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Abstract

In the standard electroweak theory that describes nature, the Chern-Simons num-

ber associated with the vacua as well as the unstable sphaleron solutions play a

crucial role in the baryon number violating processes. We recall why the Chern-

Simons number should be generalized from a set of discrete values to a dynamical

(quantum) variable. Via the construction of an appropriate Hopf invariant and the

winding number, we discuss how the geometric information in the gauge fields is

also captured in the Higgs field. We then discuss the choice of the Hopf variable in

relation to the Chern-Simons variable.
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1 Introduction

Since the discovery of the Higgs Boson in 2012 [1,2], the standard theory of electromagnetic and

weak interactions, namely the SU(2)×U(1) theory, is essentially established. This electroweak

theory is in full agreement with all known observations. Furthermore, there is not the slight-

est indication from available data that, except for the neutrino sector, this theory needs any

extension or modification beyond its present form. However, features of its non-perturbative

properties involving interesting geometry remain to be tested experimentally.

Due to the non-Abelian nature of the SU(2) (Yang-Mills) gauge fields, the vacuum struc-

ture of the theory is non-trivial. Following the construction of the instanton solution in 4-

dimensional Euclidean spacetime with non-trivial topological Chern-Pontryagin (CP) index [3],

’tHooft pointed out that a non-zero CP number leads to a change of the vacuum state together

with a change of the baryon (or atomic) number B and a change of the lepton number L [4, 5].

(Recall that each of the 3 quarks in a proton or a neutron has baryon number B = 1/3 and

an electron has one unit of lepton number.) This non-conservation of (B + L) in nature is

expected to have deep implications on the matter-anti-matter asymmetry of our universe [6–8],

a possibility that has been extensively studied [9, 10].

Typical (B+L)-violating processes take place via tunneling, so it is understood that the CP

number should be generalized to a continuous variable that is both dynamical and quantum.

However, attempts to carry out this construction for pure gauge theory [11] faces challenges like

the size scaling property (thus requiring a cut-off) and Euclidean nature of instantons as well

as the running of the gauge coupling.

Fortunately in the electroweak theory, there is a complex scalar doublet field coupled to the

SU(2) gauge fields. Under spontaneous symmetry breaking, this Higgs field acquires a vacuum

expectation value v = 246 GeV that provides a mass/length scale to the theory and the coupling

stays small. A non-trivial static solution of the electroweak theory (in Minkowski spacetime) can

be constructed. This static solution, namely the sphaleron, is unstable [12, 13]. It corresponds

to the peak of the potential barrier that separates the vacua, as shown in FIG 1, where the

height of the barrier (i.e., the sphaleron energy) is 9.0 TeV and the resulting potential V (µ) is

periodic. In FIG 1, the minima are vacua with Chern-Simons (CS) value µ/π at integer values

while the peaks have µ/π at half-integer values.

It is well known that the CS number NCS is closely related to the gauge invariant Chern-

Pontryagin CP number N . In FIG 1, we see that quantum tunneling from one vacuum state |n〉
(at integer n = µ/π) to another can happen via N = ∆NCS: |n〉 → |n+N〉 [3–5]. In studying

the dynamics of the theory, we are interested in the transition from one vacuum to another

via quantum tunneling. One can always study the time-dependent field equations in Minkowski

spacetime [14–16], but this approach is rather complicated and little progress has been made. An

alternative approach to study these quantum tunneling transitions is to generalize the CS number

to a continuous dynamical quantum variable. (This property has been implicitly assumed in the
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literature but never worked out explicitly until recently [17].) To this goal, we need an action

or Lagrangian for the CS variable. With the potential V (µ) already worked out, we need only

to find the kinetic term for the CS variable; for the canonical kinetic form, we need only to find

the mass coefficient m and then canonically quantize the CS variable [17]. This approach allows

us to explore the underlying physics in a direction not possible before.

Figure 1: The periodic potential V (µ) as a function of µ/π. Here we have chosen µ/π = 0 as the

reference vacuum. The vacua are labelled by integer values while a barrier height, corresponding

to the sphaleron static solution of Esph = 9.0 TeV, is at a half-integer value of µ/π.

It turns out that the choice of the continuous CS variable is gauge-dependent and measure

dependent. A necessary condition is that this CS variable has to agree with the gauge-invariant

(under small gauge transformation) CS number at half-integer values. From the geometric point

of view, the choice is arbitrary when moved away from half-integer values. So we may consider

NCS = µ/π + F (µ), where F (µ) = 0 at µ/π ∈ Z/2. Based on the discussion below, it seems

that F (µ) = − sin(2µ)/2π is a natural choice. Fortunately, physics consideration do suggest a

simpler choice, namely, NCS = µ/π, i.e., F (µ) = 0. Starting with the Lagrangian L, canonical

quantization of the CS variable µ/π yields the one-dimensional Schrödinger equation,

L =
1

2
m

(
∂Q

∂t

)2

− V (Q) →
(
− 1

2m

∂2

∂Q2
+ V (Q)

)
Ψ(Q) = EΨ(Q). (1.1)

where Q = µ/mW is chosen to have the dimension of length (with units so ~ = c = 1) so it mimics

a spatial coordinate in standard quantum mechanics. Recently, the mass has been determined

to be m = 17.1 TeV [17]. In general, choosing a non-zero F (µ) results in a Q-dependent mass

m(Q), which may even diverge for some values of Q [17].

Notice that both the CP number N and the CS number NCS are functions of the gauge

fields Aaµ(x) only. Physically the Higgs field couples to the gauge fields through the equations

of motion, so it is expected that the Higgs field also contains relevant topological information.

