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8 Abstract

8 This paper is the second one of two papers aimed at constructing hamiltonian systems of n degrees of freedom.
In molecular spectroscopy, the construction of vibrational Hamiltonians for highly excited molecular systems through
) ‘algebraic formalism implies to introduce "by hand" the operators reflecting the exchanges of quanta of energy between

< the different oscillators. It is thus tedious to predict, for any given order of the development of the Hamiltonian, the total

r—number of operators which should appear in the Hamiltonian (|1}, |2], |3]). In this second paper, we propose a method

h

Cllof construction of a normalized vibrational Hamiltonian of a highly excited molecular system with n degrees of freedom

in the case of a a p: ¢ resonance. We present also the counting of all the independent operators and the counting of all
—5 ‘the parameters included in the Hamiltonian (Counting theorems 1 to 8). The method introduces, on a systematic way,
Eall the operators, in particular the coupling operators, that can be built from the polynomials formed by products of
powers of the generators of a Lie algebra: the algebra of the invariant polynomials built in classical mechanics from the
the kernel Kerady, of the adjoint operator ady, (see |6] or [4], [5]). Application to the non-linear triatomic molecule
CIOH is then given, taking into account the Fermi resonance between the O-Cl stretching oscillators and the bending
motion. The study of this molecular system in highly excited vibrational states (until almost the dissociation limit) has
* been realized in [2], with a fit of 725 levels of energy. On the 86 coefficients (among which 31 coupling coefficients) that
we count, and completely compatible with [2], the smallest rms value leads to keep only 28 non-zero coefficients. In
the appendix, we explain the vocabulary and the strategy employed in order to demonstrate the theorems of coupling
operators included in the Hamiltonian.
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1. Introduction (I7], 18], 19]), we built a vibrational Hamiltonian written
as a Dunham expansion on the basis of the generators of
This second article is the continuation of a first one [6]
the invariant polynomial algebra and we have counted all
where we applied an algebraic approach to study highly
the operators included in the Hamiltonian developed until
excited molecular systems with no resonance between two
the order N (Eq. (13) of |[6]). An application to the non-
of the oscillators representing the molecular system.
linear triatomic molecule of CIOH has been performed as
After some basic reminders about the normalization
the highly excited vibrational states of this molecule have
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been widely studied (|10], [11], [12]). Thus the Hamilto-

nian (Table 2 of |6]) allows to reproduce the vibrational
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structure of 314 energy levels (until 70 % of the dissocia-
tion energy) with a set of 34 coefficients which is in good
agreement with [2]. In order to describe the vibrational
structure of more excited levels, it is necessary to take
into account a 2 : 1 resonance between the stretching os-
cillator associated with the O-Cl bond and the bending
oscillator associated to the angular deformation between
bonds O-Cl and O-H. The coupling operators are then im-
plemented by hand on a more or less arbitrary manner
and it is a laborious task to predict in advance the total
number of operators appearing in the Hamiltonian.

In the present paper, after some definitions and re-
minders about the standard normalization of the harmonic
oscillator of quadratic part Ho (section 2]), we present a
building method of the normalized vibrational Hamilto-
nian for a molecular system having two degrees of freedom
fulfilling a p : ¢ resonance condition (p and ¢ are positif
integers with a ged equal to 1). We derive also the enumer-
ation of all the independent operators and the number of
involved coefficients. Then we extend the method to sys-
tems having n degrees of freedom (section[3]). The method
introduces on a systematic way all the operators, in par-
ticular the coupling operators, which can be obtained from
polynomial formed by products of powers of the genera-
tors of the invariant polynomial algebra. Then we estab-
lish the theorems counting the coupling operators involved
in the Hamiltonian (sections B4 and [B.5). Demonstration
of these theorems imply to implement a specific vocabu-
lary which is given in Appendix. We end our paper with
the counting of all the operators and parameters involved
in the normalized Hamiltonian describing the vibrational
structure of CIOH molecule until 98 % of the dissociation

limit (section H).

2. Normalization

2.1. Lowest order Hamiltonian: Hg
Suppose H(q1, -y Gn, P1, ---, Pn) the classical vibrational

Hamiltonian of an Hamiltonian system with n degrees of

freedom, the quadratic part of which is an anisotropic
harmonic oscillator Ho = Y. ;_; wk—(qf;r—pz—), where the n
quantities wy are characteristic pulsations of the oscilla-
tors (with 1 < 4,5 < n, w; # w;) and ¢k, py are the
canonical dimensionless variables generalized coordinates

and conjugate momenta defined on the phase space I'.

