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CODIMENSION TWO AND THREE KNESER TRANSVERSALS

J. CHAPPELON, L. MARTÍNEZ-SANDOVAL, L. MONTEJANO, L.P. MONTEJANO,

AND J.L. RAMÍREZ ALFONSÍN

Abstract. Let k, d, λ > 1 be integers with d > λ. In [1], the following function was introduced:

m(k, d, λ)
def
= the maximum positive integer n such that every set of n points (not necessarily

in general position) in R
d has the property that the convex hulls of all k-sets have a common

transversal (d− λ)-plane.

This is a continuation of the recent work [3] in which it is introduced and studied a natural
discrete version of m by considering the existence of complete Kneser transversals (i.e., (d−λ)-
transversals L to the convex hulls of all k-sets and L containing (d− λ) + 1 points of the given
set of points).

In this paper, we introduce and study the notions of stability and unstability. We give results
when λ = 2, 3, among other results, we present a classification of (complete) Kneser transversals.
These results lead us to new upper and lower bounds for m. Finally, by using oriented matroid
machinery, we present computational results concerning (complete) Kneser transversal in some
special cases.

1. Introduction

Let k, d, λ > 1 be integers with d, k > λ. Let m(k, d, λ) be the maximum positive integer n
such that every set of n points (not necessarily in general position) in R

d has the property that
the convex hulls of all k-sets have a transversal (d− λ)-plane.

This function was introduced in [1] where it was proved that

(1) d− λ+ k +

⌈

k

λ

⌉

− 1 6 m(k, d, λ) < d+ 2(k − λ) + 1.

The proof of the lower bound follows the same spirit of Dolnikov [4] and uses Schubert calculus
in the cohomology ring of Grassmannian manifolds. The value ofm(k, d, λ) is strongly connected
with the Rado’s central Theorem [7]. Indeed, let n, d, λ > 1 be integers with d > λ and let

τ(n, d, λ)
def
= the maximum positive integer τ such that for any collection X of n points in R

d,
there is a (d − λ)-plane LX such that any closed half-space H through LX contains at least τ
points.

We thus have have that n− τ(n, d, λ)+1 is equal to the minimum positive integer k such that
for any collection X of n points in R

d there is a common transversal (d−λ)-plane to the convex
hulls of all k-sets, which is essentially m(k, d, λ). Therefore, any improvement to the lower or
upper bounds for m(d, λ, k) will give important insight on the above interesting problem.

The case when λ = 1 is of particular interest. In [1] it was proved that m(k, d, 1) = d+2k− 2
and showed that this equality is equivalent to the fact that the chromatic number of the Kneser
graph KG(n, k) is n − 2k + 2, the well-known Kneser’s conjecture originally proved by Lovász
[6].

One of the purpose of this paper is to improve upper and lower bounds for m(k, d, λ) when
λ = 2, 3.
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From the inequalities in (1) it can be deduced that

(2) m(k, d, λ) = d− λ+ k +

⌈

k

λ

⌉

− 1 for λ = 1, k − λ 6 1 and k 6 3.

Furthermore, the equality also holds for d = λ [1, Theorem 6]. In this paper, we shall focus
our attention to the case when d > λ > 2 and k − λ > 2.

In [3] was introduced and studied a natural discrete version of the function m(k, d, λ). Let
k, d, λ > 1 be integers with d > λ and let X ⊂ R

d be a finite set. A (d − λ)-plane transversal
L to the convex hull of all k-sets of X is called Kneser transversal . If in addition L contains
(d− λ) + 1 points of X, then L is a called complete Kneser transversal.

It turns out that the existence of a Kneser transversal is not an invariant of the order type.
For example, for d = 2 and X the vertex set of a regular hexagon then the center is a 0-plane
transversal to the convex hull of the 4-sets. But, by a suitable (slighly) perturbation of these 6
points we lose this property. The situation is different for complete Kneser transversals. Indeed,
it seems that the existence of a complete Kneser (d − λ)-transversal to the convex hull of the
k-sets is an invariant of the order type. This naturally lead us to consider the notions of stability
and unstability. A Kneser transversal is said to be stable (resp. unstable) if the given set of
points can be slightly perturbed such that the new configuration of points admits (if there is
any) only complete Kneser transversals (resp. the new configuration of points do not admit a
Kneser transversal).

