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We propose a new detection strategy for gravitational waves (GWs) below few Hertz based on
a correlated array of atom interferometers (AIs). Our proposal allows to reduce the Newtonian
Noise (NN) which limits all ground based GW detectors below few Hertz, including previous atom
interferometry-based concepts. Using an array of long baseline AI gradiometers yields several esti-
mations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km
baseline of current optical detectors, a NN rejection of factor 2 could be achieved, and tested with
existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise,
we show that a 10-fold or more NN rejection is possible with a dedicated configuration. Considering
a conservative NN model and the current developments in cold atom technology, we show that strain
sensitivities below 1×10−19/

√
Hz in the 0.3−3 Hz frequency band can be within reach, with a peak

sensitivity of 3 × 10−23/
√

Hz at 2 Hz. Our proposed configuration could extend the observation
window of current detectors by a decade and fill the gap between ground-based and space-based
instruments.

I. INTRODUCTION

Gravitational Wave (GW) detection remains today
one of the challenges in fundamental physics and as-
trophysics. State-of-the-art GW detectors consisting in
giant Fabry-Perot Michelson interferometers [1–5] now
reach a sensitivity that justifies the expectations for a
direct detection of GWs in the next few years [6]. Never-
theless, low frequency GW sources will remain hidden for
ground based detectors for which the observation band-
width will be limited to frequencies above few Hz [7].
Still, reaching sub-Hz sensitivities could provide a deci-
sive asset towards GW astronomy as the sources in this
band produce more powerful and durable signals [8]. In
this purpose, hybrid detectors based on two distant Atom
Interferometers (AIs) interrogated by a laser propagating
over a long baseline have been proposed (see, e.g. [9]).
Using as test masses free falling atoms instead of sus-
pended mirrors could resolve most of the technical lim-
itations presented by optical GW detectors at low fre-
quency, such as residual seismic noise or thermal noise of
suspension systems.

Like all ground based detectors, current atom inter-
ferometry proposals will nevertheless suffer from the so-
called Newtonian Noise (NN) [10]. NN consists in fluctu-
ations of the terrestrial gravity field which creates a tidal
effect on separated test masses and is indiscernible from
the effect of a GW [10, 11]. NN is therefore considered as
a fundamental limit for any ground based GW detectors
at frequencies below a few Hz. Various methods have
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been considered to circumvent this problem [12–15]. In
this communication we propose a new concept which uses
an array of AIs configured to reject the NN.
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FIG. 1. (a) A single gradiometer using two AIs at positions
X and X + L, interrogated by a common laser beam. (b)
An array of N AI gradiometers used for sampling the spatial
variations of the NN. The separation between the gradiome-
ters is δ. The array allows repeating N times the experiment
sketched in (a) and averaging the NN. The use of two orthog-
onal arms injected by a common laser enables to reject laser
frequency noise (the second arm in the y direction is only
partially represented here for clarity).

Unlike previous single strainmeter/gradiometer pro-
posals where the NN and the GW signal are indiscernible,
the array of AIs allows to extract the GW signal by aver-
aging over several realizations of the NN. The NN rejec-
tion can be further enhanced by exploiting the correlation
spatial behaviour of the gravity acceleration. With the
3 − 4 km baseline of current best optical detectors, our
method reaches a NN rejection of about 2; this factor
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is comparable to what obtained other passive methods
(e.g. [14]). The principle of such rejection can be tested
in current AI array projects [16]. We focus in this com-
munication on a 16 km baseline detector that takes full
advantage of our method and enables strong NN rejec-
tion by more than a decade. This could complement the
current optical interferometers development program by
opening the ∼ 0.3− 3 Hz observation window.

II. PRINCIPLE

A single AI gradiometer (Fig. 1a) consists of two AIs
separated by a baseline L and interrogated by a com-
mon laser beam of frequency ν close to the atomic
transition frequency (see, e.g. [9]). We consider a 3
light-pulse AI (with T the time between the successive
pulses) using Bragg diffraction of atoms from a stand-
ing wave produced by retro-reflecting the interrogation
laser. The output phase of each AI originates from
the local phase difference ∆ϕ between the two counter-
propagating beams at the time of the pulse and the posi-
tion of the atom [17]. The retro-reflection configuration
gives immunity to laser phase noise induced by position
noise of the input laser system. We consider Large Mo-
mentum Transfer (LMT) diffraction [18], where the atom
absorbs n photons from one beam and emits n photons in
the counter-propagating beam. When the interrogation
laser is pulsed, the atom undergoes diffraction with a mo-
mentum change of n × 2h̄k along the laser propagation
direction (k = 2πν/c is the laser wave-vector). A phase
n∆ϕ (X, t) is imprinted on the diffracted component.

