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Siegel families with application to class fields

Ja Kyung Koo, Dong Hwa Shin and Dong Sung Yoon∗

Abstract

We investigate certain families of meromorphic Siegel modular functions on which Galois

groups act in a natural way. By using Shimura’s reciprocity law we construct some algebraic

numbers in the ray class fields of CM-fields in terms of special values of functions in these Siegel

families.

1 Introduction

For a positive integer N let FN be the field of meromorphic modular functions of level N (defined

on H = {τ ∈ C | Im(τ) > 0}) whose Fourier coefficients belong to the Nth cyclotomic field. As is

well known, FN is a Galois extension of F1 whose Galois group is isomorphic to GL2(Z/NZ)/{±I2}
([8, §6.1–6.2]). Now, let N ≥ 2 and consider a set

VN = {v ∈ Q2 | N is the smallest positive integer for which Nv ∈ Z2}

as the index set. We call a family {fv(τ)}v∈VN of functions in FN a Fricke family of level N if each

fv(τ) depends only on ±v (mod Z2) and satisfies

fv(τ)
α = fαT

v
(τ) (α ∈ GL2(Z/NZ)/{±I2}),

where αT means the transpose of α. For example, Siegel functions of one-variable form such a

Fricke family of level N ([5, Proposition 1.3 in Chapter 2]). See also [2] or [4].

Let K be an imaginary quadratic field with the ring of integers OK , and let f be a proper non-

trivial ideal of OK . We denote by Cl(f) and Kf the ray class group modulo f and its corresponding

ray class field modulo f, respectively. If {fv(τ)}v is a Fricke family of level N in which every fv(τ)

is holomorphic on H, then we can assign to each ray class C ∈ Cl(f) an algebraic number ff(C) as a
special value of a function in {fv(τ)}v. Furthermore, we attain by Shimura’s reciprocity law that

ff(C) belongs to Kf and satisfies

ff(C)σf(D) = ff(CD) (D ∈ Cl(f)),
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where σf is the Artin reciprocity map for f ([5, Theorem 1.1 in Chapter 11]).

In this paper, we shall define a Siegel family {hM (Z)}M of level N consisting of meromorphic

Siegel modular functions of (higher) genus g and level N , which would be a generalization of a

Fricke family of level N in case g = 1 (Definition 3.1). It turns out that every Siegel family of level

N is induced from a meromorphic Siegel modular function for the congruence subgroup Γ1(N)

(Theorem 3.5).

Let K be a CM-field and let f = NOK . Given a Siegel family {hM (Z)}M of level N , we

shall introduce a number hf(C) by a special value of a function in {hM (Z)}M for each ray class

C ∈ Cl(f) (Definition 4.4). Under certain assumptions on K (Assumption 4.1) we shall prove that

if hf(C) is finite, then it lies in the ray class field Kf whose Galois conjugates are of the same form

(Theorem 6.2 and Corollary 6.3). To this end, we assign a principally polarized abelian variety to

each nontrivial ideal of OK , and apply Shimura’s reciprocity law to hf(C).

2 Actions on Siegel modular functions

First, we shall describe the Galois group between fields of meromorphic Siegel modular functions

in a concrete way.

Let g be a positive integer, and let ηg =

[
Og −Ig
Ig Og

]
. For every commutative ring R with unity

we denote by

GSp2g(R) =
{
α ∈ GL2g(R) | αT ηgα = ν(α)ηg with ν(α) ∈ R×

}
,

Sp2g(R) = {α ∈ GSp2g(R) | ν(α) = 1}.

Let

G = GSp2g(Q),

and let GA be the adelization of G, G0 its non-archimedean part and G∞ its archimedean part.

One can extend the multiplier map ν : G→ Q× continuously to the map ν : GA → Q×
A , and set

G∞+ = {α ∈ G∞ | ν(α) > 0}, GA+ = G0G∞+, G+ = G ∩GA+.

Furthermore, let

∆ =

{[
Ig Og

Og sIg

]
| s ∈

∏

p

Z×
p

}
,

U1 =
∏

p

GSp2g(Zp)×G∞+,

UN = {x ∈ U1 | xp ≡ I2g (mod N ·M2g(Zp)) for all rational primes p}

for every positive integer N . Then we have

UN E U1 ≤ GA+ and GA+ = UN∆G+
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([10, Lemma 8.3 (1)]).

Note that the group G∞+ acts on the Siegel upper half-space Hg = {Z ∈ Mg(C) | ZT =

Z, Im(Z) is positive definite} by

α(Z) = (AZ +B)(CZ +D)−1 (α ∈ G∞+, Z ∈ Hg),

where A,B,C,D are g× g block matrices of α. Let FN be the field of meromorphic Siegel modular

functions of genus g for the congruence subgroup

Γ(N) =
{
γ ∈ Sp2g(Z) | γ ≡ I2g (mod N ·M2g(Z))

}

of the symplectic group Sp2g(Z) whose Fourier coefficients belong to the Nth cyclotomic field Q(ζN )

with ζN = e2πi/N . That is, if f ∈ FN , then

f(Z) =
∑

h

c(h)e(tr(hZ)/N) for some c(h) ∈ Q(ζN ),

where h runs over all g×g positive semi-definite symmetric matrices over half integers with integral

diagonal entries, and e(w) = e2πiw for w ∈ C ([3, Theorem 1 in §4]). Let

F =

∞⋃

N=1

FN .

