOM and COPRA). Note that the local 
similarity measures can only mitigate the resolution limit problem, but cannot guarantee to solve the 
problem thoroughly. To detect the embedded communities in the networks, one may have recourse to 
the multi-resolution methods such as the multi-resolution modularity method, which can help in 
identifying the multi-scale community structures in networks.  
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The test results show that the positive effect of the local similarity measures is closely related to 
the networks under study and the applied methods themselves. By and large, most of the local 
similarity measures will lead to considerable improvement for the methods, if the original methods 
have large rooms for improvement. In Tables 2-3, as a final comprehensive comparison, we have 
shown the cumulative increment of performance and the cumulative performance over all the above 
test networks for all the combinations of the methods and the similarity measures. They display the 
comprehensive effect of different local structural similarity measures on different community 
detection methods. We believe that they should be useful for the readers, though some analysis has 
been given in the previous sections, and expect that all the data in the paper can provide the readers 
much valuable information.  

Moreover, the extraction of information based on the local similarity measures has the additional 
advantage of low computational complexity and it hardly affects the speed of the applied community 
detection methods, because it is only based on the local topological structures in networks. 
Additionally, it is possible to extract useful information for community detection by other approaches, 
even by other community detection methods, which should also be able to improve the community 
detection in networks. Finally, we hope that the work can help in enriching the knowledge for 
community detection in networks.       
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