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Abstract—This paper proposes a joint multi-task learning
algorithm to better predict attributes in images using deep
convolutional neural networks (CNN). We consider learning
binary semantic attributes through a multi-task CNN model,
where each CNN will predict one binary attribute. The multi-
task learning allows CNN models to simultaneously share visual
knowledge among different attribute categories. Each CNN
will generate attribute-specific feature representations, and then
we apply multi-task learning on the features to predict their
attributes. In our multi-task framework, we propose a method
to decompose the overall model’s parameters into a latent task
matrix and combination matrix. Furthermore, under-sampled
classifiers can leverage shared statistics from other classifiers
to improve their performance. Natural grouping of attributes is
applied such that attributes in the same group are encouraged to
share more knowledge. Meanwhile, attributes in different groups
will generally compete with each other, and consequently share
less knowledge. We show the effectiveness of our method on two
popular attribute datasets.

Index Terms—Semantic Attributes, Multi-task learning, Deep
CNN, Latent tasks matrix.

I. INTRODUCTION

SING semantic properties, or attributes, to describe

objects is a technique that has attracted much attention
in visual recognition research [13], [30]. This is due to the
fact that learning an object’s attributes provides useful and
detailed knowledge about it, and also serves as a bridge
between low-level features and high-level categories. Various
multimedia applications can benefit from attributes, among
which are the following: knowledge transfer, information
sharing between different target tasks, multimedia content
analysis and recommendation, multimedia search and retrieval

[51, [151 141, [201, [301, [35], [36]), [38], [43], [49].

Typically, discriminative learning approaches are used to
learn semantic attributes (attributes that have names) [13],
[27], [30]. Figure 1 shows two examples from the Clothing At-
tributes Dataset [7], where both images have different attribute
labels. Other types of attributes, such as data-driven ones,
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Fig. 1. Illustration of binary semantic attributes. Examples from Clothing
Attribute Dataset [7]. Yes/No indicates the existence/absence of the corre-
sponding attribute.

are learned in an unsupervised or weakly supervised man-
ner [32]. Relative attributes are also introduced and learned
through ranking methods (relative attributes have real values
to describe the strength of the attribute presence) [34], [45].
However, most of the existing literature employs discrimina-
tive classifiers independently to predict the semantic attributes
of low-level image features [13], [30], [46]. Very few works
model the relationship between object attributes, considering
the fact that they may co-occur simultaneously in the same
image [21], [44], [56].

Engineered low-level features like SIFT and HOG are
used in combination with various loss-objective functions for
attribute prediction purposes [13], [21], [30]. Improving the
prediction results gives a good indication of the successful
knowledge transfer of attributes between target tasks, for
example, recognizing presently unseen classes through the
transfer of attributes from another seen class [20], [30]. In the
work of [13], attribute models are learned to generalize across
different categories by training a naive Bayes classifier on the
ground truth of semantic attributes. Then, they train linear
SVM to learn non-semantic feature patterns and choose those
which can be well predicted using the validation data attribute.
The benefits of such generalization can be seen across different
object categories, not just across instances within a category.

On the other hand, deep CNN demonstrates superior per-
formance, dominating the top accuracy benchmarks in various



vision problems [6], [17], [24], [50]. It has also been shown
that CNN is able to generate robust and generic features
[3], [40]. From a deep learning point of view, CNN learns
image features from raw pixels through several convolutions,
constructing a complicated, non-linear mapping between the
input and the output. The lower convolution layers capture
basic ordinary phrasing features (e.g., color blobs and edges),
and the top layers are able to learn more complicated struc-
ture (e.g., car wheel) [59]. Subsequently, it is believed that
such implementation of artificial Neural Networks mimics the
visual cortex in the human brain [24].

Attribute prediction introduces two additional issues be-
sides the typical object recognition challenges: image multi-
labeling and correlation-based learning. Compared to single
label classification, multi-labeling is more difficult. It is also
more likely to appear in real word scenarios, at which point,
an image would need to be tagged with a set of labels from
a predefined pool [41], [54]. For example, when a user types
their query to search for an image, such as ’red velvet cake’,
the engine should retrieve consistent results for real cake
images having a red velvet appearance. This is a difficult task
from a computational perspective due to the huge hypothesis
space of attributes (e.g., M attributes required 2*). This limits
our ability to address the problem in its full form without
transforming it into multiple single classification problems
[57]. In particular, correlations should be explored between
all these singular classifiers to allow appropriate sharing of
visual knowledge. Multi-task learning is an effective method
for feature sharing, as well as competition among classifiers
(the so-called ’tasks’ in the term multi-task) [21], [62]. If tasks
are related and especially when one task lacks training data,
it may receive visual knowledge from other, more fit tasks
[1], [41, [19], [23], [31]. In the work of [21], they jointly
learn groups of attribute models through multi-tasking using
a typical logistic regression loss function.

