
On the Reducibility of Submodular Functions

Jincheng Mei Hao Zhang Bao-Liang Lu?

Department of Computing Science
University of Alberta

Edmonton, AB, Canada, T6G 2E8

The Robotics Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Key Lab of SMEC for IICE
Dept. of Computer Sci. and Eng.

Shanghai Jiao Tong University
Shanghai 200240, China

Abstract

The scalability of submodular optimization
methods is critical for their usability in prac-
tice. In this paper, we study the reducibility
of submodular functions, a property that en-
ables us to reduce the solution space of sub-
modular optimization problems without per-
formance loss. We introduce the concept of
reducibility using marginal gains. Then we
show that by adding perturbation, we can
endow irreducible functions with reducibility,
based on which we propose the perturbation-
reduction optimization framework. Our the-
oretical analysis proves that given the per-
turbation scales, the reducibility gain could
be computed, and the performance loss has
additive upper bounds. We further conduct
empirical studies and the results demonstrate
that our proposed framework significantly ac-
celerates existing optimization methods for
irreducible submodular functions with a cost
of only small performance losses.

1 INTRODUCTION

Submodularity naturally arises in a number of ma-
chine learning problems, such as active learning [10],
clustering [22], and dictionary selection [5]. The scal-
ability of submodular optimization methods is critical
in practice, thus has drawn much attention from the
research community. For example, Iyer et al. [12]
propose O(n2) general optimization methods based
on the semidifferential. Wei et al. [25] combine ap-
proximation with pruning to accelerate the greedy al-
gorithm for uniform matroid constrained submodular

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

maximization. Mirzasoleiman et al. [21] and Pan et
al. [24] use distributed implementation to accelerate
existing optimization methods. Other techniques, in-
cluding stochastic sampling [20] and decomposable as-
sumption [14], are also applied to scale up submod-
ular optimization methods. While in this paper, we
focus on the reducibility of submodular functions, a
favourable property that can substantially improve the
scalability of submodular optimization methods. The
reducibility can directly reduce the solution space of
the submodular optimization problems, while preserve
all the optima in the reduced space, thereby enables
us to accelerate the optimization process without in-
curring performance loss.

Recent research shows that for some submodular func-
tions, by evaluating marginal gains, reduction can be
applied for unconstrained maximization [8], uncon-
strained minimization [6, 12], and uniform matroid
constrained maximization [25]. By leveraging the re-
ducibility, a variety of methods have been developed
to scale up the optimization of reducible submodular
functions [6, 8, 12, 19], While existing works mainly fo-
cus on reducible functions, there exist a number of ir-
reducible submodular functions widely applied in prac-
tice, for which existing methods can only provide vac-
uous reduction.

In this paper, we investigate the problem that whether
irreducible functions can also exploit this favorable
property. We firstly introduce the concept of reducibil-
ity using marginal gains over the endpoint sets of a
given lattice. Then for irreducible functions, we trans-
form them to reducible functions by adding random
noise to perturb the marginal gains, after which we
perform lattice reduction for the perturbed functions
and solve the original functions on the reduced lattice.
Theoretical results show that given the perturbation
scales, the reducibility gain is lower bounded, and the
performance loss has additive upper bounds. The em-
pirical results demonstrate that there exist useful per-
turbation scale intervals in practice, which enables us

ar
X

iv
:1

60
1.

00
39

3v
1

 [
cs

.L
G

]
 4

 J
an

 2
01

6

On the Reducibility of Submodular Functions

to significantly accelerate existing optimization meth-
ods with small performance losses.

In summary, this paper has the following contribu-
tions. Firstly, we introduce the concept of reducibil-
ity, and propose the perturbation-reduction frame-
work. Secondly, we theoretically analyze our proposed
method. In particular, for the reducibility gain, we
propose a lower bound in terms of the perturbation
scale. For the performance loss, we propose both de-
terministic and probabilistic upper bounds. The de-
terministic bound provides the understanding of re-
lationship between the reducibility gain and perfor-
mance loss, while the probabilistic bound can explain
the experimental results. Finally, we empirically show
that the proposed method is applicable for a variety
of commonly used irreducible submodular functions.

In the sequel, we organize the paper as follows. In
Section 2, we introduce the definitions and the existing
reduction algorithms. In Section 3, we propose our
perturbation based method. Theoretical analysis and
empirical results are presented in Section 4 and Section
5, respectively. In Section 6, we review some related
works. Section 7 comes to our conclusion.

2 REDUCIBILITY

2.1 Notations and Definitions

Given a finite set N = {1, 2, . . . , n}, and a set function
f : 2N 7→ R. f is said to be submodular [6] if ∀X,Y ⊆
N , f(X)+f(Y) ≥ f(X∩Y)+f(X∪Y). An equivalent
definition of submodularity is the diminishing return
property: ∀A ⊆ B ⊆ N , ∀i ∈ N \B, f(i|A) ≥ f(i|B),
where f(i|A) , f(A+ i)− f(A) is called the marginal
gain of element i with respect to set A. To simplify
the notation, we denote A ∪ {i} by A+ i, and A \ {i}
by A− i. Given A ⊆ B ⊆ N , the (set interval) lattice
is defined as [A,B] , {S | A ⊆ S ⊆ B}.

Suppose N = {1, 2, . . . , n}, and f : 2N 7→ R is a sub-
modular function. In this paper, we focus on uncon-
strained submodular optimization problems,

Problem 1 : min
X⊆N

f(X), Problem 2 : max
X⊆N

f(X).

Problem 1 can be exactly solved in polynomial time
[23], while Problem 2 is NP-hard since some of its spe-
cial cases (e.g., Max Cut) are NP-hard.

For convenience of the presentation, we will use P1 and
P2 to refer to Problem 1 and Problem 2, respectively.
Similarly, for the following algorithms, we will use A1
and A2 to refer to Algorithm 1 and Algorithm 2. The
reference holds for P3, P4, A3 and A4.