In the next section, we present an unstability result when λ = 2, 3 (Theorem 2.1). The
proof of the latter uses a classification result of Kneser transversal in codimensions 2 and 3
(Theorem 2.4).

In Section 3, we give an upper bound (Theorem 3.1) when λ = 2, 3, (k − λ) > 2 and d >

2(λ − 1). Also, by using results due to Bukh, Matousek and Nivasch [2], we obtain a lower
bounds for m(k, d, 2) (Equation (3)).

Finally, in Section 4, we present some computational results concerning the existence of
(complete) Kneser transversal lines to the convex hull of the 4-sets for configurations of 7 points
in R

3. This is done by using oriented matroid machinery.

2. Stability

Our main result in this section is the following

Theorem 2.1. Let ǫ > 0 and let X = {x1, . . . , xn} be a finite collection of points in R
d. Suppose

n = d + 2(k − λ), k − λ > 2 and λ = 2, 3. Then, there exists X ′ = {x′1, . . . , x
′
n}, a collection

of points in R
d in general position such that | xi − x′i |< ǫ, for every i = 1, . . . , n, and with the

property that every transversal (d − λ)-plane to the convex hull of the k-sets of X ′ is complete
(i.e, it contains d− λ+ 1 points of X ′).

Before proving Theorem 2.1, we need the following some results.

Let X be a collection of points and let {L1, . . . , Ls} be a collection of lines in R
d. We say

that X and {L1, . . . , Ls} are in general position if
⋃

16i6s{ai, bi} ∪X is a collection of points in
general position, whenever {ai, bi} ⊂ Li, for every 1 6 i 6 s.

Lemma 2.2. Let X be a collection of d− 2(λ− 1) points and let {L1, . . . , Lλ} be a collection of
λ > 1 lines in general position in R

d with d > 2(λ − 1). Then, there is a unique (d − λ)-plane
through X transversal to {L1, . . . , Lλ}.

Proof. We use induction on λ. The statement is clearly true for λ = 1. Let us suppose that the
result holds for λ − 1 and we prove it for λ. Consider H the hyperplane generated by X and
{L2, . . . , Lλ}. Then λ1 ∩ H consist of exactly one point {x}. Apply now the theorem for the
collection of points X ∪ {x} and the collection of lines {L2, . . . , Lλ} in the affine (d − 1)-space
H. �
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The following technical lemma will be crucial for the codimension three case in our stability
result.

Lemma 2.3. Let X ⊂ R
3 −{0} be a finite set of points and let Ω be a collection of triples of X

satisfying :

i) for every triple {x, y, z} ∈ Ω the triangle with vertices {x, y, z} contains the origin in its
interior,

ii) the intersection of any two triples of Ω contains at most one point.

Moreover, suppose that for every x 6= y ∈ X there is T ∈ Ω such that {x, y} ⊂ T . Then, X is
contained in a 2-plane.

Proof. Let {a, b, c} ∈ Ω and let H be the 2-plane through the origin containing {a, b, c}. Let
G ⊂ X be the points of X lying on one side of H and G′ the points of X on the other side of H.
By hypothesis, there is a bijection f : G→ G′ such that for every point of x ∈ G there is a point
f(x) ∈ G′ with {a, x, f(x)} ∈ Ω. Let n =| G |=| G′ |. Furthermore, for every {x, y} ⊂ G there
is ψ(x, y) ∈ G′ such that {x, y, ψ(x, y)} ∈ Ω. For every pair {x, y} of G consider the two edges
(x, ψ(x, y)) and (y, ψ(x, y)). Since the intersection of any two triples of Ω contains at most one
point we have that if {x′, y′} /∈ {x, y}, then the four edges

(x, ψ(x, y)), (y, ψ(x, y)), (x′ , ψ(x′, y′)), (y′, ψ(x′, y′))

are different. Similarly, for every {x, y} ⊂ G′ there is ψ(x, y) ∈ G such that {x, y, ψ(x, y)} ∈ Ω.
If we consider two different pairs of G′, {x′, y′} /∈ {x, y}, then the four edges

(x, ψ(x, y)), (y, ψ(x, y)), (x′ , ψ(x′, y′)), (y′, ψ(x′, y′))

are different. Furthermore, if {x′, y′} is a pair of G′ and {x, y} is a pair of G, then the four edges

(x, ψ(x, y)), (y, ψ(x, y)), (x′ , ψ(x′, y′)), (y′, ψ(x′, y′))

are different. This implies that we have at least 4
(

n
2

)

edges between G and G′ which is impossible
if n > 2. Furthermore, it is straightforward to show that n 6= 1, 2. Hence X ⊂ H. �

The following result classify Kneser transversals for codimensions 2 and 3.