Given the aforementioned issues, we propose an enhanced
multi-task framework for an attribute prediction problem. We
adapt deep CNN features as our feature representations to
learn semantic attributes. Because the structure of the CNN
network is huge, and thus requires powerful computation
ability, we employ the following methods: First, if the number
of attributes is small, we train multi-task CNN models together
through MTL, where each CNN model is dedicated to learning
one binary attribute. Second, if the number of attributes is
relatively large, we fine-tune a CNN model separately on
each attribute annotation to generate attribute-specific features,
and then we apply our proposed MTL framework to jointly
learn classifiers for predicting these binary attributes. The first
approach is more or less applicable depending on the available
resources (CPU/GPU and Memory). The visual knowledge
of different attribute classes can be shared with all CNN
models/classifiers to boost the performance of each individual
model. Among the existing methods in multi-tasking, the work
in [62] proposes a flexible method for feature selection by in-
troducing a latent task matrix, where all categories are selected
to share only the related visual knowledge through this latent
matrix, which can also learn localized features. Meanwhile,
the work in [21] interestingly utilizes the side information of

semantic attribute relatedness. They used structured sparsity
to encourage feature competition between groups and sharing
within each of these groups. Unlike the work in [62], we
introduce the natural grouping information and maintain the
decomposition method to obtain the sharable latent task matrix
and thus flexible global sharing and competition between
groups through learning localized features. Also, unlike the
work of [21], we have no mutual exclusive pre-assumptions,
such that groups may not overlap with each other in terms
of attribute members. However, as the hand-crafted feature
extraction methods can limit the performance, we exploit deep
CNN models to generate features that better suit the attribute
prediction case.

We test our method on popular benchmarks attribute
datasets: Animals with Attributes (AwA) [28] and the Clothing
Attributes Dataset [7]. The results demonstrate the effective-
ness of our method compared to standard methods. Because
the Clothing dataset contains a small number of attributes, we
successfully train our multi-task CNN model simultaneously.
In addition because the AwA dataset contains a relatively large
number of attributes, we first train each single CNN model on
a target attribute. Then, we apply our multi-task framework
on the generated features without instant back-propagation.

Our main contributions in this paper are summarized as
follows: 1) We propose an enhanced deep CNN structure
that allows different CNN models to share knowledge through
multi-tasking; 2) We propose a new multi-task method; we
naturally leverage the grouping information to encourage
attributes in the same group to share feature statistics and dis-
courage attributes in different groups to share knowledge. We
relax any constraints on the groups, such as mutual exclusion,
by decomposing the model parameters into a latent task matrix
and a linear combination weight matrix. The latent task matrix
can learn more localized feature, thus maintaining the ability
to select some basic patterns through its configuration.

The remaining parts of our paper are summarized as fol-
lows: We first discuss the related work in Section II. The
proposed method for the Multi-task CNN model in addition
to the details of our MTL framework are presented in Section
III. Experiments on two known attribute datasets and results
are demonstrated in Section I'V. Finally, we conclude the paper
in Section V.

II. RELATED WORK

Because this work is mainly related to the topics of Seman-
tic attributes, Multi-task learning and Deep CNN, we briefly
review the most recent literature on these approaches including
the following.

A. Semantic Attributes

Definition of Attribute: a visual property that appears or
disappears in an image. If this property can be expressed in
human language, we call it a Semantic property. Different
properties may describe different image features such as
colors, patterns, and shapes [13]. Some recent studies con-
centrate on how to link human-interaction applications through
these mid-level attributes, where a consistent alignment should



occur between human query expressions and the computer
interpretations of query attribute phrases.

Global vs. Local Attributes: an attribute is global if it
describes a holistic property in the image, e.g., 'middle aged’
man. Usually, global attributes do not involve specific object
parts or locations [21], [45], [60]. Localized attributes are
used to describe a part or several locations of the object, e.g.
’striped donkey’. Both types are not easy to infer, because if
the classifier is only trained on high-level labels without spatial
information like bounded boxes, the performance of the under-
sampled classifiers may degrade. However, some work in [21],
[62] show that sharing visual knowledge can offset the effects
of the lack of training samples.

Correlated Attributes: If attributes are related and cooccur
they are correlated. In other words, some attributes will
naturally imply others (e.g., ’green trees’ and ’open sky’ will
imply ’natural scene’), so this configuration will impose some
hierarchical relationship on these attribute classifiers. From
another angle, attributes can be weaved from the same portion
of the feature space and can be close to each other, e.g., *black’
and ’brown’ attribute classifiers should be close to each other
in the feature dimension space, belonging naturally to the same
group, that is, the same color group [21]. While most of the ex-
isting methods train independent classifiers to predict attributes
[13], [30], [55], typical statistical models, like naive Bayesian
and structured SVM models, are used to address the problem.
In [13], the authors employ a probabilistic generative model to
classify attributes. In the work of [30], objects are categorized
based on discriminative attribute representations. Some works
flow by modeling the relationships between classes with pre-
assumptions of existing attribute correlations [1]. Unlike this
work, the decorrelation attribute method to resist the urge to
share knowledge is proposed in [21], and they assume that
attribute groups are mutually exclusive. Other work in [45]
proposes jointly learning several ranking objective functions
for relative attribute prediction.

