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Abstract. We consider controllable linear discrete-time systems with perturbations and present two
methods to compute robust controlled invariant sets. The first method results in an (arbitrarily

precise) outer approximation of the maximal robust controlled invariant set, while the second method

provides an inner approximation.

1. Introduction

Before introducing the problem addressed in this paper we would like to mention that all the relevant
notation is explained in the appendix. Let us consider two matrices A ∈ Rn×n, B ∈ Rn×m with m ≤ n
and a nonempty set W ⊆ Rn. Throughout this paper, we analyze linear, time-invariant, discrete-time
systems with additive perturbations of the form

ξ(t+ 1) ∈ Aξ(t) +Bν(t) +W, W 6= ∅ (1)

where ξ(t) ∈ Rn and ν(t) ∈ Rm is the state signal, respectively, input signal and W is the set of
disturbances. In addition to the dynamics, we consider state constraints and input constraints given
by the sets

X ⊆ Rn and U ⊆ Rm. (2)

We are interested in the computation of feedback strategies [1, Chap. VIII] (in short feedbacks) that
non-deterministically map state histories to admissible inputs

µ :
⋃

T∈Z≥0

(Rn)[0;T ] ⇒ U (3)

and force the trajectories of (1) to evolve inside the state constraint set X. In the following, we use
F(U) to denote the set of all strict feedback strategies of the form (3). A feedback µ is strict, if for all
ξ ∈ ∪T∈Z≥0

(Rn)[0;T ] we have µ(ξ) 6= ∅.

Key words and phrases. Invariance, Viability, Infinite Reachability, Safety Properties, Finite Termination, δ-

Decidability.
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2 COMPUTING ROBUST CONTROLLED INVARIANT SETS OF LINEAR SYSTEMS

A trajectory of (1) with initial state x ∈ Rn and feedback µ ∈ F(U), is a sequence ξ : Z≥0 → Rn for
which there exists ν : Z≥0 → Rm so that (1) and

ν(t) ∈ µ(ξ|[0;t])

holds for all t ∈ Z≥0. We use Bx,µ ⊆ (Rn)Z≥0 to denote the set of trajectories ξ with initial state x and
feedback µ.

A set R ⊆ Rn is called robust controlled invariant (w.r.t. (1) and U) if for all x ∈ R, there exists
µ ∈ F(U) so that for all ξ ∈ Bx,µ and t ∈ Z≥0 we have ξ(t) ∈ R, or equivalently: for every x ∈ R there
exists u ∈ U so that Ax+Bu+W ⊆ R.

It is well-known [2] that the feedbacks of interest are characterized by the maximal robust controlled
invariant set [3, 4], also known as infinite reachable set [2] or discriminating kernel [5, 6], contained in
X, i.e.,

R(X) = {x ∈ Rn | ∃µ∈F(U)∀ξ∈Bx,µ∀t∈Z≥0
ξ(t) ∈ X}. (4)

The set R(X) is called maximal, since R ⊆ X being robust controlled invariant, implies R ⊆ R(X).
Given R(X), the following map characterizes all feedbacks of interest

C(x) = {u ∈ U | Ax+Bu+W ⊆ R(x)}. (5)

Theorem 1. Consider the system (1) and the constraint sets (2). Let R(X) and C be defined in (4)
and (5), respectively. Let x ∈ X, then the feedback µ ∈ F(U) satisfies

∀ξ∈Bx,µ∀t∈Z≥0
ξ(t) ∈ X iff ∀ξ∈Bx,µ∀t∈Z≥0

µ(ξ|[0;t]) ⊆ C(ξ(t)).

The result, which is given in [7, Thm. 1] and also appears in a slightly different form in [2, Prop. 3],
shows that it is sufficient to consider static feedback strategies, i.e., feedbacks of the form µ : Rn ⇒ U ,
to render the set X invariant. Moreover, and more importantly, it shows that it is sufficient to know
R(X) from which any feedback µ ∈ F(U) that enforces the state constraints X on (1) can be derived.

Let pre(R) = {x ∈ Rn | ∃u∈UAx + Bu + W ⊆ R} denote the set of states that are mapped into R
by the dynamics when the input is appropriately chosen. In [2], Bertsekas introduced the iteration

R0 = X, Ri+1 = pre(Ri) ∩X (6)

to compute the discriminating kernel and showed a variant of the following theorem.