Define Xmin , {X∗ ⊆ N | f(X∗) ≤ f(X),∀X ⊆ N} as
the optima set of P1. Similarly, define Xmax , {X∗ ⊆

N | f(X∗) ≥ f(X),∀X ⊆ N}. Obviously, we have
Xmin ⊆ [∅, N] and Xmax ⊆ [∅, N].

We now give the definition of reducibility. For P1 (P2),
we say the objective function f is reducible for min-
imization (maximization) if ∃ [S, T] ⊂ [∅, N], where
[S, T] can be obtained in O(np) function evaluations,
such that Xmin ⊆ [S, T] (Xmax ⊆ [S, T]). Note that if
we can only find [S, T] in O(2n) time, the reduction is
meaningless since O(2n) time is enough for us to find

all the optima. The ratio 1 − |T\S||N | ∈ (0, 1] is called

the reduction rate.

2.2 Algorithms

Existing works on reduction for unconstrained sub-
modular optimization can be summarized by the fol-
lowing two algorithms, both of which terminate in
O(n2) time. The brief review of existing works can
be found in Section 6.

Algorithm 1 Reduction for Minimization

Input: N , f , X0 ← ∅, Y0 ← N , t← 0.
Output: [Xt, Yt].
1: Find Ut = {i ∈ Yt \Xt | f(i|Xt) < 0}.
2: Xt+1 ← Xt ∪ Ut.
3: Find Dt = {j ∈ Yt \Xt | f(j|Yt − j) > 0}.
4: Yt+1 ← Yt \Dt.
5: If Xt+1 = Xt and Yt+1 = Yt, terminate.
6: t← t+ 1. Go to Step 1.

Algorithm 2 Reduction for Maximization

Input: N , f , X0 ← ∅, Y0 ← N , t← 0.
Output: [Xt, Yt].
1: Find Ut = {i ∈ Yt \Xt | f(i|Xt) < 0}.
2: Yt+1 ← Yt \ Ut.
3: Find Dt = {j ∈ Yt \Xt | f(j|Yt − j) > 0}.
4: Xt+1 ← Xt ∪Dt.
5: If Xt+1 = Xt and Yt+1 = Yt, terminate.
6: t← t+ 1. Go to Step 1.

Proposition 1. Suppose f : 2N 7→ R is submodu-
lar. After each iteration of A1 (A2), we have Xmin ⊆
[Xt, Yt] (Xmax ⊆ [Xt, Yt]).

We prove Proposition 1 in the supplementary material.
According to Proposition 1, if the output of A1 (A2)
statifies [Xt, Yt] ⊂ [∅, N], then f is reducible.

According to A1 (A2), if U0 = D0 = ∅, then we have
X1 = X0 and Y1 = Y0. The algorithm will terminate
after the first iteration and the output is [X0, Y0] =
[∅, N], which provides a vacuous reduction. In this
case, we say that f is irreducible with respect to A1
(A2). For convenience, we directly say f is irreducible.

Thereby, we conclude two points from the above al-

Jincheng Mei, Hao Zhang, Bao-Liang Lu

gorithms. First, by the definition of Ut and Dt, the
reducibility of f can be determined by the signs of
marginal gains with respect to the endpoint sets of
the current working lattice. Second, the reducibility
of f for minimization and maximization are actually
the same property. Specially, suppose in a certain iter-
ation, A1 and A2 have the same working lattice [S, T].
According to the algorithms, they also have the same
Ut and Dt, which determine whether f is reducible
after the current iteration.

Proposition 2. Given a submodular function f :
2N 7→ R, and a lattice [S, T]. ∀i ∈ T \ S, Define
Ki = sgn{f(i|S)}·sgn{f(i|T−i)}. Then f is reducible
on [S, T] with respect to A1 (A2) if and only if

K = max
i∈T\S

Ki > 0. (1)

Proof. Suppose [X0, Y0] = [S, T] in A1 (A2). Then
f is reducible if and only if the algorithm does not
terminate after its first iteration, i.e., U0 6= ∅ or D0 6=
∅. Suppose U0 6= ∅ happens, i.e., ∃i ∈ T \ S, f(i|S) <
0. According to submodularity, f(i|T − i) ≤ f(i|S) <
0. We have K ≥ Ki = sgn{f(i|S)} · sgn{f(i|T − i)} =
1 > 0. Suppose D0 6= ∅ happens, i.e., ∃j ∈ T \ S,
f(j|T − j) > 0. According to submodularity, f(j|S) ≥
f(j|T − j) > 0. We have K ≥ Kj = sgn{f(j|S)} ·
sgn{f(j|T − j)} = 1 > 0.

According to Proposition 2, the reducibility of f for
minimization (maximization) can be obtained by (1).
Thus we say f is reducible with respect to A1 (A2) if
(1) holds. Similarly, without ambiguity in this paper,
we directly say f is reducible if (1) holds.

3 PERTURBATION REDUCTION

Given a reducible submodular function, we can use
A1 and A2 to provide useful reduction. Unfortu-
nately, there still exist many irreducible submodular
functions, some of which are listed in the experimen-
tal section. Given a submodular function f , which
is irreducible on [S, T]. According to Proposition 2,
∀i ∈ T \ S, we have f(i|S) ≥ 0 and f(i|T − i) ≤ 0.