Attributes and Multi-labeling: Image multi-labeling is sim-
ply learning to assign multiple labels to an image [37], [54].
If the problem is adapted as is, a challenge arises when
the number of labels increases and the potential output label
combinations become intractable [54]. To mitigate this, a
common transformation way is performed by splitting the
problem into a set of single binary classifiers [42]. Predicting
co-occurring attributes can be seen as multi-label learning.
On the other hand, most of the related works [21], [45] tend
to apply multi-task learning to allow sharing or using some
label relationship heuristics a priori [ 1 1]. Another work applies
ranking functions with deep CNN to rank label scores [17].

B. Multi-task learning

Why Mutli-task learning (MTL)? MTL has recently been
applied to computer vision problems, particularly when some
tasks are under-sampled [!], [4]. MTL is intended to impose
knowledge sharing while solving multiple correlated tasks
simultaneously. It has been demonstrated that this sharing can
boost the performance of some or sometimes all of the tasks

[4].

Task and Feature Correlations: Many strategies for sharing
have been explored; the first one considers designing different
approaches to discover the relationships between tasks [18],
while the other considers an approach that aims to find some
common feature structure shared by all tasks or mine the
related features [39]. Recent frameworks, like Max-margin
[61], Bayesian [58], and their joint extension [31], try to
discover either or both task and feature correlations. While
Max-margin is known by its discriminative power, Bayesian
is more flexible and thus better suited to engage any a priori
or performance inference [31]. In contrast to these studies,
the work in [16] claims that as in typical cases, the dimension
of the data is high; thus, the assumption that all the tasks
should share a common set of features is not reasonable. They
address such assumptions by simultaneously capturing the
shared features among tasks and identifying outliers through
introducing an outlier matrix [16]. In other works, [26],
[62], the authors further relax the constraint naturally by
decomposing the model parameters into a shared latent task
matrix and linear combination matrix; hence, all the tasks are
encouraged to select what to share through this latent matrix,
which can learn more localized features. However, among all
these techniques, they rely on popular ways to perform such
sharing through applying various regularizations on the model
parameters, such as structure sparsity for feature selection and
feature competition [1].

C. Deep CNN

CNN for feature learning: CNN was born in the Deep
Learning (DL) era [3], [6], [24]; its goal is to model high-
level abstractions of visual data by using multiple non-linear
transformation architectures. Among the DL models, CNN
shows extraordinary performance, specifically in image clas-
sification and object recognition applications [6], [24]. Two
bothersome issues about training CNN are the number of
training samples needed and the time that is required to fully
train the network. This means that to have an effective CNN
model, the training dataset and time should be large enough
for the CNN to gain the ability to perform its task well [24],
[50]. The learned features generated by the CNN are shown
to be robust, generic, and more effective than hand-crafted
features [12], [40]. Fortunately, popular implementations of
[12], [24] alongside the usage of pre-trained CNN models on
the Imagenet dataset [24] make it easier to fine-tune various
CNN architectures for many vision datasets.

CNN between single and multi-labels: using CNN for single
label prediction is intensively studied [3], [24]. There are
many challenges that accompany multi-labeling, as previously
discussed in the *Attributes and Multi-labeling’ section. Hence,
training CNN directly is infeasible and impractical. However,
one recent work proposes a work-around solution for the
multi-label problem [57]. In this work [57], a shared CNN
is fed with an arbitrary number of object segment hypotheses
(image batches), which are extracted or generated by some
techniques, like the binarized normed gradients (BING) [10].
The final CNN output results for all of these hypotheses are
aggregated by max-pooling to give the final format of the



Groups
Attributes :  Input Images groupl
Necktie: 0 [
Stripes: 1 CN_N_‘_X___
Black: 1 ::::é]v
Blue: 0 = W% KR @ iT-iD . _C_’..
White: 1
Yellow: 0
Scarf: 0 Oi(x .
oo
S i ONN-M
groupG
Fig. 2.

Convl Conv2

Convb

Shared L S

Multi-task CNN models: the input image(in the left) with attribute labels information is fed into the model. Each CNN will predict one binary

attribute. The shared layer L together with the S layer form a weight matrix of the last fully connected layer followed by a soft-max. The L layer is a shared
latent matrix between all CNN models. Each vector in S is CNN-specific weight matrix layer. The soft-max and loss layers are replaced by our multi-task
squared hinge loss. Group information about attribute relatedness is utilized during the training of the network.

multi-label predictions. Unlike their approach, our proposed
model holds the essence of tagging one image with multiple
labels through multi-task CNN models, which are simulta-
neously trained through MTL to allow sharing of the visual
knowledge. Another direction for multi-labeling is proposed
by [40], where the CNN is mainly used to generate off-
the-shelf activation features; then, they apply SVM for later
classifications. In our approach, when the number of attributes
is large, we fine-tune many CNN models, each of which is
dedicated to learning attribute-specific representations. These
representations are used as off-the-shelf features for later
stages in MTL, as we freeze their training while optimizing
the multi-task loss function.

Convexity as first aids for CNN: Some recent work [48],
[51] demonstrates that convex optimization can improve the
performance of highly non-convex CNN models. The authors
in [48] propose modifying the last two layers in the CNN
network by making a linear combination of many sub-models
and then replacing the original loss function by other ones
from the convex optimization family. One of their findings
is that hinge loss is one of the preferable convex functions
that performs well during backpropagation. Another work [51]
confirms their finding that using the well-known SVM squared
hinge loss does improve the final performance after training
the CNN. By utilizing such experimental integration findings,
we adopt a squared hinge loss framework to jointly optimize
all classifier models while applying multi-tasking to naturally
share visual knowledge between attribute groups.

