Siegel families with application to class fields

Ja Kyung Koo, Dong Hwa Shin and Dong Sung Yoon[∗]

Abstract

We investigate certain families of meromorphic Siegel modular functions on which Galois groups act in a natural way. By using Shimura's reciprocity law we construct some algebraic numbers in the ray class fields of CM-fields in terms of special values of functions in these Siegel families.

1 Introduction

For a positive integer N let \mathfrak{F}_N be the field of meromorphic modular functions of level N (defined on $\mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im}(\tau) > 0\}$ whose Fourier coefficients belong to the Nth cyclotomic field. As is well known, \mathfrak{F}_N is a Galois extension of \mathfrak{F}_1 whose Galois group is isomorphic to $GL_2(\mathbb{Z}/N\mathbb{Z})/\{\pm I_2\}$ $([8, §6.1–6.2])$ $([8, §6.1–6.2])$ $([8, §6.1–6.2])$. Now, let $N \geq 2$ and consider a set

 $V_N = \{ \mathbf{v} \in \mathbb{Q}^2 \mid N \text{ is the smallest positive integer for which } N\mathbf{v} \in \mathbb{Z}^2 \}$

as the index set. We call a family $\{f_v(\tau)\}_{v \in V_N}$ of functions in \mathfrak{F}_N a *Fricke family* of level N if each $f_{\mathbf{v}}(\tau)$ depends only on $\pm \mathbf{v} \pmod{\mathbb{Z}^2}$ and satisfies

$$
f_{\mathbf{v}}(\tau)^{\alpha} = f_{\alpha^T \mathbf{v}}(\tau) \quad (\alpha \in \mathrm{GL}_2(\mathbb{Z}/N\mathbb{Z})/\{\pm I_2\}),
$$

where α^T means the transpose of α . For example, Siegel functions of one-variable form such a Fricke family of level N ([\[5,](#page-17-1) Proposition 1.3 in Chapter 2]). See also [\[2\]](#page-17-2) or [\[4\]](#page-17-3).

Let K be an imaginary quadratic field with the ring of integers \mathcal{O}_K , and let f be a proper nontrivial ideal of \mathcal{O}_K . We denote by Cl(f) and K_f the ray class group modulo f and its corresponding ray class field modulo f, respectively. If $\{f_v(\tau)\}_v$ is a Fricke family of level N in which every $f_v(\tau)$ is holomorphic on \mathbb{H} , then we can assign to each ray class $C \in \mathrm{Cl}(\mathfrak{f})$ an algebraic number $f_{\mathfrak{f}}(\mathcal{C})$ as a special value of a function in $\{f_{\mathbf{v}}(\tau)\}_{\mathbf{v}}$. Furthermore, we attain by Shimura's reciprocity law that $f_{\mathfrak{f}}(\mathcal{C})$ belongs to $K_{\mathfrak{f}}$ and satisfies

$$
f_{\mathfrak{f}}(\mathcal{C})^{\sigma_{\mathfrak{f}}(\mathcal{D})}=f_{\mathfrak{f}}(\mathcal{C}\mathcal{D})\quad(\mathcal{D}\in\mathrm{Cl}(\mathfrak{f})),
$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11F46, Secondary 11G15.

Key words and phrases. abelian varieties, class field theory, CM-fields, Shimura's reciprocity law, Siegel modular functions.

[∗]Corresponding author.

The second named author was supported by Hankuk University of Foreign Studies Research Fund of 2016.

where $\sigma_{\rm f}$ is the Artin reciprocity map for f ([\[5,](#page-17-1) Theorem 1.1 in Chapter 11]).

In this paper, we shall define a Siegel family $\{h_M(Z)\}\$ of level N consisting of meromorphic Siegel modular functions of (higher) genus g and level N , which would be a generalization of a Fricke family of level N in case $q = 1$ (Definition [3.1\)](#page-4-0). It turns out that every Siegel family of level N is induced from a meromorphic Siegel modular function for the congruence subgroup $\Gamma^1(N)$ (Theorem [3.5\)](#page-6-0).

Let K be a CM-field and let $f = N\mathcal{O}_K$. Given a Siegel family $\{h_M(Z)\}\$ of level N, we shall introduce a number $h_{\mathfrak{f}}(\mathcal{C})$ by a special value of a function in $\{h_M(Z)\}\$ for each ray class $C \in \text{Cl}(\mathfrak{f})$ (Definition [4.4\)](#page-10-0). Under certain assumptions on K (Assumption [4.1\)](#page-8-0) we shall prove that if $h_f(\mathcal{C})$ is finite, then it lies in the ray class field K_f whose Galois conjugates are of the same form (Theorem [6.2](#page-14-0) and Corollary [6.3\)](#page-16-0). To this end, we assign a principally polarized abelian variety to each nontrivial ideal of \mathcal{O}_K , and apply Shimura's reciprocity law to $h_f(\mathcal{C})$.

2 Actions on Siegel modular functions

First, we shall describe the Galois group between fields of meromorphic Siegel modular functions in a concrete way.

Let g be a positive integer, and let $\eta_g =$ $\begin{bmatrix} O_g & -I_g \end{bmatrix}$ I_g O_g 1 . For every commutative ring R with unity we denote by

$$
GSp_{2g}(R) = \{ \alpha \in GL_{2g}(R) \mid \alpha^T \eta_g \alpha = \nu(\alpha) \eta_g \text{ with } \nu(\alpha) \in R^{\times} \},
$$

\n
$$
Sp_{2g}(R) = \{ \alpha \in GSp_{2g}(R) \mid \nu(\alpha) = 1 \}.
$$

Let

$$
G = \mathrm{GSp}_{2g}(\mathbb{Q}),
$$

and let G_A be the adelization of G, G_0 its non-archimedean part and G_{∞} its archimedean part. One can extend the multiplier map $\nu: G \to \mathbb{Q}^\times$ continuously to the map $\nu: G_\mathbb{A} \to \mathbb{Q}_\mathbb{A}^\times$ $_{\mathbb{A}}^{\times}$, and set

$$
G_{\infty+} = \{ \alpha \in G_{\infty} \mid \nu(\alpha) > 0 \}, \quad G_{\mathbb{A}+} = G_0 G_{\infty+}, \quad G_+ = G \cap G_{\mathbb{A}+}.
$$

Furthermore, let

$$
\Delta = \left\{ \begin{bmatrix} I_g & O_g \\ O_g & sI_g \end{bmatrix} \mid s \in \prod_p \mathbb{Z}_p^{\times} \right\},
$$

\n
$$
U_1 = \prod_p \text{GSp}_{2g}(\mathbb{Z}_p) \times G_{\infty +},
$$

\n
$$
U_N = \{x \in U_1 \mid x_p \equiv I_{2g} \pmod{N \cdot M_{2g}(\mathbb{Z}_p)} \text{ for all rational primes } p\}
$$

for every positive integer N. Then we have

$$
U_N \trianglelefteq U_1 \leq G_{\mathbb{A}+}
$$
 and $G_{\mathbb{A}+} = U_N \Delta G_+$

 $([10, \text{Lemma } 8.3 (1)]).$ $([10, \text{Lemma } 8.3 (1)]).$ $([10, \text{Lemma } 8.3 (1)]).$

Note that the group $G_{\infty+}$ acts on the Siegel upper half-space $\mathbb{H}_g = \{Z \in M_g(\mathbb{C}) \mid Z^T =$ Z, $Im(Z)$ is positive definite} by

$$
\alpha(Z) = (AZ + B)(CZ + D)^{-1} \quad (\alpha \in G_{\infty +}, \ Z \in \mathbb{H}_g),
$$

where A, B, C, D are $g \times g$ block matrices of α . Let \mathcal{F}_N be the field of meromorphic Siegel modular functions of genus g for the congruence subgroup

$$
\Gamma(N)=\left\{\gamma\in\mathrm{Sp}_{2g}(\mathbb{Z})\ |\ \gamma\equiv I_{2g}\ (\mathrm{mod}\ N\cdot M_{2g}(\mathbb{Z}))\right\}
$$

of the symplectic group $\text{Sp}_{2g}(\mathbb{Z})$ whose Fourier coefficients belong to the Nth cyclotomic field $\mathbb{Q}(\zeta_N)$ with $\zeta_N = e^{2\pi i/N}$. That is, if $f \in \mathcal{F}_N$, then

$$
f(Z) = \sum_{h} c(h)e(\text{tr}(hZ)/N) \text{ for some } c(h) \in \mathbb{Q}(\zeta_N),
$$

where h runs over all $g \times g$ positive semi-definite symmetric matrices over half integers with integral diagonal entries, and $e(w) = e^{2\pi i w}$ for $w \in \mathbb{C}$ ([\[3,](#page-17-5) Theorem 1 in §4]). Let

$$
\mathcal{F} = \bigcup_{N=1}^{\infty} \mathcal{F}_N.
$$

PROPOSITION 2.1. *There exists a homomorphism* $\tau : G_{\mathbb{A}^+} \to \text{Aut}(\mathcal{F})$ *satisfying the following* properties: Let $f(Z) = \sum_h c(h)e(\text{tr}(hZ)/N) \in \mathcal{F}_N$.