Now, the electroweak phase transition and spontaneous symmetry breaking are driven by the

Higgs field, which leads to mass generation for the gauge fields and the fermions. In particular,

the dynamics of the electroweak phase transition and the (B + L)-violation are essential to the

generation of the matter-anti-matter asymmetry of our universe. So it should be most convenient
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to link the change of (B+L) value directly to the Higgs field instead of via the gauge fields. To

this end, we like to find the relevant topological invariants that are functions of the Higgs field

only. In this paper, we review the winding number W of the Higgs field (π3(S3)) and construct

the appropriate Hopf invariant for the Higgs field (π3(S2)).

We can define a Hopf invariant HA that takes only (half-)integer values (π3(S2) = Z/2) and

another Hopf variable H that takes continuous values. It is well known that the Hopf invariant

measures the linking of the S1s fibered over the base S2, which takes integer values. At half

integers, we see that the S1s touch at a point, the cross-over that signifies the change of the

linking number. That is, the half-integer Hopf invariant quantity is also gauge-invariant. Gener-

alizing the Hopf invariant to other values for the Hopf variable is clearly gauge-dependent. With

an appropriate choice of gauge, we can relate it to N and NCS as well as their generalizations

to continuous values. We discuss how HA and H differ. In summary, we identify the winding

number W of the Higgs field with NCS, so (choosing |n = 0〉 as the reference vacuum), we have

−HA =W = NCS = N = ∆B/3 = ∆L/3 (1.2)

mWQ = µ/π = H = W = NCS = N

where the top formulae apply when the quantities take discrete integer values as ∆B and ∆L

are the discrete changes of the baryon number and the lepton number, respectively. The bottom

formula is when the topological quantities are extended to continuous dynamical variables, as

µ is treated as a real continuous variable. In short, the variable Q in Eq.(1.1) also stands for

the winding number W or the Hopf variable H. In this note we focus only on the SU(2) gauge

fields and the Higgs doublet. We like to go over the reasoning on the above identification (1.2).

The construction of the discrete Hopf invariant HA and the Hopf variable H in this paper

is new. To discuss the relation of its extension to the CP and CS variables, we briefly review

these topological variables for the sake of completeness, i.e., the presentation here can be found

in the literature, though it may be somewhat scattered so putting the relevant parts together

may be of use to some readers. The rest of this paper is organized as follows. In Sec. 2, we

give a brief review of the relevant part of the electroweak model, where the quarks and leptons

sectors and the U(1) gauge part are ignored. In Sec. 3, we present the non-trivial static solution

and discuss the relation between the CP number and the CS number. In Sec. 4, we discuss

the winding number and the Hopf invariant as well as their relation to the CS number. In Sec.

5, we compare the different gauge choices and discuss the issues. In Sec. 6, we explain the

justification of the choice of the suitable CS variable, namely NCS = W = H = µ/π. In Sec 7,

we make a number of comments. Some details are relegated to an appendix.
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2 Background

Here we like to discuss a geometric aspect of the electroweak model that is relevant for quantum

tunneling. In this study, the Abelian U(1) gauge field plays only a peripheral role, so we focus

on the Yang-Mills (non-Abelian) SU(2) gauge potential Aµ(x) and the Higgs (complex scalar)

doublet field Φ only. In terms of the 2 × 2 Pauli matrices σa, a = 1, 2, 3, we have (setting

c = ~ = 1),

L = −1

2
Tr[FµνF

µν ] +
1

2
(DµΦ)†DµΦ− λ

4

(
Φ†Φ− v2

)2
(2.1)

where g is the gauge coupling with αW = g2/4π = 1/30, and µ, ν are spacetime indices,

µ, ν = 0, 1, 2, 3.

Fµν = F a
µν

σa

2
= ∂µAν − ∂νAµ − ig [Aµ, Aν ] ,

DµΦ = ∂µΦ− igAµΦ, (2.2)

where Aµ(x) = Aaµσ
a/2. (Note that the index µ is unrelated to the µ variable to be introduced.)

Under a gauge transformation,

Aµ → UAµU
−1 +

i

g
U∂µU

−1, Φ→ UΦ (2.3)

where U(x) is an arbitrary 2× 2 unitary matrix, each of the 3 terms in the Langrangian density

L (2.1) is invariant as well as the following equations of motions,

DµD
µΦ = −λ(Φ†Φ− v2)Φ, (DµFµν)

a = − i
4
g
[
Φ†σaDνΦ− (DνΦ)†σaΦ

]
, (2.4)

where DαFµν = ∂αFµν − ig [Aα, Fµν ].

After spontaneous symmetry breaking, Φ acquires a vacuum expectation value Φ = (0, v)T

where v = 246 GeV, and the gauge bosons develop a mass mW = gv/2 = 80 GeV while the

Higgs Boson has mass mH =
√

2λv = 125 GeV. Note that the Higgs potential in L (2.1) is the

only renormalizable potential one can write down and its parameters λ and v are fixed by data.

If we allow a more general Higgs potential, some of the quantitative details will be changed, but

not the geometric properties to be discussed in this note.

Following the homotopy group property π3(SU(2)) = Z, the instanton solutions in 4-

dimensional Euclidean space R4 have

N =
g2

16π2

∫
d4xTr

[
FµνF̃

µν
]

=

∫
d4x∂µK

µ,

F̃ µν =
1

2
εµνρσFρσ

Kµ =
g2

32π2
εµνρσ

(
F a
νρA

a
σ −

g

3
εabcAaνA

b
ρA

c
σ

)
. (2.5)
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where the Chern-Pontryagin (CP) number N takes only integer values.