In contrast to previous methods, our proposed approach is to
train multi-task classifier models on deep features for attribute
prediction and leverage a sharable latent task matrix that can
be very informative for generating a full description of the
input image in terms of attributes. Exploring the importance
of such a latent matrix is a topic of future interest.

III. MULTI-TASK CNN MODELS

In this section, we will explain the details of the proposed
approach of the multi-task CNN model. Figure 2 shows the
overall structure of the proposed method, starting from raw
images and ending with attribute predictions. Given a vocab-
ulary of M attributes, each CNN model will learn a binary
nameable attribute. After the forward pass in all of the CNN
models, the features generated from the last convolution layers
will be fed into our joint MTL loss layer. To illustrate this more
clearly, the weight parameter matrix learned in the loss layer
will be decomposed into a latent task matrix and a combination
matrix. The latent matrix can be seen as a shared layer between
all the CNN models; in other words, the latent layer serves as
a shared, fully-connected layer. Meanwhile, the combination
matrix contains the specific information of each CNN model.
It can also be seen as a specific fully-connected layer plugged
above the shared latent fully-connected layer. After optimizing
the joint loss layer and sharing the visual knowledge, each
CNN model will take back its specific parameters through
backpropagation in the backward pass. By presenting images
that are annotated against several attributes, we iteratively train
the whole structure until convergence.

We adopt the popular network structure proposed by
Krizhevsky [24], which consists of 5 convolutions, followed by
2 fully-connected layers and finally the softmax and the loss.
In addition, some pooling, normalization, and ReLU are ap-
plied between some of these layers. Many works have studied
and analyzed the nature of this structure and identified some
important aspects. For example, the work in [59] shows that
the parameters of the fully-connected layers occupy almost
70% of the total network capacity, which consumes a great
deal of effort while training the network. However, given the
expense of trading between ’good-but-fast’ and ’perfect-but-
slow’, the work in [3] shows that the performance will drop



slightly when removing the fully-connected layers. Because
our model requires more than one CNN model, we remove the
last fully connected layers, as we substitute these layers with
our own joint MTL objective loss, depending on the weight
parameter matrix learned within.

In the following subsections, we demonstrate the shared
latent task matrix (which also can be seen as a shared layer
in the multi-task CNN models approach). Then, we show
how the feature sharing and competition is engaged. Next,
we introduce our formulations, which we use to solve the
attribute prediction problem. Finally, the total optimization
procedure used to train the whole network of multi-task CNN
models is described. In the remaining part of the paper, we will
use the task/CNN model as an interchangeable meaning for
classifier because in all cases we employ the same underlying
MTL framework. The only difference is that in one approach,
the attribute-specific feature learning is on-line, and the MTL
joint cost function optimization changes will affect the bottom
layers in all CNN models through back-propagation. Thus,
any shared knowledge will also be back-propagated to the
bottom layers. Meanwhile, in the other approach, we learn
these attribute-specific features in isolation of optimizing the
joint cost function, as training many on-line CNN models on
a large number of attributes is impractical.

A. Sharing the Latent Task Matrix in MTL

Given M semantic attributes, the goal is to learn a binary
linear classifier for each of them. Each classifier or task
has model parameters, which are denoted by w™ and are
dedicated to predicting the corresponding attribute. W is the
total classifier weights matrix, which can also be considered
a softmax weights matrix but stacked from all CNN softmax
layers. Given N training images, each of them has a label
vector Y of M — dimension, such that Y is either {1} or
{-1}, indicating whether a specific training image ¢ contains
the corresponding m attribute having a value of {1} or not
{-1}. Suppose that the output from the last convolution layer
in each CNN model forms our input feature vectors, such that
each CNN model will generate an attribute-specific training
pool. Thus, we will have X4 training examples aggregated
from all CNN models.

Our assumption is inspired from the work of [62], where
each classifier can be reconstructed from a number of shared
latent tasks and a linear combination of these tasks. Through
this decomposition, simultaneous CNN models can share
similar visual patterns and perform flexible selection from the
latent layer, which learns more localized features. We denote
L to be this latent task matrix, and s™ is an attribute-specific
linear combination column vector. In total, we have S linear
combination matrices for all attribute classifiers.

Now, we want to split W into two matrices L and S, as we
assume that W is a result of multiplying the shared L latent
matrix and the combination matrix S, W = LS. To be more
specific about each attribute classifier, the weight parameter
vector can be formed by multiplying L with the corresponding
s™ vector:

w™ = Ls™ (D

TABLE 1
EXAMPLES OF ATTRIBUTE GROUPS FROM AWA DATASET [28].

Texture:

patches, spots, stripes, furry, hairless, tough-skin
Shape:

big, small, bulbous, lean

Colors:

black, white, blue, brown, gray, orange, red, yellow
Character:

fierce, timid, smart, group, solitary, nest-spot, domestic

where m is the index of the m-th attribute, m = {1,2,3 ... M}.