Theorem 2. Consider the system (1) and the constraint sets (2). Let R(X) and (Ri)i∈N be defined
in (4) and (6), respectively. Suppose that X is closed and U is compact, then

R(X) = lim
i→∞

Ri. (7)

The theorem appears in a variety of different flavors in the literature, see e.g. [2, Prop. 4], [8,
Prop. 4.8], [9, Thm. 5.1], [3, Sec. 5], [10, Cor. 2] and [4, Thm. 5.2]. In [2–4, 10] the convergence of
R(X) = limi→∞Ri is shown with respect to the Hausdorff metric, provided that the constraint sets
are compact and the sets Ri (or R(X)) are nonempty. In [8, Prop. 4.8], the convergence is shown
for merely closed sets X, U with a slightly different set iteration (Ri)i∈Z≥0

in which the order of
quantification of the control and the disturbance is interchanged. We provide a proof of Theorem 2,
which considers the set iteration (6) with a possible unbounded state constraint set, with respect to
the set convergence defined in [11, Chatper 4] in the appendix. In the proof, we use the same argument
as already presented in [2], in which the compactness of U is exploited to show that the set limi→∞Ri
is robust controlled invariant.

Theorem 2 shows that the discriminating kernel R(X) can, in principle, be outer approximated by
the sets (Ri)i∈Z≥0

with arbitrary precision. Nevertheless, even if the sets (Ri)i∈Z≥0
are computable, the

approximation is not very useful since in general the sets (Ri)i∈Z≥0
are not robust controlled invariant

and it is not possible to derive a feedback from any Ri that ensures that the system always evolves
inside the state constraint set.
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However, in some cases it is possible to determine the maximal robust controlled invariant set by
the iteration (6). If there exists i ∈ Z≥0 so that two consecutive iterations in (6) result in equal sets,
i.e., Ri+1 = Ri, then Ri = R(X). In this case, we say that R(X) is finitely determined [12, Thm 2.3].
Depending on the dynamics (A,B) and the shape of X, U and W there exist conditions which ensure
that R(X) is finitely determined, see [13]. A large class of cases is covered by the following conditions.
Suppose that (A,B) is controllable, then without loss of generality, we may assume that the system is
in Brunovsky normal form, also known as Controller Form, see [14, Sec. 6.4.1]. In this representation,
if W = {0} and the sets X and U are given by a finite union of hyper-rectangles, then the maximal
control invariant set is finitely determined, see [15–17].

Unfortunately, for one of the most popular settings, where (A,B) is assumed to be controllable,
W = {0} and the sets X and U are assumed to be polytopes with the origin in the interior, R(X) is
not finitely determined. Nevertheless, in this case, one can modify the iteration (6) and set R0 = {0}
(instead of R0 = X). As a result, each set Ri is controlled invariant and in fact Ri is the i-step
null-controllable set [18, 19] and the union of the sets Ri converges to the largest null-controllable set
N(X), i.e., the set of all initial states from which the system can be forced to the origin in finite time
without violating the constrains. As Ri converges to the maximal null controllable set N(X) and the
closure of N(X) equals R(X), see [19, Prop. 1], the iteration (6) with R0 = {0} provides an algorithm
for the arbitrarily precise (inner) approximation of R(X), with the considerable advantage that the
approximation is robust controlled invariant. Moreover, this approach provides a so-called anytime
algorithm, i.e., for each iteration i ∈ Z≥0 the set Ri is controlled invariant and a feedback can be
derived, which enforces the trajectories of (1) with initial state in Ri to evolve inside the constraint set
X. Additionally, due to the convergence of Ri, the mismatch between Ri and R(X) decreases as the
computation continues.

An alternative modification of the iteration (6), which also provides an invariant approximation of
R(X), is presented in [20] and [4, Sec. 5.2]. In contrast to the approach in [18, 19] the initial set is
unchanged R0 = X, but in each iteration the successor set is computed by Ri+1 = pre(λRi) ∩X for
some fixed contraction factor λ ∈ ]0, 1[. The computation of (Ri)i∈Z≥0

terminates, once the inclusion

Ri ⊆ λ̂Ri+1 holds for λ̂ ∈ ]λ, 1[. Given that X, U and W are polytopes with the origin in its interior,
it is shown in [4, Prop. 5.9] that there exists i ∈ Z≥0 so that the termination condition is satisfied

Ri ⊆ λ̂Ri+1 and Ri is robust controlled invariant. Furthermore, if there exists a λ-contractive set in
X (see [4, Def. 4.18] and [4, Thm. 4.48]) then it is guaranteed that Ri is nonempty.