Notice that we have also expressed the gauge-invariant Tr
[
FµνF̃

µν
]

in terms of the Chern-

Simons current Kµ, which is, however, gauge-dependent. Let us consider some localized non-zero

field strength Fµν . Using Stokes theorem, we can express

N(t0) =

∫
d3xK0

∣∣∣∣t=t0
t=−∞

+

∫ t0

−∞

∫
S

~K · d~S. (2.6)

where S is the surface area as the radius r →∞. If we take t0 → +∞, we recover N in Eq.(2.5),

i.e., N(t0 = +∞) = N . This expression is valid even at finite time t0.

If ~K decreases fast enough at large distances, then the last term in Eq.(2.6) vanishes so the

Chern-Simons number

NCS(A) = N(t0) =

∫
d3xK0

∣∣∣∣
t=t0

(2.7)

where we have also assumed for simplicity that K0 = 0 at t = −∞.

Under a gauge transformation (2.3) (and in differential form notation),

NCS(AU) = NCS(A) +
ig

8π2

∫
Tr d

[
U †(dU)A

]
+

1

24π2

∫
Tr
[
(UdU †)3

]
(2.8)

For sufficiently regular Ai and U , the second term integrates to zero and the last term is simply

the winding number of U .

For pure gauge

Aµ =
i

g
U∂µU

†

Kµ =
2

3
εµνρσTr

[
U∂νU

†U∂ρU
†U∂σU

†]
Writing U in terms of the unit radial vector r̂ = ~r/r and magnitude µ, we have

U = exp(iµΩ(r)r̂ · ~σ) = I cosµΩ(r) + ir̂ · ~σ sinµΩ(r) (2.9)

and the last term in the CS number (2.8) becomes

W (U) = NCS(A) =
1

24π2

∫
Tr
[
(UdU †)3

]
=

1

2π

(
2µΩ(r)− sin 2µΩ(r)

)∣∣∣r=∞
r=0

=
1

2π

(
2µ− sin 2µ

)
(2.10)

where Ω(r) = 0 at r = 0 and Ω(r)→ 1 as r →∞. Notice that this winding number W (U) of U

takes half-integer values for half-integer multiples of µ/π. That is, under certain conditions, the

CS number can be extended from integer values to half-integer values. The above formula also

suggests that an extension to continuous values is also possible. Since this is gauge dependent,

it is important to find a guideline in the choice of a physically useful generalization.
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3 Static Solutions

Since we live in Minkowski space R3,1, it is convenient to introduce a corresponding number n in

Minkowski space. Let us now find static solutions to the equations of motion (2.4) of this model,

limiting ourselves to the parameter range 0 ≤ µ ≤ π, so µ parametrizes the possible solutions.

We shall choose the gauge where A0(x) = 0. One finds that there are 3 static solutions :

(1) µ = 0. This vacuum solution is the simplest solution, where Aj(x) = 0 and Φ(x) = v(0, 1)T .

(2) µ = π. It turns out that the vacuum is degenerate, that is, there is another vacuum where,

at µ = π, Aj(x) = U †∂jU is a pure gauge (e.g., U given in Eq.(2.9)). This has winding number

N = 1.

(3) µ = π/2. In addition, the equations of motion yields a static solution at µ = π/2. This

“sphaleron” solution is an unstable extremum (saddle point) solution of the model [12]. Let us

discuss this solution in some detail. We shall consider different gauge choices as r →∞ for the

sphaleron solution: Φ takes either a hedgehog (i.e., spherically symmetric) form (H), or is always

aligned (A), that is, Φ asymptotes to the aligned/unitary vacuum, Φ→ (0, v)T . In covering the

3-sphere S3, one can have either one pole or 2 poles (see FIG 2). We shall consider the (1H),

(2H) and (2A) gauges below.

Consider the following ansatz in the (2H) gauge,

ΦH(µ, r, θ, ϕ) = v[1− h(r)]

(
0

cosµ

)
+ vh(r)U

(
0

1

)
,

Âi(µ, r, θ, ϕ) =
i

g
f(r)U∂iU

†, Â0 = 0, U(µ, r, θ, ϕ) = exp(iµr̂ · ~σ),

lim
r→0

f(r)

r
= h(0) = 0, f(∞) = h(∞) = 1.

(3.1)

In this ansatz, the Higgs field far from the origin goes from an aligned form to a hedgehog form

as µ = 0 → µ = π/2 : Φ∞H (µ = 0) =
(

0
v

)
changes to Φ∞H (µ = π/2) = ir̂ · ~σ

(
0
v

)
. The static

equations of motion at µ = π/2 become,

r2f ′′ = 2f(1− f)(1− 2f) +m2
W r

2h(f − 1),(
r2h′

)′
= 2h(1− f)2 +

1

2
m2
Hr

2(h2 − 1)h. (3.2)

Numerically, the 2 functions are well approximated by f(r) ≈ 1− sech(1.154mW r) and h(r) ≈
tanh(1.056mW r) [17]. To summarize, we see that the system has no static solution unless

µ/π ∈ Z/2.

3.1 Recovering the Chern-Pontryagin Number

For this static solution with A0 = 0, we see that the gauge-invariant TrFµνF̃
µν = 0. To recover

the CP number that links the 2 vacua, i.e., µ = 0 and µ = π (see FIG 1), we must introduce
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Figure 2: Here the 3-sphere S3
SU(2) is spanned by the point p(µ, θ, ϕ) where 0 ≤ µ < π and the

usual polar angles (θ, ϕ) spans a 2-sphere. The sphaleron corresponds to µ = π/2, when the

2-sphere attains maximum size (the equator in the sketch). This unstable 2-sphere shrinks to a

point at either vacuum (µ = 0 or π). There are two ways to cover the 3-sphere : (a) the one

pole case, and (b) the 2 poles case. (a) The top case illustrates the smash product S1∧S2 = S3,

where the black circles shrink to zero. This results in an S3 with only one pole. (2) The bottom

case illustrates how to get a ([0, π]×S2)/({0, S2}∪{π, S2}) = S3 with 2 poles, namely the north

and the south poles.

either a non-zero A0 or a time-dependence somewhere. It is simple to treat the parameter µ as

a function of time µ(t), so that TrFµνF̃
µν 6= 0. For µ(t = −∞) = 0 and µ(t = +∞) = π, the

integration over spacetime for N (2.5) yields the CP number N = 1, as expected. With µ(t) a

function of time, we now can generalize the CP number N to become a function of t0 or µ(t0).