After the 3 pulses, the output phase of the AI reads

∆φx (X, t) = ε (X, t) + 2nk × (1)[(
∆ν(t)

ν
+
h(t)

2

)
(L−X) + ∆x2(t)−∆x (X, t)

]
⊗ s(t)

where ε (X, t) represents the detection noise (e.g. atom
shot noise) on the output phase of an AI using atoms
placed at position X. s (t) is the sensitivity function of
the 3 pulse AI [19] and relates the AI output phase to
the second temporal derivative of the local laser phase
difference ∆ϕ. ∆x2(t) is the position noise of the retrore-
flecting mirror and ∆x(X, t) represents the motion of the
atoms along the laser beam direction due to the fluctua-
tions of the local gravitational acceleration.

Taking the differential phase ψ(X, t) = ∆φx (X, t) −
∆φx (X + L, t) between two AIs separated by the dis-
tance L and neglecting laser frequency noise yields:

ψ(X, t) = 2nk

[
Lḧ(t)

2
+ ax (X + L, t)− ax (X, t)

]
⊗ sα(t)

+ ε (X, t)− ε (X + L, t) , (2)

where sα(t) is the AI sensitivity function to acceleration,
given by s̈α(t) = s(t). Importantly, position noise ∆x2(t)
of the retro-reflecting mirror has been rejected in this gra-
diometer configuration. Eq. (2) shows that fluctuations

of the local gravity field result in an acceleration signal
ax(X, t) = ∆ẍ(X, t) whose gradient will have the same
signature as that of the GW (see Ref. [17] for a more
rigorous calculation).

The differential phase of Eq. (2) can be written as
ψ(η̃) = H(t) + η̃(t) where H(t) is the GW signal and
η̃(t) the noise (detection noise and NN) at position
X. Our idea is to extract H(t) using a Monte-Carlo
method: the GW signal is obtained by averaging over
several samples of the noise η̃(t), which formally reads
H =

∫
Ψ(η̃)dη̃. To this aim, we consider N realizations

{ψ(Xi, t) ≡ ψi(t)}i=1..N of the single gradiometer and
compute the average signal

HN (t) =
1

N

N∑
i=1

ψi(t), (3)

which represents a non biased approximation to the GW
signal of interest, i.e. Lh (t) /2. Assuming that the N
realizations are independent, the residual noise on the
GW measurement is reduced by

√
N ,

σHN =

√
2ση√
N

, (4)

with ση =
√
σ2
a + σ2

ε the standard deviation (s.d.) result-
ing from the NN and detection noise which we considered
as independent variables of s.d. σa and σε, respectively.
We assumed uncorrelated noise between the 2 AIs of a
single gradiometer, yielding the

√
2. This is always valid

for the detection noise and applies for the NN when the
gradiometer baseline L is much larger than the NN cor-
relation length. Since the GW signal increases with L, a
very long gradiometer baseline will be considered in the
following, which validates the assumption of uncorrelated
NN bewteen the two AIs. As the N gradiometer mea-
surements have been assumed independent, the AI array
brings to a

√
N rejection factor for the NN (and for the

detection noise).
We study an implementation of this Monte Carlo sam-

pling method in which N different gradiometer measure-
ments are simultaneously realized in parallel thanks to an
array of spatially distributed AIs. The proposed configu-
ration is chosen to enhance the NN reduction via variance
reduction [20]. For that, we optimize the AI array dis-
tribution, i.e. the signal spatial sampling, in order to
benefit from the spatial behavior of NN correlations. We
show that, in a given frequency band, a significant addi-
tional rejection factor can be gained with respect to the
standard

√
N of Eq. (4).

III. IMPLEMENTATION AND SENSITIVITY
OF THE DETECTOR

The implementation is sketched in Fig. 1(b). We con-
sider a symmetric configuration consisting of 2 orthog-
onal arms of same length and interrogated by the same
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laser. For a GW with (+) polarization, laser frequency
noise is therefore rejected (see Appendix VI A for more
details). Each arm of total length La consists in a series
of gradiometers of baseline L = XN+i − Xi which are
separated by the distance δ. The geometrical parameter
δN reflects that the baseline L and the separation δ be-
tween the gradiometers are independant. For 1 ≤ i ≤ N
we define

ψi (t) = [∆φx (Xi, 0, t)−∆φx (XN+i, 0, t)]

