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Abstract

Let M be a noncommutative 2-torsion free semiprime I'-ring sat-
isfying a certain assumption and let S and T be left centralizers on
M. We prove the following results:

(i) If [S(x), T(z)]aBS(x) + S(x)B[S(x), T(2)]o=0 holds for all x € M
and o, f € T, then [S(x), T(x)]o=0.

(i) If S # 0(T # 0), then there exists A € C,(the extended centroid
of M) such that T=XaS(S = \aT) for all « € T.

(iii) Suppose that [[S(x),T(x)]a,S(z)]g=0 holds for all x € M and
a,f €. Then [S(x),T(x)]o=0 for all z € M and o € T.

(iv) If M is a prime I-ring satisfying a certain assumption and S #
0(T # 0), then there exists A € C, the extended centroid, such that
T=XaS(S = \oT).
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1 Introduction

The notion of a I'-ring was first introduced as an extensive generalization of
the concept of a classical ring. From its first appearance, the extensions and
generalizations of various important results in the theory of classical rings to
the theory of ['-rings have been attracted a wider attentions as an emerging
area of research to the modern algebraists to enrich the world of algebra. All
over the world, many prominent mathematicians have worked out on this
interesting area of research to determine many basic properties of I'-rings
and have executed more productive and creative results of I'-rings in the last
few decades. We begin with the definition.

Let M and I' be additive abelian groups. If there exists an additive map-
ping (z,a,y) = xzay of M x T' x M — M, which satisfies the conditions
(xay)pz=xa(yBz) for all z,y,z € M and a, 3 € T, then M is called a I'-
ring. Every ring M is a I'-ring with M=I". However a ['-ring need not be a
ring. Gamma rings, more general than rings[8|. Barnes[1] weakened slightly
the conditions in the definition of I'-ring in the sense of Nobusawa. Let M
be a I'-ring. Then an additive subgroup U of M is called a left (right) ideal
of M it MTU Cc U(UT'M C U). If U is both a left and a right ideal, then
we say U is an ideal of M. Suppose again that M is a I'-ring. Then M is
said to be a 2-torsion free if 2x=0 implies =0 for all x € M. An ideal P; of
a [-ring M is said to be prime if for any ideals A and B of M, AUB C P,
implies A C P, or B C P;. An ideal P; of a I'-ring M is said to be semiprime
if for any ideal U of M, UT'U C P, implies U C P,. A I'-ring M is said to
be prime if al'’ MT'b=(0) with a,b € M, implies a=0 or b=0 and semiprime
if all MT'a=(0) with a € M implies a=0. Furthermore, M is said to be com-
mutative I'-ring if xay=yax for all x,y € M and o € I'. Moreover, the set
Z(M)={x € M : xay = yax for all « € ',y € M} is called the centre of the
[-ring M. For the definitions of the quotent I'-ring, the extended centroid
and the central closure, we refer to [7].

If M is a I-ring, then [z,y|,=ray — yax is known as the commutator of
and y with respect to «, where z,y € M and o € I'. We make the basic
commutator identities:

[zay, z]p=[x, z]pay + z[a, Bloy + zaly, 2]s

and [z, yaz]g=[z, y|saz+yla, fl.z+yalz, z]g for all z,y.2 € M and o, 5 € T
We consider the following assumption:

(A)iiiiii rayfz=xPyaz for all x,y,z € M and o, 5 € T.

According to the assumption (A), the above two identites reduce to



[zay, z]p=lx, 2]poy + zaly, 2]

and [z, yaz|s=[z, y|paz + yao[z, 2], which we extensively used.

An additive mapping T': M — M is a left(right) centralizer if T'(xay)=T (z)ay
(T(xay) = xzaT(y)) holds for all x,y € M and a € I'. A centralizer is
an additive mapping which is both a left and a right centralizer. For any
fixed a € M and «a € T, the mapping T'(x) = aax is a left centralizer and
T(x) = zaa is a right centralizer. We shall restrict our attention on left
centralizer since all results represented in this paper are true also for right
centralizers because of left and right symmetry.

