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Abstract

We consider the use of distributed storage (DS) to reduce the communication cost of content delivery in a wireless

network. Content is stored (cached) in a number of mobile devices using an erasure correcting code. A user retrieves

content from other mobile devices using device-to-device communication or from the base station (BS), at the expense

of a higher communication cost. We address the repair problem when a device that stores data leaves the network. We

introduce a repair scheduling where repair is performed periodically. We derive analytical expressions for the overall

communication cost of content download and data repair as a function of the repair interval. The derived expressions

are then used to evaluate the communication cost entailed by DS using maximum distance separable (MDS) codes,

regenerating codes, and locally repairable codes. Our results show that DS can reduce the communication cost with

respect to the case where content is downloaded only from the BS, provided that repairs are performed frequently

enough. The required repair frequency depends on the code used for storage and network parameters. Interestingly,

we show that MDS codes, which do not perform well for classical DS, can yield a low overall communication cost

in wireless DS.
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I. INTRODUCTION

It is predicted that the global mobile data traffic will reach 24.3 exabytes per month by 2019, nearly a tenfold

increase compared to the traffic in 2014 [1]. This dramatic increase threatens to completely congest the already

burdened wireless networks. One popular approach to reduce peak traffic is to store popular content closer to the

end users, a technique known as caching. The idea is to deploy a number of access points (called helpers) with

large storage capacity, but low-rate wireless backhaul, and store data across them [2], [3]. Users can then download

content from the helpers, resulting in a higher throughput per user. In [4] it was suggested to store content directly

in the mobile devices, taking advantage of the high storage capacity of modern smart phones and tablets. The

requested content can then be directly retrieved from neighbouring mobile devices, using device-to-device (D2D)

communication. This allows for a more efficient content delivery at no additional infrastructure cost. Caching in

the mobile devices to alleviate the wireless bottleneck has attracted a significant interest in the research community

in the recent years [5]–[8]. In all these works, simple content caching and/or replication (i.e., a number of copies

of a content are stored in the network) is considered.

A relevant problem in D2D-assisted mobile caching networks is the repairing of the lost data when a storage device

is unavailable, e.g., when a storage device fails or leaves the network. Repairing of the lost data was considered in

[9], where the communication cost incurred by data download and repair was analyzed for a caching scheme where

data is stored in the mobile devices using replication and regenerating codes [10]. A strong assumption in [9] is

that the repair of the lost content is performed instantaneously. As a result, content can always be downloaded from

the mobile devices. Under the assumption of instantaneous repair, the caching strategy that minimizes the overall

communication cost is 2-replication.

In this paper, we consider content caching in a wireless network scenario using erasure correcting codes. To avoid

confusion with standard caching, we will use the term wireless distributed storage, highlighting the resemblance

with distributed storage (DS) using erasure correcting codes in, e.g., data centers. Similar to the scenario in [9], we

consider a cellular system where mobile devices roam in and out of a cell according to a Poisson random process

and request content at random times. The cell is served by a base station (BS), which always has access to the

content. Content is also stored across a limited number of mobile devices using an erasure correcting code. Our

main focus is on the repair problem when a device that stores data leaves the network. In particular, we introduce

a more realistic repair scheduling than the one in [9] where lost content is repaired (from storage devices using

D2D communication or from the BS) at periodic intervals.

We derive analytical expressions for the overall communication cost of content download and data repair as a

function of the repair interval. The derived expressions are then used to analyze the overall communication cost

incurred by using erasure correcting codes for DS. More precisely, we analyze maximum distance separable (MDS)

codes, regenerating codes [10], and locally repairable codes (LRCs) [11]. As opposed to [9], content cannot always

be retrieved from the mobile devices, therefore the download cost is dependent on the repair process (in particular

the repair interval). We show that DS can reduce the overall communication cost as compared to the basic scenario
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where content is only downloaded from the BS. However, this is provided that repairs can be performed frequently

enough. The repair interval that minimizes the overall communication cost depends on the network parameters and

the underlying erasure correcting code. We show that, in general, instantaneous repair is not optimal. The derived

expressions can also be used to find, for a given repair interval, the erasure correcting code yielding the lowest

overall communication cost.

Non-instantaneous repairs, the so called “lazy” repairs, have already been proposed for DS in data centers [12],

[13] to reduce the amount of data that has to be transmitted within the storage network during the repair process,

known as the repair bandwidth. However, contrary to [12], [13], in the wireless scenario considered here the

non-instantaneous repairs impact both data repair and download. We show that, somewhat interestingly, erasure

correcting codes achieving a low repair bandwidth do not always perform well in a wireless DS setting. On the

other hand, MDS codes, which entail a high repair bandwidth, can yield a low overall communication cost for some

repair intervals.

The remainder of this paper is organized as follows. In Section II, we describe the system model and main

assumptions. In Section III, we derive analytical expressions for the overall communication cost as a function of

the repair interval. In Section IV, we extend the analysis to the case when repair and download can be carried

out jointly from storage devices and the BS. In Section V we introduce the erasure correcting codes used for DS.

Finally, we give numerical results in Section VI and provide a discussion and draw some conclusions in Section VII.

II. SYSTEM MODEL

We consider a single cell in a cellular network, served by a BS, where mobile devices (referred to as nodes)

arrive and depart according to a Poisson random process. The initial number of nodes in the network is M . Nodes

wish to download content from the network. For simplicity, we assume that there is a single object (file), of size

F bits, stored at the BS. We further assume that nodes can store data and communicate between them using D2D

communication. The considered scenario is depicted in Fig. 1.

Arrival-departure model. Nodes arrive according to a Poisson process with exponential independent, identically

distributed (i.i.d.) random inter-arrival times Ta with probability density function (pdf)

fTa(t) = Mλe−Mλt, λ ≥ 0, t ≥ 0, (1)

where Mλ is the expected arrival rate of a node and t is time, measured in time units (t.u.).

The nodes stay in the cell for an i.i.d. exponential random lifetime Tl with pdf

fTl(t) = µe−µt, µ ≥ 0, t ≥ 0, (2)

where µ is the expected departure rate of a node. The number of nodes in the cell can be described by an M/M/∞
queuing model where the probability that there are i nodes in the cell is [14]

π(i) =
(Mλ/µ)i

i!
e−(Mλ/µ). (3)
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Figure 1. A wireless network with data storage in the mobile devices (nodes). A new node arrives to the network at rate Mλ. The departure

rate per node is µ. Blue nodes store exactly α bits each. The green node requests the file and downloads it from the storage nodes (solid arrows),

or from the BS (dashed arrow). The repair onto a node (in red) is carried out by transmitting γD2D bits from storage nodes (solid arrows) or

γBS bits from the BS (dashed arrow).

For simplicity, we assume that µ = λ, i.e., the flow in and out from the cell is the same and the expected number

of nodes in the cell stays constant (equal to M ).