(i) If $\alpha \in G_+ = {\alpha \in G \mid \nu(\alpha) > 0}$ *, then*

$$
f^{\tau(\alpha)} = f \circ \alpha.
$$

(ii) *If* $\beta =$ $\begin{bmatrix} I_g & O_g \end{bmatrix}$ O_g sIg 1 $\epsilon \Delta$ *and* t *is a positive integer such that* $t \equiv s_p \pmod{N\mathbb{Z}_p}$ *for all rational primes* p*, then*

$$
f^{\tau(\beta)} = \sum_{h} c(h)^{\sigma} e(\text{tr}(hZ)/N),
$$

where σ *is the automorphism of* $\mathbb{Q}(\zeta_N)$ *given by* $\zeta_N^{\sigma} = \zeta_N^t$.

(iii) *For every positive integer* N *we have*

$$
\mathcal{F}_N = \{ f \in \mathcal{F} \mid f^{\tau(x)} = f \text{ for all } x \in U_N \}.
$$

(iv) ker(τ) = $\mathbb{Q}^{\times}G_{\infty+}$.

PROOF. See [\[10,](#page-17-4) Theorem 8.10].

Since

$$
U_N(\mathbb{Q}^\times G_{\infty+})/\mathbb{Q}^\times G_{\infty+} \simeq U_N/(U_N \cap \mathbb{Q}^\times G_{\infty+}) \simeq \begin{cases} U_1/\pm G_{\infty+} & \text{if } N=1, \\ U_N/G_{\infty+} & \text{if } N>1, \end{cases}
$$

we see by Proposition [2.1](#page-2-0) (iii) and (iv) that \mathcal{F}_N is a Galois extension of \mathcal{F}_1 with

$$
Gal(\mathcal{F}_N/\mathcal{F}_1) \simeq U_1/\pm U_N. \tag{1}
$$

Proposition 2.2. *We have*

$$
\mathrm{Gal}(\mathcal{F}_N/\mathcal{F}_1)\simeq \mathrm{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}.
$$

PROOF. Let $\alpha \in U_1$. Take a matrix A in $M_{2g}(\mathbb{Z})$ for which $A \equiv \alpha_p \pmod{N \cdot M_{2g}(\mathbb{Z}_p)}$ for all rational primes p. Define a matrix $\psi(\alpha) \in M_{2g}(\mathbb{Z}/N\mathbb{Z})$ by the image of A under the natural reduction $M_{2q}(\mathbb{Z}) \to M_{2q}(\mathbb{Z}/N\mathbb{Z})$. Then by the Chinese remainder theorem $\psi(\alpha)$ is well defined and independent of the choice of A . Furthermore, let t be an integer relatively prime to N such that $t \equiv \nu(\alpha_p) \pmod{N\mathbb{Z}_p}$ for all rational primes p. We then derive that

$$
t\eta_g \equiv \nu(\alpha_p)\eta_g \equiv \alpha_p^T \eta_g \alpha_p \equiv A^T \eta_g A \equiv \psi(\alpha)^T \eta_g \psi(\alpha) \pmod{N \cdot M_{2g}(\mathbb{Z}_p)}
$$

for all rational primes p, and hence $\psi(\alpha) \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$. Thus we obtain a group homomorphism

$$
\psi: U_1 \to \mathrm{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z}).
$$

Let $\beta \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$, and take a preimage B of β under the natural reduction $M_{2g}(\mathbb{Z}) \to$ $M_{2g}(\mathbb{Z}/N\mathbb{Z})$. Since $\nu(\beta) \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ and

$$
B^{T} \eta_{g} B \equiv \beta^{T} \eta_{g} \beta \equiv \nu(\beta) \eta_{g} \; (\text{mod } N \cdot M_{2g}(\mathbb{Z})),
$$

B belongs to $GSp_{2g}(\mathbb{Z}_p)$ for every rational prime p dividing N. Let $\alpha = (\alpha_p)_p$ be the element of $\prod_p \mathrm{GSp}_{2g}(\mathbb{Z}_p)$ given by

$$
\alpha_p = \begin{cases} B & \text{if } p \mid N, \\ I_{2g} & \text{otherwise.} \end{cases}
$$

We then see that $\alpha \in U_1$ and $\psi(\alpha) = \beta$. Thus ψ is surjective.

Clearly, U_N is contained in ker(ψ). Let $\gamma \in \text{ker}(\psi)$. Since $\gamma_p \equiv I_{2g} \pmod{N \cdot M_{2g}(\mathbb{Z}_p)}$ for all rational primes p, we get $\gamma \in U_N$, and hence ker(ψ) = U_N. Therefore ψ induces an isomorphism $U_1/U_N \simeq \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$, from which we achieve by [\(1\)](#page-3-0)

$$
\mathrm{Gal}(\mathcal{F}_N/\mathcal{F}_1)\simeq U_1/\pm U_N\simeq \mathrm{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}.
$$

REMARK 2.3. We have the decomposition

$$
\mathrm{Gal}(\mathcal{F}_N/\mathcal{F}_1)\simeq \mathrm{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}\simeq G_N\cdot \mathrm{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\},
$$

 \Box

where

$$
G_N = \left\{ \begin{bmatrix} I_g & O_g \\ O_g & \nu I_g \end{bmatrix} \mid \nu \in (\mathbb{Z}/N\mathbb{Z})^{\times} \right\}.
$$

By Proposition [2.1](#page-2-0) one can describe the action of $GSp_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}$ on \mathcal{F}_N as follows: Let $f(Z) = \sum_h c(h)e(\text{tr}(hZ)/N) \in \mathcal{F}_N$.

(i) An element
$$
\beta = \begin{bmatrix} I_g & O_g \\ O_g & \nu I_g \end{bmatrix}
$$
 of G_N acts on f by\n
$$
f^{\beta} = \sum_h c(h)^{\sigma} e(\text{tr}(hZ)/N),
$$

where σ is the automorphism of $\mathbb{Q}(\zeta_N)$ satisfying $\zeta_N^{\sigma} = \zeta_N^{\nu}$.

(ii) An element γ of $\text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}\)$ acts on f by

$$
f^{\gamma}=f\circ\gamma',
$$

where γ' is any preimage of γ under the natural reduction $\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}.$

3 Siegel families of level N

By making use of the description of $Gal(\mathcal{F}_N/\mathcal{F}_1)$ in §2 we shall introduce a generalization of a Fricke family in higher dimensional cases.

Let $N \geq 2$. For $\alpha \in M_{2g}(\mathbb{Z})$ we denote by $\widetilde{\alpha}$ its reduction modulo N. Define a set

$$
\mathcal{V}_N = \left\{ (1/N) \begin{bmatrix} A^T \\ B^T \end{bmatrix} \mid \alpha = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M_{2g}(\mathbb{Z}) \text{ such that } \widetilde{\alpha} \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z}) \right\}.
$$

Let M be an element of \mathcal{V}_N stemmed from $\alpha \in M_{2g}(\mathbb{Z})$ such that $\widetilde{\alpha} \in \mathrm{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$, and let β be an element of $M_{2g}(\mathbb{Z})$ satisfying $\tilde{\beta} \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$. Then it is straightforward that $\beta^T M$ is also an element of \mathcal{V}_N given by the product $\alpha\beta$.

DEFINITION 3.1. We call a family $\{h_M(Z)\}_{M\in\mathcal{V}_N}$ a *Siegel family* of level N if it satisfies the following properties:

- (S1) Each $h_M(Z)$ belongs to \mathcal{F}_N .
- (S2) $h_M(Z)$ depends only on $\pm M$ (mod $M_{2g \times g}(\mathbb{Z})$).

(S3) $h_M(Z)^{\sigma} = h_{\sigma^T M}(Z)$ for all $\sigma \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\} \simeq \text{Gal}(\mathcal{F}_N/\mathcal{F}_1)$.

By S_N we mean the set of such Siegel families of level N.

REMARK 3.2. Let $\{h_M(Z)\}_M \in \mathcal{S}_N$.

(i) The property (S3) yields a right action of the group $GSp_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}$ on $\{h_M(Z)\}_M$.

(ii) Let $M = (1/N)$ $\int A^T$ B^T 1 $\in \mathcal{V}_N$, and so there is a matrix $\alpha =$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M_{2g}(\mathbb{Z})$ such that $\widetilde{\alpha} \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$. Considering $\widetilde{\alpha}$ as an element of $\text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}\$ we obtain

$$
h_{(1/N)\begin{bmatrix}I_g\\O_g\end{bmatrix}}(Z)^{\widetilde{\alpha}} = h_{(1/N)\alpha^T\begin{bmatrix}I_g\\O_g\end{bmatrix}}(Z) = h_M(Z).
$$

Thus the action of $GSp_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}\$ on $\{h_M(Z)\}_M$ is transitive.