Barnes [1], Lue [6] and Kyuno[5] studied the structure of I'-rings and ob-
tained various generalizations of corresponding parts in ring theory.

Borut Zalar[14] worked on centralizers of semiprime rings and proved that
Jordan centralizers and centralizers of these rings coincide. Joso Vukman|11,
12, 13] developed some remarkable results using centralizers on prime and
semiprime rings.

In [2], Hoque and Paul have proved that every Jordan centralizer of a 2-
torsion free semiprime I'-ring satisfying a certain assumption is a central-
izer. Also, they proved in [3], if 7" is an additive mapping on a 2-torsion
free semiprime I'-ring M with a certain assumption such that T(xaypfz) =
xaT (y)px for all z,y € M and «, 5 € T', then T is a centralizer and in [4],
if 27 (zabfa) = T(x)ayBzr + xayBT (x) holds for all x,y € M and o, f € T,
then T is also a centralizer.

In this paper, we generalize some results of Joso Vukman|[11] in Gamma rings.

2 Centralizers of Prime and Semiprime ['-rings.

To prove our main results, we need the following lammas:

Lemma 2.1 Suppose that the elements a;, b; in the central closure of a prime
[-ring M satisfy Ya;c;xB:b; =0 for all x € M and oy, 5; € I'. If b; # 0 for
some 1, then a;’s are C-dependent, where C' is the extended centroid.

Proof. Let M be a prime I'-ring and let Cr = C' be the extended centroid
of M. If a; and b; are non-zero elements of M such that Ya;o;x06;b; = 0 for
all z € M and «y, B; € T, then a;’s (also b;’s) are linearly dependent over

C'. Moreover, if acxffb = baxfa for all x € M and a, f € I, where a(# 0),



b € M are fixed, then there exists A € C such that a = \ab for a € T'.
Clearly, the lemma is proved.

Lemma 2.2 Suppose that M is a noncommutative prime I'-ring satisfying
the assumption (A) and T : M — M is a left centralizer. If T'(x) € Z(M)
forallx € M, then T = 0.

Proof. Since T is a left centralizer on M, we have T (xay) = T'(x)ay holds
for all z,y € M and « € I" and hence [T'(z),y|o = 0 for all z,y € M and
a € I'. Putting x = (2 in the above relation, we have

= [T(z62), yla

= [T'(z)Bz,ya

= [T'(z), ylaBz + T(2)Bz,y]a
= T(x)p[z yla

Hence T'(x)5]z, y]o = 0, which gives T'(z)Bwy|z,y]o = 0 for all z,y.z,w € M
and «, 3,7 € I', whence it follows that T' = 0, otherwise M = 0.

Lemma 2.3 Suppose that M is a noncommutative prime I'-ring satisfying
the assumption (A) and S, T : M — M are left centralizers. If[S(x), T(x)]o =
0 holds for all x € M and o« € T and T # 0, then there exists A € C such
that S = \aT', where C' is the extended centroid.

Proof. First, we put = x4y in the relation [S(z), T(x)], = 0 and linearize,
we have

[S(@), T(y)]a + [S(y). T(x)]a =0 (1)
. Replace y by yfz in (1), we have
0 =I[S(=),T(y)Ba+ [S(y)B2z T (2)]a

(),
[S(2), TW)labz + T(y)BIS (), 2la + [S(y), T(@)]afz + S(y) Bz, T(2)]a
=T(y)BlS(x), za + S(Y) Bz, T (2)]a

Thus we have

X



Putting y = yyw in the above relation, we obtain,

T(y)yywp[S(x), 2la + S(y)ywphlz, T ()l =0 (2)
Our assumption T' # 0 follows from Lemma-2.2 that there exist x,z € M
and a € I' such that [T'(z), 2], # 0. Now, the relation (2) and Lemma-2.1
imply that S(y) = A(y)aT(y), where A(y) is from C. If we put S(y) =
AMy)aT(y) and S(x) = A(x)aT(x) in the relation (2), we obtain (A(x) —
Ay))aT (y)ywB[T(z), 2] = 0 for all pairs y,w € M, whence it follows
(AM(z) — My))aT'(y) = 0, since [T'(z), z]o # 0. Thus we have \(z)aT(y) =
Ay)aT (y) which completes the proof of the lemma.