If we expect A1 and A2 to provide nontrivial reduction,
we need to guarantee that (1) holds for some elements
without changing the submodularity of the objective
function. A natural way is to add random noise r1 to
perturb the original function as follows,

Problem 3 : min
X⊆N

g(X) , min
X⊆N

f(X) + r(X),

Problem 4 : max
X⊆N

g(X) , max
X⊆N

f(X) + r(X),

1r : 2N 7→ R is a modular function, and r(X) ,
∑
i∈X

r(i).

where ∀i ∈ N , r(i) ∈ R is generated uniformly at
random in [−t, t] for some t ≥ 0. By appropriately
choosing the value of t, we can ensure g(i|S) < 0 or
g(i|T − i) > 0 hold for some i ∈ T \ S. Thus we have
(1) holds, indicating that g is reducible. At the same
time, as r is a modular function, the submodularity of
g still holds.

Algorithm 3 Perturbation-Reduction Minimization

Input: N , f , [S, T] where Xmin ⊆ [S, T].
Output: An approximate solution Xp

∗ .
1: If f is reducible on [S, T], [X0, Y0] ← [S, T], run

A1 for f , [S, T]← [Xt, Yt].
2: Generate r. Let g = f + r. [X0, Y0] ← [S, T], run

A1 for g, [S, T]← [Xt, Yt].
3: Solve Xp

∗ ∈ arg minX∈[S,T] f(X).

Algorithm 4 Perturbation-Reduction Maximization

Input: N , f , [S, T] where Xmax ⊆ [S, T].
Output: An approximate solution X∗p .
1: If f is reducible on [S, T], [X0, Y0] ← [S, T], run

A2 for f , [S, T]← [Xt, Yt].
2: Generate r. Let g = f + r. [X0, Y0] ← [S, T], run

A2 for g, [S, T]← [Xt, Yt].
3: Solve X∗p ∈ arg maxX∈[S,T] f(X).

We propose our perturbation based method for mini-
mization and maximization in A3 and A4, respectively.
For an irreducible submodular function f on a given
lattice [S, T], we first perturb the objective function to
make it reducible, i.e., g , f + r. A1 or A2 are then
employed to obtain the reduced lattice of g. Finally we
solve the original problems of f on the reduced lattice
exactly or approximately using existing methods.

It is worth mentioning that, though we mainly focus
on irreducible functions, our methods also work for
reducible ones, as they are special cases of irreducible
functions. Particularly, given a reducible function f on
[S, T], of which the reduction rate is less than 1, after
A1 (A2) terminates, we can get a sublattice [P,Q] ⊂
[S, T] so that f is irreducible on [P,Q].

4 THEORETICAL ANALYSIS

By perturbing the irreducible submodular function, we
transform P1 (P2) into P3 (P4). This makes the ob-
jective reducible while leads the solution to be inex-
act. Correspondingly, our theoretical analysis of the
method focuses on two main aspects: the reducibility
gain and the performance loss incurred by perturba-
tion.

On the Reducibility of Submodular Functions

4.1 Reducibility Gain

Suppose f : 2N 7→ R is an irreducible submodular
function on [S, T], and g , f + r as defined in P3
and P4. Since f is irreducible, ∀i ∈ T \ S, we have
f(i|S) ≥ 0 and f(i|T − i) ≤ 0.

Proposition 3. Given a submodular function f :
2N 7→ R, which is irreducible on [S, T]. Define
m{f, [S, T]} , mini∈T\S min{f(i|S),−f(i|T − i)}. If
t ≤ m{f, [S, T]}, then g is irreducible on [S, T].

Proof. Since m{f, [S, T]} ≥ 0, we suppose 0 ≤ t ≤
m{f, [S, T]}. ∀i ∈ T \ S, we have g(i|S) = f(i|S) +
r(i) ≥ f(i|S) − t ≥ f(i|S) − m{f, [S, T]} ≥ 0, and
g(i|T − i) = f(i|T − i) + r(i) ≤ f(i|T − i) + t ≤
f(i|T − i) + m{f, [S, T]} ≤ 0, which implies that g
is also irreducible on [S, T].

Proposition 3 indicates that if the perturbation scale
t is small enough, there is no reducibility gain. This
is intuitively reasonable since we have g → f when
t→ 0.

To lower bound the reducibility gain of adding pertur-
bation, we generalize the concept of curvature [4, 13]
for non-monotone irreducible submodular functions.

Definition 1. Given a submodular function f : 2N 7→
R, the curvature of f on [S, T] is defined as,

c{f, [S, T]} = max
i∈T\S,f(i|S)>0

f(i|S)− f(i|T − i)
f(i|S)

.

Note that for any irreducible submodular function f
on [S, T], we have c{f, [S, T]} ≥ 1.

Theorem 1. Suppose t > m{f, [S, T]}, denote s =
|T \ S| > 0, k =

∑
i∈T\S f(i|S), c = c{f, [S, T]}. The

reduction rate in expectation of g is at least 1− ck
2ts .

Proof. Suppose T \ S = {1, 2, . . . , s}, ∀i ∈ T \ S, we
define a random variable Hi as,

Hi =

{
1 if Ki > 0,

0 otherwise.

Hi indicates whether i can be reduced from T \ S or
not. Define H =

∑
i∈T\S Hi as the total number of

the reduced elements. We firstly lower bound E(H)
by the total number of the reduced elements after the
first iteration round of A1(A2),

E(H) =
∑
i∈T\S

E(Hi) =
∑
i∈T\S

Pr{Hi = 1}

≥ 1

2t
·
∑
i∈T\S

max{0, t− f(i|S)}+ max{0, t+ f(i|T − i)}

≥ s− c

2t
·
∑
i∈T\S

f(i|S) = s− ck

2t
.

Consequently, the reduction rate in expectation is
E(H)
s ≥ 1− ck

2ts .

Theorem 1 implies that the reduction rate in expecta-
tion approaches 1 as the perturbation scale t increases.
This is also consistent with our intuition since g → r
when t→∞. Note that r is a modular function, which
always has the highest reduction rate 1.