Given the CNN models, we aim to learn the matrix W,
which is formed by stacking the parameter matrices of the
softmax layers of each CNN. The key idea behind our model
is to decompose this weight matrix W into two matrices L
and S, where the latent L matrix is the shared layer between
all CNN models, S is a combination matrix, and each column
corresponds to one CNN classification layer.

By this decomposition, each CNN can share visual patterns
with other CNN models through the latent matrix L, and all
CNN models can collaborate together in the training stage
to optimize this shared layer. Each CNN predicts whether
the image contains the corresponding property. The benefit
of learning the shared layer through multi-task is that each
CNN can leverage the visual knowledge from learning other
CNN models even if its training samples are not enough.

B. Feature Sharing and Competition in MTL

According to the semantic attribute grouping idea proposed
in [21], group details are used as discriminative side infor-
mation. It helps to promote which attribute classifiers are
encouraged to share more visual knowledge, due to the group
membership privileges. Meanwhile, different groups tend to
compete with each other and share less knowledge. Table I
shows some group information examples from the Animal
with Attribute (AwA) dataset [28]. Because attributes are
naturally grouped, we encode the grouping side information
by encouraging attributes to share more if they belong to the
same groups and compete with each other if they belong to
different groups. Our attribute group information is shown in
table II.

Suppose we have M attributes and G groups, where each
group contains a variable number of attributes, for example, g1
contains [aj,as, ..., ac] as shown in the left side of figure 2,
and each group can have a maximum of M attributes. We have
no restrictions on intra-group attributes. Even if two groups
have the same attribute, the latent layer configuration mitigates
the effect of the overlapped groups through the ability to learn
more localized features. However, in our experiments, we rely
on existing grouping information provided in the datasets, and
obviously the groups are mutually exclusive (an attribute can
be seen only in one group). Typically, solving the problem of
overlapping groups requires some interior-point method, which
is a type of second-order cone programming as discussed in
[9], which is computationally expensive. Structured learning
methods like group lasso [22] are applied in many areas
employing such grouping information. Knowing any a priori



information about the statistical information of features will
definitely aid the classifiers. Hence, in our MTL framework,
we utilize rich information of groups and also adopt a flexible
decomposition to learn different localized features through the
latent matrix. We follow the work in [21], as they also applied
such group information of attributes.

Regularizations are our critical calibration keys to balance
feature sharing of intra-group attribute classifiers and feature
competition between inter-group attribute classifiers. The idea
is that when applying the L; norm as Zﬁle [lwl]1 [52], it will
consequently encourage the sparsity on both rows/features and
columns/tasks of W. The effect of sparsity on the rows will
generate a competition scenario between tasks; meanwhile, the
sparsity effect on the columns will generate sparse vectors.
Additionally, when applying the Lo; norm as Zle [lwall2
[1], where D is the feature dimension space, in our case,
because it is extracted from the previous layer, D is 4096.
This can be seen as applying the L; norm on the zipped
column-wise output of the Lo;, which forces tasks to select
only dimensions that are sharable by other tasks as a way
to encourage feature sharing. As a middle solution [21], if
the semantic group information is used when applying the
Loy norm, the competition can be applied on the groups;
meanwhile, the sharing can be applied inside each group.

In our framework, we encourage intra-group feature sharing
and inter-group feature competition through adapting the Lo
regularization term. Thus, we apply this on the vector set s
Zszl Zf ls2ll2 [11, [21], where K is the number of latent
tasks (latent dimension space) and G is the number of groups,
where each group contains a certain number of attributes.
Specifically, s{ is a column vector corresponding to a specific
attribute classification layer, and given a certain latent task
dimension, s will contain all the intra-group attribute vector
sets. This will encourage attribute classifiers to share specific
pieces of the latent dimension space, if they only belong to the
same group. Meanwhile, different groups will compete with
each other as each of them tries to learn a specific portion
from the latent dimension space. Additionally, the L; norm
is applied on the latent matrix ||L||; [52], [62], to learn more
localized visual patterns.

C. Formulations of the Multi-task CNN model

Given the above discussions about decomposing W and
by applying regularization alongside grouping information
for better feature competition and sharing, we propose the
following objective function:

M N
min Z Zg[max(O, 1 -V (Ls™7T X))
L8 m=1 i=1 o)
+uy > lstlle + ALl + AL E

k=1g=1
This is the typical squared hinge loss function, in addition
to our extra regularizations. For the m-th attribute category,
we denote its model parameter as Ls™ and the correspond-
ing training data is (X}n,Y,fl)fi"i C R* x {~1,+1}(m =
1,2,..., M), where N,, is the number of training samples of

the m-th attribute, and K is the total latent task dimension
space. In the second term and given a specific latent task
dimension k, s{ is a column vector that contains specific
group attributes. The effect of this term is to continually
elaborate on encouraging intra-group attributes to share feature
dimensions. Thus, the columns/tasks in the combination matrix
S will share with one another only if they belong to the
same group. Such competition between groups is appreciated;
however, if there is some overlap between groups (they are not
absolutely disjointed), some mitigation may help through the
latent matrix L configuration, which can learn more localized
features. The L; norm is applied on the latent task matrix
L to enforce sparsity between hidden tasks. The last term
is the Frobenius norm to avoid overfitting. Moreover, with
such a configuration of the latent matrix L, an implicit feature
grouping is promoted. Namely, the latent tasks will allow
finding a subset of the input feature dimensions D, which are
useful for related tasks, where their corresponding parameters
in the linear combination matrix S are nonzero.