Let

$$
\Gamma^1(N) = \left\{ \gamma \in \text{Sp}_{2g}(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} I_g & O_g \\ * & I_g \end{bmatrix} \pmod{N \cdot M_{2g}(\mathbb{Z})} \right\},\,
$$

and let $\mathcal{F}^1_N(\mathbb{Q})$ be the field of meromorphic Siegel modular functions for $\Gamma^1(N)$ with rational Fourier coefficients.

LEMMA 3.3. If
$$
\{h_M(Z)\}_M \in \mathcal{S}_N
$$
, then $h_{\left[\begin{smallmatrix} (1/N)I_g \\ O_g \end{smallmatrix} \right]}(Z) \in \mathcal{F}_N^1(\mathbb{Q})$.

PROOF. For any $\gamma =$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma^1(N)$ we deduce by (S2) and (S3) that

$$
h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(\gamma(Z)) = h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z)^{\widetilde{\gamma}} = h_{\gamma^T} \begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}(Z) = h_{\begin{bmatrix} (1/N)I_g \\ B^T \end{bmatrix}}(Z) = h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z)
$$

because $A \equiv I_g$, $B \equiv O_g \pmod{N \cdot M_g(\mathbb{Z})}$. Thus $h_{\lceil (1/N)I_g \rceil}$ O_g $_{1}(Z)$ is modular for $\Gamma^{1}(N)$.

For every $\nu \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ we see by (S2) and (S3) that $\begin{bmatrix} I_g & O_g \end{bmatrix}$

$$
h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z)^{\begin{bmatrix} \stackrel{\circ}{O}_g & \stackrel{\circ}{\nu}I_g \end{bmatrix}} = h_{\begin{bmatrix} I_g & O_g \\ O_g & \nu I_g \end{bmatrix}} \begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z) = h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z),
$$

 \Box which implies that $h_{(1/N)I_g}$ $T(Z)$ has rational Fourier coefficients. This proves the lemma. O_g

One can consider S_N as a field under the binary operations

$$
{h_M(Z)}_M + {k_M(Z)}_M = {(h_M + k_M)(Z)}_M,
$$

$$
{h_M(Z)}_M \cdot {k_M(Z)}_M = {(h_M k_M)(Z)}_M.
$$

By Lemma [3.3](#page-5-0) we get the ring homomorphism

$$
\phi_N : \mathcal{S}_N \to \mathcal{F}_N^1(\mathbb{Q})
$$
\n
$$
\{h_M(Z)\}_M \mapsto h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z).
$$
\nLEMMA 3.4. If $M \in \mathcal{V}_N$, then there is $\gamma = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M_{2g}(\mathbb{Z})$ such that $\tilde{\gamma} \in \text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})$ and $M = (1/N) \begin{bmatrix} A^T \\ B^T \end{bmatrix}.$

PROOF. Let $\alpha =$ $\begin{bmatrix} A & B \\ U & V \end{bmatrix} \in M_{2g}(\mathbb{Z})$ such that $\widetilde{\alpha} \in \mathrm{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$ and $M = (1/N)$ $\int A^T$ B^T 1 . In $M_{2q}(\mathbb{Z}/N\mathbb{Z})$, decompose $\widetilde{\alpha}$ as

$$
\widetilde{\alpha} = \begin{bmatrix} I_g & O_g \\ O_g & \nu I_g \end{bmatrix} \begin{bmatrix} A & B \\ \nu^{-1}U & \nu^{-1}V \end{bmatrix} \quad \text{with } \nu = \nu(\widetilde{\alpha}) \in (\mathbb{Z}/N\mathbb{Z})^\times
$$

so that $\begin{bmatrix} A & B \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ $\nu^{-1}U \quad \nu^{-1}V$ 1 belongs to $\text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})$. Since the reduction $\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})$ is 1

 $\begin{bmatrix} A & B \end{bmatrix}$ \Box surjective([\[7\]](#page-17-6)), we can take $\gamma \in M_{2g}(\mathbb{Z})$ satisfying $\widetilde{\gamma} =$. $\nu^{-1}U \quad \nu^{-1}V$

THEOREM 3.5. S_N and $\mathcal{F}^1_N(\mathbb{Q})$ are isomorphic via ϕ_N .

PROOF. Since S_N and $\mathcal{F}_N^1(\mathbb{Q})$ are fields, it suffices to show that ϕ_N is surjective.

Let $h(Z) \in \mathcal{F}_N^1(\mathbb{Q})$. For each $M \in \mathcal{V}_N$, take any $\gamma =$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M_{2g}(\mathbb{Z})$ such that $\widetilde{\gamma} \in$ $\text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})$ and $M = (1/N)$ $\int A^T$ B^T 1 by using Lemma [3.4.](#page-5-1) And, set $h_M(Z) = h(Z)^{\widetilde{\gamma}}.$

We claim that $h_M(Z)$ is independent of the choice of γ . Indeed, if $\gamma' =$ $\begin{bmatrix} A & B \end{bmatrix}$ C' D' 1 $\in M_{2g}(\mathbb{Z})$ such that $\gamma' \in \mathrm{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})$, then we attain in $M_{2g}(\mathbb{Z}/N\mathbb{Z})$ that

$$
\widetilde{\gamma'}\widetilde{\gamma}^{-1} = \begin{bmatrix} A & B \\ C' & D' \end{bmatrix} \begin{bmatrix} D^T & -B^T \\ -C^T & A^T \end{bmatrix} = \begin{bmatrix} I_g & O_g \\ * & I_g \end{bmatrix}
$$

by the fact $\tilde{\gamma}, \tilde{\gamma}' \in \text{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})$. Let δ be an element of $\text{Sp}_{2g}(\mathbb{Z})$ such that $\tilde{\delta} = \tilde{\gamma}' \tilde{\gamma}^{-1}$. We then achieve

$$
h(Z)^{\widetilde{\gamma'}} = (h(Z)^{\widetilde{\gamma'}\widetilde{\gamma}^{-1}})^{\widetilde{\gamma}} = h(\delta(Z))^{\widetilde{\gamma}} = h(Z)^{\widetilde{\gamma}}
$$

because $h(Z)$ is modular for $\Gamma^1(N)$ and $\delta \in \Gamma^1(N)$.

Now, for any
$$
\sigma = \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \in \text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\}
$$
 with $\nu = \nu(\sigma)$ we derive that
\n
$$
h_M(Z)^{\sigma} = h(Z)^{\tilde{\gamma}\sigma}
$$
\n
$$
= h(Z)^{\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} P & Q \\ R & S \end{bmatrix}}
$$
\n
$$
= h(Z)^{\begin{bmatrix} I_g & O_g \\ O_g & \nu I_g \end{bmatrix} \begin{bmatrix} AP + BR & AQ + BS \\ \nu^{-1}(CP + DR) & \nu^{-1}(CQ + DS) \end{bmatrix}}
$$
\n
$$
= h(Z)^{\begin{bmatrix} AP + BR & AQ + BS \\ \nu^{-1}(CP + DR) & \nu^{-1}(CQ + DS) \end{bmatrix}
$$
\nsince $h(Z)$ has rational Fourier coefficients\n
$$
= h_{\begin{bmatrix} (AP + BR)^T \\ (AQ + BS)^T \end{bmatrix}}(Z)
$$

$$
= h \left[\begin{matrix} P^T & R^T \\ Q^T & S^T \end{matrix} \right] \left[\begin{matrix} A^T \\ B^T \end{matrix} \right]^{Z}
$$

$$
= h_{\sigma^T M}(Z).
$$

This shows that the family $\{h_M(Z)\}\$ M belongs to S_N . Furthermore, since

$$
\phi_N(\lbrace h_M(Z)\rbrace_M) = h_{\begin{bmatrix} (1/N)I_g \\ O_g \end{bmatrix}}(Z) = h(Z) \begin{bmatrix} I_g & O_g \\ O_g & I_g \end{bmatrix} = h(Z),
$$

 ϕ is surjective as desired.