Theorem 2.1 Suppose that M is a 2-torsion free noncommutative semiprime
[-ring satisfying the assumption (A) and S, T are left centralizers on M.
If [S(2),T(2)]aBS(x) + S(x)B[S(2),T(x)]a = 0 holds for all x € M and
a,f €. Then [S(x), T(x)]oa =0 for allz € M and o € T'. Also, if M is
prime I'-ring satisfying the assumption (A) and S # 0(T # 0), then there
esizts A € C,(the extended centroid of M) such that T = AaS(S = AaT).

Proof. By the hypothesis, we have
[S(2), T(x)]afS(x) + S(2)B[S(2), T(2)]a =0 (3)
The lineariztion of the above relation, we have

0 = [5(x), T(@)apS(y) + Sy)BIS(x), T(x)]a

+[5(@), T(y)labS () + S(2)BS(x), T(y)]a
+S (), T(0)]aBS () + S(2) B[S (y), T(@)]a
+SW), T(W)]aBS(x) + S(x)BIS(Y), T(y)la
+S(W), T(@)]afS(y) + S(W)BIS (), T(2)]a
+[5(2), TW)aBS(y) + S(W)BIS (), T(Y)la (4)

Replacing —z for x in the above relation, we have

0 = [5(x), T(@)apS(y) + Sy)BIS(x), T(x)]a

+[5(2), T(W)]aBS (x) + S(2) B[S (2), T(y)]a
+[S5(W), T(@)]afS () + S(2)B[S (), T(x)]a
—[5W), T(y)lafS(x) = S(@)BIS (), T(Y)la
—[5(W), T()laBS(y) = SW)BIS(Y), T (2)]a
—[5(x), T(W)]afS(y) = SW)BIS (), T(Y)la ()



Adding (4) and (5), we have

0 = 2[5(x), T(@)laBS(y) + 25(y) B[S (), T'(x)]a
+2[5(2), T(y)laBS () +25()[S(x), T(y)
+2[5(y), T(x)]apS (x) +25(2)5[S(y), T ()

Hence by 2-torsion freeness of M, it follows that
0 = [S(2), T(x)]aBS(y) + S(y)BLS(2),
+[5(2), T(y)laBS(x) + S(x) B[S (),
+[S(), T(@)|aBS(x) + 5(x) B[S (y),

Replacing y by zyy in the above relation , we have

= [S(2), T(x)laBS(x)yy + S(x)7yB[S (), T(2)]a

+[5(x), T(x)7ylaBS(x) + S(2) B[S (2), T (2)7yla
+[S(@)ry, T(2)]aBS(x) + S(2) B[S (2) vy, T(x)]a
S(x), T(x)laBS(x)yy + S(@)7yBS (), T(2)]a

]a
]a

\_/\_/ﬂ
=
S
=

_I__.—|

[5(2), T(@)]avyBS (x) + T(2)7[S(2), ylaBS (x)
+5(x)BIS (), T(x)]avy + S(2) BT (2)7[5(2), Yla
+[5(93) T(@)]avyBS(x) + S(@)yly, T(2)labS (x)

+5(2)B[S(x), T(x)]avy + S(2) 55 (2)V]y, T(2)]a

According to (6), the above relation reduces to

0 = S(@)wplS(x), T(@)la +2[5(x), T(x)]avy LS (2)