Proposition 2.1. There exists a homomorphism τ : GA+ → Aut(F) satisfying the following

properties: Let f(Z) =
∑

h c(h)e(tr(hZ)/N) ∈ FN .

(i) If α ∈ G+ = {α ∈ G | ν(α) > 0}, then

f τ(α) = f ◦ α.

(ii) If β =

[
Ig Og

Og sIg

]
∈ ∆ and t is a positive integer such that t ≡ sp (mod NZp) for all rational

primes p, then

f τ(β) =
∑

h

c(h)σe(tr(hZ)/N),

where σ is the automorphism of Q(ζN ) given by ζσN = ζtN .

(iii) For every positive integer N we have

FN = {f ∈ F | f τ(x) = f for all x ∈ UN}.

(iv) ker(τ) = Q×G∞+.

Proof. See [10, Theorem 8.10].
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Since

UN (Q
×G∞+)/Q

×G∞+ ≃ UN/(UN ∩Q×G∞+) ≃
{
U1/±G∞+ if N = 1,

UN/G∞+ if N > 1,

we see by Proposition 2.1 (iii) and (iv) that FN is a Galois extension of F1 with

Gal(FN/F1) ≃ U1/± UN . (1)

Proposition 2.2. We have

Gal(FN/F1) ≃ GSp2g(Z/NZ)/{±I2g}.

Proof. Let α ∈ U1. Take a matrix A in M2g(Z) for which A ≡ αp (mod N ·M2g(Zp)) for

all rational primes p. Define a matrix ψ(α) ∈ M2g(Z/NZ) by the image of A under the natural

reduction M2g(Z) → M2g(Z/NZ). Then by the Chinese remainder theorem ψ(α) is well defined

and independent of the choice of A. Furthermore, let t be an integer relatively prime to N such

that t ≡ ν(αp) (mod NZp) for all rational primes p. We then derive that

tηg ≡ ν(αp)ηg ≡ αTp ηgαp ≡ AT ηgA ≡ ψ(α)T ηgψ(α) (mod N ·M2g(Zp))

for all rational primes p, and hence ψ(α) ∈ GSp2g(Z/NZ). Thus we obtain a group homomorphism

ψ : U1 → GSp2g(Z/NZ).

Let β ∈ GSp2g(Z/NZ), and take a preimage B of β under the natural reduction M2g(Z) →
M2g(Z/NZ). Since ν(β) ∈ (Z/NZ)× and

BT ηgB ≡ βT ηgβ ≡ ν(β)ηg (mod N ·M2g(Z)),

B belongs to GSp2g(Zp) for every rational prime p dividing N . Let α = (αp)p be the element of
∏
pGSp2g(Zp) given by

αp =

{
B if p |N,
I2g otherwise.

We then see that α ∈ U1 and ψ(α) = β. Thus ψ is surjective.

Clearly, UN is contained in ker(ψ). Let γ ∈ ker(ψ). Since γp ≡ I2g (mod N ·M2g(Zp)) for all

rational primes p, we get γ ∈ UN , and hence ker(ψ) = UN . Therefore ψ induces an isomorphism

U1/UN ≃ GSp2g(Z/NZ), from which we achieve by (1)

Gal(FN/F1) ≃ U1/± UN ≃ GSp2g(Z/NZ)/{±I2g}.

Remark 2.3. We have the decomposition

Gal(FN/F1) ≃ GSp2g(Z/NZ)/{±I2g} ≃ GN · Sp2g(Z/NZ)/{±I2g},
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where

GN =

{[
Ig Og

Og νIg

]
| ν ∈ (Z/NZ)×

}
.

By Proposition 2.1 one can describe the action of GSp2g(Z/NZ)/{±I2g} on FN as follows:

Let f(Z) =
∑

h c(h)e(tr(hZ)/N) ∈ FN .

(i) An element β =

[
Ig Og

Og νIg

]
of GN acts on f by

fβ =
∑

h

c(h)σe(tr(hZ)/N),

where σ is the automorphism of Q(ζN ) satisfying ζ
σ
N = ζνN .

(ii) An element γ of Sp2g(Z/NZ)/{±I2g} acts on f by

fγ = f ◦ γ′,

where γ′ is any preimage of γ under the natural reduction Sp2g(Z) → Sp2g(Z/NZ)/{±I2g}.

3 Siegel families of level N

By making use of the description of Gal(FN/F1) in §2 we shall introduce a generalization of a

Fricke family in higher dimensional cases.