Data storage. The file is partitioned into k packets, called symbols, of size F
k bits and is encoded into n coded

symbols using an (n, k) erasure correcting code of rate R = k/n < 1. The encoded data is stored in m ≤ n nodes,

referred to as storage nodes. For simplicity, we assume m � M , hence the probability that the number of nodes

in the cell is smaller than m is negligibly small, i.e.,
m−1∑
i=0

π(i)� 1, (4)

using (3). Therefore, with high probability the file can be stored in the cell. In particular, each storage node stores

exactly α bits, i.e., we consider a symmetric allocation [15]. Hence1,

α =
1

m
· F
R
≥ F

k
. (5)

Data delivery. Nodes request the file at random times with i.i.d. random inter-request time Tr with pdf

fTr(t) = ωe−ωt, ω ≥ 0, t ≥ 0, (6)

where ω is the expected request rate per node. Whenever possible, the file is downloaded from the storage nodes

using D2D communication, referred to as D2D download. In particular, we assume that data can be downloaded

1Without loss of generality, we assume α ∈ N.
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from any subset of h < m storage nodes, which we will refer to as the download access. In other words, D2D

download is possible if h or more storage nodes remain in the cell. In this case, the amount of downloaded data

is hα ≥ F bits.2 In the case where there are less than h storage nodes in the cell, the file is downloaded from the

BS, which we refer to as BS download. In this case, F bits are downloaded.

Communication cost. We assume that transmission from the BS and from a storage node (in D2D communication)

have different costs. We denote by ρBS and ρD2D the cost (in cost units (c.u.) per bit, [c.u./bit]) of transmitting

one bit from the BS and from a node, respectively. Therefore, the cost of downloading a file from the BS and the

storage nodes is ρBSF and ρD2Dhα, respectively. Furthermore, we define ρ , ρBS/ρD2D and assume that ρ ≥ 1,

hence transmission from the BS is at least as costly as transmission in D2D communication.

A. Repair Process

When a storage node leaves the cell, its stored data is lost (see blue node with orange stripes in Fig. 1). Therefore,

another node needs to be populated with data to maintain the initial state of reliability of the DS network, i.e., m

storage nodes. The restore (repair) of the lost data onto another node, chosen uniformly at random from all nodes

in the cell that do not store any content, will be referred to as the repair process. We introduce a scheduled repair

scheme where the repair process is run periodically. We denote the interval between two repairs by ∆ (in t.u.),

∆ ≥ 0. Note that ∆ = 0 corresponds to the case of instantaneous repair, considered in [9].

Similar to the download, repair can be accomplished from the storage nodes (D2D repair) or from the BS (BS

repair), with cost per bit ρD2D and ρBS, respectively. The amount of data (in bits) that needs to be retrieved from the

network to repair a single failed node is referred to as the repair bandwidth, denoted by γ. For simplicity, we assume

that each repair is handled independently of the others. In particular, we assume that D2D repair can be performed

from any subset of r < m storage nodes by retrieving β ≤ α bits from each node. In other words, D2D repair is

possible if there are at least r storage nodes in the cell at the moment of repair. In this case, γD2D = rβ ≥ α, and

the corresponding communication cost is ρD2DγD2D. Parameter r is usually referred to as the repair access in the

DS literature. If there are less than r storage nodes in the cell at the moment of repair, then the repair is carried

out by the BS. In this case, γBS = α, with communication cost ρBSγBS. For both repair and download, we assume

error-free transmission.

Parameters m, h, r, α and β, and subsequently γD2D and γBS, depend on the erasure correcting code used for

storage. Since m, h and r are very important parameters, an erasure correcting code in DS is typically defined with

the triple [m,h, r]. This will be further explained in Section V.

2To simplify the analysis in Sections III and IV, we assume that the download bandwidth is the same irrespective of whether the request

comes from a storage node itself or not, i.e., users do not have access to their own stored data. This is a reasonable approximation if m�M .

Furthermore, this may be a practical assumption. Due to concerns about security in systems that allow for D2D connectivity, it has been proposed

to isolate part of the memory in the mobile devices to be used only for DS, so that devices cannot have access to their own cached data [16].
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III. REPAIR AND DOWNLOAD COST

In this section, we derive analytical expressions for the repair and download cost, and subsequently for the overall

communication cost, as a function of the repair interval ∆. We denote by C̄r the average communication cost of

repairing lost data, and refer to it as the repair cost. Also, we denote by C̄d the average communication cost of

downloading the file, and refer to it as the download cost. The (average) overall communication cost is denoted by

C̄, where C̄ , C̄r + C̄d. The costs are defined in cost units per bit and time unit [c.u./(bit×t.u.)].

For later use, we denote by bi(m, p) the probability mass function (pmf) of the binomial distribution with

parameters m and p,

bi(m, p) ,

(
m

i

)
pi(1− p)m−i, 0 ≤ i ≤ m. (7)

A. Repair Cost

The repair cost C̄r has two contributions, corresponding to the cases of BS repair and D2D repair. Denote by

mD2D
r and mBS

r the average number of nodes repaired from the storage nodes and from the BS, respectively, in one

repair interval. Then, C̄r (in [c.u./(bit×t.u.)]) is given by

C̄r =
1

F∆

(
ρBSγBSm

BS
r + ρD2DγD2Dm

D2D
r

)
, (8)

where ρBSγBS and ρD2DγD2D (in c.u.) are the cost of repairing a single storage node from the BS and from storage

nodes, respectively (see Section II-A), and we normalize by F such that C̄r does not depend on the file size.

The repair cost, C̄r, is given in the following theorem.

Theorem 1. Consider the DS network in Section II with departure rate µ, communication costs ρBS and ρD2D,

BS repair bandwidth γBS, file size F , and repair interval ∆. Furthermore, consider the use of an [m,h, r] erasure

correcting code with D2D repair bandwidth γD2D. The repair cost is given by

C̄r =
1

F∆

(
ρBSγBS

r−1∑
i=0

(m− i)bi(m, p)

+ρD2DγD2D

m∑
i=r

(m− i)bi(m, p)
)
, (9)

Proof: As the inter-departure times are exponentially distributed, the probability that a storage node has not

left the network during a time ∆ and is available for repair is

p = Pr(Tl > ∆) = e−µ∆.

Hence, the probability that i storage nodes are available for repair is bi(m, p). If i storage nodes remain in the cell,

then m− i repairs need to be performed. D2D repair is performed if i ≥ r, and BS repair is performed otherwise.

Therefore,

mD2D
r =

m∑
i=r

(m− i)bi(m, p), mBS
r =

r−1∑
i=0

(m− i)bi(m, p).

Using these expressions in (8), we obtain (9).
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Figure 2. Number of available storage nodes within the repair interval ∆. At t = 0, there are m storage nodes available. Sh is the time after

which less than h storage nodes are available, hence D2D download is no longer possible.

Remark 1. We see from (8) that if ρBSγBS < ρD2DγD2D, i.e., ρ < γD2D
γBS

, D2D repair should never be performed, as

repairing always from the BS yields a lower repair cost. In this case the repair cost would be

C̄BS
r =

1

F∆
ρBSγBSm(1− e−µ∆).