4.2 Performance Loss

Suppose X∗ ∈ Xmin (X∗ ∈ Xmax), i.e., X∗ (X∗) is an
optimum of P1 (P2). Recall that Xp

∗ (X∗p) is the out-
put of A3 (A4), for P1 (P2), we define f(Xp

∗)− f(X∗)
(f(X∗)− f(X∗p)) as the performance loss incurred by
perturbation. For P1 (P2), the following result shows
that the performance loss is upper bounded by the to-
tal perturbation of the “mistakenly” reduced elements,
which will be explained later on.

Theorem 2. Given an irreducible submodular func-
tion f : 2N 7→ R. Suppose t is the perturbation scale
in A3 (A4), and Rt is the reduction rate. We have,

f(Xp
∗)− f(X∗) < −r(Xt \X∗) + r(X∗ \ Yt) < ntRt,

f(X∗)− f(X∗p) < r(Xt \X∗)− r(X∗ \ Yt) < ntRt.

Proof. We prove the maximization case. In general,
we have X∗ 6∈ [Xt, Yt], otherwise the loss is zero. Note
that X∗p ∈ [Xt, Yt] according to A4. So we firstly in-
troduce an intermediate set X∗ ∪ Xt ∩ Yt, i.e., the
contraction of X∗ in [Xt, Yt] for our analysis. Given
the fact that f(X∗ ∪Xt ∩ Yt) ≤ f(X∗p), if we can up-
per bound f(X∗) − f(X∗ ∪ Xt ∩ Yt), then the total
performance loss is also upper bounded. In A2, we
have [Xt, Yt] ⊂ · · · ⊂ [X1, Y1] ⊂ [X0, Y0] = [∅, N]. By
definition, ∀ 0 ≤ k ≤ t − 1, Xk+1 = Xk ∪ Dk, and
Yk+1 = Yk \ Uk. We have,

f(X∗ ∪Xt)− f(X∗) (2)

=

|Xt\X∗|∑
s=1,xs∈Xt\X∗

f(xs|X∗ + x1 + · · ·+ xs−1) (3)

≥
t−1∑
i=0

∑
d∈Di\X∗

f(d|Yi − d) (4)

> −
t−1∑
i=0

∑
d∈Di\X∗

r(d) (5)

= −r(Xt \X∗), (6)

where (3) is the telescopic version of (2). According to
submodularity, we have (4) holds, and (5) comes from
the third step of A2. Similarly, we have,

f(X∗ ∪Xt)− f(X∗ ∪Xt ∩ Yt) < −r(X∗ \ Yt). (7)

Jincheng Mei, Hao Zhang, Bao-Liang Lu

Combining (6) with (7), and noting X∗ ∪ Xt ∩ Yt ∈
[Xt, Yt] and f(X∗p) ≥ f(X∗ ∪Xt ∩ Yt), we have,

f(X∗)− f(X∗p) < r(Xt \X∗)− r(X∗ \ Yt). (8)

We note in (8), Xt \ X∗ is actually the set of all the
elements which are not in X∗ but added by A2. Simi-
larly, X∗ \Yt is the set of all the elements which are in
X∗ but eliminated by A2. Consequently, the perfor-
mance loss is upper bounded by the total perturbation
value of all the mistakenly reduced elements. Since
the number of all the mistakenly reduced elements is
no more than the number of all the reduced elements
nRt, and the perturbation is generated in [−t, t], we
have r(Xt \X∗)− r(X∗ \ Yt) ≤ ntRt.

For the minimization case, the proof is similar.

Note that in Theorem 2, the performance loss is up-
per bounded by the sum of random variables, which
means we can obtain high probability bounds using
some concentration inequalities, such as [11].

Theorem 3. (Hoeffding) Let X1, X2, . . . , Xn be in-
dependent real-valued random variables such that ∀i ∈
{1, 2, . . . , n}, |Xi| ≤ t. Then with probability 1− δ,

n∑
i=1

Xi − E

[
n∑
i=1

Xi

]
< t

√
2n log (1/δ).

Theorem 4. Define Xc
∗ , X∗ ∪ Xt ∩ Yt, and X∗c ,

X∗ ∪ Xt ∩ Yt. Denote Mr , |Xc
∗4X∗|, and Nr ,

|X∗c4X∗|, where A4B , (A \ B) ∪ (B \ A) is the
symmetric difference between the two sets A and B.
Then with probability at least 1− δ,

f(Xp
∗)− f(X∗) < t

√
2Mr(n+ log (1/δ)), (9)

f(X∗)− f(X∗p) < t
√

2Nr(n+ log (1/δ)). (10)

Proof. We prove (10). Since the perturbation vector
r has zero expectation value, and each element of r
is independently generated. For any fixed X ⊆ N ,
according to Theorem 3, with probability at least 1−δ,

r(X)− r(X∗) ≤ t
√

2|X4X∗| log (1/δ). (11)

Suppose X∗ ∈ [S, T], and define m , |[S, T]|. Obvi-
ously, we have m ≤ 2n. Hence,

Pr
[
r(X∗c)− r(X∗) ≥ t

√
2Nr log (m/δ)

]
=
∑

X∈[S,T]

Pr

[
r(X∗c)− r(X∗)≥t

√
2|X∗c4X∗| log (

m

δ
), X∗c =X

]

=
∑

X∈[S,T]

Pr

[
r(X)− r(X∗)≥t

√
2|X4X∗| log (

m

δ
), X∗c =X

]

≤
∑

X∈[S,T]

Pr

[
r(X)− r(X∗)≥t

√
2|X4X∗| log (

m

δ
)

]

≤
∑

X∈[S,T]

δ

m
= m

δ

m
= δ,

where the first equality holds by the law of total prob-
ability. The second equality holds because replacing
X∗c with X in the first expression does not change
the event. The first inequality comes from dropping
the event X∗c = X increases the probability. The
last line results from (11) and the definition of m.
Combining the above result with Theorem 2, and note
r(Xt \ X∗) − r(X∗ \ Yt) = r(X∗c) − r(X∗), we have,
with probability at least 1− δ,
f(X∗)−f(X∗p)<r(X∗c)−r(X∗)<t

√
2Nr(n+ log (1/δ)).