Let N ≥ 2. For α ∈M2g(Z) we denote by α̃ its reduction modulo N . Define a set

VN =

{
(1/N)

[
AT

BT

]
| α =

[
A B

C D

]
∈M2g(Z) such that α̃ ∈ GSp2g(Z/NZ)

}
.

Let M be an element of VN stemmed from α ∈M2g(Z) such that α̃ ∈ GSp2g(Z/NZ), and let β be

an element of M2g(Z) satisfying β̃ ∈ GSp2g(Z/NZ). Then it is straightforward that βTM is also

an element of VN given by the product αβ.

Definition 3.1. We call a family {hM (Z)}M∈VN
a Siegel family of level N if it satisfies the

following properties:

(S1) Each hM (Z) belongs to FN .

(S2) hM (Z) depends only on ±M (mod M2g×g(Z)).

(S3) hM (Z)σ = hσTM (Z) for all σ ∈ GSp2g(Z/NZ)/{±I2g} ≃ Gal(FN/F1).

By SN we mean the set of such Siegel families of level N .

Remark 3.2. Let {hM (Z)}M ∈ SN .

(i) The property (S3) yields a right action of the group GSp2g(Z/NZ)/{±I2g} on {hM (Z)}M .
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(ii) Let M = (1/N)

[
AT

BT

]
∈ VN , and so there is a matrix α =

[
A B

C D

]
∈ M2g(Z) such that

α̃ ∈ GSp2g(Z/NZ). Considering α̃ as an element of GSp2g(Z/NZ)/{±I2g} we obtain

h
(1/N)

[
Ig
Og

](Z)α̃ = h
(1/N)αT

[
Ig
Og

](Z) = hM (Z).

Thus the action of GSp2g(Z/NZ)/{±I2g} on {hM (Z)}M is transitive.

Let

Γ1(N) =

{
γ ∈ Sp2g(Z) | γ ≡

[
Ig Og

∗ Ig

]
(mod N ·M2g(Z))

}
,

and let F1
N (Q) be the field of meromorphic Siegel modular functions for Γ1(N) with rational Fourier

coefficients.

Lemma 3.3. If {hM (Z)}M ∈ SN , then h[ (1/N)Ig
Og

](Z) ∈ F1
N (Q).

Proof. For any γ =

[
A B

C D

]
∈ Γ1(N) we deduce by (S2) and (S3) that

h[ (1/N)Ig
Og

](γ(Z)) = h[ (1/N)Ig
Og

](Z)γ̃ = h
γT

[
(1/N)Ig
Og

](Z) = h
(1/N)

[
AT

BT

](Z) = h[ (1/N)Ig
Og

](Z)

because A ≡ Ig, B ≡ Og (mod N ·Mg(Z)). Thus h[ (1/N)Ig
Og

](Z) is modular for Γ1(N).

For every ν ∈ (Z/NZ)× we see by (S2) and (S3) that

h[ (1/N)Ig
Og

](Z)

[
Ig Og

Og νIg

]

= h[ Ig Og

Og νIg

][
(1/N)Ig
Og

](Z) = h[ (1/N)Ig
Og

](Z),

which implies that h[ (1/N)Ig
Og

](Z) has rational Fourier coefficients. This proves the lemma.

One can consider SN as a field under the binary operations

{hM (Z)}M + {kM (Z)}M = {(hM + kM )(Z)}M ,
{hM (Z)}M · {kM (Z)}M = {(hMkM )(Z)}M .

By Lemma 3.3 we get the ring homomorphism

φN : SN → F1
N (Q)

{hM (Z)}M 7→ h[ (1/N)Ig
Og

](Z).

Lemma 3.4. If M ∈ VN , then there is γ =

[
A B

C D

]
∈ M2g(Z) such that γ̃ ∈ Sp2g(Z/NZ) and

M = (1/N)

[
AT

BT

]
.
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Proof. Let α =

[
A B

U V

]
∈ M2g(Z) such that α̃ ∈ GSp2g(Z/NZ) and M = (1/N)

[
AT

BT

]
. In

M2g(Z/NZ), decompose α̃ as

α̃ =

[
Ig Og

Og νIg

][
A B

ν−1U ν−1V

]
with ν = ν(α̃) ∈ (Z/NZ)×

so that

[
A B

ν−1U ν−1V

]
belongs to Sp2g(Z/NZ). Since the reduction Sp2g(Z) → Sp2g(Z/NZ) is

surjective ([7]), we can take γ ∈M2g(Z) satisfying γ̃ =

[
A B

ν−1U ν−1V

]
.

Theorem 3.5. SN and F1
N (Q) are isomorphic via φN .

Proof. Since SN and F1
N (Q) are fields, it suffices to show that φN is surjective.

Let h(Z) ∈ F1
N (Q). For each M ∈ VN , take any γ =

[
A B

C D

]
∈ M2g(Z) such that γ̃ ∈

Sp2g(Z/NZ) and M = (1/N)

[
AT

BT

]
by using Lemma 3.4. And, set

hM (Z) = h(Z)γ̃ .