− [∆φy (0, Yi, t)−∆φy (0, YN+i, t)] (5)

and compute the output signal HN (t) of the detector
using Eq. (3). It contains the GW signal h(t), as well as
the detection noise ε(t), and the NN a(X, t). To derive
the detector strain sensitivity curve, e.g. the minimum
detectable GW power spectral density (PSD) Sh(ω) [21,
22], we compute the PSD of the detector output, SHN (ω),
using Eqs.(2), (3) and (5) :

SHN (ω) = (2nkL)2ω4Sh(ω)|ŝα(ω)|2

+ (2nk)2Sa(ω)|ŝα(ω)|2 +
4Sε(ω)

N
. (6)

Here ŝα(ω) = 4 sin2 (ωT/2) /ω2 is the Fourier transform
of the AI sensitivity function to acceleration sα(t), and
Sε(ω) is the PSD of the detection noise. The reduction
by the factor N reflects the uncorrelated detection noise
in the different AIs. The ratio between the first term (the
GW contribution) and the last two terms (the noise PSD)
of Eq.(6) defines the SNR of our detection. If we consider
a minimum sensitivity with a SNR of 1, we obtain the
strain sensitivity function

Sh (ω) =
Sa(ω)

ω4L2
+

4Sε(ω)

16NL2 (2nk)
2

sin4 (ωT/2)
. (7)

The NN PSD Sa(ω) contains two contributions: one
given by the gravity acceleration correlations between
AIs at two positions {Xi, Xj} in the same arm, and one
given by the correlations between AIs at two positions
{Xi, Yj} in orthogonal arms. The calculation of these
contributions is detailed below.

Before looking into the details of the AI array rejec-
tion method, we review the sources of NN, which are re-
lated to the modification of the mass distribution around
the detector. We focus on the two main sources pre-
viously identified for ground based detectors: (i) seis-
mic noise related to elastic waves propagating within
the ground [10, 23, 24] (seismically induced Newtonian
Noise - SNN); (ii) air mass fluctuations in the near at-
mosphere [10, 25]. We base our calculation on the Saul-
son model [10]: for each frequency f = ω/2π, the ground
is subdivided into cells of fluctuating density whose size
corresponds to the half wavelength Lρ(ω) = vu/2f of
a propagating compression wave of velocity vu. More
specifically, we use an upgrade of the Saulson model that
guarantees the mass conservation by assuming an anti-
correlation between adjacent cells [23]. We plot in Fig.2

the spatial behavior of the gravity acceleration corre-
lation between two distant points. Mass conservation
yields a negative minimum of the correlation function
for a characteristic length, which as been reported for
the seismic noise in Ref. [26]. The main other sources
of low frequency NN are those related to air pressure
fluctuations caused by wind induced air turbulence [10]
(Infrasound Newtonian Noise, INN), and to the effect of
turbulence induced frozen cells of random temperature
dragged by the wind [25]. For a detector at depth H, the
latter effect has a cut-off frequency fc = vwind/ (4πH)
[25] which is out of the detector band for H > 100 m
(vwind ' 10− 20 m/s is the wind velocity).
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FIG. 2. Spatial behavior of the normalized NN correlations
between two distant points separated by the relative distance
x = |Xj − Xi|/Lρ(ω), where Lρ(ω) is the NN correlation
length. The anti-correlation is a consequence of mass conser-
vation between adjacent cells of fluctuating density.

We now give some details on the calculation of the
NN contribution Sa(ω) appearing in Eq. (7), which we
express as:

Sa (ω) =
1

N2

2N∑
i,j=1

C‖ (Xi, Xj , ω)+
1

N2

2N∑
i,j=1

C⊥ (Xi, Yj , ω) ,

(8)
with the single arm component

2N∑
i,j

C‖ (Xi, Xj) ≡ 4

N∑
i,j

Cxx(Xi, Xj)−4

N∑
i,j

Cxx(Xi, Xj+N )

(9)
and the crossed arms component

2N∑
i,j

C⊥ (Xi, Xj) ≡ −2

N∑
i,j

Cxy(Xi, Yj) (10)

−2

N∑
i,j

Cxy(Xi+N , Yj+N ) + 4

N∑
i,j

Cxy(Xi+N , Yj).
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In Eqs. (9) and (10), Cxy is the Fourier transform of the
gravity acceleration correlation function between two AIs
in arms (x, y), and we hid the ω dependency for clarity.
We assumed isotropy of the NN and that the detector is
surrounded by a homogeneous medium for both seismic
and infrasound-air density fluctuations. We also consider
the effects of the SNN and INN as independent, so that
the incoherent sum of the two contributions provides an
upper bound of our detector sensitivity. With this model,
the correlation Cxx between two points in the same arm
is given by