Remark 3.6. (i) By Proposition [2.2](#page-3-1) and Remark [2.3](#page-3-2) we obtain

$$
\operatorname{Gal}(\mathcal{F}_N/\mathcal{F}_N^1(\mathbb{Q})) \simeq G_N \cdot \left\{ \gamma \in \operatorname{Sp}_{2g}(\mathbb{Z}/N\mathbb{Z})/\{\pm I_{2g}\} \mid \gamma = \pm \begin{bmatrix} I_g & O_g \\ * & I_g \end{bmatrix} \right\}.
$$

(ii) Let $\mathcal{F}_{1,N}(\mathbb{Q})$ be the field of meromorphic Siegel modular functions for

$$
\Gamma_1(N) = \left\{ \gamma \in \text{Sp}_{2g}(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} I_g & * \\ O_g & I_g \end{bmatrix} \pmod{N \cdot M_{2g}(\mathbb{Z})} \right\}
$$

with rational Fourier coefficients. If we set

$$
\omega = \begin{bmatrix} (1/\sqrt{N})I_g & O_g \\ O_g & \sqrt{N}I_g \end{bmatrix},
$$

then we know that $\omega \in \mathrm{Sp}_{2g}(\mathbb{R})$ and

$$
\omega \begin{bmatrix} A & B \\ C & D \end{bmatrix} \omega^{-1} = \begin{bmatrix} A & (1/N)B \\ NC & D \end{bmatrix} \quad \text{for all } \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \text{Sp}_{2g}(\mathbb{R}).
$$

This implies

$$
\omega \Gamma^1(N) \omega^{-1} = \Gamma_1(N),
$$

and so $\mathcal{F}_{1,N}(\mathbb{Q})$ and $\mathcal{F}_N^1(\mathbb{Q})$ are isomorphic via

$$
\mathcal{F}_{1,N}(\mathbb{Q}) \rightarrow \mathcal{F}_N^1(\mathbb{Q})
$$

$$
h(Z) \mapsto (h \circ \omega)(Z) = h((1/N)Z).
$$

4 Special values associated with a Siegel family

As an application of a Siegel family of level N we shall construct a number associated with each ray class modulo N of a CM-field.

Let n be a positive integer, K be a CM-field with $[K: \mathbb{Q}] = 2n$ and $\{\varphi_1, \ldots, \varphi_n\}$ be a set of embeddings of K into $\mathbb C$ such that $(K, \{\varphi_i\}_{i=1}^n)$ is a CM-type. We fix a finite Galois extension L of $\mathbb Q$ containing K , and set

$$
S = \{ \sigma \in \text{Gal}(L/\mathbb{Q}) \mid \sigma|_K = \varphi_i \text{ for some } i \in \{1, 2, \dots, n\} \},
$$

$$
S^* = \{ \sigma^{-1} \mid \sigma \in S \},
$$

$$
H^* = \{ \gamma \in \text{Gal}(L/\mathbb{Q}) \mid \gamma S^* = S^* \}.
$$

Let K^* be the subfield of L corresponding to the subgroup H^* of $Gal(L/\mathbb{Q})$, and let $\{\psi_1,\ldots,\psi_g\}$ be the set of all embeddings of K^* into $\mathbb C$ arising from the elements of S^* . Then we know that $(K^*, {\psi_j}_{j=1}^g)$ is a primitive CM-type and

$$
K^* = \mathbb{Q}\left(\sum_{i=1}^n a^{\varphi_i} \mid a \in K\right)
$$

([\[9,](#page-17-7) Proposition 28 in §8.3]). We call this CM-type $(K^*, {\{\psi_j\}}_{j=1}^g)$ the reflex of $(K, {\{\varphi_i\}}_{i=1}^n)$. Using this CM-type we define an embedding

$$
\begin{array}{ccc}\n\Psi: K^* & \to & \mathbb{C}^g \\
a & \mapsto & \begin{bmatrix} a^{\psi_1} \\ \vdots \\ a^{\psi_g} \end{bmatrix}\n\end{array}
$$

For each purely imaginary element c of K^* we associate an R-bilinear form

$$
E_c: \mathbb{C}^g \times \mathbb{C}^g \rightarrow \mathbb{R}
$$

\n
$$
(\mathbf{u}, \mathbf{v}) \rightarrow \sum_{j=1}^g c^{\psi_j} (u_j \overline{v}_j - \overline{u}_j v_j) \quad (\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_g \end{bmatrix}, \mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_g \end{bmatrix}).
$$

Then, one can readily check that

$$
E_c(\Psi(a), \Psi(b)) = \text{Tr}_{K^*/\mathbb{Q}}(ca\overline{b}) \quad \text{for all } a, b \in K^* \tag{2}
$$

.

by utilizing the fact $\overline{a^{\psi_j}} = \overline{a}^{\psi_j}$ for all $a \in K^*$ $(1 \leq j \leq g)$.

ASSUMPTION 4.1. In what follows we assume the following conditions:

- (i) $(K^*)^* = K$.
- (ii) There is a purely imaginary element ξ of K^* and a Z-basis $\{a_1, \ldots, a_{2g}\}$ of the lattice $\Psi(\mathcal{O}_{K^*})$ in \mathbb{C}^g for which

$$
\left[E_{\xi}(\mathbf{a}_i,\mathbf{a}_j)\right]_{1\leq i,j\leq 2g}=\begin{bmatrix}O_g & -I_g\\I_g & O_g\end{bmatrix}.
$$

In this case, we say that the complex torus $(\mathbb{C}^g/\Psi(\mathcal{O}_{K^*}), E_{\xi})$ is a principally polarized abelian variety with a symplectic basis $\{a_1, \ldots, a_{2g}\}$. See [\[9,](#page-17-7) §6.2].

(iii) $f = N\mathcal{O}_K$ for an integer $N \geq 2$.

REMARK 4.2. The Assumption [4.1](#page-8-0) (i) is equivalent to saying that $(K, {\{\varphi_i\}}_{i=1}^n)$ is a primitive CM-type, namely, the abelian varieties of this CM-type are simple([\[9,](#page-17-7) Proposition 26 in §8.2]).

By Assumption [4.1](#page-8-0) (i) one can define a group homomorphism

$$
\mathfrak{g}: \begin{array}{rcl} K^{\times} & \to & (K^*)^{\times} \\ d & \mapsto & \prod_{i=1}^{n} d^{\varphi_i}, \end{array}
$$

and extend it continuously to the homomorphism $\mathfrak{g}: K_\mathbb{A}^\times \to (K^*)_\mathbb{A}^\times$ $_{A}^{\times}$ of idele groups. It is also known that for each fractional ideal $\mathfrak a$ of K there is a fractional ideal $\mathcal G(\mathfrak a)$ of K^* such that

$$
\mathcal{G}(\mathfrak{a})\mathcal{O}_L = \prod_{i=1}^n (\mathfrak{a}\mathcal{O}_L)^{\varphi_i}
$$

([\[9,](#page-17-7) §8.3]). Let C be a given ray class in Cl(f). Take any integral ideal c in C, and let

$$
\mathcal{N}(\mathfrak{c}) = \mathcal{N}_{K/\mathbb{Q}}(\mathfrak{c}) = |\mathcal{O}_K/\mathfrak{c}|.
$$

LEMMA 4.3. $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}), E_{\xi \mathcal{N}(\mathfrak{c})})$ *is also a principally polarized abelian variety.* PROOF. It follows from (2) that

$$
E_{\xi \mathcal{N}(\mathfrak{c})}(\Psi(\mathcal{G}(\mathfrak{c})^{-1}), \Psi(\mathcal{G}(\mathfrak{c})^{-1})) = \mathrm{Tr}_{K^*/\mathbb{Q}}(\xi \mathcal{N}(\mathfrak{c}) \mathcal{G}(\mathfrak{c})^{-1} \overline{\mathcal{G}(\mathfrak{c})^{-1}})
$$

\n
$$
= \mathrm{Tr}_{K^*/\mathbb{Q}}(\xi \mathcal{O}_{K^*})
$$

\n
$$
= E_{\xi}(\Psi(\mathcal{O}_{K^*}), \Psi(\mathcal{O}_{K^*}))
$$

\n
$$
\subseteq \mathbb{Z}
$$

because E_{ξ} is a Riemann form on $\mathbb{C}^g/\Psi(\mathcal{O}_{K^*})$. Thus $E_{\xi\mathcal{N}(\mathfrak{c})}$ defines a Riemann form on $\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1})$.

Now, let ${\bf \{b_1,\ldots,b_{2g}\}}$ be a symplectic basis of the abelian variety $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}),E_{\xi\mathcal{N}(\mathfrak{c})})$ so that

$$
\Psi(\mathcal{G}(\mathfrak{c})^{-1}) = \sum_{j=1}^{2g} \mathbb{Z} \mathbf{b}_j \quad \text{and} \quad \left[E_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{b}_i, \mathbf{b}_j) \right]_{1 \le i, j \le 2g} = \begin{bmatrix} O_g & -\mathcal{E} \\ \mathcal{E} & O_g \end{bmatrix},
$$

where $\mathcal{E} =$ $\Bigg\}$ ε_1 \cdots 0 .
.
. $0 \quad \cdots \quad \varepsilon_g$ is a $g \times g$ diagonal matrix for some positive integers $\varepsilon_1, \ldots, \varepsilon_g$ satisfying