This also means that µ(t) becomes a dynamical variable.

The sphaleron is the static solution where the potential barrier reaches its peak value Esph = 9

TeV (see FIG 1). Classically, if we start with exactly this energy Esph and µ(t = −∞) = 0, µ(t)

will increase until it reaches the top and stay there at µ(t =∞) = π/2 (when µ’s kinetic energy

drops to exactly zero, hence static). In this case, we find that the CP number N = 1/2. It is

clear that there is no static solution for non-half-integer µ/π.

Given that the sphaleron solution exists, it is interesting to look for field configurations

between the sphaleron and vacuum. However, there is no such solution to the static field

equation of motion since we are not searching for the potential extrema in field space. It is
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appropriate to look for solution that minimize the potential under a constrained CS number.

This was studied in Ref [18] and is reviewed in the appendix below. A simpler approach is to

smoothly deform (parametrize) the field configuration from the sphaleron to vacuum, that is,

one uses the above solution for f(r) and h(r) to extrapolate to other values of µ/π [12]. (As we

shall see, this turns out to be good enough for our discussion).

In this sense, we can calculate the CP number due to the change in µ. First note that Aar = 0,

εijk tr [Ai∂jAk] = εirk tr [Ai∂rAk] = εirk tr [AiAk] ff ′ = 0,

εijkεabcA
a
iA

b
jA

c
k =

1

6
det(A) = 0 ⇒ K0 = 0, (3.3)

where Ai = i
g
U∂iU

−1. Therefore, we obtain

N =
g2

16π2

∫
d4xTr

[
FµνF̃

µν
]

=

∫
dt

∫
~K · d~S =

2µ− sin 2µ

2π
f 2

∣∣∣∣r=∞
r=0

=
2µ− sin 2µ

2π
, (3.4)

which reproduces the integers at µ = 0, π and half-integer at µ = π/2. Note that the CP number

is gauge-invariant for µ/π ∈ Z/2. Notice also that µ(t) may be treated as a function of either

Euclidean or Minkowski time.

3.2 A Different Gauge

In order to express the Lagrangian (2.1) in terms the dynamical variable µ(t), one has to treat

the gauge problem carefully. When time dependence is introduced to Aµ and Φ, A0 is in general

non-zero and it is determined by Gauss law. Physically, the role of A0 is to gauge away the

non-physical rotations. For instance, the fields Ai and Φ in ansatz (3.1) are rotating as µ varies

even far from the sphaleron. In the following, we would like to work in another “gauge” and

stay with A0 = 0. This still does not minimize the kinetic term but has little effect in the

phenomenology discussed in [17].

Let us switch to another ansatz where the Higgs field always stays in the unitary (i.e, aligned)

vacuum far from the origin (i.e., the (2A) gauge),

ΦA(µ, r, θ, ϕ) = Ũ †ΦH , Ai(µ, r, θ, ϕ) = Ũ †ÂiŨ +
i

g
Ũ †∂iŨ , A0 = 0,

Ũ(µ, r, θ, ϕ) = exp(iµΩ(r)r̂ · ~σ), Ω(0) = 0, Ω(r →∞)→ 1 exponentially. (3.5)

Note that Ω(r) can be any function satisfying the above condition since it gives the same energy

functional as the hedgehog ansatz. It is because the above ansatz is a gauge transformation of

the hedgehog ansatz in the static setup. If one wants to work in the gauge rAr = 0, we can go

to a limit where Ω(r) is a step function of r such that Ũ = U except at r = 0. However, when

µ is promoted to a function of time, µ(t), we have to take extra care in
∫

trF ∧ F since this

ansatz is not really a gauge transformation,

g2

16π2

∫
d4xTr

[
FµνF̃

µν
]

=
2µ− sin 2µ

2π

(
f 2 + 2(f − f 2)Ω

) ∣∣r=∞
r=0

=
2µ− sin 2µ

2π
. (3.6)
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It turns out that it gives the same N as in the hedgehog ansatz due the the boundary condition

of f(r) (3.1). We can also find the same result by using the CS form. At the spatial infinities,

the ansatz always stays at the aligned/unitary vacuum ΦT = (0, v)T . One can calculate the CS

number of the ansatz,

NCS =

∫
d3xK0 =

2µΩ− sin(2µΩ) + 4f sinµ sin(µΩ) sin(µ− µΩ)

2π

∣∣∣∣r=∞
r=0

=
2µ− sin 2µ

2π
. (3.7)

Since ~K = 0 in the static gauge, we obtain N = NCS.

Note that we can start with the (2H) gauge and obtain the same result using (2.8). Since

K0 = 0 in the 2H gauge and the second term in (2.8) vanishes as a total derivative due to the

regularity of A,
∫
d3xK0 = 1

24π2 tr
∫

(ŨdŨ−1)3. The ansatz is in the unitary vacuum at spatial

infinities, Ai(|x| → ∞)→ 0 exponentially due to Ω(r), so one concludes that,∫
~K · d~S = 0 ⇒ N =

g2

16π2

∫
d4xTr

[
FµνF̃

µν
]

=

∫
d3xK0

∣∣∣∣t=t0
t=−∞

=
2µ− sin 2µ

2π
, (3.8)

if we set the CS number density K0 of the past reference vacuum to be zero.