+T(x)7[S(2), ylaBS(x) + S(x) BT (2)7[S(2), y]a
+S @)y, T(2)]aBS(2) + S(@) B[S (2), T (x)]avy
+S(

il
2)BS(@)vly, T(@)]a (7)
(7),

0 = S(2)yydS(@)B[S(x), T(@)]a +2[S(x), T()]arydS(2)3S(x)
LT (a)y[S(2), ylaBS ()5S () + S(2)BT (1[5 (1), yladS ()
+S(@ )y, T(2)]abS (@) BS () + S(2)yydlS(x), T(2)]5S ()
+5(2)8[S(2), T(@)]ayy0S () + S(2)BS(2)1y8[S(2), T ()]
+5(2)BS (2)ly. T(2)]dS ()



which gives according to (7) to

0 = S(@)yydS(x)5(x), T(x)la + S(x)BS(x)1ydlS(x), T(x)la  (8)
Putting y = T'(z)wy in (8), we have

0 = S@)T(2)wydS(x)B[S(x), T(7)]a
+5(2)BS ()T (z)wyd[S(x), T(2)]a (9)
Also left multiplication of (8) by T'(x)w gives
0 = T(x)wS(x)yydS(z)B[S(x), T(7)]a
+T(x)wS(2)BS(x)7yd[S(x), T'(2)]a (10)
From (9) and (10), we obtain,
[S(2), T'(2)],wydS(x) B[S (), T (x)
[S(2), T(x)],wydS(2)B[S(x), T'(x)
+([S(2), T'(2)],85(x) + S(2)B[S(z), T ()], )wyd[S(2), T'(x)]a
[S(2), T(2)],wydS(x) B[S (x), T(x)

Thus we have

0 ),

0 = [S(z), T(2)],wydS(x)B[S(x), T(x)]a
Left multiplication of the above relation by S(z)3 gives
0 = S(@)B[S(2), T(2)],wydS(x)B[S(x), T(w)]a (11)
for all z,y € M and o, 8,7, 6,w € I'. Hence from (11), it follows
S(x)BlS(2), T(2)]la = 0 (12)
From (3) and (12), we have also
[S(x), T(2)]afS(x) = 0 (13)

From (12) one obtains the relation

0 = S)PIS(), T(@)]la+ S(@)BIS(y), T(x)]a
+5(2)B[5(2), T(y)la (14)
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(see the proof of (6)). Putting y = zyy in (14), we have

0 = ( )vyBIS (@), T(x)]a + S(2) B[S () vy, T(2)]a
+5(@)B[5(2), T(x)79la
)1yBI5 (@), T(2)]a + S(2) B[S (x), T'(2)]ary
+5(@) 85 (@) ly, T(0)la + S(x)B15(2), T(2)lavy + S(2) 5T (2)7[S(x), yla
= S(@)yplS(@), T(@)]a + S(x)85(@)7ly, T(2)]a
+5(2) BT (x)7[5(2), Yla

Thus we have the above relation
0 = S@)vyB[S(x), T(x)]a + S(x)BS(x)V[y, T (7)]a
+8(2) BT (2)7[S(2), y]a
which can be written in the form

0="5(2)yyblS(x), T(2)la + S(2) 55 (2)yyaT (x)
—S(2) BT (x)yyaS(x) + S(x) BT (x), S(x)]y0y

- e

whence it follows
0= S5(@)yyB[S(x), T'(x)]a + S(2) 55 () yyaT (x)
—5(2) AT () yyoS(x) (15)
according to (12). Taking T'(z)d of (15) on the left side, we have
0= T(x)0S(x)yyplS(x), T(x)la + T(x)05(x) 35S (x)yyaT (x)
—T(x)0S(x) BT (x)yyaS(z) (16)
Putting y = T'(x)dy in (15) gives
0= 5(@)yT(x)oyB[S(x), T()]a + S(x) S (2)yT (2)dyaT ()
—5(2) BT (x)yT (x)dyasS(z) (17)
From (16) and (17), we have
0="1[5(z), T(x)],0yB[S(x), T'(2)]a + [S(2)BS(x), T'(x)],0yaT (x)
+HT'(x), 5(2)]s8T (x)yyaS (x)

= [ (@), T(2)],0yB1S (x), T(2)]a + ([9(2), T(2)],55 ()
+5(2)B[5(2), T'(2)],)oyaT (x) + [T(2), S(2)]s AT (x)yyeS(z)