 $\varepsilon_1 | \cdots | \varepsilon_g$. Furthermore, let $b_1 \ldots, b_{2g}$ be elements of $\mathcal{G}(\mathfrak{c})^{-1}$ such that $\mathbf{b}_j = \Psi(b_j)$ $(1 \leq j \leq 2g)$. Since $\mathcal{O}_{K^*} \subseteq \mathcal{G}(\mathfrak{c})^{-1}$, we have

$$
\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \alpha \quad \text{for some } \alpha \in M_{2g}(\mathbb{Z}) \cap \text{GL}_{2g}(\mathbb{Q}), \tag{3}
$$

and hence

 $\sqrt{ }$

$$
\begin{bmatrix} a_1^{\psi_1} & \cdots & a_{2g}^{\psi_1} \\ \vdots & & \vdots \\ a_1^{\psi_g} & \cdots & a_{2g}^{\psi_g} \\ \hline a_1^{\psi_1} & \cdots & a_{2g}^{\psi_1} \\ \vdots & & \vdots \\ a_1^{\psi_g} & \cdots & a_{2g}^{\psi_g} \end{bmatrix} = \begin{bmatrix} b_1^{\psi_1} & \cdots & b_{2g}^{\psi_1} \\ \vdots & & \vdots \\ b_1^{\psi_g} & \cdots & b_{2g}^{\psi_g} \\ \hline b_1^{\psi_1} & \cdots & b_{2g}^{\psi_1} \\ \vdots & & \vdots \\ b_1^{\psi_g} & \cdots & b_{2g}^{\psi_g} \end{bmatrix} \alpha.
$$

Taking determinant and squaring gives rise to the identity

$$
\Delta_{K^*/\mathbb{Q}}(a_1,\ldots,a_{2g})=\Delta_{K^*/\mathbb{Q}}(b_1,\ldots,b_{2g})\det(\alpha)^2.
$$

It then follows that

$$
\det(\alpha)^2 = \frac{|\Delta_{K^*/\mathbb{Q}}(a_1,\dots,a_{2g})|}{|\Delta_{K^*/\mathbb{Q}}(b_1,\dots,b_{2g})|} = \frac{d_{K^*/\mathbb{Q}}(\mathcal{O}_{K^*})}{d_{K^*/\mathbb{Q}}(\mathcal{G}(\mathfrak{c})^{-1})} = \mathcal{N}_{K^*/\mathbb{Q}}(\mathcal{G}(\mathfrak{c}))^2
$$

= $\mathcal{N}_{K^*/\mathbb{Q}}(\mathcal{G}(\mathfrak{c})\overline{\mathcal{G}(\mathfrak{c})})$
= $\mathcal{N}(\mathfrak{c})^{2g}$, (4)

where $d_{K^*/\mathbb{Q}}$ stands for the discriminant of a fractional ideal of K^* ([\[6,](#page-17-8) Proposition 13 in Chapter III]). And, we deduce by [\(3\)](#page-9-0) that

$$
\mathcal{N}(\mathfrak{c})\begin{bmatrix}\nO_g & -I_g \\
I_g & O_g\n\end{bmatrix} = \begin{bmatrix}\n\mathcal{N}(\mathfrak{c})E_{\xi}(\mathbf{a}_i, \mathbf{a}_j)\n\end{bmatrix}_{1 \leq i,j \leq 2g}
$$
\n
$$
= \begin{bmatrix}\nE_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{a}_i, \mathbf{a}_j)\n\end{bmatrix}_{1 \leq i,j \leq 2g}
$$
\n
$$
= \alpha^T \begin{bmatrix}\nE_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{b}_i, \mathbf{b}_j)\n\end{bmatrix}_{1 \leq i,j \leq 2g} \alpha
$$
\n
$$
= \alpha^T \begin{bmatrix}\nO_g & -\mathcal{E} \\
\mathcal{E} & O_g\n\end{bmatrix} \alpha.
$$

By taking determinant we get

$$
\mathcal{N}(\mathfrak{c})^{2g} = \det(\alpha)^2 (\varepsilon_1 \cdots \varepsilon_g)^2,
$$

which yields by [\(4\)](#page-10-1) that $\varepsilon_1 = \cdots = \varepsilon_g = 1$, and so $\mathcal{E} = I_g$. Therefore, $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}), E_{\xi \mathcal{N}(\mathfrak{c})})$ becomes a principally polarized abelian variety. 囗

As in the proof of Lemma [4.3](#page-9-1) we take a symplectic basis ${\bf \{b_1,\ldots,b_{2g}\}}$ of the principally polarized abelian variety $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}), E_{\xi \mathcal{N}(\mathfrak{c})})$, and let b_1, \ldots, b_{2g} be elements of $\mathcal{G}(\mathfrak{c})^{-1}$ such that $\mathbf{b}_j =$ $\Psi(b_i)$ $(1 \leq j \leq 2g)$. We then have

$$
\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \alpha \quad \text{for some } \alpha = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M_{2g}(\mathbb{Z}) \cap \text{GSp}_{2g}(\mathbb{Q}). \tag{5}
$$

Since $\nu(\alpha) = \mathcal{N}(\mathfrak{c})$ is relatively prime to N, the reduction $\tilde{\alpha}$ of α modulo N belongs to $\text{GSp}_{2g}(\mathbb{Z}/N\mathbb{Z})$. Let $Z_{\mathfrak{c}}^*$ be the CM-point associated with the symplectic basis $\{b_1, \ldots, b_{2g}\}$, namely

$$
Z_{\mathfrak{c}}^* = \begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_g \end{bmatrix}
$$

which belongs to \mathbb{H}_q ([\[1,](#page-17-9) Proposition 8.1.1]).

DEFINITION 4.4. Let $\{h_M(Z)\}_M \in \mathcal{S}_N$. For a given ray class $\mathcal{C} \in Cl(f)$ we define

$$
h_{\mathfrak{f}}(\mathcal{C})=h_{(1/N)\left[\begin{smallmatrix} B \\ D\end{smallmatrix}\right]}(Z_{\mathfrak{c}}^*).
$$

REMARK 4.5. Here, the index matrix $(1/N)$ $\lceil B \rceil$ \overline{D} 1 is obtained by the fact Γ $\begin{bmatrix} O_g & -I_g \end{bmatrix}$ $\begin{bmatrix} B^T & D^T \end{bmatrix}$

$$
\begin{pmatrix} Q_g & -I_g \ I_g & Q_g \end{pmatrix} \alpha)^T = \begin{bmatrix} B^T & D^T \ -A^T & -C^T \end{bmatrix}.
$$

5 Well-definedness of $h_f(\mathcal{C})$

In this section we shall show that the value $h_f(\mathcal{C})$ given in Definition [4.4](#page-10-0) depends only on the ray class \mathcal{C} , and hence it is independent of the choice of a symplectic basis and an integral ideal in \mathcal{C} .

PROPOSITION 5.1. $h_f(\mathcal{C})$ *does not depend on the choice of a symplectic basis* $\{b_1, \ldots, b_{2g}\}$ *of* $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}), E_{\xi \mathcal{N}(\mathfrak{c})}).$

PROOF. Let $\{\hat{\mathbf{b}}_1,\ldots,\hat{\mathbf{b}}_{2g}\}$ be another symplectic basis of $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}),E_{\xi\mathcal{N}(\mathfrak{c})})$, and so

$$
\begin{bmatrix} \widehat{\mathbf{b}}_1 & \cdots & \widehat{\mathbf{b}}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \beta \quad \text{for some } \beta = \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \in \text{GL}_{2g}(\mathbb{Z}). \tag{6}
$$

We then derive that

$$
\begin{bmatrix} O_g & -I_g \ I_g & O_g \end{bmatrix} = \begin{bmatrix} E_{\xi \mathcal{N}(\mathfrak{c})}(\hat{\mathbf{b}}_i, \hat{\mathbf{b}}_j) \end{bmatrix}_{1 \leq i,j \leq 2g} = \beta^T \begin{bmatrix} E_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{b}_i, \mathbf{b}_j) \end{bmatrix}_{1 \leq i,j \leq 2g} \beta = \beta^T \begin{bmatrix} O_g & -I_g \ I_g & O_g \end{bmatrix} \beta,
$$

which shows that $\beta \in \mathrm{Sp}_{2g}(\mathbb{Z})$. Since

$$
\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \alpha = \begin{bmatrix} \hat{\mathbf{b}}_1 & \cdots & \hat{\mathbf{b}}_{2g} \end{bmatrix} \beta^{-1} \alpha
$$

by [\(5\)](#page-10-2) and [\(6\)](#page-11-0), the special value obtained by $\{\hat{\mathbf{b}}_1, \dots, \hat{\mathbf{b}}_{2g}\}$ is

$$
h_{(1/N)\beta^{-1}}\left[\begin{array}{c}B\\D\end{array}\right] \left(\widehat{Z}_{\mathfrak{c}}^*\right),\,
$$

where $\widehat{Z}_{\mathfrak{c}}^*$ is the CM-point corresponding to $\{\widehat{\mathbf{b}}_1,\ldots,\widehat{\mathbf{b}}_{2g}\}.$