4 Topology in the Higgs Field

Both the CP number N and the CS number NCS as well as their generalizations to continuous

values are functions of the gauge fields Aµ(x) only; they contain geometric information about

the gauge fields. It is interesting to see what geometric information is contained in the Higgs

field. This is of great practical interest as phenomena such as finite temperature effects on

the electroweak phase transition and spontaneous symmetry breaking and mass generation are

all encoded in the Higgs field and these features play a crucial role in the matter-anti-matter

generation via the sphaleron in the early universe.

On one hand, the equations of motion couple the gauge fields to the Higgs field, so we expect

that some geometric properties of the gauge field will be transported to the Higgs field. On the

other hand, there are 3× 4 = 12 gauge fields Aaµ while only 2 complex scalar fields in the Higgs

doublet. In terms of the degrees of freedom, there are 6 degrees of freedom in Aaµ while only

4 degrees of freedom in the Higgs field; so it is interesting to see how much of the geometric

properties can be realized in the Higgs field alone. Here we like to consider the topological

properties of the Higgs field and compare them to that of the gauge fields. In particular, we

review the winding number W coming from π3(S3) of the Higgs field. We also construct the

appropriate Hopf invariant from π3(S2) of the Higgs field and relate it to N and NCS.
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4.1 π3(S
3) in the Higgs Field

If we write the Higgs field as Φ = vh(~x)U(~x)ξ, where h(~x) is the magnitude of the Higgs field,

U(~x) is a SU(2) unitary matrix and ξ is a constant spinor. This complex doublet may be

expressed as a 4 real component vector Φ to yield a 4-component unit vector Φ̂ = Φ/|Φ|, i.e.,

Φ̂†Φ̂ = 1, which spans a 3-sphere S3. Then Φ̂ = Uξ is a map Φ̂ : R3 → S3. If Φ̂(x→∞) goes to

a constant spinor, one can stereographically project R3 ∪ {∞} to S3. In this sense, the map Φ̂

falls into the homotopy class of π3(S3). By choosing ξ =
(

0
1

)
, U can be constructed from Φ̂ by,

U =

(
Φ̂∗2 Φ̂1

−Φ̂∗1 Φ̂2

)
. (4.1)

We can obtain the winding number,

W (U) =
1

24π2

∫
tr(UdU−1)3

4.2 Hopf Mapping π3(S
2)

Given any unit spinor Φ̂, Φ̂†Φ̂ = 1, one can construct a Hopf mapping,

η : S3
Φ̂
→ S2, Φ̂ 7→ n̂ = Φ̂†~σΦ̂. (4.2)

where n̂ = Φ̂†~σΦ̂ is a 3-component unit vector, i.e., n̂ · n̂ = 1 due to the completeness relation

~σαβ · ~σγδ = 2δαδδγβ − δαβδγδ. So n̂ generates a S2 and Hopf fibration has S2 as base with S1 as

fiber, where the circles link once for Hopf invariant H = 1.

What we are interested in is the composite map η ◦ Φ̂ : R3 ∪ {∞} → S2, which falls into

π3(S2) when the spatial infinities are identified. In the following we just use n̂(~x) to represent

this function. The Hopf curvature is given by,

bi =
1

2
εijkεabcn

a∂jn
b∂kn

c = εijk∂jak, ai = −2iΦ̂†∂iΦ̂, (4.3)

where the second equality comes from the completeness relation. For instance, in (2A) gauge,

we have araθ
aϕ

 =


2µΩ′ cos θ − h′ cos θ sin 2µ

(h2 sin2 µ+cos2 µ)
sin θ[sin(2µΩ)(h2 sin2 µ−cos2 µ)+h sin 2µ cos(2µΩ)]

(h2 sin2 µ+cos2 µ)

−2 sin2 θ(h sinµ cos(µΩ)−cosµ sin(µΩ))2

h2 sin2 µ+cos2 µ

 (4.4)

The Hopf invariant is given by [19]

H =
1

16π2

∫
a ∧ da, (4.5)

where a = aidx
i is a one form. It can be shown that this is equivalent to W (U) [20]. We first

define,

Aai
σa

2
= iU∂iU−1, m̂ = ξ†~σξ, such that ai = Aai m̂a. (4.6)
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We also have εijk∂jAak = −1
2
εijkεabcAbjAck since Aai is a pure gauge. Hence,

H =
1

16π2

∫
d3rεijkai∂jak

=
1

32π2
m̂am̂b

∫
d3rεijkεbcdAaiAcjAdk

= − 1

96π2

∫
d3rεijkεabcAaiAbjAck

= W (U). (4.7)

Therefore the Higgs field also gives the same winding number under this ansatz. Following from

(2.10), the winding number can be read off from the boundary conditions.

Let us find the Hopf invariant HA for ΦA (3.5). Introducing ω(µ, r) and recalling U (4.1),

UA can be expressed in term of ω(µ, r), UA = exp (iω(µ, r)r̂ · ~σ). We then have HA = W (UA) =
1

2π
(2ω(µ, r)− sin(2ω(µ, r)))

∣∣r=∞
r=0

. The result is shown in the table below.

Aligned/Unitary (2A) Gauge

µ Φ̂A(r → 0) Φ̂A(r =∞) HA[
0, π

2

) 0

1


0

1

 0

π
2

exp
(
iπ

2
r̂ · ~σ

)0

1


0

1

 −1
2(

π
2
, π
]

exp(iπr̂ · ~σ)

0

1


0

1

 −1

We see that HA in the above (2A) ansatz (3.5) jumps from 0 to -1 when µ passes through π/2.