Using a similar method, (9) can also be proved.

Theorem 4 has an intuitive interpretation. Take P2
and P4 as examples, ∀Y ⊆ N , if f(X∗) − f(Y) is
large, then it is unlikely that Y is an optimum of P4.
Suppose f(X∗)− f(Y) = σ > 0, then we have,

Pr [f(Y) + r(Y) ≥ f(X) + r(X),∀X ⊆ N]

≤ Pr [f(Y) + r(Y) ≥ f(X∗) + r(X∗)]

= Pr [r(Y)− r(X∗) ≥ σ].

Totally, the probability of Y being an optimum of P4
is upper bounded by the probability that the perturba-
tion difference r(Y)−r(X∗) can compensate the func-
tion value difference σ, where the later probability is
small when σ is large.

Finally, we show that the Mr and Nr in Theorem 4,
which are the numbers of mistakenly reduced elements,
can also be upper bounded by functions of f and t.
Theorem 5. Denote the total number of the mistak-
enly reduced elements in the first iteration of A1 and
A2 as M1

r and N1
r , respectively. We have,

Er[M1
r] ≤ n

2
− F − f(X∗)

t
, (12)

Er[N1
r] ≤ n

2
− f(X∗)− F

t
, (13)

where F , 1
2 (f(∅) + f(N)) ∈ [f(X∗), f(X∗)].

Proof. For (13), we calculate the total mistakenly re-
duced element number in expectation in the first iter-
ation of A2. According to the definition of symmetric
difference, N1

r = |X∗ \ Y1|+ |X1 \X∗|.

∀i ∈ X∗, f(i|∅) ≥ f(i|X∗−i) = f(X∗)−f(X∗−i) ≥ 0.
And i ∈ X∗ \ Y1 iff f(i|∅) + t < 0. Similarly, ∀j 6∈ X∗,
f(j|N − j) ≤ f(j|X∗) = f(X∗ + j)− f(X∗) ≤ 0. And
j ∈ X1 \X∗ iff f(j|N − j) + t > 0. Thus we have,

Er[N1
r] = Er|X∗ \ Y1|+ Er|X1 \X∗|

=
∑
i∈X∗

t− f(i|∅)
2t

+
∑
j 6∈X∗

t+ f(j|N − j)
2t

=
n

2
− 1

2t

∑
i∈X∗

f(i|∅)−
∑
j 6∈X∗

f(j|N − j)

≤ n

2
− f(X∗)− f(∅) + f(X∗)− f(N)

2t
.

On the Reducibility of Submodular Functions

For (12), the proof is similar.

Using similar methods we can obtain the following re-
sults, which recover Theorem 5 as a special case.

Theorem 6. Denote the total number of the mistak-
enly reduced elements in the kth iteration as Mk

r , and
Nk
r , respectively. We have,

Er[Mk
r] ≤ nk−1

2
− Fk−1 − f(X∗)

t
,

Er[Nk
r] ≤ nk−1

2
− f(X∗)− Fk−1

t
,

where nk−1 , |Yk−1\Xk−1|, and Fk−1 , 1
2 (f(Xk−1)+

f(Yk−1)) ∈ [f(X∗), f(X∗)].

Theorem 5 implies that the expected number of mis-
takenly reduced elements in the first iteration will ap-
proach n

2 as the perturbation scale t increases. This is
consistent with the intuition. Let t→∞, then g → r.
Each element will be randomly selected to be added or
eliminated with probability 1

2 , so the expected number
of mistakenly reduced elements is n

2 .

Remark 1. When t is large enough, most elements
will be reduced in the first iteration, i.e., Nr ≈ N1

r . Let

t = 2(f(X∗)−F)
n(1−2ε) , where ε > 0, by (13) we have Er[Nr] ≈

Er[N1
r] ≤ εn, which indicates that if t = 2(f(X∗)−F)

n(1−2ε)
is a large enough perturbation scale, then the number
of mistakenly reduced elements can be desirably upper
bounded.

Remark 2. Suppose t is large enough and Nr ≈ N1
r .

With the result of Theorem 2, we have

f(X∗)− f(X∗p) < tNr ≈
nt

2
− (f(X∗)− F).

Let t = 2[(1+δ)f(X∗)−F]
n where δ > 0, we have f(X∗p) >

(1− δ)f(X∗) from above. This means if there is some
relationship between the optimum and the perturba-

tion (t = 2[(1+δ)f(X∗)−F]
n is a large perturbation scale),

then the previous performance loss results can be trans-
formed into approximation ratios.

5 EXPERIMENTAL RESULTS

For reducible submodular functions, by incorporating
reduction into optimization methods, favorable perfor-
mance has been achieved [6, 8, 12, 19]. In our exper-
iments, we mainly focus on (nearly) irreducible sub-
modular functions, as listed below.

Subset Selection Function. The objective func-
tion [18, 12] is irreducible. Given M ∈ Rn×n+ , f(X) ,∑
i∈N

∑
j∈XMij − λ

∑
i,j∈XMij , where λ ∈ [0.5, 1].

We set n = 100, λ = 0.7, and randomly generate
symmetric matrix M in (0, 1)n×n, and set Mii = 1,
∀i ∈ N .

Mutual Information Function. Given n random
vectors X1, X2, . . . , Xn, define h(X) as the entropy
of random variables {Xi|i ∈ N}, which is a highly
reducible submodular function. The symmetrization
[1] of h leads to the mutual information f(X) ,
h(X)+h(N \X), which is irreducible. We set n = 100,
and randomly generate {Xi | i = 1, 2, . . . , n}.