On the other hand, we attain that

$$
\hat{Z}_{\mathfrak{c}}^{*} = \begin{bmatrix} \hat{\mathbf{b}}_{g+1} & \cdots & \hat{\mathbf{b}}_{2g} \end{bmatrix}^{-1} \begin{bmatrix} \hat{\mathbf{b}}_{1} & \cdots & \hat{\mathbf{b}}_{g} \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \cdots & \mathbf{b}_{g} \end{bmatrix} Q + \begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix} S \end{bmatrix}^{-1}
$$
\n
$$
\begin{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \cdots & \mathbf{b}_{g} \end{bmatrix} P + \begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix} R \end{bmatrix} \quad \text{by (6)}
$$
\n
$$
= \begin{bmatrix} P^{T} \begin{bmatrix} \mathbf{b}_{1} & \cdots & \mathbf{b}_{g} \end{bmatrix}^{T} + R^{T} \begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix}^{T} \end{bmatrix}
$$
\n
$$
\begin{bmatrix} Q^{T} \begin{bmatrix} \mathbf{b}_{1} & \cdots & \mathbf{b}_{g} \end{bmatrix}^{T} + S^{T} \begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix}^{T} \end{bmatrix}^{-1} \quad \text{since } (\hat{Z}_{\mathfrak{c}}^{*})^{T} = \hat{Z}_{\mathfrak{c}}^{*}
$$
\n
$$
= \begin{bmatrix} P^{T} \begin{bmatrix} \begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{b}_{1} & \cdots & \mathbf{b}_{g} \end{bmatrix} \end{bmatrix}^{T} + R^{T} \end{bmatrix}
$$

$$
\left(Q^T \left(\begin{bmatrix} \mathbf{b}_{g+1} & \cdots & \mathbf{b}_{2g} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_g \end{bmatrix} \right)^T + S^T \right)^{-1}
$$
\n
$$
= (P^T (Z_{\mathfrak{c}}^*)^T + R^T) (Q^T (Z_{\mathfrak{c}}^*)^T + S^T)^{-1}
$$
\n
$$
= (P^T Z_{\mathfrak{c}}^* + R^T) (Q^T Z_{\mathfrak{c}}^* + S^T)^{-1} \text{ because } (Z_{\mathfrak{c}}^*)^T = Z_{\mathfrak{c}}^*
$$
\n
$$
= \beta^T (Z_{\mathfrak{c}}^*).
$$
\n(7)

Thus we deduce that

$$
h_{(1/N)\beta^{-1}}[B](\widehat{Z}_{\mathfrak{c}}^{*}) = h_{(1/N)\beta^{-1}}[B](\beta^{T}(Z_{\mathfrak{c}}^{*})) \text{ by (7)}
$$

\n
$$
= (h_{(1/N)\beta^{-1}}[B](Z))^{\beta^{T}}|_{Z=Z_{\mathfrak{c}}^{*}}
$$

\n
$$
= h_{(1/N)(\beta^{T})^{T}\beta^{-1}}[B](Z_{\mathfrak{c}}^{*}) \text{ by the property (S3) of } \{h_{M}(Z)\}_{M}
$$

\n
$$
= h_{(1/N)}[B](Z_{\mathfrak{c}}^{*}).
$$

This proves that $h_{\mathfrak{f}}(\mathcal{C})$ is independent of the choice of a symplectic basis of $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c})^{-1}), E_{\xi \mathcal{N}(\mathfrak{c})})$. \Box

REMARK 5.2. In like manner one can readily show that $h_f(\mathcal{C})$ does not depend on the choice of a symplectic basis $\{a_1, \ldots, a_{2g}\}$ of $(\mathbb{C}^g/\Psi(\mathcal{O}_K), E_\xi)$.

PROPOSITION 5.3. $h_f(\mathcal{C})$ *does not depend on the choice of an integral ideal* c *in* \mathcal{C} *.*

PROOF. Let \mathfrak{c}' be another integral ideal in the class \mathcal{C} , and hence

$$
\mathfrak{c}'\mathfrak{c}^{-1} = (1+a)\mathcal{O}_K \quad \text{for some } a \in \mathfrak{f}\mathfrak{a}^{-1},\tag{8}
$$

where **a** is an integral ideal of K relatively prime to f. Since $1 \in \mathfrak{c}^{-1}$ and $(1 + a) \in \mathfrak{c}'\mathfrak{c}^{-1} \subseteq \mathfrak{c}^{-1}$, we get $a \in \mathfrak{c}^{-1}$. Thus we derive that

$$
a \mathfrak{a} \mathfrak{c} \subseteq \mathfrak{f} \cap \mathfrak{a} \text{ by the facts } a \in \mathfrak{f} \mathfrak{a}^{-1} \text{ and } a \in \mathfrak{c}^{-1}
$$

$$
\subseteq \mathfrak{f} \cap \mathfrak{a}
$$

$$
= \mathfrak{f} \mathfrak{a} \text{ because } \mathfrak{f} \text{ and } \mathfrak{a} \text{ are relatively prime},
$$

from which it follows that $a \in \mathfrak{f} \mathfrak{c}^{-1}$. We then achieve by the fact $\mathfrak{f} = N \mathcal{O}_K$ that

$$
\mathfrak{g}(1+a) = \prod_{i=1}^{n} (1+a)^{\varphi_i} \in K^* \cap \prod_{i=1}^{n} (1+N(\mathfrak{c}^{-1}\mathcal{O}_L)^{\varphi_i}) \subseteq K^* \cap (1+N\mathcal{G}(\mathfrak{c})^{-1}\mathcal{O}_L) = 1+N\mathcal{G}(\mathfrak{c})^{-1}.
$$
 (9)

Let

$$
b'_j = \mathfrak{g}(1+a)^{-1}b_j
$$
 and $\mathbf{b}'_j = \Psi(b'_j)$ $(1 \le j \le 2g).$ (10)

We know that $\{b'_1, \ldots, b'_{2g}\}$ is a Z-basis of the lattice $\Psi(\mathcal{G}(\mathfrak{c}')^{-1})$ in \mathbb{C}^g and

$$
\mathbf{b}'_j = T\mathbf{b}_j \quad \text{with } T = \begin{bmatrix} (\mathfrak{g}(1+a)^{-1})^{\psi_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & (\mathfrak{g}(1+a)^{-1})^{\psi_g} \end{bmatrix} . \tag{11}
$$

Furthermore, we get that

$$
\begin{aligned}\n\left[E_{\xi \mathcal{N}(\mathfrak{c}')}(\mathbf{b}'_i, \mathbf{b}'_j)\right]_{1 \le i,j \le 2g} &= \left[\text{Tr}_{K^*/\mathbb{Q}}(\xi \mathcal{N}(\mathfrak{c}')b'_i\overline{b}'_j)\right]_{1 \le i,j \le 2g} \text{ by (2)} \\
&= \left[\text{Tr}_{K^*/\mathbb{Q}}(\xi \mathcal{N}(\mathfrak{c}')\mathfrak{g}(1+a)^{-1}b_i\overline{\mathfrak{g}(1+a)^{-1}b_j})\right]_{1 \le i,j \le 2g} \text{ by (10)} \\
&= \left[\text{Tr}_{K^*/\mathbb{Q}}(\xi \mathcal{N}(\mathfrak{c}')N_{K/\mathbb{Q}}(1+a)^{-1}b_i\overline{b_j})\right]_{1 \le i,j \le 2g} \\
&= \left[\text{Tr}_{K/\mathbb{Q}}(\xi \mathcal{N}(\mathfrak{c})b_i\overline{b_j})\right]_{1 \le i,j \le 2g} \\
& \text{by (8) and the fact } N_{K/\mathbb{Q}}(1+a) > 0 \\
&= \left[E_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{b}_i, \mathbf{b}_j)\right]_{1 \le i,j \le 2g} \text{ by (2)} \\
&= \left[\frac{O_g - I_g}{I_g - O_g}\right].\n\end{aligned}
$$

Thus $\{b'_1,\ldots,b'_{2g}\}\$ is a symplectic basis of $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{c}')^{-1}),E_{\xi\mathcal{N}(\mathfrak{c}')})$, and its associated CM-point $Z_{\epsilon'}^*$ $\chi^*_{\mathfrak{c}'}$ is given by

$$
Z_{\mathfrak{c}'}^* = \left[\mathbf{b}'_{g+1} \cdots \mathbf{b}'_{2g}\right]^{-1} \left[\mathbf{b}'_1 \cdots \mathbf{b}'_g\right]
$$

\n
$$
= \left[T\mathbf{b}_{g+1} \cdots T\mathbf{b}_{2g}\right]^{-1} \left[T\mathbf{b}_1 \cdots T\mathbf{b}_g\right] \text{ by (11)}
$$

\n
$$
= Z_{\mathfrak{c}}^*.
$$
 (12)

Let
$$
\alpha = [a_{ij}], \alpha' = [a'_{ij}] \in M_{2g}(\mathbb{Z})
$$
 such that
\n
$$
\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \alpha = \begin{bmatrix} \mathbf{b}'_1 & \cdots & \mathbf{b}'_{2g} \end{bmatrix} \alpha'.
$$
\n(13)

For each $1\leq i\leq 2g$ we obtain that

$$
\sum_{j=1}^{2g} a'_{ji} b_j = \mathfrak{g}(1+a) \sum_{j=1}^{2g} a'_{ji} b'_{j} \text{ by (10)}
$$

= $a_i \mathfrak{g}(1+a)$ by (13)
 $\in a_i (1+N\mathcal{G}(\mathfrak{c})^{-1})$ by (9)
 $\subseteq a_i + N\mathcal{G}(\mathfrak{c})^{-1}$ because $a_i \in \mathcal{O}_K$
= $\sum_{j=1}^{2g} a_{ji} b_j + N \sum_{j=1}^{2g} \mathbb{Z} b_j$ by (13).