In this paper, we assume that the dynamics (A,B) are controllable and the constraint sets X and
U are compact. Under these assumptions, we propose two schemes for the inner and outer invariant
approximation of the discriminating kernel. For the invariant outer approximation of R(X), we leave
the set iteration (6) untouched, but introduce a stopping criterion, similar to (5.10) in [4], by

Ri ⊆ Ri+n + εB. (8)

We show that for every ε ∈ R>0 there exists an i ∈ Z≥0 so that (8) holds. Based on the set Ri+n, we
derive a δ-relaxed robust control invariant set R, i.e., R(X) ⊆ R ⊆ X + δB and R is robust controlled
invariant w.r.t. (1) and U + δB. Here δ = cε, where c ∈ R≥0 is a constant that is known a-priori and
the relaxation of the constraints can be made arbitrarily small by choosing an appropriate ε ∈ R>0.
Moreover, we show that the set R converges to R(X) as ε decreases to zero. Note that this approach
can also be used in an anytime scheme. In that situation, at each iteration i ≥ n, we determine ε ∈ R≥0

so that (8) holds. If the constraint relaxation δ is tolerable, we stop the computation, otherwise, we
continue with Ri+1.

For the inner invariant approximation of R(X), we modify the iteration (6) to

R0 = X, Ri+1 = preρ(Ri) ∩X (9)

where the map preρ is defined for ρ ∈ R≥0 by

preρ(R) = {x ∈ Rn | ∃u∈U : Ax+Bu+W + ρB ⊆ R}. (10)
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This approach is very much in spirit of the scheme presented in [20], in which the set sequence is
constructed by Ri+1 = pre(λRi) ∩ X. Given ρ ∈ R≥0, we show that there exists i ∈ Z≥0 so that
Ri ⊆ Ri+1 + ρB holds and that Ri+1 is robust controlled invariant.

Compared to existing approaches, we do not impose any restrictions on the shape of the constraint
sets [15–17], nor do we assume that they contain the origin in its interior [18–20], but simply consider
compact constraint sets. Specifically, we allow sets given by finite unions of polytopes, i.e., the sets
Xi ⊆ Rn, Uj ⊆ Rm, Wk ⊆ Rn with i ∈ [1; I], j ∈ [1; J ], k ∈ [1;K] and I, J,K ∈ Z≥1 are polytopes and

X =
⋃

i∈[1;I]

Xi, U =
⋃

j∈[1;J]

Uj , W =
⋃

k∈[1;K]

Wk. (11)

In this case, the sets (Ri)i∈Z≥0
are computable [10, Sec. III.B] and the proposed scheme for the outer

invariant approximation is δ-complete [21]: Let δ ∈ R>0, (A,B) be controllable and X, U , W 6= ∅
be defined in (11), then the proposed algorithm either returns an empty set Ri+n, in which case the
problem has no solution, i.e., R(X) = ∅, or we obtain a δ-relaxed robust controlled invariant set R.

Constrains sets in the form of (11) arise in a variety of different situations, see e.g. [22], and are
particularly important in the synthesis problems with respect to safe linear temporal logic specifica-
tions [17].

2. Outer Invariant Approximation

We begin with a lemma which shows that the stopping criterion (8) is valid.

Lemma 1. Consider the system (1) and the constraint sets X and U given in (2). Let (Ri)i∈Z≥0
be

defined according to (4). Suppose that X and U are compact, then for any ε ∈ R>0 there exists i ∈ Z≥0

so that (8) holds.

Proof. Let ε ∈ R>0. From Theorem 2 and the boundedness of R(X) and (Ri)i∈N we obtain that
limi→∞ dH(R(X), Ri) = 0, see [11, pp. 117]. Hence, we can pick i∗ ∈ Z≥0 so that dH(R(X), Ri) ≤ ε/2
holds for all i ≥ i∗ and we obtain the inequality dH(Ri∗+n, Ri∗) ≤ dH(Ri∗+n, R(X))+dH(R(X), Ri∗) ≤
ε which implies that (8) holds. �

In the following, we make use of δ-constraint i-step null-controllable sets Nδ
i ⊆ Rn, i.e., the set of

initial states from which the unperturbed system ξ(t+ 1) = Aξ(t) +Bν(t) can be forced to the origin
while satisfying the input and state constraints U = δB and X = δB. Let δ ∈ R>0, then we define the
sequence of sets (Nδ

i )i∈Z≥0
recursively by

Nδ
0 = {0},

Nδ
i+1 = {x ∈ Rn | ∃u∈δB Ax+Bu ∈ Nδ

i } ∩ δB.
(12)

Note that for a fixed δ ∈ R>0 it is straightforward to compute the sets (Nδ
i ) by polyhedral projection

and intersection [4]. We use the following technical lemma about δ-constraint i-step null-controllable
sets.