Theorem 2.4. Let X = {x1, x2, . . . xn} be a collections of n = d + 2(k − λ) points in general
position in R

d. Suppose that L is a (d− λ)-plane transversal to the convex hulls of all k-sets of
X with λ = 2, 3 and k > λ+ 2 and d > 2(λ− 1). Then, either

1) L is a complete Kneser transversal (i.e., it contains d− λ+ 1 points of X) or
2) | L∩X |= d− 2(λ− 1) and the other 2(k− 1) points of X are matched in k− 1 pairs in such

a way that L intersects the corresponding closed segments determined by them.

Proof. Case 1) λ = 2. Since X is in general position, there is a point x ∈ X which is not in
L. Let H be the hyperplane generated by L and x. By general position there are at most d
points in H. Since L is a transversal to the convex hulls of all k-sets of X, then at each side of
H there are at most k − 2 points. The fact that X has d+ 2(k − 2) points implies that H has
exactly d points of X and there are exactly k − 2 points at each side of H. Note now that L
is a hyperplane of H. If in one of the halfspaces of H determined by L there are two points of
X, then these two points together with the k − 2 points outside H, but in the same side, give
rise to a k-set whose convex hull does not intersect L. This implies that either L is a complete
Kneser transversal or that there are precisely d − 2 points of X in L. Furthermore, there is
y ∈ X ∩H − L such that the closed segment determined x and y intersect L. By repeating the
same argument with the other 2(k−2) points of X outside H, we obtain the desired conclusion.

Case 2) λ = 3. We start by proving that | X ∩ L |6= d − 3. We do so by contradiction, let
us assume that X ∩ L = {a1, . . . , ad−3} has exactly d − 3 points. Let Ω be the collection of
triples {x, y, z} of X − L such that the interior of the triangle with vertices {x, y, z} intersects
the (d − 3)-plane L in exactly one point. Note that the intersection of any two triples of Ω
contains at most one point, otherwise if {x, y, z1} and {x, y, z2} belong to Ω, then

{a1, . . . , ad−3, x, y, z1, z2}
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are d+1 points of X contained in a plane of dimension d−1, contradicting the fact that F ⊂ R
d

lies in general position.

Subcase a) L does not intersect any line generated by points of X −L. We shall prove that in
this case given x 6= y ∈ X − L there is z ∈ X − L such that the triple {x, y, z} ∈ Ω. Indeed, let
x 6= y ∈ X −L. Then L, x and y generates a hyperplane Hd−1 of Rd. By general position there
are at most d points in Hd−1. Since L is transversal to the convex hulls of all k-sets of X, then
at each side of Hd−1 there are at most k − 3 points. The fact that X has d + 2(k − 3) points
implies that Hd−1 has exactly d points of X and there are exactly k − 3 points at each side of
H. Therefore, there is z ∈ (X − L) ∩ Hd−1. The triangle with vertices {x, y, z} intersects L,
otherwise the k − 3 points of X on one side of H plus x, y and z give rise to a k-set of X that
avoids L. Finally The triangle with vertices {x, y, z} intersect L because L does not intersect
any line generated by points of X − L. With this we have proved that given x 6= y ∈ X − L
there is z ∈ X − L such that the triple {x, y, z} ∈ Ω.

Let L⊥ be the 3-dimensional plane through the origen orthogonal to L and let π : Rd → L⊥

be the orthogonal projection. Let X ′ = π(X − L) and let Ω′ be the collection of triples of X′
consisting of sets {π(x), π(y), π(z)} for which {x, y, z} ∈ Ω. By Lemma 2.3, X ′ lies in a two
dimensional plane of L⊥ and hence X lies in a hyperplane of Rd contradicting the fact that X
is in general position.

Subcase b) Assume there are a, b ∈ X −L such that L intersect the line through a and b. By
general position L does not intersect any line generated by points of X − (L∪{a, b}). Following
the proof of the first case it is possible to prove that X − (L ∪ {a, b}) lies in a hyperplane of Rd

contradicting the fact that X is in general position.