Log-Determinant Function. Given a positive def-
inite matrix K ∈ Sn++, the determinant [17] is log-
submodular. The symmetrization of log-determinant
is f(X) , log det (KX)+log det (KN\X), where KX ,
[Kij]i,j∈X , ∀X ⊆ N . We set n = 100. We randomly
generate n data points and compute the n×n similar-
ity matrix as the positive definite matrix K.

Negative Half-Products Function. The objec-
tive [2] is f(X) , c(X) −

∑
i,j∈X,i<j a(i)b(j), where

a, b, c are non-negative vertors. When c is not non-
negative, f can be highly reducible [19]. Here c is
non-negative, and f is nearly irreducible. The reduc-
tion rate of A1 (A2) is about 1%. We set n = 100, and
randomly generate a, b in (0.1, 0.5)n and c in (1, 5)n.

5.1 Perturbation Scale

In Theorem 1, we lower bound the expectation of re-
duction rate using the expectation of reduction rate
after the first iteration of A1 (A2). It is recently re-
ported that for reducible submodular minimization,
this bound is often not tight in practice [12]. Given
that our method is actually transforming irreducible
functions to reducible ones, it is reasonable to bor-
row experience from reducible cases. We conjecture
that relatively small reduction rates after the first it-
eration would be sufficient for high reduction rates af-
ter the last iteration, thereby we only need to choose
small perturbation scales to obtain desirable reducibil-
ity gains. We empirically verify the conjecture as
shown in Figure 1. Appropriate perturbation scales
t are chosen so that the reduction rates after the last
iteration are changing from 0 to nearly 1. Given a
certain perturbation scale, we repeatedly generate r
for 10 times and record the average reduction rates of
A2 after iteration 1-4 and the last iteration. We ob-
serve that A2 terminates within 10 iterations for all
objective functions.

We defer similar results for minimization to the sup-
plementary material. As conjectured, we learn from
Figure 1 that the gap between the average reduction
rates after the first iteration and the last iteration is
always large in practice. Hence, we can choose t to
get appropriate reduction rates in expectation (e.g.,
0.3) after the first iteration, so as to obtain potentially
high final reduction rates. Although we can empiri-

Jincheng Mei, Hao Zhang, Bao-Liang Lu

(a) Subset selection (b) Mutual information (d) Negative half-products(c) Log-determinant
10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

−5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

Figure 1: Average Reduction Rates of Maximization

(a) Subset selection (b) Mutual information (c) Log-determinant (d) Negative half-products
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

Figure 2: Maximization Results Using Branch-and-Bound Method [9] (Exact Solver)

cally utilize the gap of reducibility gain to choose rel-
ative small perturbation scales, we would like to point
out that theoretically determining the reduction rates
in expectation after the last iteration given certain per-
turbation scales is still an open problem.

5.2 Optimization Results

We implement our method using SFO toolbox [15].

For maximization, we compare A4 with both exact
and approximate methods, as exact methods usually
cannot terminate in acceptable time with larger input
scales. Denote the outputs of the proposed A4 and
the existing method as Xp and Xe, respectively. Also
denote the running time as Tp and Te. We measure the
performance loss using relative error, which is defined

as Er , |f(Xe)−f(Xp)|
|f(Xe)| . When Xe is exact, 1 − Er is

the approximation ratio. We measure the reducibility
gain using both the reduction rate and the time ratio
Tp/Te. Small time ratios and relative errors indicate
large reducibility gains and small performance losses,
respectively.

We employ the branch-and-bound method [9] as the
exact solver. Since it has exponential time complex-
ity, we reset n = 20 so that it terminates within
acceptable time. The results are shown in Fig-
ure 2. For comparison, we normalize the pertur-
bation scale as follows. We define M{f, [S, T]} ,
maxi∈T\S max{f(i|S),−f(i|T − i)}, and define the

perturbation scale ratio as P (t) , t−m
M−m . We change

the perturbation scale t in [m,M] by varying P (t) in
[0, 1]. We then randomly generate 10 cases for each ob-
jective function and record the average relative errors,
average reduction rates, and average time ratios for
each perturbation scale ratio. Figure 3 shows the re-
sults compared with the random bi-directional greedy
method [3], which is used as the approximate solver.
Note that n is set to 100. For each case, we firstly run
A2 once, and then run the random method 5 times on
both the original and the reduced lattice, and record
the best solutions.

According to Figure 2 and Figure 3, when the pertur-
bation scale ratio is smaller than 0.3, the time ratio
is larger than 1. This is because the small reducibil-
ity gain cannot make the combination methods more
efficient than before. As the perturbation scale ratio
increases, the reduction rate increases and the time
ratio decreases as expected. Meanwhile, the relative
error increases gently when P (t) increases, indicating
that there exist useful intervals, in which the pertur-
bation scales can lead to large reducibility gains and
small performance losses.

For minimization, since the subset selection and the
mutual information function have trivial zero optimal
values, i.e., f(X∗) = f(∅) = 0, we use the later two
as objective functions. We employ the Fujishige-Wolfe
minimum-norm point algorithm [7] as the exact solver.
All the settings are the same as those of maximization.
The results of minimization are shown in Figure 4.
We note that for negative half-products function, the

On the Reducibility of Submodular Functions

(a) Subset selection (b) Mutual information (c) Log-determinant (d) Negative half-products
0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

Figure 3: Maximization Results Using Random Bi-directional Greedy [3] (Approximate Solver)

useful interval of perturbation scales is smaller than
those of other functions. According to Remark 2, as
the marginal gains are relatively large compared to
the optimal value, it is inappropriate to choose large
perturbation scales in this case.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

(a) Log-determinant (b) Negative half-products
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

Figure 4: Minimization Results

6 RELATED WORK

In this section, we review some existing works related
to solution space reduction for submodular optimiza-
tion. For P1, Fujishige [6] firstly proves Xmin ⊆ [A,B],
where A = {i ∈ N | f(i|∅) < 0} and B = {j ∈
N | f(j|N − j) ≤ 0}. Note that actually [A,B] =
[X1, Y1], which is the working lattice of A1 after its first
iteration. Recently, Iyer et al. [12] propose the discrete
Majorization-Minimization (MMin) framework for P1.
They prove that by choosing appropriate supergra-
dients, MMin is identical with A1. For P2, Golden-
gorin [8] proposes the Preliminary Preservation Algo-
rithm (PPA), which is identical with A2. For general
cases, Mei et al. [19] prove that the two algorithms
work for quasi-submodular functions. Beyond uncon-
strained problems, for uniform matroid constrained
monotone submodular function optimization, Wei et
al. [25] propose similar pruning method in which the
reduced ground set contains all the original solutions
of the greedy algorithm.