Lemma 2. Consider the system (1) with W = {0}. Let Nδ
n be defined according to (12). Suppose that

(A,B) is controllable, then

∃c∈R>0
∀ε∈R>0

: εB ⊆ Nδ
n with δ = cε. (13)

Proof. We show that there exists c ∈ R>0 such that for every x ∈ Rn there exists ν : [0;n[ → Rm so
that the trajectory of ξ(t + 1) = Aξ(t) + Bν(t) with ξ(0) = x satisfies ξ(n) = 0, and for all t ∈ [0;n[
we have |ξ(t)| ≤ c|x| and |ν(t)| ≤ c|x|. This implies the assertion of the lemma, since it is easy to
see that ξ(t) ∈ Nδ

n−t with δ ≥ c|x| holds for all t ∈ [0;n]. The trajectory at time n is given by
ξ(n) = Anx + CV , where C is the controllability matrix [B, AB . . . An−1B] and V is a vector in Rmn
with V = [ν(n− 1)>, . . . , ν(0)>]>. Let C′ ∈ Rn×n denote a matrix containing n linearly independent
columns of C. Such a matrix always exists, since (A,B) is controllable and hence C hast full rank.
Given x ∈ Rn, we determine the input sequence V by setting the entries V ′ of V associated with C′
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to V ′ = −(C′)−1Anx and the remaining entries of V to zero. It follows that ξ(n) = Anx + CV = 0.
Moreover, |V ′| ≤ c′|x| with c′ = |(C′)−1An| holds and |ν(t)| ≤ c′|x| for all t ∈ [0;n[ follows. From

ξ(t) = At +
∑t−1
s=0A

t−(s+1)Bν(s) follows that |ξ(t)| ≤ (|At| +
∑t−1
s=0 |At−(s+1)B|c′)|x| holds and the

assertion follows. �

Corollary 1. Let zj ∈ Rn, j ∈ [1; 2n] denote the vertices of the unit cube B. A constant c ∈ R>0 that
satisfies (13) is given by c = maxj∈[1;2n] cj where cj is obtained by solving the linear program

min
cj ,u0,...,un−1

cj

s.t. Anzj +

n−1∑
k=0

An−k−1Buk = 0

∀i∈[0;n−1] |ui| ≤ cj

∀i∈[1;n−1]

∣∣∣∣∣Aizj +

i−1∑
k=0

Ai−k−1Buk

∣∣∣∣∣ ≤ cj .
(14)

Note that |x| denotes the infinite norm of x ∈ Rn and the corollary follows simply by the linearity
of the trajectories of ξ(t+ 1) = Aξ(t) +Bν(t).

We proceed with the main result related with the outer invariant approximation.

Theorem 3. Consider the system (1) and constraint sets (2). Let (A,B) be controllable and consider
the sequences of sets (Ri)i∈Z≥0

and (Nδ
i )i∈Z≥0

given according to (4), respectively (12), with ε ∈ R>0,
δ = cε and c satisfying (13). Let i∗ ∈ Z≥0 be the smallest index, so that (8) holds. The set

R :=
⋃

j∈[1;n]

Ri∗+j +Nδ
j (15)

is a subset of X + δB and is robust controlled invariant w.r.t. (1) and U + δB.

Proof. Consider the set R defined in (15). Due to the choice of δ = cε with c satisfying (13) we have
εB ⊆ ∪j∈[1;n]N

δ
j ⊆ δB, which together with Ri ⊆ X implies that R ⊆ X + δB. Moreover, (8) and (13)

imply Ri∗ ⊆ R. We show that for every x ∈ R there exists u ∈ U + δB so that Ax + Bu + W ⊆ R
which implies that R is robust controlled invariant, see [15, Prop. 2]. Let x ∈ R, then there exists
j ∈ [1;n] so that x ∈ Ri∗+j +Nδ

j . Let x = xr + xn so that xr ∈ Ri∗+j and xn ∈ Nδ
j . Then there exists

ur ∈ U and un ∈ δB so that Axr + Bur + W ⊆ Ri∗+j−1 and Axn + Bun ∈ Nδ
j−1 and it follows that

Ax+Bu+W ⊆ Ri∗+j−1+Nj−1 where u = ur+un ∈ U+δB. If j ≥ 2, it follows from the definition of R
that Ax+Bu+W ⊆ R. If j = 1, we use (8) and (13) to get Ax+Bu+W ⊆ Ri∗ ⊆ Ri∗+n + εB ⊆ R. �

Due to the construction of R it is straightforward to show that by decreasing the stopping parameter
ε ∈ R>0 the set R defined in (15) converges to R(X).