This implies that if L is not a complete Kneser transversal, then L has at least d− 4 points
of X. In this case, since X is in general position, there is a point x ∈ X which is not in L. Let
H ′ be the (d− 2)-dimensional plane generated by L and x. Again by general position, there is a
point y ∈ X which is not in H ′. Let H be the hyperplane generated by L and x and y. By our
previous arguments, H has exactly d points of X and there are exactly k− 3 points at each side
of H. Note that L is transversal to every triangle of X ∩H − L, otherwise, these three points
together with the k− 3 points outside H, but in the same side, give rise to a k-set whose convex
hull does not intersect L. This implies that we have exactly 4 points T = {t1, t2, t3, t4} of X in
H which are not in L and also that the points of T are matched in two pairs in such a way that
L intersects the corresponding closed segments determined by them. By repeating the same
argument with the other 2(k − 3) points of X outside H, we obtain the desired conclusion. �

We may now prove Theorem 2.1.

Proof of Theorem 2.1. Let [n] = {1, . . . , n} and let
([n]
s

)

be the collection of all subsets of X of
size s. Finally, denote by Ω the finite set of partitions of [d+2(k−λ)] of the form [d+2(k−λ)] =
B1 ⊔B2 ⊔ · · · ⊔Bk, where | B1 |= d− 2(λ− 1) and | Bi |= 2, for every 2 6 i 6 k.

Let ℑX be the collection of (d − λ)-plane transversal to the convex hulls of all k-sets of X.

Let us first note that ℑX is finite. For this, let φX : ℑ → Ω∪
( [n]
d−λ+1

)

defined as follows: If L is a

complete (d−λ)-plane transversal to the convex hulls of all k-sets of X, then | X∩L |= d−λ+1,

so φX(L) ∈
( [n]
d−λ+1

)

is the corresponding set of indices for X ∩L. If L is not a complete Kneser

transversal, then by Theorem 2.4, | L ∩X |= d − 2(λ − 1) and the other 2(k − 1) points of X
are matched in k − 1 pairs in such a way that L intersects the corresponding closed segments
determined by them, so φX(L) ∈ Ω is the corresponding element of Ω. Clearly, by Theorem 2.4,

φX : ℑ → Ω ∪
( [n]
d−λ+1

)

is well defined. Moreover, by Lemma 2.2, φX is injective.

Note now that is if α ∈ (Ω ∪
( [n]
d−λ+1

)

− Image φX), then there is ǫ > 0 with the property that

if X ′ = {x′1, . . . , x
′
n}, is a collection of points in R

d in general position such that | xi − x′i |< ǫ,

for every i = 1, . . . , n, then α ∈ (Ω ∪
( [n]
d−λ+1

)

− Image φX′ . Moreover, by Lemma 2.2, since

k − λ > 2, given ǫ > 0 and α ∈ Ω ∩ Image φX , there is X ′ = {x′1, . . . , x
′
n} in general position,
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with | xi − x′i |< ǫ and such that α /∈ Image φX′ . To see this, we may assume without loss of
generality that

α = {1, . . . , d− 2(λ− 1)}, {d − 2λ+ 3, d − 2λ+ 4}, . . . , {d+ 2k + 2λ− 1, d + 2k − 2λ}

and L is a (d−λ)-plane that contains {x1, . . . , xd−2(λ−1)} and intersects the k−1 closed segments
with extreme points

{xd−2λ+3, xd−2λ+4}, . . . , {xd+2k+2λ−1, xd+2k−2λ}.

By Lemma 2.2, since k−2 > λ, we may chose x′d+2k−2λ such that | xd+2k−2λ−x
′
d+2k−2λ |< ǫ and

in such a way that there is not a (d − λ)-plane that contains {x1, . . . , xd−2(λ−1)} and intersects
the k − 1 closed segments with extreme points

{xd−2λ+3, xd−2λ+4}, . . . , {xd+2k+2λ−1, x
′
d+2k−2λ}

This implies that we can chose X ′ = {x′1, . . . , x
′
n}, a collection of points in R

d in general

position sufficiently close to X and with the property that Image φX′ ⊂
( [n]
d−λ+1

)

and hence
admits only complete Kneser transversals. �

We believe that Theorem 2.1 is also true for λ > 3 but the proof needs a more difficult and
complicated version of Theorem 2.4.

3. Bounds for m(k, d, λ) when λ = 2, 3

We start by proving the following upper bound

Theorem 3.1. Let λ = 2, 3, k − λ > 2 and d > 2(λ− 1). Then,

m(k, d, λ) < d+ 2(k − λ).