At the sphaleron, it gives HA = −1/2 if we exert some care as r → 0 since there is a

coordinate singularity at the origin. For µ < π/2, η ◦ Φ̂A does not map S3 to the full S2 and

the linking number is HA = 0. At µ = π/2, Φ̂A maps R3 ∪ {∞} to half of S3
Φ̂

and η further

maps this half to S2. The preimage (η ◦ Φ̂A)−1 of points in S2 are S1 loops in R3 ∪{∞} passing

through the origin, which indicates that the loops intersect (or touch, see FIG 3). Thus the

linking number is −1/2. Their intersection is the jump from no linking to linking. For µ > π/2,

the preimage of any point in S2 becomes a complete loop and all loops are linked once to each

other without intersection. So the linking number is HA = −1. For our purpose, we may choose

the Hopf invariant to be H = −HA.

However, if we want to find a Hopf variable that matches the CP or CS continuous vari-

able, we have to extend the above HA that takes discrete values to a continuous variable. To

accomplish this, let us first go back to the (2H) ansatz (3.1). Again, we can calculate the Hopf

invariant HH using ΦH (3.1) and Eq.(4.7); the result is shown in the table below.
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Figure 3: Illustration of the π3(S2) mapping η ◦ Φ̂ with Hopf invariant HA = −1/2. The

radial direction in R3 ∪ {∞} is campactified in the plot such that r = 1 corresponds to {∞}.
Each colored line corresponds to a circle S1 fibered over a point in the base S2. The 3 loops

touch/intersect at the origin. For 0 ≤ µ/π < 1/2, HA = 0, when the 3 lines neither touch nor

link. For 1/2 < µ/π ≤ 1, HA = −1, when any two loops link once but do not touch.

Hedgehog (2H) Gauge

µ Φ̂H(r → 0) Φ̂H(r =∞) HH[
0, π

2

) 0

1

 exp(iµr̂ · ~σ)

0

1

 2µ−sin 2µ
2π

π
2

exp
(
iπ

2
r̂ · ~σ

)0

1

 exp
(
iπ

2
r̂ · ~σ

)0

1

 0

(
π
2
, π
]

exp(iπr̂ · ~σ)

0

1

 exp(iµr̂ · ~σ)

0

1

 2µ−sin 2µ
2π

− 1

Here HH jumps from (2µ− sin 2µ)/2π to (2µ− sin 2µ)/2π−1 when µ passes π/2. It is clear

that the Hopf invariant is gauge dependent.

To match the CS number NCS (3.7) obtained from the gauge fields, we construct the following

Hopf invariant H obtained from the Higgs field based on the above observations (see FIG 4),

that is,

H = −HA +HH =
2µ− sin 2µ

2π
, (4.8)

This construction can be achieved by patching the two gauges (hedgehog (2H) and aligned

(2A)) to get the desired Hopf invariant H. Given that the homotopic property is a group, we

can always build a map Φ̂ from Φ̂A and Φ̂H such that it yields the desired H (4.8). Such a

12



Figure 4: The Hopf invariant versus µ. The red curve (with a jump at µ = π/2) shows the Hopf

invariant HH for the (2H) gauge. HA of the (2A) gauge is shown as the blue horizontal lines.

The dash curve shows their difference, which is the appropriate Hopf invariant H = HH −HA

(4.8).

construction is given by

U = U †AUH , Φ̂ = U

(
0

1

)
=

(
Φ̂A2Φ̂H1 − Φ̂A1Φ̂H2

Φ̂∗A1Φ̂H1 + Φ̂∗A2Φ̂H2

)
(4.9)

Due to (2.8),∫
tr(UdU †)3 =

∫
tr(UHdU †H)3 +

∫
tr(U †AdUA)3 + 3i

∫
tr d

[
U †AdUAUHdU

†
H

]
. (4.10)

The last mixing term vanishes since U †AdUA vanishes at the origin and infinity; so we arrive at

the desired Hopf invariant,

W (U) = −W (UA) +W (UH) and H = −HA +HH . (4.11)

It can also be directly verified by checking the boundary conditions of Φ̂. We show the map

η ◦ Φ̂ for various H in FIG 5.

Instead of using both ansätze, one can also work in the following ansatz,

Φ = UΦH , U = exp (iπ[[µ/π]](Ω(r)− 1)r̂ · ~σ)

[[µ/π]] =
bµ/π + 1/2c+ dµ/π − 1/2e

2
(4.12)

where we have introduced the floor function, bµ/π + 1/2c = n ∈ Z for n ≤ µ/π + 1/2 < n + 1,

and the ceiling function dµ/π − 1/2e = m ∈ Z for m− 1 < µ/π − 1/2 ≤ m. This stair function

jumps at µ/π ∈ Z + 1/2, when [[µ/π]] = µ/π. Such a jump essentially cancels the jump in HH

at the same value of µ/π to give H = (2µ− sin 2µ)/2π.

In general, a Hopf invariant H matches the CS number NCS only at the vacua (and sphaleron)

since the above ansatz does not solve the static field equations of motion away from these

13



Figure 5: In the π3(S2) mapping, every line/loop in R3 ∪ {∞} is mapped to a point in the

base S2, which is not shown. The radial direction in the plots is campactified such that r = 1

corresponds to spatial {∞}, and the r = 1 surface is identified as a single point. So the two

ends of each line are identified, i.e., it is actually a loop. (a) At H = 1/2, all loops touch at

{∞}; (b) at H = 0.9, where some loops link but do not touch while the green loop still touches

other loops at {∞}; (c) at H = 1, when all loops link to each other once but do not touch. For

H < 1/2 (not shown), some loops disappear since the unit vector n̂ does not span the full S2

while the existing loops touch at {∞} but do not link.

configurations. This is also true in the AKY approach (see appendix). When it is neither

sphaleron nor vacuum, the Hopf variable is a priori different from the CS variable in any generic

gauge choice. However, we can always define them to be matched, as is the case with H (4.8) and

NCS (3.7). Such a matching is gauge-dependent, but it allows us to easily transport information

contained in the gauge fields to the Higgs field.