Corollary 2. Consider the hypothesis of Theorem 3 and suppose that X and U are compact. Let Rε
denote the set R defined in (15) for parameter ε ∈ R>0. For any sequence (εj)j∈Z≥0

in R>0 with limit
0 we have R(X) = limj→∞Rε.

Proof. Consider the sequence (Ri)i∈Z≥0
according to (4). Let i∗(ε) denote the smallest i∗ ∈ Z≥0 such

that (8) holds for a fixed ε ∈ R>0. Consider a sequence (εj)j∈Z≥0
in R>0 that converges to zero.

Due to the choice of δj = cεj in Theorem 3, we see that (δj)j∈Z≥0
converges to zero and hence,

limj→∞ dH(Ri∗(εj), Rεj ) = 0. Since dH satisfies the triangular inequality for compact subsets of Rn, it
suffices to show limj→∞ dH(R(X), Ri∗(εj)) = 0. Let us first point out that εj′ < εj implies i∗(εj′) ≥
i∗(εj). In case that i∗(εj)→∞ as j →∞ we use Theorem 2 to conclude limj→∞ dH(R(X), Ri∗(εj)) = 0.
Suppose that i∗(εj) → i with i ∈ Z≥0, so there exists j′ ∈ Z≥0 such that i∗(εj) = i for all j ≥ j′.
Therefore dH(Ri, Ri+n) ≤ εj for all εj with j ≥ j′, which implies Ri = R(X). �
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Remark 1. Consider the system (1) and compact constraint sets (2). Let (A,B) be controllable and
fix ε ∈ R>0. Suppose that we have an algorithm to iteratively compute Ri and check the inclusion (8).
It follows from Lemma 1 that there exists i ∈ Z≥0 so that (8) holds. If Ri+n = ∅, then there does
not exist a feedback to enforce the constraints X and U , in particular R(X) = ∅. If Ri+n 6= ∅, due
to the controllability of (A,B) we can solve the linear program (14) and compute the sets (Nδ

i+j)j∈[1;n]

with which we construct the set R according to (15). Then it follows from Theorem 3 that R is robust
controlled invariant and a static feedback to enforce the constraints X + δB and U + δB is derived from
the map

K(x) = {u ∈ U + δB | Ax+Bu+W ⊆ R}.
Since R(X) ⊆ R it is straightforward to see that the map defined in (5) satisfies C(x) ⊆ K(x) for all
x ∈ R.

3. Inner Invariant Approximation

For the inner approximation of R(X) we fix ρ ∈ R≥0 and analyze the sequence

Rρ0 = X, Rρi+1 = preρ(R
ρ
i ) ∩X (16)

where preρ is defined in (10). The stopping criterion, as proposed in (5.10) in [4], is given by

Rρi ⊆ R
ρ
i+1 + ρB. (17)

Theorem 4. Consider the system (1) and compact constraint sets (2). Let (Rρi )i∈Z≥0
be defined

in (16). For every ρ ∈ R>0 there exists an index i ∈ Z≥0 such that (17) holds and Rρi+1 is robust
controlled invariant w.r.t. (1) and U .

Proof. The proof of the existence of i ∈ Z≥0 so that (17) holds, follows by the same arguments as the
proof of Lemma 1 and is omitted here.

Let x ∈ Rρi+1 = preρ(R
ρ
i )∩X. There exists u ∈ U such that Ax+Bu+W + ρB ⊆ Rρi ⊆ R

ρ
i+1 + ρB

which implies that Ax+Bu+W ⊆ Kρ
i+1 and it follows form [15, Prop. 2] that Ri+1 is robust controlled

invariant. �

In the following theorem we show that if the discriminating kernel is robust with respect to the
strengthened constraint sets

X̄ε = {x ∈ Rn | x+ εB ⊆ X}
Ūε = {u ∈ Rm | u+ εB ⊆ U}

(18)

with ε ∈ R>0, then there exists a parameter ρ ∈ R>0 so that the discriminating kernel associated with
X̄ε and Ūε is contained in Rρi+1.