Accordingly, every CNN is responsible for learning better
input feature representations. Later in the testing, the input
image will be fed into all CNN models to generate different
input feature vectors; then the corresponding classifier weight
vector will be applied to produce the attribute predications.

The bottom layers in each CNN model are defined in the
same way as the network structure proposed by [24]. As shown
in fig 2, every block of CNN has several hidden layers,
mainly 5 convolutions. We replace the last 2 fully connected
layers, softmax and the loss by our proposed MTL squared
maxing hinge loss layer. Nevertheless, when the number of
attributes is large, we freeze the training of the bottom layers
and optimize the multi-task loss function to predict attributes,
using the outputs generated from the CNN models.

D. Optimization Steps

Recall, that during the training procedure of M CNN
models, each of them is responsible for predicting a single
attribute. Our goal is to impose visual knowledge sharing
between all CNN models through optimizing the multi-task
objective function. The optimized components of W will serve
as the last two fully connected layers. The L component is
a shared layer between all CNN models. The generalization
ability of each single CNN is improved by leveraging the
shared visual knowledge from other attribute classifiers. The
burden of the Stochastic Gradient Descent (SGD) optimizer
is only centralized in terms of training the bottom layers well
if they are not freeze from training, so that each CNN can
provide robust feature representation of images.

Solving the proposed cost function is non-trivial, because it
is not jointly convex on either L or S. The work in [44] solves
the non-convex regularized function using the block coordinate
descent method. The function hence becomes a bi-form convex
function. They employ Accelerated Proximal Gradient Descent
(APG) to optimize both L and S in an alternating manner.
Specifically, if S is fixed, the function becomes convex over
L, and optimizing it by APG can solve this state and handle the
non-smooth effect of the {; norm. Likewise, if L is fixed, the



function becomes convex over \S; in this form of the function
and unlike [44], the mixed norm regularizations require re-
representing the 2-norm into its dual form as discussed in [21].
Smoothing Proximal Gradient Descent (SPGD) [9], [21], [22]
is applied to obtain the optimal solution of .S. These optimiza-
tions are common in the literature of structured learning, where
various regularizations may disturb convexity and smoothness
properties of the functions. Algorithm 1 illustrates the main
steps that are applied to optimize equation 2.

Furthermore, when L is fixed, the optimization problem is
in terms of S and is described as follows:
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Optimization by SPGD: Chen et al. [9] propose solving
optimization problems that have a mixed-norm penalty over
a priori grouping to achieve some form of structure sparsity.
The idea behind this optimization is to introduce the smooth
approximation of the objective loss function and solve this
approximation function instead of optimizing the original
objective function directly. Some work proposes solving non-
overlapping groups, as is the case in [21]. Others extend the
solution to overlapping groups, as in [9]. We closely follow
the approach of approximating the objective function proposed
in tree-guided group lasso [22], [47], which is basically built
on the popular group-lasso penalty [2]. We apply the step
of squaring the mixed-norm term [21], which is originally
suggested in [2]. Squaring before optimization makes the
regularizer positive, which generates a smooth monotonic
mapping, preserving the same path of solutions but making the
optimization easier. For further details on this approximation,
refer to [2].

Now, after fixing .S, the optimization problem is in terms
of L as follows:
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Optimization by APG: Accelerated Proximal Method updates
the searching point from the last linear combination of two
points in each iteration and thus converges faster [53]. Fur-
thermore, it also handles non-smooth convex functions using
proximal operators. The idea is to rely on a shrinkage operator
[44], [53] while updating the search point given the previous
one and the gradient of the smooth part of the function
(the non-regularized part). We adopt this method to optimize
over L because the proximity operator is straightforward, as
the non-smooth /; norm has been studied extensively [2],
[52]. Meanwhile, in other general learning problems, the
proximity operator cannot be computed explicitly, namely,
the mixed-norm regularization term; hence, we adopt SPGD
while optimizing S. We can optimize L through SPGD by
using approximations for both the gradient and the proximity

Algorithm 1: Solving the Optimization Problem of Equation —2

Input — Generated features from CNN models : X 1]»\;
Attributes labels with values {-1,1} : Y,
Output — Combination weight matrix S
Latent tasks matrix L
Overall Model weight matrix W
Step 1 — Fix L and optimize S by SPGD
Solving equation 3 until convergence
Step 2 — Get S from Step 1, and optimize L by APG
Solving equation 4 until convergence
Step 3 — Repeat Step 1 and Step 2
Solving equation 2 until convergence

TABLE 11
GROUPING INFORMATION USED IN CLOTHING DATASET [7].
[ Group i Attributes |
Colors black, blue, brown, cyan, gray, green,
many, red, purple, white, yellow

Patterns floral, graphics, plaid, solid, stripe, spot
Cloth-parts necktie, scarf, placket, collar
Appearance skin-exposure, gender

operator; however, the APG has a relatively lower convergence
rate.