2.2. Definition of the p : g resonance

The hamiltonian H shows a unique p : ¢ resonance
if two pulsations (refer here-after as w; and wq) are con-
nected through a relation of the form:

=2 L (1)

3
w1 q

p and ¢ are two positif integers with ged(p, ¢) = 1 and
p > q |4], the n — 2 others pulsations wy, satisfying to the

condition of non resonance (Equation (3) of [6]).

2.3. Equations of motion

We introduce the complex variables zj, and z; defined
in function of the canonical variables g; and pp (1 <
kE <mn)as: zp = %(qk + ipy) and z} = %(qk — ipk).
The lowest order Hamiltonian can be now rewritten Hy =
—(wiz121* + gwlzgzg* + > g wkzpzk™). With these new

variables zj, the equations of motion reads:

dn d__p

d
T —w121, e —1—W1 29, Sk _ —wizr (3 <k <n).

dt
(2)

2.4. Hamiltonian flow

From an initial condition zg = (21,0, ..., 2n,0), formally
the solution of the equations of motion is written as z(t) =
AL (20). ¢ : ' — T is the Hamiltonian flow generated

by Ho (113, 14, 13])

z1(t)
We have: z(t) = ¢, (z0) =
Zn(t)
e Wt 0 0
—1 2wt 21,0
0 e ‘et 0
= (3)
0 0 0
Zn,0
0 0 0 e wnl



Solutions z(t) are the trajectories of the Hamiltonian flow
or the orbits of the harmonic oscillator with a p : g reso-

nance.

2.5. Hilbert basis

The condition of resonance (Il) implies that the ker-
nel Kerady, of the adjoint operator ady,, (defined by
equations (4) and (5) of [6]), is generated by the n + 2

monomials (J4]) (n > 2 integer) :
a

*
o On = ZnZn -

(4)

_ P _ P, % _ *
o_1=21""2900= 212", 01 = 21217, ..

The kernel has the structure of a Lie algebra, called
algebra of the invariant polynomials. The generators oy
(—1 < k < n) form a basis of Ker ady, called Hilbert basis
(J16, 17, [18]). As in the non resonant case, the generators
of the Hilbert basis are invariant under the flow of the har-
monic oscillator gbzi", which is a symplectic symmetry for

the generators |6]. While for the case n = 2, |[15] used J =
po1 + qos, Iy = poy — qog, Iy = /2PTpigP Re (zl*ngq)

and II3 = /2Pt9pigPIm (zl*p22q>, we prefer to conserve
equations () which are more easy to use in order to build a

normalized quantum Hamiltonian as we will see in section

Bl

2.6. Poisson brackets of the generators

The Poisson brackets of the generators are equal to
zero except: {o_1, 01} = ipo_1, {0_1, 02} = —igo_1,
{00, 01} = —ipoy, {00, 02} = iqop and

{o_1, 00} = i01P o7  (p?00 — ¢P0).

2.7. Reduced phase space

The generators of the invariant polynomials algebra,
o_1, 09, 01 and o2 (o1 > 0, o2 > 0), are not independent.

They satisfy the relation:
og+o_—
0 1 )2 + (

o) —0_1
( 2

) = ool (5)

In the phase space I' = R?", the iso-K-energy surfaces are

hyper-surfaces of R??~1,

For a given value hg of Hj = —22 (obviously ho > 0), in

the case of a p : g resonance, () becomes:

h & I
062+U'_12 Jﬂ”(—ogalz(ﬁ)gk) ) (6)

ogot+o—1 gp—0—1
2

with o} = and o’ = and the condition
ho > WQ%O'Q + > 43 wkok. In the phase space, Eq. (@) de-
fines the reduced phase space [15], on which the dynamics

of the motion is reduced to a space of dimension n.
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Figure 1: In the plan (o1, o{)) for Z—‘Z’ =1 S.I.: reduced phase space

for different p : q resonance values.

2.8. The normalized Hamiltonian K

We want to define a normalized Hamiltonian X ver-
ifying {Ho, K} = —ady,(K) = adic(Ho) = 0. K can be
written on the form ([4]): X = Ho+f(0-1, 00, 01, ..y On),
moreover C has to be invariant under time reversal oper-

ation (TRO). Generators 7(oy) = o for 1 < k < n are



also invariant under TRO except o_1 and oy which verify

g_1 < TRO — ag.