B. Download Cost

Similarly to C̄r, the download cost C̄d has two contributions, corresponding to the case where content is

downloaded from the BS and from the storage nodes. Denote by pBS and pD2D the probability that, for a request,

the file is downloaded from the BS and from the storage nodes, respectively. Then, C̄d can be written as

C̄d =
Mω

F

(
ρBSFpBS + ρD2DhαpD2D

)
, (10)

where ρBSF and ρD2Dhα are the cost of downloading the file from the BS and from the storage nodes, respectively

(see Section II), and Mω is the overall request rate per t.u.. Again, we normalize by F so that the cost does not

depend on the file size. The download cost is given in the following theorem.

Theorem 2. Consider the DS network in Section II with expected number of nodes in the cell M , departure rate µ,

request rate ω, file size F , and repair interval ∆. Furthermore, consider the use of an [m,h, r] erasure correcting

code that stores α bits per node. Let µi = iµ for i = h, . . . ,m, and pi = e−µi∆. The download cost is given by

C̄d = Mω

(
ρBS +

(
ρD2D

hα

F
−ρBS

)
1

∆

m∑
i=h

1− pi
µi

m∏
j=h
j 6=i

j

j − i

)
. (11)

The proof is given in Appendix A. Here, we give a sketch of the proof. Since pD2D + pBS = 1, it follows from

(10) that to derive C̄d is sufficient to derive pD2D. Let m(t) be the number of storage nodes alive in the cell within

a repair interval, i.e., for t ∈ [0,∆), with m(0) = m. It is important to observe that m(t) is described by a Poisson

death process [14], since storage nodes may leave the cell, and no repair is attempted before a time ∆. This random
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process is illustrated in Fig. 2. At some point, too many storage nodes have left the network, such that the number

of available storage nodes goes below h and D2D download is no longer possible. Denote the (random) time this

occurs by Sh, i.e., m(t) < h ∀ t ≥ Sh, t ∈ [0,∆) (see Fig. 2). Denote by W̃` the arrival time of the `th file request

within a repair interval, t ∈ [0,∆). The probability pD2D can then be derived in two steps.

1) Find the pdf of the arrival time of the file requests within a repair interval ∆, W̃`.

2) Find the probability that a request arrives before Sh, pD2D = Pr(W̃` < Sh) (i.e., D2D download is possible).

Remark 2. If ρBSF < ρD2Dhα, i.e., ρ < hα
F , performing BS download only is optimal. The download cost is then

C̄BS
d = MωρBS. (12)

We also have the following result about the behavior of C̄d in (11).

Corollary 1. For µ > 0, C̄d is monotonically increasing with ∆ if ρ > hα
F , monotonically decreasing with ∆ if

ρ < hα
F , and constant otherwise.

Proof: The proof follows directly from differentiating C̄d with respect to ∆ and is therefore omitted.

C. Overall Communication Cost

Combining Theorems 1 and 2, one obtains the expression for the overall communication cost,

C̄ = C̄r + C̄d. (13)

Note that, in general, C̄ is not monotone with ∆. We can derive the following result for ∆ = 0 (instantaneous

repair) and ∆→∞ (no repair).

Corollary 2.

lim
∆→0

C̄ =
ρD2D

F
(γD2Dmµ+Mωhα). (14)

Moreover, for µ > 0,

lim
∆→∞

C̄ = MωρBS. (15)

Proof: See Appendix B.

For instantaneous repair (∆ = 0), both repair and download are always performed from the storage nodes. Thus,

the two terms in (14) correspond to the D2D repair and D2D download, and we recover the result in [9]. For

∆ → ∞, data is never repaired (hence, C̄r = 0). For µ > 0, the number of storage nodes in the cell will become

smaller than h at some point, and D2D download is no longer possible. Therefore, the overall communication cost

in (15) is the BS download cost in (12).
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IV. HYBRID REPAIR AND DOWNLOAD

In the system model in Section II and the analysis in Section III we assumed that if repair (resp. download)

cannot be completed from storage nodes (because there are less than r (resp. h) storage nodes available in the

cell), BS repair (resp. download) is performed. Alternatively, for both repair and download, a node might retrieve

data from the available storage nodes using D2D communication and retrieve the rest from the BS to complete

the repair or the download. We will refer to this setup as partial D2D repair and partial D2D download, and the

scheme that implements it as the hybrid repair and download scheme. In the following, we extend the analysis in

Section III to the hybrid scheme.

A. Repair Cost

Assume that, at the time of repair, i < r storage nodes are available, i.e., repair cannot be accomplished exclusively

from the storage nodes. However, iβ bits could be retrieved from the i available storage nodes and the remaining

γD2D − iβ = (r− i)β bits to complete the repair from the BS. The corresponding communication cost is (ρBS(r−
i) + ρD2Di)β. For the conventional scheme, D2D repair is not possible for i < r, and the repair cost corresponds

to that of BS repair, i.e., ρBSγBS. This implies that, if i < r, partial repair leads to a reduced repair cost if

(ρBS(r − i) + ρD2Di)β < ρBSγBS or, equivalently, i > ρBS
ρBS−ρD2D

(
r − γBS

β

)
, c. For i < r, the hybrid scheme

performs partial D2D repair if i > c and BS repair otherwise. The repair cost is given in the following theorem.

Theorem 3. Consider the DS network in Section II using the hybrid scheme. The repair cost is given by

C̄hybrid
r =

1

F∆

(
ρBSγBS

a∑
i=0

(m− i)bi(m, p)

+

r−1∑
i=a+1

(m− i)(ρBS(r − i) + iρD2D)βbi(m, p)

+ ρD2DγD2D

m∑
i=r

(m− i)bi(m, p)
)
,

where a = min
{⌊

ρBS
ρBS−ρD2D

(
r − γBS

β

)⌋
, r − 1

}
,
(
r − γBS

β

)
≥ 0 for all codes in Section V, and p = e−µ∆.

Proof: It follows the same lines as the proof of Theorem 1.

B. Download Cost

Similar to the repair case, if i < h storage nodes are available at the time of a file request, the file cannot be

downloaded solely from the storage nodes. However, iα bits could be downloaded from the i available storage

nodes and the remaining (h − i)α bits from the BS, with communication cost (ρBS(h − i) + ρD2Di)α. For the

conventional scheme, the download cost corresponds to that of BS download, i.e., ρBSF . Hence, the hybrid scheme

leads to a lower download cost if (ρBS(h− i) + ρD2Di)α < ρBSF , or equivalently, i > ρBS
ρBS−ρD2D

(
h− F

α

)
, d. For

i < r, the hybrid scheme performs partial D2D download if i > d and BS download otherwise. The download cost

is given in the following theorem.
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Theorem 4. Consider the DS network in Section II using the hybrid scheme. Let µi = iµ and pi = e−µi∆, for

i = 1, . . . ,m. The download cost is given by

C̄hybrid
d =

Mω

F

(
ρBSF

(
1− 1

∆

m∑
i=1

1− pi
µi

m∏
j=1
j 6=i

j

j − i

)

+ ρBSF

a∑
i=1

ci +

h−1∑
i=a+1

(ρBS(h− i) + iρD2D)αci

+ ρD2Dhα
1

∆

m∑
i=h

1− pi
µi

m∏
j=h
j 6=i

j

j − i

)
, (16)

where a = min
{⌊

ρBS
ρBS−ρD2D

(
h− F

α

)⌋
, h− 1

}
,
(
h− F

α

)
≥ 0, and

ci =
1

∆

m∑
i′=i

1− pi′
µi′

m∏
j=i
j 6=i′

j

j − i′

− 1

∆

m∑
i′=i+1

1− pi′
µi′

m∏
j=i+1
j 6=i′

j

j − i′ .