We claim that hM (Z) is independent of the choice of γ. Indeed, if γ′ =

[
A B

C ′ D′

]
∈ M2g(Z) such

that γ̃′ ∈ Sp2g(Z/NZ), then we attain in M2g(Z/NZ) that

γ̃′γ̃−1 =

[
A B

C ′ D′

][
DT −BT

−CT AT

]
=

[
Ig Og

∗ Ig

]

by the fact γ̃, γ̃′ ∈ Sp2g(Z/NZ). Let δ be an element of Sp2g(Z) such that δ̃ = γ̃′γ̃−1. We then

achieve

h(Z)γ̃
′

= (h(Z)γ̃
′ γ̃−1

)γ̃ = h(δ(Z))γ̃ = h(Z)γ̃

because h(Z) is modular for Γ1(N) and δ ∈ Γ1(N).

Now, for any σ =

[
P Q

R S

]
∈ GSp2g(Z/NZ)/{±I2g} with ν = ν(σ) we derive that

hM (Z)σ = h(Z)γ̃σ

= h(Z)

[
A B
C D

][
P Q
R S

]

= h(Z)

[
Ig Og

Og νIg

][
AP+BR AQ+BS

ν−1(CP+DR) ν−1(CQ+DS)

]

= h(Z)

[
AP+BR AQ+BS

ν−1(CP+DR) ν−1(CQ+DS)

]

since h(Z) has rational Fourier coefficients

= h[ (AP+BR)T

(AQ+BS)T

](Z)
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= h[
PT RT

QT ST

][
AT

BT

](Z)

= hσTM (Z).

This shows that the family {hM (Z)}M belongs to SN . Furthermore, since

φN ({hM (Z)}M ) = h[ (1/N)Ig
Og

](Z) = h(Z)

[
Ig Og

Og Ig

]

= h(Z),

φ is surjective as desired.

Remark 3.6. (i) By Proposition 2.2 and Remark 2.3 we obtain

Gal(FN/F1
N (Q)) ≃ GN ·

{
γ ∈ Sp2g(Z/NZ)/{±I2g} | γ = ±

[
Ig Og

∗ Ig

]}
.

(ii) Let F1,N (Q) be the field of meromorphic Siegel modular functions for

Γ1(N) =

{
γ ∈ Sp2g(Z) | γ ≡

[
Ig ∗
Og Ig

]
(mod N ·M2g(Z))

}

with rational Fourier coefficients. If we set

ω =

[
(1/

√
N)Ig Og

Og
√
NIg

]
,

then we know that ω ∈ Sp2g(R) and

ω

[
A B

C D

]
ω−1 =

[
A (1/N)B

NC D

]
for all

[
A B

C D

]
∈ Sp2g(R).

This implies

ωΓ1(N)ω−1 = Γ1(N),

and so F1,N (Q) and F1
N (Q) are isomorphic via

F1,N (Q) → F1
N (Q)

h(Z) 7→ (h ◦ ω)(Z) = h((1/N)Z).

4 Special values associated with a Siegel family

As an application of a Siegel family of level N we shall construct a number associated with each

ray class modulo N of a CM-field.

Let n be a positive integer, K be a CM-field with [K : Q] = 2n and {ϕ1, . . . , ϕn} be a set of

embeddings of K into C such that (K, {ϕi}ni=1) is a CM-type. We fix a finite Galois extension L of

Q containing K, and set

S = {σ ∈ Gal(L/Q) | σ|K = ϕi for some i ∈ {1, 2, . . . , n}},

8



S∗ = {σ−1 | σ ∈ S},
H∗ = {γ ∈ Gal(L/Q) | γS∗ = S∗}.

Let K∗ be the subfield of L corresponding to the subgroup H∗ of Gal(L/Q), and let {ψ1, . . . , ψg}
be the set of all embeddings of K∗ into C arising from the elements of S∗. Then we know that

(K∗, {ψj}gj=1) is a primitive CM-type and

K∗ = Q

(
n∑

i=1

aϕi | a ∈ K

)

([9, Proposition 28 in §8.3]). We call this CM-type (K∗, {ψj}gj=1) the reflex of (K, {ϕi}ni=1). Using

this CM-type we define an embedding

Ψ : K∗ → Cg

a 7→




aψ1

...

aψg


 .

For each purely imaginary element c of K∗ we associate an R-bilinear form

Ec : Cg × Cg → R

(u,v) 7→
g∑

j=1

cψj (ujvj − ujvj) (u =




u1
...

ug


 ,v =




v1
...

vg


).

Then, one can readily check that

Ec(Ψ(a),Ψ(b)) = TrK∗/Q(cab) for all a, b ∈ K∗ (2)

by utilizing the fact aψj = aψj for all a ∈ K∗ (1 ≤ j ≤ g).

Assumption 4.1. In what follows we assume the following conditions:

(i) (K∗)∗ = K.

(ii) There is a purely imaginary element ξ of K∗ and a Z-basis {a1, . . . ,a2g} of the lattice Ψ(OK∗)

in Cg for which [
Eξ(ai,aj)

]
1≤i,j≤2g

=

[
Og −Ig
Ig Og

]
.