During a training epoch, the forward pass will generate the
input for the multi-task loss layer from all the CNN models.
After optimizing equation 2 using the proposed algorithm 1,
the output is the overall model weight matrix W, where each
column in W will be dedicated to its specific corresponding
CNN model and is taken back in the backward pass alongside
the gradients with respect to its input. W is reconstructed using
the optimal solutions of L and .S, where knowledge sharing is
already explored through MTL between all the CNN models
via L.

IV. EXPERIMENTS AND RESULTS
A. Datasets and Grouping

We conduct our experiments on two datasets:

Clothing Attributes Dataset:

This dataset is collected by the work in [7]; it contains
1856 images and 23 binary attributes, as well as 3 multi-
class value attributes. The ground-truth is provided on image-
level, and each image is annotated against all the attributes.
We ignore the multi-class value attributes, because we are
only interested in binary attributes. The purpose behind such
clothing attributes is to provide better clothing recognition. We
train Multi-task CNN models to predict the attributes in this
dataset. Because no grouping information is suggested in this
dataset, we follow the natural grouping sense proposed in other
attribute datasets as in [28]. In table II, we show the details
of our attribute grouping on the Clothing Attributes dataset.

AwA Dataset:

The Animals with Attributes dataset is collected in [28], the
purpose of which is to apply transfer learning and zero-shot
recognition [29]. It consists of 30475 images of 50 animal
classes. The class/attribute matrix is provided; hence, the
annotation is on the animal’s class level. It provides 85 binary
attributes for each class. This dataset has 9 groups: colors,
textures, shapes, activity, behavior, nutrition, character, habitat



and body parts [21]; table I shows some attributes in some

of these groups.

B. Attribute Prediction Accuracy

We conduct several experiments on these two datasets. For
the clothing dataset, we train multiple CNN models simul-
taneously. We calculate the accuracy of attribute predictions
against the provided ground truth in the dataset. In table III,
S-extract refers to a simple sitting where we directly use a pre-
trained model of CNN [25] for feature extraction, and then we
train single SVM tasks for attribute prediction; meanwhile,
in M-extract, we train our MTL framework on the same
CNN extracted features. S-CNN refers to the single-task CNN,
where we fine-tuned individual models of CNN to predict
each attribute, and M-CNN refers to our MTL framework
without encoding the group information [62], and MG-CNN is
our whole MTL framework with group encodings and wholly
training CNN models with our framework together. CF refers
to the combined features model with no pose baseline [7],
while CRF refers to the state-of-the-art method proposed by
[7]. Our model outperforms the state-of-the-art results in [7].
We notice, though, that the overall improvement margin over
the single CNN task models is relatively small compared to
our results in AwA (see table IV). This is because the accuracy
results are already quite high and thus hard to improve further.

TABLE 111

THE ACCURACY OF ATTRIBUTE PREDICTION BEFORE SHARING THE L

LAYER, AFTER SHARING AND PREVIOUS METHODS ON THE CLOTHING

DATASET [8]. G1 REFERS TO COLOR ATTRIBUTES, G2 REFERS TO THE
PATTERN GROUP, G3 REFERS TO CLOTH-PARTS AND G4 REFERS TO THE

APPEARANCE GROUP. MG-CNN IS OUR OVERALL PROPOSED
FRAMEWORK.THE HIGHER, THE BETTER. FOR FURTHER DETAILS ABOUT
SEVERAL SITTING AND METHOD NAMES IN THIS TABLE, REFER TO
SECTION IV-B.

[Method || GI | G2 | G3 | G4 | Tofal |
S-extract || 81.84 | 82.07 | 67.51 | 69.25 | 7831
M-extract || 84.98 | 89.89 | 81.41 | 81.03 | 85.29
S-CNN 90.50 | 92.90 | 87.00 | 89.57 | 90.43
M-CNN__ || 91.72 | 94.26 | 87.96 | 91.51 | 91.70
MG-CNN || 93.12 | 95.37 | 88.65 | 91.93 | 92.82
CF [15] || 81.00 | 82.08 | 77.63 | 78.50 | 80.48
CRF [/] || 8500 | 84.33 | 81.25 | 82.50 | 83.95

We conduct another experiment on the AwA dataset. We
fine-tuned single CNN models separately on each attribute.
Later, given the input images, we use these learned models to
extract attribute-specific features. In other words, we freeze the
training of the bottom layers in all CNN models and elaborate
only in training our multi-task loss layer. This is due to the
large number of attributes in the AwA dataset. We note that the
fine-tuning stage will not add much practical difference and is
a very time consuming process, perhaps due to the fact that
AwA and Image-net datasets have an overlap of approximately
17 object categories; this has also been explored by another
work [33], in which they even train the CNN model to classify
objects on the AwA dataset; however, they noticed that using
the pre-trained CNN model on the Imagenet dataset directly or
fine-tuning the model on AwA will in both cases give the same
attribute prediction results. However, our MTL framework

TABLE IV
ATTRIBUTE DETECTION SCORES OF OUR MULTI-TASK FRAMEWORK
COMPARED WITH OTHER METHODS ON AWA [28]. THE HIGHER, THE
BETTER. (MEAN AVERAGE PRECISION).