Proof: See Appendix C.

V. ERASURE CORRECTING CODES IN DISTRIBUTED STORAGE

From Sections III and IV, it can be seen that the overall communication cost C̄ depends on the network parameters

µ (λ) and ω, and on the parameters m, h, r, α, and β (and subsequently on γD2D = rβ and γBS = α), which are

determined by the erasure correcting code used for DS. An erasure correcting code for DS is typically described in

terms of the number of nodes used for storage, the download access and the repair access, and is defined using the

notation [m,h, r]. In this section, we briefly describe MDS codes [17], regenerating codes [10] and LRCs [11] in

the context of DS. We also connect the code parameters [m,h, r] with the code parameters (n, k). In Section VI,

we then evaluate the overall communication cost of DS using these three code families.

We remark that the analysis in the previous sections applies directly to MDS and regenerating codes. However,

due to the specificities of LRCs, Theorem 1 needs to be slightly modified, as shown in Section V-C below.

A. Maximum Distance Separable Codes

Assume the use of an (n, k) MDS code for DS. In this case, each storage node stores one coded symbol, hence

m = n and αMDS = F
k . Due to the MDS property, D2D repair and D2D download require to contact r = h = k

storage nodes. Therefore, an (n, k) MDS code in a DS context is described with the triple [n, k, k]. Moreover,

βMDS = αMDS = F
k , i.e., γD2D = F . The fact that an amount of information equal to the size of the entire file has

to be retrieved to repair a single storage node is a known drawback of MDS codes [10]. The simplest MDS code

is the n-replication scheme. In this case, each storage node stores the entire file, i.e., αrep = F and r = h = k = 1.
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B. Regenerating Codes

A lower repair bandwidth γD2D (as compared to MDS codes) can be achieved by using regenerating codes [10],

at the expense of increasing r [10]. Two main classes of regenerating codes are covered here, minimum storage

regenerating (MSR) codes and minimum bandwidth regenerating (MBR) codes. MSR codes yield the minimum

storage per node, i.e., αMSR is minimum, while MBR codes achieve minimum D2D repair bandwidth. Regenerating

codes have two repair models, functional repair and exact repair [18]. In exact repair, the lost data is regenerated

exactly [18]. In functional repair, the lost data is regenerated such that the initial state of reliability in the DS system

is restored [18], but the regenerated data does not need to be a replica of the lost data [18]. Here, we consider only

exact repair, since it is of more practical interest [19].

An exact-repair [m,h, r] MSR code in a DS system has k = h(r − h + 1) and n = m(r − h + 1), with

r = 2(h− 1), . . . ,m− 1 [19].3 Hence, using (5),

αMSR =
1

m
· F
R

=
F

m
· m(r − h+ 1)

h(r − h+ 1)
=
F

h
.

Furthermore [19],

βMSR =
F

k
=
F

h
· 1

r − h+ 1
≤ αMSR,

with equality only when r = h, which is only possible for h = 1 and h = 2 due to the restriction on the values

for the repair access. The repair bandwidth,

γD2D = rβMSR =
F

h
· r

r − h+ 1
≤ F,

is minimized for r = m − 1 [10]. We remark that the storage per node α (and hence the average download cost)

for an (m,h) ≡ [m,h, h] MDS code and an [m,h, r] MSR code are equal.

An MBR code further reduces the repair bandwidth at the expense of increasing the storage per node. An

exact-repair [m,h, r] MBR code has k = hr −
(
h
2

)
and n = mr for r = h, . . . ,m− 1 [19]. Using (5), we have

αMBR =
1

m
· F
R

=
F

m
· 2mr

h(2r − h+ 1)
=
F

h
· 2r

2r − h+ 1
.

Furthermore [19],

βMBR =
F

k
=
F

h
· 2

2r − h+ 1
≤ αMBR.

Similarly to the MSR codes, the repair bandwidth of an MBR code,

γD2D = rβMBR =
F

h

2r

2r − h+ 1
≤ F,

is minimized for r = m− 1 [10].

Note that an [m, 1, r] regenerating code has exactly the same overall communication cost as an m-replication

scheme.

3The design of linear, exact-repair MSR codes with r < 2(h− 1) has been proven impossible [20].
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C. Locally Repairable Codes

A lower repair access r (as compared to MDS codes) is achieved by using LRCs [11]. An [m,h, r] LRC has

k = rh and n = m(r + 1), where r < h and (r + 1) | m. Each node stores

αLRC =
1

m
· F
R

=
F

m
· m(r + 1)

rh
=
F

h
· r + 1

r

bits. The storage nodes are arranged in G , m
r+1 disjoint repair groups with r+ 1 nodes in each group. Any single

storage node can be repaired locally by retrieving γD2D = rβLRC bits from r nodes in the repair group [11]. A

storage node involved in the repair process transmits all its stored data, i.e., βLRC = αLRC, hence

γD2D = rβLRC =
F

h
(r + 1) ≤ F.

If local D2D repair is not possible, repair can be carried out globally by retrieving hαLRC bits from any subset

of h storage nodes. Since it is necessary to distinguish between local and global repairs (as opposed to MDS

and regenerating codes), the expression of the repair cost C̄r in Theorem 1 does not apply to LRCs and needs

to be modified. We denote by mD2D
r,l and mD2D

r,g the average number of nodes repaired from the storage nodes

locally and globally, respectively, in one repair interval. We will also need the following definitions. Let X ,

(X0, X1, . . . , Xr+1) be the random vector whose component Xi is the random variable giving the number of

repair groups with i storage node departures in a repair interval ∆. Note that Xi takes values in {0, 1, . . . , G} and∑
iXi = G. The probability of i storage node departures in a repair group is qi ,

(
r+1
i

)
pr+1−i(1 − p)i, where

p = e−µ∆ is the probability that a storage node has not left the network during a time ∆. Let x , (x0, x1, . . . , xr+1)

be a realization of X and let q , (q0, q1, . . . , qr+1). Then,

Pr(X = x) =
∑

x:|x|=G

(
G

x

)
qx, (17)

where |x| ,∑i xi,
(
G
x

)
, G!

x0!x1!···xr+1! is the multinomial coefficient, and qx ,
∏
i q
xi
i .

The repair cost for LRCs is given in the following theorem.