Theorem 5. Consider the system (1), (A,B) being controllable and compact constraint sets (2). Let
(Rρi )i∈Z≥0

be defined in (16). Given ε ∈ R>0, we define

R̄ε = {x ∈ Rn | ∃µ∈F(Ūε)∀ξ∈Bx,µ∀t∈Z≥0
ξ(t) ∈ X̄ε}

with X̄ε and Ūε given in (18). For every ε ∈ R>0, there exists ρ ∈ R>0 so that R̄ε ⊆ Rρi+1 holds, where
i ∈ Z≥0 satisfies (17).

Proof. Let us consider the system

ξ(t+ 1) = Aξ(t) +Bν(t) +W + ρB. (19)

Due to the definition of preρ, it follows that discriminating kernel Rρ(X) defined w.r.t. (19) and

constraints X and U , satisfies Rρ(X) ⊆ Rρi for every i ∈ Z≥0. Let ε ∈ R>0. In the following, we show
that there exists a set K which contains R̄ε and ρ ∈ R>0 so that K ⊆ X is robust controlled invariant
w.r.t. (19) and U , which implies R̄ε ⊆ K ⊆ Rρ(X) and the assertion follows.

Given ε ∈ R>0, let δ = ε/n and ρ ∈ R>0 so that cρ = δ, where the constant c is chosen according to
Lemma 2 (which is applicable, since (A,B) is controllable). Consider Nδ

i , i ∈ [0;n] defined according
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to (12). Note that (13) implies that ρB ⊆ Nδ
n. We define the set K := R̄ε +

∑n
i=1N

δ
i . Note that

Nδ
i ⊆ δB holds for every i ∈ [1;n], which together with R̄ε + εB ⊆ X and δ = ε/n, implies K ⊆ X. We

show that K is robust controlled invariant w.r.t. (19) and U . Let x ∈ K, then there exists xr ∈ R̄ε and
xi ∈ Nδi , i ∈ [1;n] so that x = xr+

∑n
i=1 xi. Since R̄ε is robust controlled invariant, we can pick ur ∈ Ūε

so that Axr +Bur +W ⊆ R̄ε (see [15, Prop. 2]), which implies that Axr +Bur +W + ρB ⊆ R̄ε +Nδ
n.

Moreover, for xi ∈ Nδ
i , we pick ui ∈ δB so that Axi +Bui ∈ Nδ

i−1. Let u = ur +
∑n
i=1 ui. As ur ∈ Ūε

and δ ≤ ε/n we have u ∈ U . Additionally, it is easy to see that Ax+Bu+W + ρB ⊆ K, which shows
that K is robust controlled invariant w.r.t. (19) and U . �

4. An Illustrative Example

We proceed with a simple example taken from [15] to illustrate our results. We consider the sys-
tem (1) with parameters

A =

[
0 1
1 1

]
, B =

[
0
1

]
, W =

{[
1
1

]
α ∈ R2

∣∣∣∣ α ∈ [−1, 1]

}
.

The constraint sets are given by U = [−100, 100] and X = {x ∈ R2 | Hx ≤ h0} with

H =

[
1 1
−3 1

0 −1

]
, h0 =

[
100
−50
−26

]
.

For this particular example we are able to analytically compute the set iterations (Ri)i∈Z≥0
defined

in (6). Specifically, the sets (Ri)i∈Z≥0
and W are polytopes and we follow the approach in [12, Sec. 3.3]

to compute pre(Ri) in terms of the Pontryagin set difference Ri ∼W = {x ∈ Ri | x+W ⊆ Ri}, i.e.,

pre(Ri) = {x ∈ R2 | ∃u∈UAx+Bu ∈ (Ri ∼W )}.
For R0 = X, we apply [23, Thm. 2.4], and obtain the set difference by R0 ∼W = {x ∈ R2 | Hx ≤ h′0}
with

h′0 = [98, −52, −27]
>

and pre(R0) follows simply by projecting the polytope{
(x, u) ∈ R3

∣∣∣∣∣
[
HA HB

0 1
0 −1

] [x
u

]
≤

[
h′0

100
100

]}
onto its first two coordinates. After the intersection of pre(R0) with R0 we obtain R1 = {x ∈ R2 |
Hx ≤ h1} with

h1 =
[
100, −50, −26− 1

3

]>
.

We repeat this computation and obtain the sequence of sets by Ri = {x ∈ R2 | Hx ≤ hi} with

hi =

100, −50, −25−
i∑

j=0

1
3i

>
whose limit is given by R(X) = {x ∈ R2 | Hx ≤ h} with

h = [100, −50, −26.5]
>
.

The boundary of the maximal robust controlled invariant set R(X) is illustrated in Figure 2 and 3 by
the dotted line.