7 CONCLUSIONS

In this paper, we introduce the reducibility of sub-
modularity, which can improve the efficiency of sub-
modular optimization methods. We then propose the
perturbation-reduction framework, and demonstrate
its advantages theoretically and empirically. We an-
alyze the reducibility gain and performance loss given
perturbation scales. Experimental results show that
there exists practically useful intervals, and choosing
perturbation scales from them enables us to signifi-
cantly accelerate the existing methods with only small
performance loss. For the future work, we would like
to study the reducibility of submodular functions in
constrained problems.

Acknowledgements

Jincheng Mei would like to thank Csaba Szepesvári
for fixing the proof of Theorem 4. Bao-Liang Lu was
supported by the National Basic Research Program
of China (No. 2013CB329401), the National Natural
Science Foundation of China (No. 61272248) and the
Science and Technology Commission of Shanghai Mu-
nicipality (No. 13511500200). Asterisk indicates the
corresponding author.

References

[1] Francis Bach. Learning with submodular functions:
A convex optimization perspective. Foundations and
Trends Machine Learning, 6(2-3):145–373, 2013.

[2] Endre Boros and Peter L Hammer. Pseudo-
boolean optimization. Discrete Applied Mathematics,
123(1):155–225, 2002.

[3] Niv Buchbinder, Michael Feldman, Joseph Naor,
and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maxi-
mization. In IEEE Annual Symposium on Founda-
tions of Computer Science, pages 649–658, 2012.

[4] Michele Conforti and Gérard Cornuéjols. Submodu-
lar set functions, matroids and the greedy algorithm
tight worst-case bounds and some generalizations of

Jincheng Mei, Hao Zhang, Bao-Liang Lu

the rado-edmonds theorem. Discrete Applied Mathe-
matics, 7(3):251–274, 1984.

[5] Abhimanyu Das and David Kempe. Submodular
meets spectral: Greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection.
In International Conference on Machine Learning,
pages 1057–1064, 2011.

[6] Satoru Fujishige. Submodular Functions and Opti-
mization, volume 58. Elsevier, 2005.

[7] Satoru Fujishige and Shigueo Isotani. A submod-
ular function minimization algorithm based on the
minimum-norm base. Pacific Journal of Optimization,
7(1):3–17, 2011.

[8] Boris Goldengorin. Maximization of submodular func-
tions: Theory and enumeration algorithms. Euro-
pean Journal of Operational Research, 198(1):102–
112, 2009.

[9] Boris Goldengorin, Gerard Sierksma, Gert A Tijssen,
and Michael Tso. The data-correcting algorithm for
the minimization of supermodular functions. Manage-
ment Science, 45(11):1539–1551, 1999.

[10] Daniel Golovin and Andreas Krause. Adaptive sub-
modularity: Theory and applications in active learn-
ing and stochastic optimization. Journal of Artificial
Intelligence Research, 42:427–486, 2011.

[11] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
statistical association, 58(301):13–30, 1963.

[12] Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Fast
semidifferential-based submodular function optimiza-
tion. In International Conference on Machine Learn-
ing, pages 855–863, 2013.

[13] Rishabh Iyer, Stefanie Jegelka, and Jeff A Bilmes.
Curvature and optimal algorithms for learning and
minimizing submodular functions. In Advances in
Neural Information Processing Systems, pages 2742–
2750, 2013.

[14] Stefanie Jegelka, Francis Bach, and Suvrit Sra. Reflec-
tion methods for user-friendly submodular optimiza-
tion. In Advances in Neural Information Processing
Systems, pages 1313–1321, 2013.

[15] Andreas Krause. Sfo a toolbox for submodular func-
tion optimization. The Journal of Machine Learning
Research, 11:1141–1144, 2010.

[16] Alex Krizhevsky. Learning multiple layers of features
from tiny images, 2009.

[17] Alex Kulesza and Ben Taskar. Determinantal point
processes for machine learning. Foundations and
Trends in Machine Learning, 5(2-3):123–286, 2012.

[18] Hui Lin and Jeff Bilmes. How to select a good training-
data subset for transcription submodular active selec-
tion for sequences. In Conference of the International
Speech, pages 2859–2862, 2009.

[19] Jincheng Mei, Kang Zhao, and Bao-Liang Lu. On un-
constrained quasi-submodular function optimization.
In AAAI Conference on Artificial Intelligence, pages
1191–1197, 2015.

[20] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Vondrák Jan, and Andreas Krause.
Lazier than lazy greedy. In AAAI Conference on Ar-
tificial Intelligence, pages 1812–1818, 2015.

[21] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar,
and Andreas Krause. Distributed submodular maxi-
mization: Identifying representative elements in mas-
sive data. In Advances in Neural Information Process-
ing Systems, pages 2049–2057, 2013.

[22] Mukund Narasimhan, Nebojsa Jojic, and Jeff A
Bilmes. Q-clustering. In Advances in Neural Infor-
mation Processing Systems, pages 979–986, 2005.