In this case, we say that the complex torus (Cg/Ψ(OK∗), Eξ) is a principally polarized abelian

variety with a symplectic basis {a1, . . . ,a2g}. See [9, §6.2].

(iii) f = NOK for an integer N ≥ 2.

Remark 4.2. The Assumption 4.1 (i) is equivalent to saying that (K, {ϕi}ni=1) is a primitive

CM-type, namely, the abelian varieties of this CM-type are simple ([9, Proposition 26 in §8.2]).

9



By Assumption 4.1 (i) one can define a group homomorphism

g : K× → (K∗)×

d 7→
n∏

i=1

dϕi ,

and extend it continuously to the homomorphism g : K×
A → (K∗)×A of idele groups. It is also known

that for each fractional ideal a of K there is a fractional ideal G(a) of K∗ such that

G(a)OL =
n∏

i=1

(aOL)
ϕi

([9, §8.3]). Let C be a given ray class in Cl(f). Take any integral ideal c in C, and let

N (c) = NK/Q(c) = |OK/c|.

Lemma 4.3. (Cg/Ψ(G(c)−1), EξN (c)) is also a principally polarized abelian variety.

Proof. It follows from (2) that

EξN (c)(Ψ(G(c)−1),Ψ(G(c)−1)) = TrK∗/Q(ξN (c)G(c)−1G(c)−1)

= TrK∗/Q(ξOK∗)

= Eξ(Ψ(OK∗),Ψ(OK∗))

⊆ Z

becauseEξ is a Riemann form on Cg/Ψ(OK∗). ThusEξN (c) defines a Riemann form on Cg/Ψ(G(c)−1).

Now, let {b1, . . . ,b2g} be a symplectic basis of the abelian variety (Cg/Ψ(G(c)−1), EξN (c)) so

that

Ψ(G(c)−1) =

2g∑

j=1

Zbj and
[
EξN (c)(bi,bj)

]
1≤i,j≤2g

=

[
Og −E
E Og

]
,

where E =




ε1 · · · 0
...

. . .
...

0 · · · εg


 is a g× g diagonal matrix for some positive integers ε1, . . . , εg satisfying

ε1 | · · · | εg. Furthermore, let b1 . . . , b2g be elements of G(c)−1 such that bj = Ψ(bj) (1 ≤ j ≤ 2g).

Since OK∗ ⊆ G(c)−1, we have
[
a1 · · · a2g

]
=
[
b1 · · · b2g

]
α for some α ∈M2g(Z) ∩GL2g(Q), (3)

and hence 


aψ1

1 · · · aψ1

2g
...

...

a
ψg

1 · · · a
ψg

2g

aψ1

1 · · · aψ1

2g
...

...

a
ψg

1 · · · a
ψg

2g




=




bψ1

1 · · · bψ1

2g
...

...

b
ψg

1 · · · b
ψg

2g

bψ1

1 · · · bψ1

2g
...

...

b
ψg

1 · · · b
ψg

2g




α.
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Taking determinant and squaring gives rise to the identity

∆K∗/Q(a1, . . . , a2g) = ∆K∗/Q(b1, . . . , b2g) det(α)
2.

It then follows that

det(α)2 =
|∆K∗/Q(a1, . . . , a2g)|
|∆K∗/Q(b1, . . . , b2g)|

=
dK∗/Q(OK∗)

dK∗/Q(G(c)−1)
= NK∗/Q(G(c))2

= NK∗/Q(G(c)G(c))
= N (c)2g ,

(4)

where dK∗/Q stands for the discriminant of a fractional ideal of K∗ ([6, Proposition 13 in Chapter

III]). And, we deduce by (3) that

N (c)

[
Og −Ig
Ig Og

]
=

[
N (c)Eξ(ai,aj)

]
1≤i,j≤2g

=
[
EξN (c)(ai,aj)

]
1≤i,j≤2g

= αT
[
EξN (c)(bi,bj)

]
1≤i,j≤2g

α

= αT

[
Og −E
E Og

]
α.

By taking determinant we get

N (c)2g = det(α)2(ε1 · · · εg)2,

which yields by (4) that ε1 = · · · = εg = 1, and so E = Ig. Therefore, (Cg/Ψ(G(c)−1), EξN (c))

becomes a principally polarized abelian variety.

As in the proof of Lemma 4.3 we take a symplectic basis {b1, . . . ,b2g} of the principally polarized

abelian variety (Cg/Ψ(G(c)−1), EξN (c)), and let b1, . . . , b2g be elements of G(c)−1 such that bj =

Ψ(bj) (1 ≤ j ≤ 2g). We then have

[
a1 · · · a2g

]
=
[
b1 · · · b2g

]
α for some α =

[
A B

C D

]
∈M2g(Z) ∩GSp2g(Q). (5)

Since ν(α) = N (c) is relatively prime toN , the reduction α̃ of αmoduloN belongs to GSp2g(Z/NZ).