Note that R(X) is not finitely determined, nor does X contain the origin in its interior. Hence, it is
not possible to apply any of the methods in [4, 15–20], to invariantly approximate the maximal robust
controlled invariant set. In the following we apply the results from Sections 2 and 3 to compute outer
and inner invariant approximations of R(X).

Outer approximation. We start by solving the linear program (14) to determine the constant
c = 2 which satisfies (13). The δ-constraint i-step null controllable sets Nδ

j for j ∈ [1; 2] are illustrated
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in Figure 1. From the previous consideration it is straightforward to see that Ri ⊆ Ri+2 + 4
3i+2B holds

Figure 1. The δ-constraint 1-step
(thick black bar) and 2-step (dark
gray polytope) null controllable
sets Nδ

j containing the ball δ
2B

(light gray box).

δ δ/2 0 δ/2 δ

δ

δ/2

0

δ/2

δ

δ
2B

Nδ
1

Nδ
2

for all i ∈ Z≥0. Hence, in each iteration the stopping parameter is given by ε = 4/3i+2. We illustrate
the robust controlled invariant set defined in (15) for i = 0 and i = 3 relative to R(X) in Figure 2. For
i = 3, δ = 8/243 and R in Figure 2 is indistinguishable form R(X).

20 40 60 80

30

40

50

60

20 40 60 80

30

40

50

60

Figure 2. Invariant outer approximations of R(X) given according to (15) for i = 0
(left) and i = 3 (right). The dotted line indicates R(X).

Inner approximation. In order to obtain an inner approximation of R(X), we compute the
sequence of sets (Rρi )i∈Z≥0

defined in (16). Similar as before, we compute preρ(R
ρ
i ) by using the

Pontryagin set difference, i.e.,

preρ(R
ρ
i ) = {x ∈ R2 | ∃u∈UAx+Bu ∈ (Ri ∼ (W + ρB))}.

We apply again [23, Thm. 2.4] to compute Ri ∼ (W + ρB). Two invariant inner approximations of
R(X) with parameters ρ = 1 and ρ = 1/10 are illustrated in Figure 3.

20 40 60 80

30

40

50

60

20 40 60 80

30

40

50

60

Figure 3. Invariant inner approximations of R(X) with parameters ρ = 1 (left) and
ρ = 1/10 (right). The dotted line indicates R(X).

All the computations are conducted with MATLAB using the freely available Multi-Parametric

Toolbox http://people.ee.ethz.ch/~mpt/3/.

http://people.ee.ethz.ch/~mpt/3/


COMPUTING ROBUST CONTROLLED INVARIANT SETS OF LINEAR SYSTEMS 9

References

[1] M. Barid and I. Capuzzo-Dolcetta. “Optimal control and viscosity solution of Hamilton-Jacobi-Bellman
equations”. In: Birkäuser (1997).
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[9] C. E. T. Dórea and J. C. Hennet. “(A, B)-invariant polyhedral sets of linear discrete-time systems”. In:
Journal of Optimization Theory and Applications 103.3 (1999), pp. 521–542.
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Appendix

Notation and Terminology. We use N, Z and R to denote the set of natural numbers, integers and
real numbers, respectively. We annotate those symbols with subscripts to restrict those sets in the
obvious way, e.g. R>0 denotes the positive real numbers and N = Z≥1. Given a set X and n ∈ N we
use Xn to denote the n-fold Cartesian product of X with itself, i.e., Xn = X×· · ·×X. We use Rn×m,
with n,m ∈ N, to denote the vector space of real matrices with n rows and m columns.

For a, b ∈ R∪{±∞} with a ≤ b, we denote the closed, open and half-open intervals in R∪{±∞} by
[a, b], ]a, b[, [a, b[, and ]a, b], respectively. For a, b ∈ N ∪ {±∞} and a ≤ b, we use [a; b], ]a; b[, [a; b[, and
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]a; b] to denote the corresponding intervals in N ∪ {±∞}. In Rn, the relations <, ≤, ≥, > are defined
component-wise, e.g. a < b iff ai < bi for all i ∈ [1;n].
f : X ⇒ Y denotes a set-valued map of X into Y , whereas f : X → Y denotes an ordinary map; see

[11]. If f is set-valued, then f is strict if f(x) 6= ∅ for every x ∈ X. Given f : X ⇒ Y or f : X → Y ,
the restriction of f to a subset M ⊆ X is denoted f |M . The set of maps X → Y is denoted Y X , e.g.
the set of functions ξ : [0; t[→ X, for fixed t ∈ N, is denoted by X [0;t[.