3. Construction of the normalized Hamiltonian

3.1. Casen =2

8.1.1. Development of the Hamiltonian on the Hilbert ba-
818

We show this case as an example of modeling of the vi-
brational normalized Hamiltonian describing high excited
stretching modes of triatomic ABC or AB5 molecules. The
resonant normalized Hamiltonian I, with quadratic term
Ho = —z%(qal + po3) is only function of o_1, g9, o1
and o9: K =Ho+ f(o-1, 00, 01, 02). We expand the nor-
malized Hamiltonian as a polynomial development of pow-
ers of the generators until an order N. In what follows,
N >p+q+4, q, q1, g2, q3, 0 and § are integers; values
of Qp, Q1, Q2 and Q3 in the sums have to be precise in
order that the development based on the generators of the
algebra be effectively a polynomial expansion. >From |[6]
we already know that Qg = E(%

). In the expression of K

here-after, we will need to demonstrate that Q, = E(%),

E(5—(12)+q)) and Q3 = E(ﬂ—(g-i-q)):

Q2 =

K Ho + Z a alq"—i—a ,02%)

qo0=2

Tip +Tig=T

§ E E 11,42 Tiy Tig
+ TiysTig 41 12
r=21<i1<i2<2r;; >1,1mi5>1
Q1
+ z ( Q1 —1+a )
=1

§—2qg9 )

N (
-1,1 j.E +a j.qz
Z Z - !
6 2q2)a‘12 1 1

S=p+q+2 q2=1 pta

d—2q9

0,1 B(Z5) _q

+ a5, o o
E( p+((112) q2 0 1

N 6—2q2
I Z Z ~1,2 JE( ra ) a2
E(J 2(12 a2 —1 2

d=p+q+2g2=1

§—2q3
10,2 E( p+aq ) g2
+ ag (8=2az (op)

p+q )’

([‘3 2q3

N Qs qz—1 )
—-1,1,2 +aq Y 93—
+ o, o_; 7 o0
2 2D (epiim) g7 172

B=p+q+4qs=2 y=1

0,1,2

+ a bl
B(Z298), 5 g3

oy o]0,

(B 2'-13)
p+aq Y 93—

In section B.1.3] we will prove that the invariance of K
under TRO implies that all the coefficients of I are purely
imaginary.

Furthermore, one distinguishes in X the monomials built
as powers of o_; or op and we will call them coupling
monomials between the two resonant oscillators : they ap-
pear in the sums Sy = ZQI_ (ao o'y + o ogl),

q1
) q2 (3)
25 p+q+22 qo= 1a 6 202 q2am o, or Sm
Pt ([‘3 2q3

1 pTq
_Zﬁ =p+q+4 qu Qqu *
(m=-1,0;¢=1,2)

5— 2q
( p+q

m,1,2

g.
p2q; m 0103
E(ng)y%qa*’Y

Others monomials are the non resonant monomials.

8.1.2. Invariance of KK under TRO
Hypothesis of the invariance of the Hamiltonian I un-

der TRO implies the following identification:

0 _ /0
an = @ q1
1,0 0, ¢
O s, = o s (t=1,2)
E( p+32 )7‘12 E( p+g2)a‘Z2 ’
-1,1,2 0,1,2
D] — 9 Ly 8
B(P298), 7, q3— B(Z28), 5, qs—' ()

(7)

)’YQJ’Y



Taking into account the relations Eq. (8], one may fac-
torize sets of A-monomials of same coeflicients in Eq. (7).

These A-monomials are all real, in particular the follow-

(5 202) E((S 2q2)
ing coupling monomials: (o_; ¢ oy PH UZZ and

E(B72qs) (5 2q3) o
o, "t +o0_, " o]0 7. Moreover the transfor-

mation of the (qx, px) in (2x, 2;) is symplectic of multiplier
—1, like the Hamiltonian . One thus deduce that all the

coefficients in Eq. (7)) are purely imaginary.

3.1.3. Independence of the coefficients

>From the Jacobi identity (—1 < j < 2): {K, {0y, Ho}}+

{Ho, {K, o;}}+{0j, {Ho, K}} = 0 and calculating all the
Poisson brackets {K, o;}, knowing that (K, o;) € Ker
ady,, one deduces that none relation exists between the
coefficients of the development of Eq. (@): the different

A-monomials are independent between them.

8.1.4. Range of variation of the Q;
We will now precise the range of variation of the inte-

gers appearing in (7).

e For 1: the monomials ¢ and o' are of degree
d = (p+q)q1. ¢ takes all integer values from 1
to the maximal value @ satisfying (N > p + q):
Q1 = E(p—ﬂ\:q). If N < p+ g, all the coefficients af,

are equal to zero.

e For Q2: the 2-monomials o0}, ob?cf*, 0?0

and of?0d’

(p2 positive integer) are of degree (p +
q)p2 + 2g2. In an expansion of K to a given order
d, the following condition should be verified for the

degree of the different 2-monomials:

(p+q)p2 +2¢2 = 6. 9)