8



which reduces to

0 = [S(x), T(x)],0yBlS(x), T(2)|a + [T(x), S(x)]s6T (x)yyaS(x) (18)
The substitution ywS(z)pz for y in (18) gives

0 = [S(x),T(2)],0ywS(x)pzB[S(2), T (2)]a
+[T'(z), S(2)]sBT (x)yywS(x) pzaS(z (19)

Again, right multiplication of (18) by wzpS(x), we have

0 = [S(x), T(2)],0y8[5(x), T(x)]awzpS(x)
+[T(z), S(2)]|sBT (x)yyaS(z)wzpS(x) (20)
From (19) and (20), we obtain
0 = [S(x), T(2)],0yBA(x, 2) (21)

where A(xz,z) = [S(2), T(x)]awzpS(x) — S(x)pzw[S(x).T(z)]s. Replacing y
by zpS(z)wy in (21) gives

= [S(@). T(2)},d2pS (x)wyBA(x, 2) (22)
Left multiplication of (21) by S(z)pzw gives
0 = S(2)p=w[S(a), T(2)],0yBA(x, 2) (23)
Combining (22) and (23), we arrive at
0 = Az, 2)0yBA(z, 2)

for all x,y,2 € M and 6,8 € I'. Hence by semiprimeness of M, it follows
A(x, z) = 0 and hence

[S(2), T(@)]awzpS(x) = S(x)pzw[S(x), T(x)]a (24)
The substitution of z by T'(x)yy in (24) gives
[S(z), T(@)]owT (2)yypS(x) = Sx)pT(x)yyw[S(x), T(@)]la  (25)

The relation (25) makes it possible to replace in (18), [S(x), T'(z)]|s 8T (z)yyaS(z)
by S(z)aT (x)yyB[S(x), T(x)]s. Thus we have

0 = [5(z), T(@)],0yb[S(x), T(x)]a — S(x)aT(x)yyBlS(2), T ()]s

9



which reduces to
0 = T(x)yS(2)dyB[S(z), T(w)]a (26)

Putting y = T'(z)wy in (26), we have

0 = T(2)y5(@)0T (z)wyBlS(x), T'(x)]a (27)
Multiplying (26) from the left side by T'(z)w, we have

0 = T(2)wT(2)yS(2)dyBlS(z), T(x)]a (28)
Subtrating (28) from (27), we have

0 = T(a)wlS(x), T()],0yBIS (), T(x)].

which gives putting y = ywT(x),

0 = T(x)wlS(x), T(2)],0ywT (2)B[S(x), T(x)]a
= T(x)w[S(x), T(x)],0yBT (x)w[S(x), T(z)]a
whence it follows
0 = T(x)w[S(x),T(z)]a (29)

The substitution y = yB7T () in (25) gives because of (29)
0 = [5(2),T(x)|awypT(x)pS(x) (30)
From (13), we obtain the relation
0 = [S(=),T@)aBS(y) + [S(x), T(W)]aBS (@) + [S(y), T(x)]aBS(x)
(see the proof of (6)). Putting in the above relation y = 2y, we have
[S(@), T(2)]aBS(2)vy + [ggx), ; Ex)vy]aﬁS(x) + [S(@)vy, T(2)]aBS(2)

T(x)y[S(x), ylaBS(x) + [S(x), T(2)]avy S (x)
+5 (@) ly, T(2)]aBS () + [S(2), T (2)lavybS (2)

Thus we have

0= 2[S(x), T(x)]lavypS(x) + T(2)y[S(2), ylaBS(x) + S(x)yly, T(x)]a S (x)

0

10



which can be written after some calculation in the form

0= [5(x), T(x)]lavyBS(x) + S(x)yyaT(x)B5(x)
—T(z)yyaS(z)5S(x) (31)

The relation (24) makes it possible to replace in (31), [S(z), T(z)]avyBS(2)
by S(z)Byv[S(z),T(x)]s. Thus we have

0= S(@)Byy[S(x), T'(x)]a + S(x)yyaT(x)B5(x)
—T(x)yyasS(z)5S(x)
= S(@)ByyS(x)aT(x) = T(x)yyeS(x)BS(x)