Proof. Let X = {x1, . . . , xn} be a finite collection of points in R
d embedded in the momentum

curve. By Theorem 2, there exist X ′ = {x′1, . . . , x
′
n}, a collection of points in R

d in general
position with the order type of the cyclic polytope and with the property that every transversal
(d− λ)-plane to the convex hull of the k-sets of X ′ is complete (i.e, contains d− λ+1 points of
X ′). By [3, Theorem 1.2], also X ′ does not admit a complete transversal. Therefore, there exist
a collection of d+ 2(k − λ) point in R

d without (d − λ)-plane transversal to the convex hull of
the k-sets, and hence m(k, d, λ) < d+ 2(k − λ). �

In dimension three, when k > 6, a better upper bound was proved by Tancer [8]. In fact, it is
possible to embed 2k − 2 points in general position in 3-space on the moment curve in the first
two dimensions and a quickly growing function in the third dimension in such a way that there
is not a transversal line to the convex hull of the k-sets.

For a codimension two lower bound, we need the following result due Bukh, Matousek and
Nivash [2] that was proved by using equivariant topology.

Let X = {x1, x2, . . . xn} be a collections of n points in R
d. Then there is a

codimension two affine plane L and 2d − 1 hyperplanes passing through L that
divide R

d into 4d− 2 parts, each containing at most n
4d−2 +O(n) points of X.

This implies that every hyperplane H through L leaves at least (2d−2)n
4d−2 points of X at each

side of H and thus
⌊

(2d− 2)n

4d− 2

⌋

6 τ(k, d, 2).

Furthermore, if k >
(4d−2)n

2d , the codimension two affine plane L intersect the convex hull of
every k-set of X. This implies that

(3)

⌈

(4d − 2)k

2d

⌉

6 m(k, d, 2).
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From Equation (3) and Theorem 3.1 we obtain

2−
1

d
6 lim

k→∞

m(k, d, 2)

k
< 2.

Therefore, for d > 3, λ = 2 and k large enough the conjectured value [1, Conjecture 1]

m(k, d, λ) = d− λ+ k +

⌈

k

λ

⌉

− 1

is false.

4. Computational results

A point configuration (or affine point configuration) is a finite set of points in Euclidean d-
space. An abstract order type is the relabeling class of an acyclic oriented matroid. The abstract
order types of realizable oriented matroids are called order types and correspond to isomorphism
types of configurations of points.

In [1] it is proved that m(3, 2, 4) = 6 and also that there is never a transversal line to all
tetrahedra formed by any configuration of 8 points in R

3, and thus m(3, 2, 4) < 8.

Question 4.1. Is there a transversal line to all tetrahedra formed by any configuration of 7
points in R

3 ?

We will answer this question by completely classifying Kneser transversals lines for configura-
tions of 7 points in R

3. It is known that there are 5083 abstract order types of rank r = 4 (d = 3)
of cardinality n = 7 [5]. Among these 5083 abstract order types, 246 of them are in general
position (we thus have that in the corresponding oriented matroids any 4-tuple of elements is a
basis and any 5-tuple of elements is a circuit).

4.1. Complete Kneser transversal line. Let M = (E,B) be a configuration of 7 points
E := {x1, . . . , x7} in general position in R

3. The first thing we want to know is whether there
exists a complete transversal line to the convex hull of the 4-subsets of E. It is possible to detect
when the line joining xi1 and xi2 intersects the interior of the triangle (xi3 , xi4 , xi5).

Proposition 4.2. Let M = (E,B) be a configuration of 7 points E := {x1, . . . , x7} in general
position in R

3. The line (xi1 , xi2) intersects the interior of the triangle (xi3 , xi4 , xi5) if and only
if sg(xi3) = sg(xi4) = sg(xi5) for the circuit {xi1 , xi2 , xi3 , xi4 , xi5} of M.

Proof. SinceM is acyclic, it is not possible that all the elements of the circuit c := {xi1 , xi2 , xi3 , xi4 , xi5}
are of the same sign. Moreover, as depicted in Figure 1, the line (xi1 , xi2) intersects the inte-
rior of the triangle (xi3 , xi4 , xi5) if and only if the Radon partition associated to c is one of
{{xi1 , xi2} , {xi3 , xi4 , xi5}} , {{xi1} , {xi2 , xi3 , xi4 , xi5}} or
{{xi2} , {xi1 , xi3 , xi4 , xi5}}. �

We notice that since the points of E are in general position, then the line (xi1 , xi2) cannot
intersect the triangle (xi3 , xi4 , xi5) on a vertex.