Let Z∗
c be the CM-point associated with the symplectic basis {b1, . . . ,b2g}, namely

Z∗
c =

[
bg+1 · · · b2g

]−1 [
b1 · · · bg

]

which belongs to Hg ([1, Proposition 8.1.1]).

Definition 4.4. Let {hM (Z)}M ∈ SN . For a given ray class C ∈ Cl(f) we define

hf(C) = h
(1/N)

[
B
D

](Z∗
c ).
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Remark 4.5. Here, the index matrix (1/N)

[
B

D

]
is obtained by the fact

(

[
Og −Ig
Ig Og

]
α)T =

[
BT DT

−AT −CT

]
.

5 Well-definedness of hf(C)
In this section we shall show that the value hf(C) given in Definition 4.4 depends only on the ray

class C, and hence it is independent of the choice of a symplectic basis and an integral ideal in C.

Proposition 5.1. hf(C) does not depend on the choice of a symplectic basis {b1, . . . ,b2g} of

(Cg/Ψ(G(c)−1), EξN (c)).

Proof. Let {b̂1, . . . , b̂2g} be another symplectic basis of (Cg/Ψ(G(c)−1), EξN (c)), and so

[
b̂1 · · · b̂2g

]
=
[
b1 · · · b2g

]
β for some β =

[
P Q

R S

]
∈ GL2g(Z). (6)

We then derive that
[
Og −Ig
Ig Og

]
=
[
EξN (c)(b̂i, b̂j)

]
1≤i,j≤2g

= βT
[
EξN (c)(bi,bj)

]
1≤i,j≤2g

β = βT

[
Og −Ig
Ig Og

]
β,

which shows that β ∈ Sp2g(Z). Since

[
a1 · · · a2g

]
=
[
b1 · · · b2g

]
α =

[
b̂1 · · · b̂2g

]
β−1α

by (5) and (6), the special value obtained by {b̂1, . . . , b̂2g} is

h
(1/N)β−1

[
B
D

](Ẑ∗
c ),

where Ẑ∗
c is the CM-point corresponding to {b̂1, . . . , b̂2g}.

On the other hand, we attain that

Ẑ∗
c =

[
b̂g+1 · · · b̂2g

]−1 [
b̂1 · · · b̂g

]

=
([

b1 · · · bg

]
Q+

[
bg+1 · · · b2g

]
S
)−1

([
b1 · · · bg

]
P +

[
bg+1 · · · b2g

]
R
)

by (6)

=

(
P T
[
b1 · · · bg

]T
+RT

[
bg+1 · · · b2g

]T)

(
QT
[
b1 · · · bg

]T
+ ST

[
bg+1 · · · b2g

]T)−1

since (Ẑ∗
c )
T = Ẑ∗

c

=

(
P T
([

bg+1 · · · b2g

]−1 [
b1 · · · bg

])T
+RT

)

12



(
QT
([

bg+1 · · · b2g

]−1 [
b1 · · · bg

])T
+ ST

)−1

= (P T (Z∗
c )
T +RT )(QT (Z∗

c )
T + ST )−1

= (P TZ∗
c +RT )(QTZ∗

c + ST )−1 because (Z∗
c )
T = Z∗

c

= βT (Z∗
c ). (7)

Thus we deduce that

h
(1/N)β−1

[
B
D

](Ẑ∗
c ) = h

(1/N)β−1

[
B
D

](βT (Z∗
c )) by (7)

= (h
(1/N)β−1

[
B
D

](Z))β
T |Z=Z∗

c

= h
(1/N)(βT )T β−1

[
B
D

](Z∗
c ) by the property (S3) of {hM (Z)}M

= h
(1/N)

[
B
D

](Z∗
c ).

This proves that hf(C) is independent of the choice of a symplectic basis of (Cg/Ψ(G(c)−1), EξN (c)).

Remark 5.2. In like manner one can readily show that hf(C) does not depend on the choice of

a symplectic basis {a1, . . . ,a2g} of (Cg/Ψ(OK), Eξ).

Proposition 5.3. hf(C) does not depend on the choice of an integral ideal c in C.

Proof. Let c′ be another integral ideal in the class C, and hence

c′c−1 = (1 + a)OK for some a ∈ fa−1, (8)

where a is an integral ideal of K relatively prime to f. Since 1 ∈ c−1 and (1 + a) ∈ c′c−1 ⊆ c−1, we

get a ∈ c−1. Thus we derive that

aac ⊆ fc ∩ a by the facts a ∈ fa−1 and a ∈ c−1

⊆ f ∩ a

= fa because f and a are relatively prime,

from which it follows that a ∈ fc−1. We then achieve by the fact f = NOK that

g(1+ a) =

n∏

i=1

(1+ a)ϕi ∈ K∗ ∩
n∏

i=1

(1+N(c−1OL)
ϕi) ⊆ K∗ ∩ (1+NG(c)−1OL) = 1+NG(c)−1. (9)

Let

b′j = g(1 + a)−1bj and b
′
j = Ψ(b′j) (1 ≤ j ≤ 2g). (10)

We know that {b′
1, . . . ,b

′
2g} is a Z-basis of the lattice Ψ(G(c′)−1) in Cg and

b
′
j = Tbj with T =




(g(1 + a)−1)ψ1 · · · 0
...