C(u,a)
xx (Xi, Xj , ω) ' G2L(u,a)

ρ (ω)2∆ρ2
(u,a)(ω)×J

(
x

(u,a)
ij (ω)

)
,

(11)

with x
(u,a)
ij (ω) =

|Xi−Xj |
L(u,a)
ρ (ω)

. Here G is the gravitational

constant, (u, a) are indices denoting the seismic and in-

frasound NN contribution and L(u,a)
ρ (ω) = πvu,a/ω is

the corresponding correlation length, with vu and va be-
ing respectively the speed of seismic waves in the under-
ground and the speed of sound in the air. The function
J (x) is a 3D integral which represents the spatial be-
haviour of NN correlations between two distant points
Xi and Xj . It is represented in Fig. 2 against the rela-
tive distance x. A similar expression as Eq. (11) holds
for Cxy, the correlation between two points {Xi, Yj} in
orthogonal arms.

Following Refs. [8, 10], the density fluctuations for SNN

and INN are respectively given by ∆ρ2
u(ω) =

ρ2u∆a2s(ω)
πω2v2u

and ∆ρ2
a(ω) =

ρ2a
γ2p2a

∆p2(ω). Here ρu = 2300 kg/m
3

is the

mean underground density, ∆as(ω) the seismic accelera-

tion noise, ρa = 1.3 kg/m
3

the mean air density, 1/γ2 '
1/2 the air coefficient of adiabatic compression, pa the air
pressure and ∆p2(ω) its PSD. We consider seismic waves
with typical speed for P waves vu = 2 km/s correspond-
ing for example to porous rocks [27], yielding Lρ = 1 km
at 1 Hz. The air pressure fluctuation spectrum used for
the INN is ∆p2(ω) = 0.3 × 10−5/(f/1 Hz)2 Pa2/Hz (as
used by Saulson [10]). The seismic noise for the SNN is
1× 10−17 m2s−4/Hz at 1 Hz as often reported in under-
ground sites, see e.g. [28].

The gradiometer separation δ determines the NN re-
jection efficiency. For instance, if δ is much larger than
the NN correlation length Lρ(ω) for all ω, then the suc-
cessive measurement points are uncorrelated and Eq. (8)
reduces to terms i = j, yielding:

S(u,a)
a (δ∞, ω) ' 4

N
G2L(u,a)

ρ (ω)2∆ρ2
(u,a)(ω)×J

(
0
)
. (12)

This situation, which corresponds to the standard Monte-
Carlo method (see Eq. (4)), already determines a signifi-

cant NN rejection of
√
N (in noise amplitude). Choosing

an optimal value for δ, it is then possible to benefit from
the anti-correlation in the NN (corresponding to negative
values in Fig. 2). In this case, the Monte-Carlo variance
reduction [20] increases the NN rejection of Eq. (12). The
choice of the AI array sampling pattern (i.e. δ, δ0 and δN )

sets the correlation between the measurement points and
thus the amount of additional NN rejection compared to√
N . The INN and SNN rejection prefactors depend on

the shape of J(x), i.e. on the characteristics of the site
[29].
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FIG. 3. (Color) Strain sensitivity curve for an AI array with
N = 80, δ = 200 m, δ0 = δN = 500 m, L = 16.3 km
and La = 32.6 km. The AI phase noise is −140dB rad2/Hz
with the interrogation time T = 0.3 s, and n = 1000 LMT
beam splitters. Green: detection noise; dotted-dashed black
(dashed blue): INN (SNN) for two test masses separated by
the baseline L; solid black line (blue): residual INN (SNN)
after NN rejection with the AI array. Red: overall sensitivity
curve.

We illustrate our discussion with a configuration of
N = 80 gradiometers of baseline L = 16.3 km, sepa-
rated by the distance δ = 200 m. We plot the expected
strain sensitivity function in Fig. 3, using Eqs. (7)–(10).
We use a detection noise PSD Sε = −140 dB rad2/Hz
which corresponds, for example, to Nat = 1012 atoms
per second and a 20 dB reduction (in variance) in the
detection phase noise by using entangled atomic states.
We assumed LMT beam splitters with n = 1000. Similar
parameters have been considered in other AI proposals
(see, e.g. [9]). The total AI interrogation time is chosen
to 2T = 0.6 s, which is compatible with the high sam-
pling frequencies and the absence of dead times required
for GW detection by using joint interrogation sequences
[30].