In short, we now have

H = W = NCS = N = µ/π + F (µ), (4.13)

where F (µ) = − sin(2µ)/2π; so F (µ) = 0 for µ/π ∈ Z/2.

5 Comparison of Ansätze

Let us consider the (1H) gauge [12],

Φ = v[1− h(r)]

(
0

e−iµ cosµ

)
+ vh(r)U∞(µ, θ, ϕ)

(
0

1

)
,

Ai =
i

g
f(r)U∞∂i(U

∞†),
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U∞ =

(
eiµ(cosµ− i sinµ cos θ) sinµ sin θeiϕ

− sinµ sin θe−iϕ e−iµ(cosµ+ i sinµ cos θ)

)
, (5.1)

where it differs from Φ̂, Âi in the (2H) gauge (3.1) by the factor e±iµ.

To see why W (U) appears, let us introduce a 4-component vector x,

U∞† = x4I + i(xiσi),

so that its determinant yields x · x =
∑
x2
i = 1. We associate this unit vector x with a point

p(µ, θ, ϕ) in S3, we may write

p(µ, θ, ϕ) =


− sinµ sin θ sinϕ

− sinµ sin θ cosϕ

− sinµ cosµ(1− cos θ)

sin2 µ cos θ + cos2 µ

 (5.2)

where (θ, ϕ) are the standard polar coordinates for a sphere. which spans the S3 as shown in Fig.

2(a). To obtain winding number W (U) = 1, we take µ ∈ [0, π]. So, instead of a Euclidean time,

we stay in Minkowski time t and introduce an angle µ(t), so µ(t =∞) = 0 and µ(t =∞) = π.

Notice that, at time t = t0, when µ(t = t0) = π/2, we have W (U) = 1/2. This corresponds to

the maximum size S2 generated by the polar coordinates (θ, ϕ). The construction can be seen as

follows. We start with S2 spanned by the standard polar coordinates (θ, ϕ). Introducing µ that

spans S1, we have the product S1×S2. By choosing p(µ, θ, ϕ) such that p(µ = 0, π) = (0, 0, 0, 1)

which is independent of (θ, ϕ) and p(θ = 0) = (0, 0, 0, 1) which is independent of µ, we have the

smash product of S1 and S2, S1 ∧ S2 = S3. In this sense U : S3
{µ,θ,ϕ} → S3

SU(2) is characterized

by π3(S3).

The choice of U is obviously not unique. For example, in the (2A) gauge (3.5), we have

p(µ, θ, ϕ) =


sinµ sin θ cosϕ

sinµ sin θ sinϕ

sinµ cos θ

cosµ

 (5.3)

This also spans the S3 but in a different way, as shown in FIG 2(b). In both cases, the choice

of µ = π/2 implies a maximum size for S2. However, there is one pole (p = (0, 0, 0, 1)) in the

(1H) gauge while there are 2 poles (p = (0, 0, 0,±1)) in the coordinate (5.3).

6 Choice of a Chern-Simons Variable as a Generalization

of the Chern-Pontryagin Number

We like to find a continuous CS variable that agrees with the CP number at half-integers, but

has a relatively simple form and transparent in revealing the underlying physics. Now a gauge
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transformation plus a redefinition allows us to go from one choice to another choice with the

underlying physics remaining intact. However, recall the interaction between 2 electric charges

in electrostatics. Although the physical description is in general gauge-dependent, the Coulomb

potential (or force) in the Coulomb gauge clearly succinctly captures the picture. Similarly, the

choice of the CS variable should be simple and best illuminate the underlying physics. This

leads us to resort to physical reasoning to find a simple convenient choice.

Recall that the complex Higgs doublet can be written as a 4 real component vector Φ. Its

unit vector Φ̂ = Φ/|Φ| with coordinates {r, µ, θ, ϕ} spanning a S3. So we obtain π3(S3). We

introduce a winding number that equals unity (W = 1) as µ spans 0 → π. If µ spans only

0 → π/2, we should get winding number equals to W = 1/2 via symmetry (see FIG 2). By

continuity, as µ spans 0→ µ0, the winding number W can take any value µ0/π plus a function

F (µ0) that vanishes at half-integer values of µ/π. The simplest choice is to set F (µ0) = 0, so

the winding number is simply given by

W (µ) =
µ

π
. (6.1)

At first sight, based on the above analysis, a natural choice would be F (µ) = − sin(2µ)/2π, or

Ŵ (µ) =
µ

π
− sin(2µ)

2π
,

where, at µ/π ∈ Z/2,

W = Ŵ = N = NCS = H ∈ Z/2.

However, we like to give 2 reasons why Ŵ may not be a good choice. (Of course, any choice

can be transformed to any other choice, so the end result is a matter of convenience and the

transparency of the underlying physics.)

(1)As shown in the appendix, a different way in extrapolating µ/π to non-half-integer values

results in a different F (µ), so the function F (µ) = − sin(2µ)/2π is not unique.