Given two setsQ,P ⊆ Rn, we define the Minkowski set addition byQ+P = {y ∈ Rn | ∃q∈Q,∃p∈P y =
q + p}. If Q = {q}, we slightly abuse notation and use q + P = {q} + P . For λ ∈ R≥0 we define
λP = {x ∈ Rn | ∃p∈P x = λp}.

We use |x| to denote the infinite norm of x ∈ Rn and Bn = {x ∈ Rn | |x| ≤ 1} denotes the unit
ball in Rn centered at the origin. We drop the superscript, if the dimension is clear from the context.
The Hausdorff distance between two sets Q,P ⊆ Rn is defined by dH(Q,P ) = inf{η ∈ R≥0 | P ⊆
Q+ ηB ∧Q ⊆ P + ηB}.

A polyhedron P is given by a matrix H ∈ Rp×n and vector h ∈ Rp with P = {x ∈ Rn | Hx ≤ h}. A
bounded polyhedron is called polytope.

Let (Ri)i∈Z≥0
be a sequence of sets in Rn. The outer limit and the inner limit are given by the sets

lim sup
i→∞

Ri = {x ∈ Rn | lim inf
i→∞

d(x,Ri) = 0}

lim inf
i→∞

Ri = {x ∈ Rn | lim sup
i→∞

d(x,Ri) = 0}.

If the outer and inner limits are equal, we say the limit exists and limi→∞Ri := lim supi→∞Ri =
lim infi→∞Ri. See [11, Ex. 4.2].

Consider A ∈ Rn×n, B ∈ Rn×m with m ≤ n. We say that (A,B) is controllable if the controllability
matrix C = [B, AB . . . An−1B] has full rank, see e.g. [14].

Proof of Theorem 2. We use the following lemma which is derived in [12] with the identity (2.15).

Lemma 3. Consider the system (1) and the feedbacks F(U) for some U ⊆ Rm. Let (Ri)i∈Z≥0
be

defined in (6) for some X ⊆ Rn. Then x ∈ Ri iff ∃µ∈F(U)∀ξ∈Bx,µ∀t∈[0;i] ξ(t) ∈ X.

Proof of Theorem 2. Let us first show R(X) ⊆ limi→∞Ri. Let x ∈ R(X). Since there exists
µ ∈ F(U) so that for all ξ ∈ Bx,µ and t ∈ Z≥0 we have ξ(t) ∈ X, we see that x ∈ Ri for all i ∈ Z≥0

and hence, x ∈ limi→∞Ri.
We proceed to show R∗ := limi→∞Ri ⊆ R(X) ⊆ X. In particular, we show that for every x ∈ R∗

there exists u ∈ U so that Ax+ Bu+W ⊆ R∗ holds. Then we can easily derive a feedback µ so that
for all x ∈ R∗, ξ ∈ Bx,µ and t ∈ Z≥0 we have ξ(t) ∈ X (see [10, Prop. 1, ii)]) which implies R∗ ⊆ R(X).

Let x ∈ R∗. By the definition of the limit, see [11, Def. 4.1] there exists a sequence (xi)i∈Z≥0

in Rn that converges to x with xi ∈ Ri ⊆ X for all i ≥ i′ with i′ ∈ Z≥0 sufficiently large. Since
X is closed, it is clear that x ∈ X and hence R∗ ⊆ X. Let (ui)i∈Z≥0

be a sequence in U so that
Axi + Bui + W ⊆ Ri−1 for all i ≥ i′. Since U is compact we can assume w.l.o.g. that (ui)i∈Z≥0

converges to some u ∈ U , otherwise we restrict our analysis to a convergent subsequence. We are going
to show that Ax + Bu + W ⊆ R∗. Let x′ ∈ Ax + Bu + W . Since (Axi + Bui)i∈Z≥0

converges to
Ax + Bu, we see that there exists a sequence x′i ∈ Axi + Bui + W ⊆ Ri−1 that converges to x′. It
follows that there exists a (sub)sequence (x′i)i∈Z≥0

that converges to x′ with x′i ∈ Ri−1 for all i ≥ i′.
Again using the definition of the limit, we see that x′ ∈ R∗, which shows Ax + Bu + W ⊆ R∗ and
thereby, completes the proof.


	1. Introduction
	2. Outer Invariant Approximation
	3. Inner Invariant Approximation
	4. An Illustrative Example
	References
	Appendix
	Notation and Terminology
	Proof of Theorem ??