This yields $\alpha \equiv \alpha' \pmod{N \cdot M_{2g}(\mathbb{Z})}$, and hence

$$
(1/N)\alpha \equiv (1/N)\alpha' \pmod{M_{2g}(\mathbb{Z})}.
$$
 (14)

 \Box

Now, the result follows from [\(12\)](#page-13-1), [\(14\)](#page-13-2) and the property (S2) of $\{h_M(Z)\}_M.$

6 Galois actions on $h_f(\mathcal{C})$

Finally we shall show that if $h_f(\mathcal{C})$ is finite, then it lies in the ray class field K_f and satisfies the natural transformation formula under the Artin reciprocity map for f.

Let $r: K^* \to M_{2g}(\mathbb{Q})$ be the regular representation with respect to the ordered basis $\{a_1, \ldots, a_{2g}\}$ of K^* over $\mathbb Q$ given by

$$
a \begin{bmatrix} a_1 \\ \vdots \\ a_{2g} \end{bmatrix} = r(a) \begin{bmatrix} a_1 \\ \vdots \\ a_{2g} \end{bmatrix} \quad (a \in K^*).
$$
 (15)

Then it can be extended to the map $r:(K^*)_{\mathbb{A}} \to M_{2g}(\mathbb{Q}_{\mathbb{A}})$ of adele rings.

LEMMA 6.1 (Shimura's Reciprocity Law). Let f be an element of $\mathcal F$ which is finite at $Z_{\mathfrak c}^*$.

- (i) The special value $f(Z_{\mathfrak{c}}^*)$ lies in K_{ab} .
- (ii) *For every* $s \in K^{\times}_{\mathbb{A}}$ *we have* $r(\mathfrak{g}(s)) \in G_{\mathbb{A}+}$ *and*

$$
f(Z_{\mathfrak{c}}^*)^{[s,K]} = f^{\tau(r(\mathfrak{g}(s)^{-1}))}(Z_{\mathfrak{c}}^*).
$$

PROOF. See [\[10,](#page-17-4) Lemma 9.5 and Theorem 9.6].

THEOREM 6.2. If $h_{\mathfrak{f}}(\mathcal{C})$ is finite, then it belongs to $K_{\mathfrak{f}}$. And it satisfies

$$
h_{\mathfrak{f}}(\mathcal{C})^{\sigma_{\mathfrak{f}}(\mathcal{D})} = h_{\mathfrak{f}}(\mathcal{C}\mathcal{D}) \quad \text{for every } \mathcal{D} \in \mathrm{Cl}(\mathfrak{f}),
$$

where $\sigma_{\rm f}$ is the Artin reciprocity map for f.

PROOF. Since $h_f(\mathcal{C})$ belongs to K_{ab} by Lemma [6.1](#page-14-1) (i), there is a sufficiently large positive integer M so that $N \mid M$ and $h_{\mathfrak{f}}(\mathcal{C}) \in K_{\mathfrak{m}}$ with $\mathfrak{m} = M \mathcal{O}_K$. Take an integral ideal \mathfrak{d} in \mathcal{D} relatively prime to $\mathfrak m$ by using the surjectivity of the natural map $Cl(\mathfrak m) \to Cl(\mathfrak f)$. Let $\{d_1, \ldots, d_{2g}\}$ be a symplectic basis of the principally polarized abelian variety $(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{co})^{-1}), E_{\xi \mathcal{N}(\mathfrak{co})})$, and let d_1, \ldots, d_{2g} be elements of $\mathcal{G}(\mathfrak{co})^{-1}$ such that $\mathbf{d}_j = \Psi(d_j)$ $(1 \leq j \leq 2g)$. Since $\mathcal{G}(\mathfrak{c})^{-1} \subseteq \mathcal{G}(\mathfrak{co})^{-1}$, we get

$$
\begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_1 & \cdots & \mathbf{d}_{2g} \end{bmatrix} \delta \quad \text{for some } \delta \in M_{2g}(\mathbb{Z}) \cap \text{GL}_{2g}(\mathbb{Q}). \tag{16}
$$

We then have that

$$
\begin{aligned}\n\begin{bmatrix}\nO_g & -I_g \\
I_g & O_g\n\end{bmatrix} &= \left[E_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{b}_i, \mathbf{b}_j)\right]_{1 \leq i,j \leq 2g} \\
&= \delta^T \left[E_{\xi \mathcal{N}(\mathfrak{c})}(\mathbf{d}_i, \mathbf{d}_j)\right]_{1 \leq i,j \leq 2g} \delta \quad \text{by (16)} \\
&= \delta^T \left[\mathcal{N}(\mathfrak{c}) \mathcal{N}(\mathfrak{c} \mathfrak{d})^{-1} E_{\xi \mathcal{N}(\mathfrak{c} \mathfrak{d})}(\mathbf{d}_i, \mathbf{d}_j)\right]_{1 \leq i,j \leq 2g} \delta \\
&= \mathcal{N}(\mathfrak{d})^{-1} \delta^T \begin{bmatrix}\nO_g & -I_g \\
I_g & O_g\n\end{bmatrix} \delta.\n\end{aligned}
$$

 \Box

This claims that

$$
\delta \in M_{2g}(\mathbb{Z}) \cap G_+ \text{ with } \nu(\delta) = \mathcal{N}(\mathfrak{d}). \tag{17}
$$

Furthermore, if we let $Z_{\mathfrak{c}\mathfrak{d}}^*$ be the CM-point associated with $\{d_1, \ldots, d_{2g}\}$, then we obtain

$$
Z_{\mathfrak{c}\mathfrak{d}}^* = (\delta^{-1})^T (Z_{\mathfrak{c}}^*)
$$
\n⁽¹⁸⁾

in a similar way to the argument in the proof of Proposition [5.1.](#page-11-2)

Let $s = (s_p)_p$ be an idele of K such that

$$
\begin{cases}\ns_p = 1 & \text{if } p \mid M, \\
s_p(\mathcal{O}_K)_p = \mathfrak{d}_p & \text{if } p \nmid M.\n\end{cases}
$$
\n(19)

If we set $\tilde{\mathcal{D}}$ to be the ray class in Cl(m) containing \mathfrak{d} , then we attain by [\(19\)](#page-15-0)

$$
[s, K]|_{K_{\mathfrak{m}}} = \sigma_{\mathfrak{m}}(\widetilde{\mathcal{D}}), \tag{20}
$$

$$
\mathfrak{g}(s)_p^{-1}(\mathcal{O}_{K^*})_p = \mathcal{G}(\mathfrak{d})_p^{-1} \quad \text{for all rational primes } p. \tag{21}
$$

It then follows from $(15)∼(21)$ $(15)∼(21)$ that for every rational prime p, the entries of each of the vectors

$$
r(\mathfrak{g}(s)^{-1})_p \begin{bmatrix} b_1 \\ \vdots \\ b_{2g} \end{bmatrix}
$$
 and $(\delta^{-1})^T \begin{bmatrix} b_1 \\ \vdots \\ b_{2g} \end{bmatrix}$

form a basis of $\mathcal{G}(\mathfrak{c} \mathfrak{d})_p^{-1} = \mathcal{G}(\mathfrak{c})^{-1} \mathcal{G}(\mathfrak{d})_p^{-1}$. So, there is a matrix $u = (u_p)_p \in \prod_p \mathrm{GL}_{2g}(\mathbb{Z}_p)$ satisfying

$$
r(\mathfrak{g}(s)^{-1}) = u(\delta^{-1})^T.
$$
\n(22)

Since δ^T and $\begin{bmatrix} I_g & O_g \end{bmatrix}$ $O_g \quad \mathcal{N}(\delta)I_g$ 1 can be viewed as elements of $GSp_{2g}(Z/M\mathbb{Z})$ by [\(17\)](#page-15-2), there exists a matrix $\gamma \in \mathrm{Sp}_{2g}(\mathbb{Z})$ such that

$$
\delta^T \equiv \begin{bmatrix} I_g & O_g \\ O_g & \mathcal{N}(\delta)I_g \end{bmatrix} \gamma \; (\text{mod } M \cdot M_{2g}(\mathbb{Z})) \tag{23}
$$

owing to the surjectivity of the reduction $\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/M\mathbb{Z})$. Since $r(\mathfrak{g}(s)^{-1})_p = I_{2g}$ for all $p \mid M$ by [\(19\)](#page-15-0), we get $u_p = \delta^T$ for all $p \mid M$ by [\(22\)](#page-15-3). Hence we deduce by [\(23\)](#page-15-4) that

$$
u_p \gamma^{-1} \equiv \begin{bmatrix} I_g & O_g \\ O_g & \mathcal{N}(\delta)I_g \end{bmatrix} \text{ (mod } M \cdot M_{2g}(\mathbb{Z}_p) \text{) for all rational primes } p. \tag{24}
$$