. . .
...

0 · · · (g(1 + a)−1)ψg


 . (11)
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Furthermore, we get that

[
EξN (c′)(b

′
i,b

′
j)
]
1≤i,j≤2g

=
[
TrK∗/Q(ξN (c′)b′ib

′
j)
]
1≤i,j≤2g

by (2)

=
[
TrK∗/Q(ξN (c′)g(1 + a)−1big(1 + a)−1bj)

]
1≤i,j≤2g

by (10)

=
[
TrK∗/Q(ξN (c′)NK/Q(1 + a)−1bibj)

]
1≤i,j≤2g

=
[
TrK/Q(ξN (c)bibj)

]
1≤i,j≤2g

by (8) and the fact NK/Q(1 + a) > 0

=
[
EξN (c)(bi,bj)

]
1≤i,j≤2g

by (2)

=

[
Og −Ig
Ig Og

]
.

Thus {b′
1, . . . ,b

′
2g} is a symplectic basis of (Cg/Ψ(G(c′)−1), EξN (c′)), and its associated CM-point

Z∗
c′ is given by

Z∗
c′ =

[
b
′
g+1 · · · b

′
2g

]−1 [
b
′
1 · · · b

′
g

]

=
[
Tbg+1 · · · Tb2g

]−1 [
Tb1 · · · Tbg

]
by (11)

= Z∗
c . (12)

Let α =
[
aij

]
, α′ =

[
a′ij

]
∈M2g(Z) such that

[
a1 · · · a2g

]
=
[
b1 · · · b2g

]
α =

[
b
′
1 · · · b

′
2g

]
α′. (13)

For each 1 ≤ i ≤ 2g we obtain that

2g∑

j=1

a′jibj = g(1 + a)

2g∑

j=1

a′jib
′
j by (10)

= aig(1 + a) by (13)

∈ ai(1 +NG(c)−1) by (9)

⊆ ai +NG(c)−1 because ai ∈ OK

=

2g∑

j=1

ajibj +N

2g∑

j=1

Zbj by (13).

This yields α ≡ α′ (mod N ·M2g(Z)), and hence

(1/N)α ≡ (1/N)α′ (mod M2g(Z)). (14)

Now, the result follows from (12), (14) and the property (S2) of {hM (Z)}M .
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6 Galois actions on hf(C)
Finally we shall show that if hf(C) is finite, then it lies in the ray class field Kf and satisfies the

natural transformation formula under the Artin reciprocity map for f.

Let r : K∗ →M2g(Q) be the regular representation with respect to the ordered basis {a1, . . . , a2g}
of K∗ over Q given by

a




a1
...

a2g


 = r(a)




a1
...

a2g


 (a ∈ K∗). (15)

Then it can be extended to the map r : (K∗)A →M2g(QA) of adele rings.

Lemma 6.1 (Shimura’s Reciprocity Law). Let f be an element of F which is finite at Z∗
c .

(i) The special value f(Z∗
c ) lies in Kab.

(ii) For every s ∈ K×
A we have r(g(s)) ∈ GA+ and

f(Z∗
c )

[s,K] = f τ(r(g(s)
−1))(Z∗

c ).

Proof. See [10, Lemma 9.5 and Theorem 9.6].

Theorem 6.2. If hf(C) is finite, then it belongs to Kf. And it satisfies

hf(C)σf(D) = hf(CD) for every D ∈ Cl(f),

where σf is the Artin reciprocity map for f.

Proof. Since hf(C) belongs toKab by Lemma 6.1 (i), there is a sufficiently large positive integer

M so that N |M and hf(C) ∈ Km with m = MOK . Take an integral ideal d in D relatively prime

to m by using the surjectivity of the natural map Cl(m) → Cl(f). Let {d1, . . . ,d2g} be a symplectic

basis of the principally polarized abelian variety (Cg/Ψ(G(cd)−1), EξN (cd)), and let d1, . . . , d2g be

elements of G(cd)−1 such that dj = Ψ(dj) (1 ≤ j ≤ 2g). Since G(c)−1 ⊆ G(cd)−1, we get

[
b1 · · · b2g

]
=
[
d1 · · · d2g

]
δ for some δ ∈M2g(Z) ∩GL2g(Q). (16)

We then have that
[
Og −Ig
Ig Og

]
=

[
EξN (c)(bi,bj)

]
1≤i,j≤2g

= δT
[
EξN (c)(di,dj)

]
1≤i,j≤2g

δ by (16)

= δT
[
N (c)N (cd)−1EξN (cd)(di,dj)

]
1≤i,j≤2g

δ

= N (d)−1δT

[
Og −Ig
Ig Og

]
δ.
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This claims that

δ ∈M2g(Z) ∩G+ with ν(δ) = N (d). (17)

Furthermore, if we let Z∗
cd be the CM-point associated with {d1, . . . ,d2g}, then we obtain

Z∗
cd = (δ−1)T (Z∗

c ) (18)

in a similar way to the argument in the proof of Proposition 5.1.