Theorem 5. Consider the DS network in Section II with departure rate µ, communication costs ρBS and ρD2D, BS

repair bandwidth γBS, file size F , and repair interval ∆. Furthermore, consider the use of an [m,h, r] LRC with

G disjoint repair groups and D2D repair bandwidth γD2D. The repair cost is given by

C̄r =
1

F∆

(
ρBSγBSm

BS
r + ρD2D

(
γD2Dm

D2D
r,l + hαLRCm

D2D
r,g

))
, (18)

where

mD2D
r,l = mpr(1− p),

mD2D
r,g =

∑
x:|x|=G

(
G

x

)
qx ·

r+1∑
i=2

ixi · 1
{
r+1∑
i=1

ixi ≤ m− h
}
,

mBS
r = m(1− p)−mD2D

r,l −mD2D
r,g ,

p = e−µ∆ and 1{·} is an indicator function.
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Proof: See Appendix D.

It is easy to verify that Corollary 2 holds also for LRCs.

D. Lowest Overall Communication Cost for Instantaneous Repair

For instantaneous repair, the minimum overall communication cost is given in the following lemma.

Lemma 1. For ∆ = 0 (instantaneous repair), the lowest possible overall communication cost for any [m,h, r]

linear code with m = n, regenerating codes and LRCs is

C̄min(∆ = 0) , min
m,h,r

lim
∆→0

C̄ = ρD2D(2µ+Mω),

where lim∆→0 C̄ is given in (14) in Corollary 2. The minimum is achieved by 2-replication.

Proof: See Appendix E.

This is in agreement with the result in [9], where 2-replication was shown to be optimal.

VI. NUMERICAL RESULTS

In this section, we evaluate the overall communication cost C̄ (computed using (9) and (11)) for the erasure

correcting codes discussed in the previous section. For the results, we consider a network with M = 30 nodes,

where the number of storage nodes is m ≤ 10. This gives a probability smaller than 7.2 · 10−6 of having less than

m nodes in the cell (see (4)), which is considered negligible. Without loss of generality, we set the departure rate

µ = 1 and ρD2D = 1, i.e., ρ = ρBS.

Fig. 3 shows C̄ normalized to the cost of downloading from the BS, Mωρ, i.e., C̄/Mωρ, as a function of the

normalized repair interval, µ∆ = ∆, for a selection of MDS codes, regenerating codes and LRCs with R = 1/3.

The ratio between the request rate and departure rate is ω/µ = 0.02, i.e., the average request rate in the cell is

Mω = 0.6 requests per t.u., and ρ = 40. The meaning of ω/µ = 0.02 is that each node places in average 0.02

requests per node life time. Also, in the figure ∆ = 1 means that the repair interval is equal to one average node

lifetime. Simulation results are also included in the figure (markers). Note that since we normalize C̄ to the BS

download cost, values below ordinate 1 correspond to the case where DS is beneficial. For relatively high repair

frequencies, all codes yield lower C̄ than BS download. However, C̄/Mωρ exceeds 1, i.e., BS download is less

costly than the DS communication cost, for values of the repair interval larger than a threshold, which we define

as

∆max , sup
{

∆ : C̄ < Mωρ
}
. (19)

For ∆ > ∆max, retrieving the file from the BS is always less costly, therefore storing data in the nodes is useless.

∆max depends on the network parameters M , ω, µ and ρ as well as the code parameters m, h and r.

We see from Fig. 3 that the value of ∆ that minimizes C̄, denoted by ∆opt, depends on the code used for storage.

In particular, ∆opt = 0 for the [9, 3, 8] MSR code, i.e., instantaneous repair is optimal. Performing an exhaustive

search for m ≤ 10, it is readily verified that the same is true for any of the codes in Section V with r = m−1. It is
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Figure 3. Normalized overall communication cost C̄/Mωρ versus the repair interval ∆ for a selection of MDS codes, regenerating codes and

LRCs with R = 1/3, compared to the normalized BS download cost (dotted line).

reasonable to assume that this will be the case also for m > 10. On the other hand, ∆opt > 0 for the [9, 3, 3] MDS

code. ∆opt depends on the network and code parameters. In particular, the tolerance to storage node departures in

a repair interval affects ∆opt. In Section VI-A, we investigate how the network parameters affect C̄ and ∆max. In

Section VI-B, we explore how the code parameters affect C̄.

A. Effect of Varying Network Parameters

Fig. 4 shows how ∆max increases with ρ for the same codes as in Fig. 3 and ω/µ = 0.05. For ρ < 5, approximately,

∆max = −∞ for all considered codes, i.e., it is never beneficial to use the devices for storage and the file should

always be downloaded from the BS. It is worth noticing that, for moderate-to-large ρ, the [9, 3, 8] MSR code

requires in the order of 10 repairs per average node lifetime while the [9, 3, 3] MDS code requires only around

0.66 repairs per node lifetime for DS to be beneficial over BS download. The main difference between the [9, 3, 3]

MDS code and the [9, 3, 8] MSR code is the number of storage node departures in a repair interval that the code

can tolerate such that D2D repair is still possible, i.e., m− r. The [9, 3, 3] MDS code can handle the departure of

up to 6 storage nodes while the [9, 3, 8] MSR code can tolerate a single departure only. This explains the higher

repair frequency required by the MSR code.

For the [6, 3, 2] LRC and ρ = 20, Fig. 5 shows how C̄/Mωρ and ∆max are affected by the ratio ω/µ. We see that

increasing ω/µ reduces C̄/Mωρ for all ∆ and that ∆max increases with ω/µ. The same behavior is observed using
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Figure 4. The maximum repair interval ∆max versus the transmission cost ratio ρ.

any of the codes in Section V, which can be verified by the following manipulations of the equations in Section III.

The case ω/µ→∞ corresponds to C̄/Mωρ→ C̄d/Mωρ, which can be readily seen by taking the limit ω →∞
in (13), using (9) and (11), for fixed and finite µ. This shows that the overall communication cost is essentially

the download cost for a sufficiently high ω/µ. Since C̄d/Mωρ is monotonically increasing in ∆ (Corollary 1) and

C̄/Mωρ→ 1 as ∆→∞ (Corollary 2), we also have that ∆max →∞ for ω/µ→∞. Hence, DS always leads to

a lower overall communication cost, as compared to the BS download cost, for sufficiently large ω/µ.

B. Results of Changing Code Parameters

We investigate how the repair access r affects C̄. Fig. 6 shows C̄/Mωρ versus ∆ for the [9, 3, r] MSR code

for ρ = 40 and ω/µ = 0.02. We observe that for ∆ = 0 the lowest C̄ is achieved for r = 8, i.e., the highest

possible repair access. This is due to the fact that for regenerating codes γD2D is minimized for r = m−1 (see [10]

and Section V-B). However, increasing ∆ requires decreasing r to yield the lowest C̄. This is due to the improved

tolerance to storage node departures as r decreases. The result is interesting, because it means that in wireless DS, if

repairs cannot be accomplished very frequently, repair access is a more important parameter than repair bandwidth.