On the other hand, we have by [\(5\)](#page-10-2) and [\(16\)](#page-14-2) that

$$
\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{2g} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \alpha = (\begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_{2g} \end{bmatrix} \delta^{-1}) (\delta \alpha) = \begin{bmatrix} \mathbf{d}_1 & \cdots & \mathbf{d}_{2g} \end{bmatrix} (\delta \alpha). \tag{25}
$$

Letting $\alpha =$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ we induce that $h_{\mathfrak{f}}(\mathcal{C})^{\sigma_{\mathfrak{m}}(\mathcal{D})} = h_{\mathfrak{f}}(\mathcal{C})^{[s,K]}$ by [\(20\)](#page-15-1)

=
$$
h_{(1/N)}[B](Z_{\mathfrak{c}}^{*})^{[s,K]}
$$
 by Definition 4.4
\n= $h_{(1/N)}[B](Z)^{\tau(r(\mathfrak{g}(s)^{-1}))}|_{Z=Z_{\mathfrak{c}}^{*}}$ by Lemma 6.1 (ii)
\n= $h_{(1/N)}[B](Z)^{\tau(u(\delta^{-1})^{T})}|_{Z=Z_{\mathfrak{c}}^{*}}$ by (22)
\n= $h_{(1/N)}[B](Z)^{\tau(u\gamma^{-1})\tau(\gamma)\tau((\delta^{-1})^{T})}|_{Z=Z_{\mathfrak{c}}^{*}}$ by (24) and (S3)
\n= $h_{(1/N)}[I_{g} O_{g} \mathcal{N}(\delta)I_{g}][B](Z)^{\tau(\gamma)\tau((\delta^{-1})^{T})}|_{Z=Z_{\mathfrak{c}}^{*}}$ by (24) and (S3)
\n= $h_{(1/N)\gamma^{T}}[I_{g} O_{g} \mathcal{N}(\delta)I_{g}][B](Z)^{\tau((\delta^{-1})^{T})}|_{Z=Z_{\mathfrak{c}}^{*}}$ by (S3)
\n= $h_{(1/N)\delta}[B](Z)^{\tau((\delta^{-1})^{T})}|_{Z=Z_{\mathfrak{c}}^{*}}$ by (23) and (S2)
\n= $h_{(1/N)\delta}[B]((\delta^{-1})^{T}(Z_{\mathfrak{c}}^{*}))$ due to the fact $\delta \in G_{+}$ and (A1)
\n= $h_{\mathfrak{f}}(\mathcal{CD})$ by (18), (25) and Definition 4.4.

In particular, suppose that $\mathfrak{d} = d\mathcal{O}_K$ for some $d \in \mathcal{O}_K$ such that $d \equiv 1 \pmod{\mathfrak{f}}$. Then $\mathcal D$ is the identity class of Cl(f), and so the above observation implies that $\sigma_{\mathfrak{m}}(\tilde{\mathcal{D}})$ leaves $h_{\mathfrak{f}}(\mathcal{C})$ fixed. Therefore, we conclude that $h_{\mathfrak{f}}(\mathcal{C})$ lies in $K_{\mathfrak{f}}$. \Box

Corollary 6.3. *Let* H *be a subgroup of* Cl(f) *defined by*

$$
H = \langle \mathcal{D} \in \text{Cl}(\mathfrak{f}) \mid \mathcal{D} \text{ contains an integral ideal } \mathfrak{d} \text{ of } K \text{ for which}
$$

$$
\mathcal{G}(\mathfrak{d}) = \mathfrak{g}(d)\mathcal{O}_{K^*} \text{ for some } d \in \mathcal{O}_K \text{ such that } \mathfrak{g}(d) \equiv 1 \pmod{N\mathcal{O}_{K^*}}.
$$

and let K_f^H be the fixed field of H . If $h_f(\mathcal{C})$ is finite, then it belongs to K_f^H .

PROOF. Let C_0 be the identity class of Cl(f). Since $h_f(C_0) \in K_f$ by Theorem [6.2,](#page-14-0) $K(h_f(C_0))$ is a Galois extension of K as a subfield of $K_{\mathfrak{f}}$. Furthermore, since

$$
h_{\mathfrak{f}}(\mathcal{C}_0)^{\sigma_{\mathfrak{f}}(\mathcal{C})} = h_{\mathfrak{f}}(\mathcal{C}_0 \mathcal{C}) = h_{\mathfrak{f}}(\mathcal{C})
$$

by Theorem [6.2,](#page-14-0) $K(h_f(\mathcal{C}_0))$ contains $h_f(\mathcal{C})$. Thus it suffices to show that $h_f(\mathcal{C}_0)$ belongs to K_f^H .

To this end, let $\mathcal D$ be an element of Cl(f) containing an integral ideal $\mathfrak d$ of K for which

$$
\mathcal{G}(\mathfrak{d}) = \mathfrak{g}(d)\mathcal{O}_{K^*} \quad \text{for some } d \in \mathcal{O}_K \text{ such that } \mathfrak{g}(d) \equiv 1 \text{ (mod } N\mathcal{O}_{K^*}).
$$

Now that

$$
(\mathbb{C}^g/\Psi(\mathcal{G}(\mathfrak{d})^{-1}), E_{\xi \mathcal{N}(\mathfrak{d})}) = (\mathbb{C}^g/\Psi(\mathfrak{g}(d)^{-1}\mathcal{O}_{K^*}), E_{\xi \mathcal{N}(d\mathcal{O}_K)}),
$$

we obtain

$$
h_{\mathfrak{f}}(\mathcal{C}_0)^{\sigma_{\mathfrak{f}}(\mathcal{D})} = h_{\mathfrak{f}}(\mathcal{D}) = h_{\mathfrak{f}}([d\mathcal{O}_K]),
$$

where [a] is the ray class containing α for a fractional ideal α of K. Moreover, since $\mathfrak{g}(d) \equiv$ 1 (mod $N\mathcal{O}_{K^*}$), we achieve

$$
h_{\mathfrak{f}}([d\mathcal{O}_K])=h_{\mathfrak{f}}([\mathcal{O}_K])=h_{\mathfrak{f}}(\mathcal{C}_0)
$$

in like manner as in the proof of Proposition [5.3.](#page-12-4) This proves that $h_{\mathfrak{f}}(\mathcal{C}_0)$ belongs to $K_{\mathfrak{f}}^H$. \Box

References

- [1] C. Birkenhake and H. Lange, *Complex Abelian Varieties*, Grundlehren der mathematischen Wissenschaften 302, Springer-Verlag, Berlin Heidelberg , 2004.
- [2] H. Y. Jung, J. K. Koo and D. H. Shin, *On some Fricke families and application to the Lang-Schertz conjecture*, Proc. Royal Soc. Edinburgh, Section A, to appear, [http://arxiv.org/abs/1405.5423.](http://arxiv.org/abs/1405.5423)
- [3] H. Klingen, *Introductory Lectures on Siegel Modular Forms*, Cambridge Studies in Advanced Mathematics 20, Cambridge Univ. Press, Cambridge, 1990.
- [4] J. K. Koo and D. S. Yoon, *Generators of the ring of weakly holomorphic modular functions for* $\Gamma_1(N)$, Ramanujan J., 2015, DOI 10.1007/s11139-015-9742-4.
- [5] D. Kubert and S. Lang, *Modular Units*, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, New York-Berlin, 1981.
- [6] S. Lang, *Algebraic Number Theory*, 2nd edn, Gad. Texts in Math. 110, Springer-Verlag, New York, 1986.
- [7] A. S. Rapinchuk, *Strong approximation for algebraic groups*, Thin groups and superstrong approximation, 269–298, Math. Sci. Res. Inst. Publ. 61, Cambridge Univ. Press, Cambridge, 2014.
- [8] G. Shimura, *Introduction to the Arithmetic Theory of Automorphic Functions*, Iwanami Shoten and Princeton University Press, Princeton, NJ, 1971.
- [9] G. Shimura, *Abelian Varieties with Complex Multiplication and Modular Functions*, Princeton University Press, Princeton, NJ, 1998.
- [10] G. Shimura, *Arithmeticity in the theory of automorphic forms*, Mathematical Surveys and Monographs, 82. Amer. Math. Soc., Providence, RI, 2000.

Republic of Korea *E-mail address*: math dsyoon@kaist.ac.kr

DAEJEON 34141