(2) In treating W (t) = µ(t)/π as a dynamical variable, we have to find the kinetic term for it,

i.e., the M
2

(∂µ
∂t

)2 = Mµ̇2/2 in

L =

∫
d3xL =

1

2
mQ̇2 − V (Q) , (6.2)

where we rescale the winding number with the W-boson mass mW so Q(t) = πW (t)/mW =

µ(t)/mW has the dimension of a length scale just like that of an ordinary coordinate. The

Lagrangian density L (2.1) has kinetic terms for both Aµ(x) and Φ(x) that include the time

derivatives. To obtain the kinetic terms for W , we start with the static solutions for Ai(µ, r, θ, ϕ)

and Φ(µ, r, θ, ϕ) and then introduce time-dependence only via the time dependence in µ(t)

or W (t) : Ai(µ(t), r, θ, ϕ) and Φ(µ(t), r, θ, ϕ). This is how we obtain the CP number (3.4).

Following this approach,
∂Ai
∂t

=
∂Ai
∂µ

∂µ

∂t
,

∂Φ

∂t
=
∂Φ

∂µ

∂µ

∂t
.
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so the kinetic terms in L (2.1) yield a kinetic term for Q(t) (6.2). In this approximation, one

finds the mass to be a finite constant, m = 17.1 TeV, that is, the kinetic term has the canonical

form [17]. On the other hand, in the kinetic term for Ŵ (t), we obtain a mass M̂(Ŵ (t)) that

depends on Ŵ (t) and diverges as Ŵ approaches vacuum values [17].

7 Discussion

So far, we have barely mentioned the fermions that are present in the standard electroweak

theory. We have 2 types of fermions in nature : quarks, which interact with the nuclear force,

and leptons, which do not. It turns out that a change of the CP number N leads to a change

in both the baryon number B and the lepton number L [4] (here we shall not worry about the

fact that there may be 3 different lepton numbers ),

∆B = ∆L = 3N,

where the factor of 3 is because nature has 3 families of quarks and leptons. The vacuum

degeneracy implies that our universe is sitting in a specific vacuum labelled by |n〉 (see FIG

1). For N = 1, our universe moves from |n〉 → |n+ 1〉 and there is an increase of 3 additional

baryons and 3 additional leptons in our universe. That is, both B and L are not conserved

(while (B − L) is conserved). This non-conservation allows the possibility that matter-anti-

matter asymmetry in our universe was generated via the sphaleron physics in the early universe

during the electroweak phase transition.

During the electroweak phase transition, the vacuum expectation value of the Higgs field 〈Φ〉
goes from zero to v. Yukawa couplings of the quarks and leptons to Φ generate the masses for

the fermions, which are massless before the spontaneous symmetry breaking. By endowing the

Higgs fields with geometric properties, one may hope to study the sphaleron dynamics and the

generation of matter-anti-matter asymmetry by focusing on Φ and fermions only. This should

simplify the analysis as the geometric properties of gauge fields are quite non-trivial at finite

temperature and in phase transition.

A A Different Functional Form

In the above analysis, we see repeatedly that the index value away from half-integers is always

accompanied by the factor sin(2µ)/2π. Here, we like to remind the reader that this needs not

be the case by reviewing the approach due to Akiba, Kikuchi and Yanagida (AKY) [18], where

a different functional form emerges (shown in FIG 6).

Recall that the static solution exists only at an extremum of the energy functional, which

happens at half-integer values of µ/π. Away from them, there is no static solution. We expect

the potential V (µ) to be a smooth function of µ (see FIG 1). Away from the extrema, no static
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Figure 6: N versus 2µ. Comparison of N(µ) = µ/π − sin(2µ))/2π (3.4) (orange line) and N(q)

in AKY (blue line). The dashed line is the linear line given by N(µ) = µ/π. That is, F (µ) in

AKY takes a different form (with smaller values) when compared to the F (µ) = − sin(2µ))/2π

form in the paper.

solution exists for the obvious reason that µ(t) likes to evolve, implying only a time-dependent

solution can be found. However, we still like to find the shape of the potential away from the

extrema. To determine what the potential V (µ) looks like, one way is simply to extrapolate

from the extrema. Another way is to introduce a Lagrange multiplier (or chemical potential) to

force for a static solution [18]. This approach starts with the most general spherically symmetric

static ansatz,

Aa0 =
1

g
a0(r)x̂a, Aaj =

1

g

[
a1(r)x̂jx̂a +

fA(r)− 1

r
εjamx̂m +

fB(r)

r
(δja − x̂jx̂a)

]
,

Φ = (h(r) + k(r)i~σ · x̂)

(
0

v

)
, (A.1)

and adds a Lagrange multiplier term η(N [A]− n) to L such that the equations of motion have

solution for any n. The CP number (after switching to unitary gauge) is given by

N =

∫
d3xK0 +

q − sin q

2π
=

q

2π
+

1

2π

∫
dr<(iχ∗∂rχ), (A.2)

where q/2 plays the analogous role as µ and a reference vacuum of zero CP number is chosen

at past infinity. Here, χ = fA + ifB and its integral in the last term is a periodic function that

vanishes at integer values of q/π. However, it is quite different from the sinusoidal form we

have been seeing. This CP number N is shown in FIG 6. We made a gauge transformation of

Ω(r) = −q limβ→∞ tanh(βr) to the AKY boundary conditions to obtain our boundary conditions

in order to preserve regularity at the origin. This changes a1(r) in (A.1) to a δ-function. This

also changes the CP number and its effect is already explicitly included in the term (q−sin q)/2π

while
∫
d3xK0 is safely calculated from the rest.
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The corresponding Hopf invariant in the AKY ansatz is

H =
q − sin q

2π
, (A.3)

with proper covering of gauge choices. This can be read off from the boundary conditions of

h(r) and k(r) [18].
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