On the other hand, if repairs can be performed very frequently, repair bandwidth becomes more important than

repair access, because tolerance to storage node departures is not critical. In general, there is a tradeoff between

the repair bandwidth and the tolerance to storage node departures (i.e., repair access), which holds true for any of

the codes in Section V. How to set the the parameter r depends on how frequently we can repair the DS system.
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Figure 5. Normalized overall cost C̄/Mωρ versus the repair interval ∆ for the [6, 3, 2] LRC for different values of the ratio ω/µ, as compared

with the normalized BS download cost (straight dotted line). The arrow points in the direction of increasing ω/µ.

C. Improved Communication Cost Using the Hybrid Scheme

We return to the hybrid repair and download scheme presented in Section IV to investigate the gains in overall

communication cost as compared to the cost when using the conventional scheme. We remark that the hybrid

scheme does not improve C̄ for all codes in Section V. In particular, for finite ρ, C̄r is only reduced if β < α

(Theorem 3) and C̄d is only improved if α < F (Theorem 4). Fig. 7 shows C̄/Mωρ versus ∆ for all codes in

Fig. 3 that achieve lower C̄ when using the hybrid scheme. We set ω/µ = 0.1 and ρ = 10 and include simulation

results in the figure (markers). Dashed curves correspond to the conventional scheme, and solid curves to the hybrid

scheme. We see from the figure that regenerating codes achieve a large cost reduction, especially for small ∆, when

using the hybrid scheme. This is since both C̄r and C̄d are reduced. A smaller cost reduction is observed for MDS

codes and LRCs.

D. Codes Achieving Minimum Cost for Given ∆

The analytical expressions for the overall communication cost derived in Sections III and IV can be used to find,

for a given repair interval, the code achieving the lowest C̄. We have performed an exhaustive search for all MDS

codes (including replication), regenerating codes and LRCs, with m ≤ 10, to find the code achieving the lowest C̄

for each ∆. Like [15], we also introduce an overall storage budget constraint of Γ files (ΓF bits) across the nodes

in the cell, i.e., mα ≤ ΓF . In particular, we set Γ = 3, meaning that the code rate is R ≥ 1/3.
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Figure 6. Normalized overall cost C̄/Mωρ versus the repair interval ∆ for the [9, 3, r] MSR code compared with the normalized BS download

cost (dotted line). The arrow shows the direction of increasing r.

Fig. 8 shows C̄/Mωρ for all codes that entail the lowest C̄ for some value of ∆ for ω/µ = 0.02 and ρ = 40.

For ∆ = 0 (instantaneous repair) 2-replication is optimal (see Lemma 1). However, 2-replication remains optimal

only if repair can be accomplished at least around 80 times per average node lifetime. For slightly larger ∆, MBR

codes achieve the lowest cost. It is worth stressing that the MBR codes achieving the lowest C̄ for some ∆ are

characterized by a low repair access (r = h and r = h + 1), i.e., fault tolerance to storage node departures to

allow D2D repair is more important than the repair bandwidth. Somewhat surprisingly, MDS codes offer the best

performance for higher ∆, despite the large γD2D. We remark that LRCs are not optimal for any ∆ due to the

poor tolerance to storage node departures in local D2D repair and a larger α than MDS codes for a given global

tolerance to storage node departures. ∆max ≈ 0.8 is the largest ∆ such that DS is beneficial over BS download,

using any of the codes in Section V.

Fig. 9 shows the codes that achieve lowest C̄ for some values of ∆ for the hybrid scheme with ω/µ = 1 and

ρ = 40. Increasing ω/µ, C̄d is the main contribution to C̄ (see Section VI-A). Since α has significant impact on

C̄d, we expect codes with small α to achieve the minimum cost. Indeed, we note that MDS codes and MSR codes,

which have minimum α, achieve the lowest C̄ for a region of values of ∆. As expected, 2-replication is optimal

for instantaneous repair.
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Figure 7. The normalized overall cost C̄/Mωρ versus the repair interval ∆ when using the conventional scheme (dashed curves) and hybrid

scheme (solid curves).
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Figure 8. Codes achieving minimum C̄ for some ∆ for ω/µ = 0.02, ρ = 40 and Γ = 3.
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VII. CONCLUSIONS

We investigated the use of distributed storage in the mobile devices in a wireless network to reduce the communi-

cation cost of content delivery to the users. We introduced a repair scheduling where the repair of the data lost due

to device departures is performed periodically. For this scenario, we derived analytical expressions for the overall

communication cost, due to data download and repair, as a function of the repair interval. Using these expressions,

we then investigated the performance of MDS codes, regenerating codes and LRCs.

We showed that DS can reduce the overall communication cost with respect to the scenario where content is

downloaded solely from the BS. However, there exists a maximum value of the repair interval after which retrieving

the file from the BS is always less costly. Therefore, DS is useful if repairs can be performed frequently enough.

The required repair frequency depends on the network parameters and the code used for storage. Interestingly, MDS

codes yield better performance than codes specifically designed for DS, such as regenerating codes and LRCs, if

repair cannot be performed very frequently. The reason is that in this case a large tolerance to node failures and

low repair access is required.

APPENDIX A

PROOF OF THEOREM 2

To derive pD2D we first have to find the distribution of file requests within a repair interval ∆. Let W` be the time

instant of the `th request and let W̃` , W` mod ∆ be the time of the `th request in relation to a repair interval.

The pdf of W̃` is given by the following lemma.
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Lemma 2. The distribution of W̃` for t ∈ [0,∆) is

fW̃`
(t) =

ω`e−ωt

(`− 1)!

∞∑
i=0

(t+ i∆)`−1e−ω∆i. (20)

Proof: W` is computed as the sum of ` inter-request times with pdf given by (6). Thus, W` is an Erlang

distributed random variable with pdf [14, Sec. 3.4.5]

fW`
(t) =

ω`t`−1e−ωt

(`− 1)!
, t ≥ 0. (21)

The transformation g : W` → W̃` is given by t = g(x), where

g(x) = x− i∆, x ∈ [i∆, (i+ 1)∆), i ≥ 0, (22)

Note that g′(x) = 1 for x ∈ (i∆, (i + 1)∆). Moreover, limx→i∆− g
′(x) = limx→i∆+

g′(x) = 1 and g′(x) is

continuous and well defined. Let xi be the roots of (22),

xi = g−1(t) = t+ i∆, t ∈ [0,∆).

Then, [14, Th. 4.2]

fW̃`
(t) =

∑
xi

fW`
(xi)

∣∣∣∣ 1

g′(xi)

∣∣∣∣ =

∞∑
i=0

fW`
(t+ i∆),

and (20) is obtained using (21).

Define W̃∞ , lim`→∞ W̃`. We have the following result.

Lemma 3. The distribution of W̃∞ for t ∈ [0,∆) is

fW̃∞(t) =
1

∆
,

and the limit is achieved exponentially fast in `.