Let s = (sp)p be an idele of K such that
{

sp = 1 if p |M,

sp(OK)p = dp if p ∤M.
(19)

If we set D̃ to be the ray class in Cl(m) containing d, then we attain by (19)

[s,K]|Km = σm(D̃), (20)

g(s)−1
p (OK∗)p = G(d)−1

p for all rational primes p. (21)

It then follows from (15)∼(21) that for every rational prime p, the entries of each of the vectors

r(g(s)−1)p




b1
...

b2g


 and (δ−1)T




b1
...

b2g




form a basis of G(cd)−1
p = G(c)−1G(d)−1

p . So, there is a matrix u = (up)p ∈
∏
pGL2g(Zp) satisfying

r(g(s)−1) = u(δ−1)T . (22)

Since δT and

[
Ig Og

Og N (δ)Ig

]
can be viewed as elements of GSp2g(Z/MZ) by (17), there exists a

matrix γ ∈ Sp2g(Z) such that

δT ≡
[
Ig Og

Og N (δ)Ig

]
γ (mod M ·M2g(Z)) (23)

owing to the surjectivity of the reduction Sp2g(Z) → Sp2g(Z/MZ). Since r(g(s)−1)p = I2g for all

p |M by (19), we get up = δT for all p |M by (22). Hence we deduce by (23) that

upγ
−1 ≡

[
Ig Og

Og N (δ)Ig

]
(mod M ·M2g(Zp)) for all rational primes p. (24)

On the other hand, we have by (5) and (16) that
[
a1 · · · a2g

]
=
[
b1 · · · b2g

]
α = (

[
b1 · · · b2g

]
δ−1)(δα) =

[
d1 · · · d2g

]
(δα). (25)

Letting α =

[
A B

C D

]
we induce that

hf(C)σm(D̃) = hf(C)[s,K] by (20)
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= h
(1/N)

[
B
D

](Z∗
c )

[s,K] by Definition 4.4

= h
(1/N)

[
B
D

](Z)τ(r(g(s)
−1))|Z=Z∗

c
by Lemma 6.1 (ii)

= h
(1/N)

[
B
D

](Z)τ(u(δ
−1)T )|Z=Z∗

c
by (22)

= h
(1/N)

[
B
D

](Z)τ(uγ
−1)τ(γ)τ((δ−1)T )|Z=Z∗

c

= h
(1/N)

[
Ig Og

Og N (δ)Ig

][
B
D

](Z)τ(γ)τ((δ
−1)T )|Z=Z∗

c
by (24) and (S3)

= h
(1/N)γT

[
Ig Og

Og N (δ)Ig

][
B
D

](Z)τ((δ
−1)T )|Z=Z∗

c
by (S3)

= h
(1/N)δ

[
B
D

](Z)τ((δ
−1)T )|Z=Z∗

c
by (23) and (S2)

= h
(1/N)δ

[
B
D

]((δ−1)T (Z∗
c )) due to the fact δ ∈ G+ and (A1)

= hf(CD) by (18), (25) and Definition 4.4.

In particular, suppose that d = dOK for some d ∈ OK such that d ≡ 1 (mod f). Then D
is the identity class of Cl(f), and so the above observation implies that σm(D̃) leaves hf(C) fixed.

Therefore, we conclude that hf(C) lies in Kf.

Corollary 6.3. Let H be a subgroup of Cl(f) defined by

H = 〈D ∈ Cl(f) | D contains an integral ideal d of K for which

G(d) = g(d)OK∗ for some d ∈ OK such that g(d) ≡ 1 (mod NOK∗)〉,

and let KH
f be the fixed field of H. If hf(C) is finite, then it belongs to KH

f .

Proof. Let C0 be the identity class of Cl(f). Since hf(C0) ∈ Kf by Theorem 6.2, K(hf(C0)) is

a Galois extension of K as a subfield of Kf. Furthermore, since

hf(C0)σf(C) = hf(C0C) = hf(C)

by Theorem 6.2, K(hf(C0)) contains hf(C). Thus it suffices to show that hf(C0) belongs to KH
f .

To this end, let D be an element of Cl(f) containing an integral ideal d of K for which

G(d) = g(d)OK∗ for some d ∈ OK such that g(d) ≡ 1 (mod NOK∗).

Now that

(Cg/Ψ(G(d)−1), EξN (d)) = (Cg/Ψ(g(d)−1OK∗), EξN (dOK )),

we obtain

hf(C0)σf(D) = hf(D) = hf([dOK ]),

where [a] is the ray class containing a for a fractional ideal a of K. Moreover, since g(d) ≡
1 (mod NOK∗), we achieve

hf([dOK ]) = hf([OK ]) = hf(C0)
in like manner as in the proof of Proposition 5.3. This proves that hf(C0) belongs to KH

f .
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