For each of the
(7
2

)

= 21 couples (xi1 , xi2), we determine, by using Proposition 4.2, if the

line (xi1 , xi2) intersects the
(5
3

)

= 10 triangles of E \ {xi1 , xi2}. Since the points are in general
position, it is easy to see that if (xi1 , xi2) intersects a tetrahedron T whose vertices are in E, then
(xi1 , xi2) intersects at least two faces (two triangles) of T . Therefore, if (xi1 , xi2) intersects the
triangle (xi3 , xi4 , xi5), it intersects the two tetrahedra (xi3 , xi4 , xi5 , xi6) and (xi3 , xi4 , xi5 , xi7),

where {xi1 , xi2 , xi3 , xi4 , xi5 , xi6 , xi7} = E. Finally, if the line (xi1 , xi2) intersects the
(

5
4

)

= 5
tetrahedra generated from E \ {xi1 , xi2}, it immediately follows that (xi1 , xi2) is transversal to
all the tetrahedra of E.
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xi1

xi2

xi3

xi4

xi5

xi1

xi2

xi3

xi4

xi5

{{xi1 , xi2} , {xi3 , xi4 , xi5}} {{xi2} , {xi1 , xi3 , xi4 , xi5}}

Figure 1. Radon partitions where the line (xi1 , xi2) intersects the triangle (xi3 , xi4 , xi5).

For instance, for M = OT (7, 4, 2) in the classification given in [5], that is the abstract order
type representing a point configuration having the chirotope χM : B → {0,−,+} given by

1 1 1 1 2 1 1 1 2 1 1 2 1 2 3 1 1 1
2 2 2 3 3 2 2 3 3 2 3 3 4 4 4 2 2 3
3 3 4 4 4 3 4 4 4 5 5 5 5 5 5 3 4 4
4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7

χM = + − + − − − + − − − + + − − + + − +

2 1 1 2 1 2 3 1 1 2 1 2 3 1 2 3 4
3 2 3 3 4 4 4 2 3 3 4 4 4 5 5 5 5
4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

χM = + + − − + + + + − − + − + + + − +

the line L going through 1 and 5 is complete Kneser transversal line. Indeed, by Proposi-
tion 4.2, we know that L intersects the triangles (2, 3, 4), (2, 3, 6), (2, 6, 7) and (3, 4, 7) since the
corresponding circuits are

{1̄2345}, {12̄3̄56̄}, {12̄56̄7̄}, {13̄4̄5̄7̄},

implying that L intersects the 5 tetrahedra (2, 3, 4, 6), (2, 3, 4, 7), (2, 3, 6, 7), (2, 4, 6, 7) and
(3, 4, 6, 7).

By applying the above approach, we obtain the following

Theorem 4.3. Among the 246 configurations of 7 points in general position in R
3 there are 124

admiting a complete Kneser transversal. These configurations correspond to the 124 realizable
rank 4 oriented matroids on 7 elements given in by the following set according to the classification
in [5]

A := {2, 3, 5, 6, 8, 9, 10, 15, 16, 18, 20, 21, 25, 27, 28, 29, 33, 34, 35, 38, 40, 41, 43, 44, 45, 46,
47, 48, 50, 51, 52, 55, 56, 60, 62, 63, 64, 67, 68, 69, 70, 71, 72, 74, 76, 79, 85, 88, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 106, 107, 109, 110, 111, 112, 113, 118, 120, 123, 124,
125, 127, 132, 134, 135, 136, 140, 141, 142, 144, 145, 150, 151, 154, 155, 156, 157, 159,
160, 166, 167, 171, 172, 177, 178, 182, 183, 184, 185, 186, 187, 189, 191, 192, 195, 199,
200, 201, 206, 207, 208, 211, 212, 219, 220, 221, 224, 225, 228, 229, 234, 237, 243, 244} .