Proof: Using the Lerch’s transcendent [21, Sec. 25.14]

Φ

(
e−ω∆, 1− `, t

∆

)
,
∞∑
i=0

(
t

∆
+ i

)`−1

e−ω∆i, ` > 1,

the pdf of W̃` (Lemma 2) can be rewritten as

fW̃`
(t) =

(ω∆)`e−ωt

∆ · (`− 1)!
Φ

(
e−ω∆, 1− `, t

∆

)
.

According to [22, Cor. 4],

lim
`→∞

(ω∆)`

(`− 1)!
Φ

(
e−ω∆, 1− `, t

∆

)
= eωt.

Hence, for an infinite number of requests

lim
`→∞

fW̃`
(t) =

e−ωt

∆
lim
`→∞

(ω∆)`

(`− 1)!
Φ

(
e−ω∆, 1− `, t

∆

)
=

1

∆
.

Furthermore, using [22, Th. 3], as `→∞,

fW̃`
(t) ≤ 1

∆
+O

((√
4π2 + (ω∆)2

ω∆

)−`)
, (23)
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where
√

4π2+(ω∆)2

ω∆ ≥ 1. Therefore, the convergence is exponentially fast in `.

We proceed with the second step of the proof. Within a repair interval, the number of storage nodes m(t) in the

cell is described by a Poisson death process [14, Sec. 8.6]. Denote by Ti the time interval for which m(t) = i,

i = h, . . . ,m (see Fig. 2 for an illustration). Note that Ti is exponentially distributed with rate µi = iµ, since there

are i storage nodes in the cell and the departure rate per node is µ (see Section II). Denote by Sh the time instant

at which m(t) changes from h to h− 1, i.e., the time after which D2D download is no longer possible. Sh can be

written as

Sh =

m∑
i=h

Ti.

The pdf of Sh is given by [23, Sec. 1.3.1]

fSh
(t) =

m∑
i=h

µmµm−1 . . . µh∏m
j=h
j 6=i

(µj − µi)
e−µit, t ≥ 0. (24)

Note that Pr(Sh ≥ ∆) > 0 for finite ∆, which implies that, with some probability, m(t) ≥ h for the duration of

the repair interval. In this case, pD2D = 1.

We now have all the prerequisites to derive pD2D. D2D download is possible if at least h storage nodes are

available in the cell. Thus,

pD2D = lim
L→∞

1

L

L∑
`=1

Pr
(
W̃` < Sh

)
From the convergence result of Lemma 3, it follows that

pD2D = Pr
(
W̃∞ < Sh

)
= Pr

(
W̃∞ − Sh < 0

)
=

∫ 0

−∞
fW̃∞−Sh

(t) dt,

where [14]

fW̃∞−Sh
(t) =

∫ ∞
−∞

fW̃∞(t+ s)fSh
(s) ds.

Using the results of Lemma 3 and (24), we get after some calculation

pD2D =
1

∆

m∑
i=h

∫ 0

−∞
eµitdt

(
1− e−µi∆

) m∏
j=h
j 6=i

j

j − i

=
1

∆

m∑
i=h

1− pi
µi

m∏
j=h
j 6=i

j

j − i . (25)

By inserting (25) into (10) and using pD2D + pBS = 1, we obtain (11).
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APPENDIX B

PROOF OF COROLLARY 2

Consider the case when ∆→ 0. For the repair cost (Theorem 1),

lim
∆→0

C̄r =
1

F

(
ρBSγBS

r−1∑
i=0

(m− i) lim
∆→0

bi(m, p)

∆

+ρD2DγD2D

m∑
i=r

(m− i) lim
∆→0

bi(m, p)

∆

)
,

where bi(m, p) is given in (7) and p = e−µ∆. Note that

lim
∆→0

bi(m, p)

∆
=

(
m

i

)
lim

∆→0

e−µ∆i(1− e−µ∆)m−i

∆

(a)
= µ

(
m

i

)
lim

∆→0
e−µ∆i

(
1− e−µ∆

)m−i−1 (
me−µ∆ − i

)
=

 mµ, if i = m− 1,

0, otherwise.
,

where in (a) we used l’Hôpital’s rule. Hence,
r−1∑
i=0

(m− i) lim
∆→0

bi(m, p)

∆
= 0,

and
m∑
i=r

(m− i) lim
∆→0

bi(m, p)

∆
= (m− (m− 1))mµ = mµ.

This implies

lim
∆→0

C̄r = ρD2DγD2Dmµ. (26)

For the download cost (Theorem 2),

lim
∆→0

C̄d = Mω

(
ρBS

+

(
ρD2D

hα

F
− ρBS

) m∑
i=h

1

µi
lim

∆→0

1− pi
∆

m∏
j=h
j 6=i

j

j − i

)

= Mω

(
ρBS +

(
ρD2D

hα

F
− ρBS

) m∑
i=h

m∏
j=h
j 6=i

j

j − i

)
. (27)

To simplify the expression, consider the function

f(x) =
1∏m

i=h(i− x)
, (28)

which can be expanded as the sum of partial fractions as [24, Ch. 6]

f(x) =

m∑
i=h

1

(i− x)
∏m
j=h
j 6=i

(j − i) . (29)
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Now, note that the sum in (27) can be expressed as
m∑
i=h

m∏
j=h
j 6=i

j

j − i =

m∑
i=h

∏m
j=h j

i
∏m
j=h
j 6=i

(j − i)
(a)
= f(0)

m∏
j=h

j
(b)
= 1,

where in (a) we used (29), and in (b) we used (28). Using this in (27) we obtain

lim
∆→0

C̄d = MωρD2D
hα

F
. (30)

Finally, the expression (14) is obtained by using

lim
∆→0

C̄ = lim
∆→0

C̄r + lim
∆→0

C̄d.

Now, assume ∆→∞. For the average repair cost (Theorem 1)

lim
∆→∞

C̄r =
1

F

(
ρBSγBS

r−1∑
i=0

(m− i) lim
∆→∞

bi(m, p)

∆

+ρD2DγD2D

m∑
i=r

(m− i) lim
∆→∞

bi(m, p)

∆

)
.

Now,

lim
∆→∞

bi(m, p)

∆
=

(
m

i

)
lim

∆→∞

e−µ∆i(1− e−µ∆)m−i

∆
= 0,

which implies lim∆→∞ C̄r = 0.

For the average download cost (Theorem 2),

lim
∆→∞

C̄d = Mω

[
ρBS

+

(
ρD2D

hα

F
− ρBS

) m∑
i=h

1

µi
lim

∆→∞

1− pi
∆

m∏
j=h
j 6=i

j

j − i

]
,

where µi = iµ, pi = e−µi∆. As lim∆→∞
1−pi

∆ = 0 ∀ i, then

lim
∆→∞

C̄d = MωρBS,

and (15) follows.