Therefore, we have
S(x)ByyS(x)al(z) = T(x)yyas(x)sS(x) (32)
Putting in the above relation y = T(x)wy, we have
S(@)BT (x)wyyS(x)aT(z) = T(x)yT(r)wyasS(z)BS(x) (33)
Left multiplication of (32) by T'(z)w gives
T(z)wS(z)fyyS(x)al(x) = T(z)wT(z)yyosS(x)BS(x) (34)
Combining (33) and (34), we have
0 = [S(x), T(x)]pwyyS(x)aT (x)
which gives together with (30),
0 = [S(@), T(x)]awyB[S(x), T(2)]a
Hence by semiprimeness of M, we have
S(@), T(a)la = 0 (35)

If M is a prime I'-ring, then the relation (35) and Lemma-2.3 complete
the proof of the theorem.

11



Theorem 2.2 Suppose that M is a 2-torsion free noncommutative semiprime
[-ring satisfying the assumption (A) and S, T are left centralizers on M.
If [[S(2),T(2)]a,S(x)]sg = 0 holds for all x € M and o, € I'. Then
[S(z), T(x)]o = 0 for all zx € M and « € T'. Moreover, if M is prime
[-ring satisfying the assumption (A) and S # 0(T # 0), then there esixts
A € C,(the extended centroid of M) such that T = AaS(S = AaT).

Proof. By the assumption
[S(2), T(x)]a, S(x)]s = 0 (36)
The linearization of (36) gives

0 = [[5(x), T(x)]a S(y)]s + [[S(x), T(y)]a, S(2)]5
+H[5(), T(@)a, S(@)]5 (37)

Putting y = xyy in (37), we have

0 = [[S(), T()la: S(@)vyls + [[S(x), T(x)7yla; S(2)]s
HS @)y, T(2)]a, S(2)]s
= [[5@), T(2)]a, S(x)]gyy + S(@)V[[S(2), T(2)]a, yls

+[S(2), T(x)]avy + T(2)v[S(2), yla, S(2)]s
+H[S(@), T(@)]avy + 5@y, T(2)]a, S(2)]s
= S@nlS@), T(@)la: yls + [[5(2), T(@)]a, S(2)]s7y
+S(2), T(@)]avly, S()ls + T(2)7[[S(2), Yla, S ()]
HT'(x), S(@)]p7[5(2), ylo + [[9(2), T(@)]a, S(2)] 57y
+S(2), T(@)]avly, S(@)ls + S(@)y{ly, T(@)la, S(2)]

Therefore, we have

0 = S@)[[S(), T(x)]a,yls + 3[5(), T'(x)]arly, S(2)]s
+T(@)V[[S(x), yla, S(2)]s + S@)V[ly, T(@)la; S(x)]s (38)

Replacing y by ydS(x) in the above relation, we have

0 = S@nllS@),T(@)]a,yd5(@)ls + 3[5(x), T(2)lav[ydS(2), S(x)]s
+T(@)y[[5(2), Y05 (0)]as S(x)]p + S(2)v[lydS (@), T(2)]a, S(2)]s

12



= S@nlS@), T()la: ylgdS(x) + 5(@)yyol[S(2), T'()]a; S(2)]a
+3[5(2), T(@)]aly, S(2)]505(2) + T(2)v[[S(x), yladS (@), S(2)]s
+5(@)(ly, T(2)]adS () +yo[S(x), T ()], S(x)]s

= S@)[[S(@), T(2)la, ylg0S(x) + 3[S(x), T'(2)]aly, S(2)]505 (x
+T(@)y[[5(2), yla, S(2)]505(2) + S(@)[ly, T()]a, S(2)]505 ()
+5(@)ly, S(@)]p01S(x), T(x)]a + S(x)7yo[[S(2), T'(2)]a; S(2)]s

Thus we have according to (36) and (38),

0 = S(@)vly, S(x)]o[S(x), T (2)]a

which can be written in the form

S()yypS(@)o[S(x), T(x)la = S(x)yS(2)Byd[S(x), T(x)la  (39)