[23] James B Orlin. A faster strongly polynomial time al-
gorithm for submodular function minimization. Math-
ematical Programming, 118(2):237–251, 2009.

[24] Xinghao Pan, Stefanie Jegelka, Joseph E Gonzalez,
Joseph K Bradley, and Michael I Jordan. Parallel
double greedy submodular maximization. In Advances
in Neural Information Processing Systems, pages 118–
126, 2014.

[25] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-
stage submodular maximization. In International
Conference on Machine Learning, pages 1494–1502,
2014.

On the Reducibility of Submodular Functions

Appendix

A Proof of Proposition 1

For Algorithm 1, the proof can be found in [12]. For
Algorithm 2, the proof can be found in [8]. A proof
using weaker assumption of quasi-submodular function
f can be found in [19]. We prove Proposition 1 here
for completeness.

Proof. Algorithm 1. Obviously Xmin ⊆ [X0, Y0].
Suppose Xmin ⊆ [Xk, Yk], we now prove Xmin ⊆
[Xk+1, Yk+1]. Suppose X∗ ∈ Xmin is a minimum of f ,
then we have Xk ⊆ X∗ ⊆ Yk. For ∀i ∈ Uk, if i 6∈ X∗,
by submodularity, we have f(i|X∗) ≤ f(i|Xk) < 0,
i.e., f(X∗ + i) < f(X∗), which contradicts with the
optimality of X∗. So we have Uk ⊆ X∗, and Xk+1 =
Xk ∪ Uk ⊆ X∗. ∀j ∈ Dk, if j ∈ X∗, by submodu-
larity, we have f(j|X∗ − j) ≥ f(j|Yk − j) > 0, i.e.,
f(X∗) > f(X∗ − j), which also contradicts with the
optimality of X∗. Therefore we have Dk ⊆ N \ X∗,
and X∗ ⊆ Yk+1 = Yk \Dk.

Now we have Xk+1 ⊆ X∗ ⊆ Yk+1. Since X∗ can
be an arbitrary element of Xmin, we have Xmin ⊆
[Xk+1, Yk+1].

Algorithm 2. Obviously Xmax ⊆ [X0, Y0]. Suppose
Xmax ⊆ [Xk, Yk], we now prove Xmax ⊆ [Xk+1, Yk+1].
Suppose X∗ ∈ Xmax is a maximum of f , then we have
Xk ⊆ X∗ ⊆ Yk. ∀i ∈ Uk, if i ∈ X∗, by submodularity,
we have f(i|X∗ − i) ≤ f(i|Xk) < 0, i.e., f(X∗) <
f(X∗ − i), which contradicts with the optimality of
X∗. So we have Uk ⊆ N \ X∗, and X∗ ⊆ Yk+1 =
Yk\Uk. ∀j ∈ Dk, if j 6∈ X∗, by submodularity, we have
f(j|X∗) ≥ f(j|Yk − j) > 0, i.e., f(X∗ + j) > f(X∗),
which also contradicts with the optimality of X∗. So
we have Dk ⊆ X∗, and Xk+1 = Xk ∪Dk ⊆ X∗.

Now we have Xk+1 ⊆ X∗ ⊆ Yk+1. Since X∗ can
be an arbitrary element of Xmax, we have Xmax ⊆
[Xk+1, Yk+1].

B Reduction Rate of Algorithm 1

Figure 5 shows the reduction rates of Algorithm 1. All
the settings are the same as those of Algorithm 2 in
the paper.

C More Experimental Results

C.1 Results of Maximization

In the paper we use the random bi-directional greedy
method as the approximate solver for maximization.
We also report the results of random permutation [12]

and random local search [12]. The settings are the
same as those in the paper. The results are shown in
Figure 6 and Figure 7.

C.2 Results Using Real Data

Finally, we compare the results on real data. The ob-
jective function is the log-determinant function. For
each test case, we randomly select 100 samples from
the CIFAR dataset [16], and then we compute the sim-
ilarity matrix as the positive definite matrix K. Other
settings are the same as those in the paper. The results
are shown in Figure 8.

In Figure 8, the first three subfigures show the re-
sults of maximization using random local search, ran-
dom permutation, and random bi-directional greedy,
respectively. The last subfigure presents the results
of minimization using the Fujishige-Wolfe minimum-
norm point algorithm [7].

Jincheng Mei, Hao Zhang, Bao-Liang Lu

(a) Subset selection (b) Mutual information (d) Negative half-products(c) Log-determinant
10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

−5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

Perturbation Scale

A
ve

ra
ge

 R
ed

uc
tio

n
Ra

te

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Last iteration

Figure 5: Average Reduction Rates of Minimization

(a) Subset selection (b) Mutual information (c) Log-determinant (d) Negative half-products
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

Figure 6: Maximization Results Using Random Permutation [12]

(a) Subset selection (b) Mutual information (c) Log-determinant
0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

(d) Negative half-products
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

Figure 7: Maximization Results Using Random Local Search [12]

(a) Random local search (b) Random permutation (c) Random bi-directional greedy (d) Minimum-norm point
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Perturbation Scale Ratio

Average Relative Error
Average Time Ratio
Average Reduction Rate

Figure 8: Results of Log-determinant Function Using CIFAR Dataset

	1 INTRODUCTION
	2 REDUCIBILITY
	2.1 Notations and Definitions
	2.2 Algorithms

	3 PERTURBATION REDUCTION
	4 THEORETICAL ANALYSIS
	4.1 Reducibility Gain
	4.2 Performance Loss

	5 EXPERIMENTAL RESULTS
	5.1 Perturbation Scale
	5.2 Optimization Results

	6 RELATED WORK
	7 CONCLUSIONS
	A Proof of Proposition ??
	B Reduction Rate of Algorithm ??
	C More Experimental Results
	C.1 Results of Maximization
	C.2 Results Using Real Data