The NN reduction offered by the AI array is maximal
around 1 Hz where it exceeds 30 for the INN and 10 for
the SNN, yielding a shot noise limited strain sensitiv-
ity level of 3 × 10−23/

√
Hz at 2 Hz. At low frequency

(<∼ 0.3 Hz), the SNN correlation length becomes much
greater than δ which results in a high correlation between
the different gradiometer measurements, thereby pre-
venting the NN rejection. At high frequencies (> 2 Hz),
the detector is limited by detection noise.



5

IV. DISCUSSION.

As shown in Fig. 4, such performances would allow
observations in the frequency band ∼ 0.3 − 3 Hz. This
frequency band is covered neither by existing detectors
nor by next generation detectors such as the Einstein
Telescope [7] or ESA’s L3 gravity observation mission
eLISA [31], despite the presence of several astrophysical
sources [32].
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FIG. 4. The strain sensitivity of the proposed AI array covers
the frequency region ∼ 0.3−3 Hz, where future ground-based
(Einstein Telescope - ET) and space-based (eLISA) detectors
are blind. The dashed line represents an envelope of the pro-
posed AI array sensitivity function at frequencies above 3 Hz
and corresponds to an average detector response for different
interrogation times T .

To conclude, we show that an array of AIs in an appro-
priate configuration can allow ground based GW detec-
tion in the ∼ 0.3 − 3 Hz decade by overcoming the cur-
rent limitation imposed by NN. The main idea consists
in using a distribution of long baseline AI gradiometers
to average the NN to zero. We show that a further NN
reduction can be achieved by exploiting the NN corre-
lation properties to configure the AI array. While the
present concept can be tested on existing apparatuses,
our method will take full advantage on the recent and
future development in atom interferometry. More ad-
vanced schemes might also lead to sensitivity improve-
ments. For example, the measurement of higher order
spatial derivatives of the gravity field [33], or the imple-
mentation of more complex spatial distributions of AIs
could achieve higher NN rejections, depending on the
site-dependent NN correlations. Detectors based on AI
arrays could then help filling the blind frequency band
between ground-based and space-based detectors.
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VI. APPENDIX

A. Requirement on the seismic isolation of the
beam splitting optics

In the proposed configuration consisting of 2 orthog-
onal arms (Fig.1(b)), the beam splitting optical system
that distributes the laser to the 2 arms introduces an
asymmetry. Position noise (e.g. seismic noise) of the
splitting optics results in laser frequency noise which will
affect one arm and not the other: the phase ϕL of the
laser beam propagating in the y direction picks up the
position noise δy of the splitting optics, which results in a
frequency noise contribution ∆ν = 1

2π
dϕL
dt = kfδy (with

Fourier frequency f). According to Eq. (1), such fre-
quency noise yields a contribution to the relative phase
signal of the AI gradiometers in the y arm equal to
2nkL × ∆ν(t)/ν = 2nkL × 2πfδy/c, to be compared
with the GW signal 2nk × Lh. Considering a minimum
sensitivity with a SNR of 1 yields the requirement on
the position noise δymin of the splitting optics given by
δymin = hc/2πf . To reach a detector peak sensitiv-

ity of 3 × 10−23/
√

Hz at f = 2 Hz, the seismic noise

must be below δymin(2 Hz) ≈ 7 × 10−16 m/
√

Hz. At
f = 0.3 Hz, the AI array can feature a sensitivity of
1 × 10−19/

√
Hz if the seismic noise is mitigated below

δymin(0.3 Hz) ≈ 2 × 10−11 m/
√

Hz. Such seismic noise
levels can be obtained with a dedicated low frequency
suspension system (see, e.g. [34]). Finally, the contribu-
tion resulting from NN induced position fluctuations of
the splitting optics is negligible at the targeted sensitivity
level.

B. Newtonian Noise rejection efficiency

Fig. 5 illustrates the NN rejection efficiency of the AI
array. The dashed line shows the rejection in the case
of a standard Monte Carlo average illustrating the

√
80

rejection factor. The plain line shows the rejection using
the Monte Carlo variance reduction method exploiting
the spatial behavior of the gravity acceleration correla-
tion function. The maximum rejection is obtained when

the NN correlation length L(u,a)
ρ = vu,a/2f approches

the distance corresponding to the anti-correlation of the
gravity acceleration correlation function, which, from
Fig. 2, is obtained for xac ≈ 1.3. This condition on the
length translates in the frequency where the maximum
rejection is observed, given by f = vu,axac/2δ and equals
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1.1 Hz for the INN and 6.5 Hz for the SNN.
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FIG. 5. Noise rejection factor of the SNN (top) and the INN
(bottom) for the implementation of the AI array described in
the main text.
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