Putting in the above relation y = T'(z)wy, we have

ST (x)wyBS(x)5[S(x), T(x)]la = S(x)yS(x)BT (2)wyd[S(x), T(x)H40)
On the other hand, left multiplication of (39) by T'(z)w, we have
T(z)wS(x)yypS(x)o[S(x), T (x)]a =
T(x)wS(2)yS(x)BydlS(x), T'(x)]a (41)
Subtracting (41) from (40), we obtain
S(x), T(x)]wyBS(x)0[S (), T(x)]a — [S(2)yS(2), T'(2)]swyd[S (), T(x)]a

[ )
[S(2), T(@)lywyBS (2)d[S (), T (2)]a
—([5(2), T(2)]p7S(2) + S(2)7[S(2), T'(2)]swyd[S(z), T(x)]a

According to the requirement of the theorem one can replace in the above
calculation [S(x), T (x)]gyS(z) by S(z)v[S(x), T(x)]s which gives

[S(2), T(x)],wyBS(2)d[S (), T(x)]a
= 25(x)y[S(x), T(2)]swyd[S(x), T (2)]a

Left multiplication of the above relation by S(x)p gives

S(x)plS(x), T(x)]wyBS(x)o[S(x), T(x)]a
= 25(x)pS(x)7[S(2), T(2)]swyd[S(x), T(x)]a (42)
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On the otherhand, putting y = [S(x), T'(z)]py in (39), we have

S(@)v]S(x), T(x)]wpyBS(2)d[S(x), T(2)]a
= S(x)7S(2)B[S (), T(2)]wpyd[S(x), T(x)]a (43)

Combining (42) with (43), we obtain
0 = S(x)p[S(x), T(2)lywyBS(x)d[S(x), T(2)]a
Hence by semiprimeness of M, we obtain
S()[S(x), T(x)la = 0 (44)
From (44) and the assumption of the theorem, we have
[5(2), T(#)]adS(x) = 0

The rest of the proof goes through in the same way as in the proof of the
Theorem-2.1.

References

[1] W.E.Barnes,On the I'-rings of Nobusawa,Pacific J.Math.,18(1966),411-
422.

[2] M.F.Hoque and A.C.Paul, On centralizers of semiprime gamma rings,
International Mathematical Forum, 6(13)(2011), 627-638.

[3] M.F.Hoque and A.C.Paul, Centralizers of semiprime gamma rings, Italian
J. Pure and Applied Mathematics, 30(2013), 289-302.

[4] M.F.Hoque and A.C.Paul, An equation related to centralizers in
semiprime gamma rings, Annals of Pure and Applied Mathematics,
1(1)(2012), 84-90.

[5] S.Kyuno, On prime Gamma ring, Pacific J.Math.,75(1978),185-190.

[6] L.Luh, On the theory of simple Gamma rings, Michigan Math.J.
16(1969),65-75.

14



[7] W.S. Martindale, Prime rings satisfying ageneralized polynomial identity,
Journal of Algebra 12(1969),576-584.

[8] N. Nobusawa, On the Generalization of the Ring Theory, Osaka J.
Math.,1(1964),81-89.

9] M.A. Ozturk and Y.B. Jun, On the centroid of the prime Gamma Rings-
11, Turk, J.Math. 25(2001),367-377.

[10] Posner, Derivations in prime rings. Proc. Amer. Math. Soc.
8(1957),1093-1100.

[11] J.Vukman, Centralizers in prime and semiprime rings, Comment. Math.
Univ. Carolinae 38(1997),231-240.

[12] J.Vukman, An identity related to centralizers in semiprime rings, Com-
ment. Math. Univ. Carolinae 40,3(1999),447-456.

[13] J.Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Car-
olinae 42,2(2001), 237-245.

[14] B.Zalar, On centralizers of semiprime rings, Comment.Math. Univ. Car-
olinae 32(1991),609-614.

15



	1 Introduction
	2 Centralizers of Prime and Semiprime -rings.