APPENDIX C

PROOF OF THEOREM 4

Following the proof of Theorem 2 (Appendix A), the probability that there are m(t) = i storage nodes available

at the time of a request is

ci , Pr(Si+1 < W̃∞ < Si)

= Pr(W̃∞ − Si < 0)− Pr(W̃∞ − Si+1 < 0). (31)
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The two probabilities in (31) can be obtained by replacing h with i and i+ 1 in (25),

Pr(W̃∞ − Si < 0) =
1

∆

m∑
i′=i

1− pi′
µi′

m∏
j=i
j 6=i′

j

j − i′

Pr(W̃∞ − Si+1 < 0) =
1

∆

m∑
i′=i+1

1− pi′
µi′

m∏
j=i+1
j 6=i′

j

j − i′ .

If no storage nodes are available, we always have to rely on BS download. By replacing h with 1 in (25), we get

that this occurs with probability

pBS = 1− 1

∆

m∑
i=1

1− pi
µi

m∏
j=1
j 6=i

j

j − i . (32)

If m(t) ≥ h, D2D download is performed. This occurs with probability pD2D, derived in Theorem 2.

For m(t) = i, 1 ≤ i ≤ h − 1, the hybrid scheme will achieve a lower download cost if ρBSF > (ρBS(h − i) +

iρD2D)α, i.e., if

i >
ρBS

ρBS − ρD2D

(
h− F

α

)
, d.

Let

a , min {bdc , h− 1} .

For 1 ≤ i ≤ a, downloading F bits from the BS will give the lowest possible cost. For a + 1 ≤ i ≤ h − 1,

downloading iα bits through D2D communication and (h− i)α bits from the BS will give the lowest possible cost.

The average download cost in the hybrid regime is hence

C̄hybrid
d =

Mω

F

(
ρBSFpBS + ρBSF

a∑
i=1

ci

+

h−1∑
i=a+1

(ρBS(h− i) + iρD2D)αci + ρD2DhαpD2D

)
. (33)

Finally, (16) is obtained by using (25) and (32) in (33).

APPENDIX D

PROOF OF THEOREM 5

Recall that a storage node can be repaired locally or globally in D2D communication. Only single node departures

(within a repair group) can be repaired locally. Using (7), the average number of local D2D repairs in a repair

group is

br(r + 1, p) = (r + 1)pr(1− p),

where p = e−µ∆. Since there are G = m
r+1 disjoint repair groups, the average number of local D2D repairs per m

storage nodes is

mD2D
r,l = G(r + 1)pr(1− p) = mpr(1− p).

This entails a cost ρD2DγD2Dm
D2D
r,l [c.u.].
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We now compute the average number of global D2D repairs mD2D
r,g . Let X = (X0, X1, . . . , Xr+1), where

Xi ∈ {0, 1, . . . , G},
∑
iXi = G, is the random variable giving the number of repair groups with i storage node

departures in a repair interval ∆. The number of global repairs is given by
∑r+1
i=2 iXi, under the constraint that there

are at least h storage nodes available at the time of a repair, i.e., if
∑r+1
i=1 iXi ≤ m − h. Therefore, by averaging

over all possible realizations x = (x0, x1, . . . , xr+1) of X , we obtain

mD2D
r,g =

∑
x:|x|=G

(
G

x

)
qx ·

r+1∑
i=2

ixi · 1
{
r+1∑
i=1

ixi ≤ m− h
}
,

where |x| , ∑
i xi,

(
G
x

)
, G!

x0!x1!···xr+1! , and qx ,
∏
i q
xi
i . The communication cost associated to global D2D

repairs is ρD2DhαLRCm
D2D
r,g [c.u.].

Finally, using (7), the average total number of storage node departures in a repair interval is
m∑
i=0

(m− i)bi(m, p) = m(1− p).

All storage nodes that are not repaired in D2D are repaired by the BS. Therefore,

mBS
r = m(1− p)−mD2D

r,l −mD2D
r,g ,

with communication cost ρBSγBSm
BS
r [c.u.]

Finally, adding the three contributions ρD2DγD2Dm
D2D
r,l , ρD2DhαLRCm

D2D
r,g and ρBSγBSm

BS
r , and dividing by ∆ and

normalizing by F , we obtain (18).

APPENDIX E

PROOF OF LEMMA 1

The overall communication cost for ∆ = 0 is (Corollary 2)

lim
∆→0

C̄ =
ρD2D

F
(γD2Dmµ+Mωhα). (34)

Consider an [m,h, r] linear code with m = n and minimum Hamming distance d ≥ 2. It follows that α = F
k ,

β = α, and h ≥ k, where the equality is achieved for MDS codes. Furthermore, note that d = m − h + 1. Also,

from [25],

d ≤ n− k −
⌈
k

r

⌉
+ 2. (35)

Using m = n and the fact that d ≥ 2 in (35), we can write

m ≥ k +

⌈
k

r

⌉
≥ k +

k

r
.
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Now, using this, γD2D = rβ = rα and α = F
k in (34) we obtain

lim
∆→0

C̄ =
ρD2D

F
(γD2Dmµ+Mωhα)

= ρD2D

(
r

k
mµ+Mω

h

k

)
≥ ρD2D

(
(r + 1)µ+Mω

h

k

)
≥ ρD2D (2µ+Mω) , (36)

where in the last inequality we used r ≥ 1 and h ≥ k. It is easy to verify that the lower bound in (36) is achieved

by 2-replication.

Now, consider LRCs. We get

mγD2D = F
m

h
(r + 1) > 2F,

since h < m and r ≥ 1. Also,

hαLRC = F
r + 1

r
> F.

Inserting this into (34) gives that LRCs yield a higher overall communication than (36).

Consider now MBR codes. We would like to minimize mγD2D under the constraints m ≥ 2, h ≥ 1 and h < m,

for r = m− 1. For h = m− 1, mγD2D = 2F . For h < m− 1, relaxing the integer constraints on m and h,

∂

∂m
mγD2D = 4

F

h

m2 −m(h+ 1) + 1

(2m− h− 1)2
> 0.

Consequently, mγD2D is minimized for h = m − 1 and the minimum is equal to 2F . We proceed to minimize

hαMBR for r = m− 1 under the same constraints. For h = 1, we have hαMBR = F . Also, for h > 1,

∂

∂h
hαMBR = 2F

m− 1

(2m− h− 1)2
> 0.

As a result, mγD2D and hαMBR are jointly minimized for m = 2 and h = 1. Thus, the MBR code, which is indeed

2-replication, achieves the lower bound in (36).

We proceed to investigate the overall communication cost when ∆ = 0 for MSR codes. By setting r = m − 1

we minimize γD2D with respect to r. We relax the integer constraints on m and h. By differentiating mγD2D with

respect to h and setting the derivative equal to zero, we find

arg min
h

mγD2D =
m

2
.

Under the constraints m ≥ 2, h ≥ 1 and h < m, we have

∂

∂m
mγD2D

∣∣∣∣
m=2h

=
F

h2
> 0.

This implies that mγD2D is minimized for m = 2 and h = 1 and that the minimum is equal to 2F . Since

hαMSR = F , mγD2D and hαMSR are jointly minimized for m = 2 and h = 1. Therefore, the [2, 1, 1] MSR code,

which corresponds to 2-replication, achieves the lower bound in (36). This concludes the proof.
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