Tasks Prediction Score
lasso [52] 61.75
l21 all-sharing [!] 60.21
l2 regression loss 66.87
decorrelated [21] 64.80
category-trained CNN [33] 74.89
single CNN 75.37
multi-task CNN (ours) 81.19

TABLE V
THE GROUP-LEVEL ACCURACY RESULTS OF OUR MULTI-TASK
FRAMEWORK ON AWA [28]. THE HIGHER, THE BETTER.

[ Groups [ # Attributes [ Single CNN | Our Multi-task CNN |
Colors 9 76.91 82.28
Texture 6 76.16 82.44
Shape 4 61.67 72.68
Body-Parts 18 75.93 81.82
Activity 10 82.22 85.4
Behavior 5 72.78 74.96
Nutrition 12 74.76 82.67
Habitat 15 80.21 84.72
Character 7 62.01 70.52

[Total 8 | 7537 | 8119

outperforms the single-tasks by a large margin; table IV
shows the performance of our method compared with other
standard methods, where the prediction accuracy is in terms
of the mean average over all of the attributes. Compared with
previous state-of-the-art results, which are approximately 75%
[33], our trained MTL CNN models on attributes outperform
it by a large margin. Additionally, table V shows the accuracy
results in terms of mean average precision over each group of
attributes (group-level accuracy), before and after applying our
multi-task framework. Initialization of the pre-trained model
on Imagenet [24] again is used throughout our experiments.
Figure 3 also shows a number of misclassified test samples
from single-task classifiers, which our multi-task classifiers
classified correctly.

C. Implementation Details

CNN model training: We put each CNN model through 100
epochs, although most models converged in approximately 50
epochs. We initialize each CNN model with the pre-trained
network on Imagenet [24] and fine-tune it on the target
attribute annotations. We normalize the input images into
256x256 and subtract the mean from them. To train our
model on the Clothing dataset, we use a data augmentation
strategy as in [24].

Multi-task  Optimization: We perform Singular Value
Decomposition (SVD) on W following the work in [62] to
obtain an initialization for L; meanwhile, S is randomly
initialized. The initialization of W was accomplished by
stacking the last fully-connected layers from all pre-trained
CNN models. The other model parameter values are either
selected experimentally or following the typical heuristics



and strategies proposed in [24]. The latent tasks number is
set to the maximum possible feature dimension, because the
application of attribute prediction is very critical for any
subtle fine-grained details; thus, any severe information loss
caused via SVD can degrade the performance drastically.
Hence, the number of latent tasks is set to 2048 in our
experiments.

Additionally, we set the weight decay to 0.0005 in our CNN
models; also, the momentum is set to 0.9, and the learning
rate is initialized by 0.01 and reduced manually throughout
training; we follow the same heuristic in [25]. In our multi-
task part (see equation 2), the latent task A||L||% regularization
parameter A is set to 0.4, and the other two parameters v and
1 are best validated in each dataset experiments with held out
unseen attribute data.

We conduct our experiments on two NVIDIA TK40 16GB
GPU; the overall training time including the CNN part and
MTL part of the training is approximately 1.5 days for the
Clothing dataset (approximately 50 epochs for all 23 CNN
models), and the testing time including feature extraction
from all CNN models is approximately 50 minutes (sequential
extraction from models one by one, not in parallel, where
the time needed to extract features in each model is about
1.5 minutes/1000 images); if more attribute CNN models
are added, the time will eventually increase. For the AwA
dataset, we divide its training images into several sets (each
set contains 3000 images, and we have 8 sets; 5 are used for
training and 3 for testing). In total, the training time takes
approximately 2 weeks (however, because we noticed that the
major accuracy increase was mainly from training our MLT
framework and not from CNN fine-tuning, we re-conducted
the experiment and froze the bottom layers and depended on
training the MTL layer, as we previously discussed; but in the
second experiment, we saved a great deal of training time, as it
only takes approximately 13 hours to completely train the last
two layers on all CNN models within our MTL framework on
one training set; on all remaining sets, it takes approximately
2.5 days to complete training.

V. CONCLUSION

In this paper, we introduce an enhanced multi-task learning
method to better predict semantic binary attributes. We pro-
pose a multi-task CNN model to allow sharing of visual knowl-
edge between tasks. We encode semantic group information
in our MTL framework to encourage more sharing between
attributes in the same group. We also propose decomposing
the model parameters into a latent task matrix and a linear
combination matrix. The latent task matrix can effectively
learn localized feature patterns, and any under-sampled clas-
sifier will generalize better through leveraging this sharable
latent layer. The importance of such a latent task matrix is a
topic of future interest. Specifically, we would like to explore
the potential of the latent task matrix decomposition to be
informative enough to generate an efficient description of the
input image in terms of either semantic or latent attributes.
Our experiments on both attribute benchmark datasets show
that our learned multi-task CNN classifiers easily outperform
the previous single-task classifiers.
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Fig. 3. Examples of misclassified samples from single-task classifiers results. The first 4 rows have samples from AwA dataset [28]. The last 2 rows are
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correctly classified these samples.
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