4.2. Kneser Transversal line. Let M = (E,B) be a point configuration of 7 points E :=
{x1, . . . , x7} in general position in R

3. From Classification Theorem 2.4, if there exists a non-
complete Kneser transversal line to the convex hull of its 4-subsets, then the 7 points of M must
look as illustrated in Figure 2. This implies that M admits the following circuits

{x1 x2 x3 x4 x7}, {x1 x2 x5 x6 x7}, {x3 x4 x5 x6 x7},(4)
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x1 x2

x3
x4

x5

x6

x7

x1

x2

x3

x4

x5

x6

x7

Representation in R
3 Projection in R

2

Figure 2. 7 points in R
3 with circuits and cocircuits satisfying (4) and (5) with

a Kneser transversal line to all 4-sets

x1 x2

x3
x4

x5

x6

x7

x1

x2x3

x4

x5

x6

x7

Representation in R
3 Projection in R

2

Figure 3. 7 points in R
3 with circuits and cocircuits satisfying (4) and (5) but

without transversal line to all 4-sets

and cocircuits

{x3 x4 x5 x6}, {x1 x2 x5 x6}, {x1 x2 x3 x4}.(5)

However it is possible that certain configurations of 7 points M having circuits (4) and
cocircuits (4) do not admit a transversal line to the convex hull of its 4-subsets. For example, if
we consider the point configuration represented in Figure 3.

Nevertheless, we may identify whether a configuration of 7 points admits a Kneser transversal
line. For this, let us consider the oriented matroid M8 associated to the configuration of 8 points
E := {x1, . . . , x8} in R

3, not necessarily in general position, given in Figure 4. The deletion
of either point x7 or point x8 from M yields to a configuration on 7 points as represented in
Figure 2 admiting thus a Kneser transversal line (containing either x7 or x8) to the convex
hull of its 4-subsets. We thus have that the line going through x7 and x8 would be a complete
Kneser transversal line of the 8-point configuration. Moreover, any configuration on 7 points as
represented in Figure 2 arises on this way.

We may thus detect all such configurations M8. We do this by noticing that an oriented
matroid M is a such configuration if and only if M admits the following cocircuits

{x3 x4 x5 x6}, {x1 x2 x5 x6}, {x1 x2 x3 x4}.(6)

For each of the 10775236 order types of 8 points in R
3, we consider a representant M of

this order type. If the configuration M admits cocircuits of the form (6), we delete x7 or x8
obtaining configurations of 7 points in general position as in Figure 2. We then find an order
type for such a configuration of 7 points admitting a non-complete Kneser transversal line to
the convex hull of its 4-subsets. We obtain the following
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x1 x2

x3
x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6

x7
x8

Representation in R
3 Projection in R

2

Figure 4. 8 points in R
3 with a complete transversal line to all 4-sets

Theorem 4.4. Among the 246 configurations of 7 points in general position in R
3 there are

124 admitting a representation for which there is a non-complete Kneser transversal line to the
convex hull of its 4-subsets. These configurations correspond to the 124 realizable rank 4 oriented
matroids on 7 elements given in by the following set according to the classification in [5]

B := {1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 16, 19, 24, 26, 29, 30, 31, 32, 36, 38, 39, 40, 41, 42, 55, 58,
59, 60, 61, 62, 63, 65, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90,
91, 93, 96, 97, 98, 99, 101, 102, 103, 104, 105, 111, 114, 117, 121, 122, 124, 126, 128, 129,
130, 138, 139, 140, 145, 146, 147, 148, 149, 151, 152, 153, 158, 165, 170, 171, 172, 173,
174, 175, 176, 177, 180, 185, 194, 196, 197, 198, 199, 201, 204, 206, 207, 209, 211, 212,
213, 214, 215, 217, 218, 219, 220, 230, 235, 236, 237, 238, 239, 240, 241, 242, 244, 246} .

Corollary 4.5. Among the 246 configurations of 7 points in general position in R
3, 124 configu-

rations admits a Kneser transversal line to the convex hull of the 4-subsets and 122 configurations
do not admit a Kneser transversal line to the convex hull of their 4-subsets.

Proof. By Theorems 4.3 and 4.4, we have

|A| = 124, |B| = 124, |A ∩B| = 46, |A \B| = 78, |B \ A| = 78, |A ∪B| = 44.

The 44 order types of A ∪B do not admit Kneser transversal lines. By Theorem 2.1, for each
of the 78 order types of B \ A, there exists a representation for which there is not a Kneser
transversal line. �

Theorem 4.6. Among the 5083 abstract order types of rank r = 4 (d = 3) with n = 7 there are
1158 admitting a complete Kneser transversal line to the convex hull of their 4-subsets.
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