As the products of the powers of these 2-monomials
should always appear in /C, it implies po > 1 and
g2 > 1,1ie. § > p+ g+ 2. The integer ¢o may
vary from 1 to a maximal value ()2, obtained for the

smallest value of ps (pa = 1). From ({), one deduces

that Q, = E(Z=2t),

We determine now the range of variation of the in-
teger po. Conditions (9) and ps integer imply that,
for a fixed value of § , with 1 < go < @2, po varies
between the integer values of E(‘s 2Q2 ) and E(‘5 2)
In particular, for § = p+¢+2or p+q+3: Q2 =1and
p2 = 1; however for § = p + ¢ + 3, the condition (@)
is not satisfied. This will not be detrimental to the
counting of the coefficients in the sums S, (2) , but will

introduce redundancies among the 2- monomlals See

(
paragraph B3) which will then be eliminated (See
)-

0—2¢>
( p+q

Finally 6 varies from p4+q+2to N (N > p+q+2). If

appendix). Thereafter, we denote ps =

0 < p+q+2, all the coefficients in the sums involving

2-monomials are equal to zero.

. : P3 Y 573 2l
For Q3: the 3-monomials 0 ¢]05* and of’0]05?

(ps, v and r3 are positive integers) are of degree (p+
q)p3+27+2rs. As for the 2-monomials, one requires

that the following condition is respected:

(p+q)ps + 27+ 2r3 = B. (10)

As the products of powers of the 3-monomials have
to be include in K: ps > 1, v > 1 and r3 > 1, thus
B >p+q+4. We denote g3 = v+ r3. For a fixed
value of g3, v takes all the values from 1 to g3 — 1.
Furthermore we impose no constraint to the integer
g3 which takes all values from 2 (r3 =y =1) to a
maximal value @3, obtained for ps = 1. With (I0),
we find that Q3 = E(W).

We determine now the range of variation of the in-
teger ps. For a fixed value of 8, conditions (10) and
ps integer imply that, for 2 < ¢35 < @3, p3 varies be-
tween the integer values of E(5=29: 233) and E(§+3)
In particular, for 8 = p+qg+4or 8 =p+q+5:
Q3 = 2 and ps = 1. For § = p+ q + 5, condition
(@) is not fulfilled, thus the counting of the coeffi-
cients in the sums Sf,f ) will show redundancies among

the 3-monomials (See section B3) that will have to



be removed (See appendix). Thereafter, we denote

p3 = E(B;fgg'). All the coefficients in the sums in-
volving 3-monomials are a priori non equal to zero

except if p+¢g+4 << N.

3.1.5. Counting
For a given value of N, 2F (%) monomials appear in
the sum Sy. For given values of N and §, a sum 57(73,)@

contains Q2 2-monomials. Thus one deduces that it con-

: N
tains Ay =25 o

N = p+q+2+ K with K integer and § = p+q+2+k with
k an integer such that k =0, ..., K: Ay = Zf:o E(1+%).

E(%) 2-monomials. Denoting

The sum contains K + 1 monomials but the calculation of

A1 depends on the parity of K:

o if K = 2p (p integer) is even, thus for k =0, ..., K,
each integer in the sum appears two times: 1 associ-
ated to E(1), E(3/2), ..., except the last term giving
E(p+ 1) =p+ 1 which appears only one time, thus

we get:

Ar=—[N—(p+ql (11)

=

o if K =2p+1 (pinteger) is odd, thusfor k =0, ..., K,
each integer in the sum appears two times: 1 asso-
ciated to E(1), E(3/2),..,p+ 1 for E(p + 1) and
E(p + 3/2). After calculations, one obtains:

A =-[N-(p+q —1[N-(p+q) +1]. (12)

-

For fixed values of N and 3, a sum S contains Z,;Q;:z (g3—

1) = w . This sum has

(E( B(§+q))) (E(ﬂ(§+q))_1)
N
A2 =3 pprgra 2

We denote now N = p+ ¢+ 4 + K with K integer and

3-monomials.

B =p+q+ 4+ k with k integer such that £ =0, ..., K,
. <E(2+§)> <E(2+§)1)
Ay =370 2

Zszo E2(2+%)and S, = Zszo E(2+%). The calculation

. Also we denote S, =

of these two sums depends on the parity of K:

o if K = 2p (p integer) is even, then for £k =0, ..., K,
the following integers appear two times in the sum
Si: 4 associated to E2(2), E%(5/2), 9 for E?(3),
E?(7/2), ...; only the last term giving E?(p + 2) =
(p+2)? appears once. With the same process applied

(p+1) (25> +4p+3)
3

for S, one finally obtains: S; = and

Se=@+1)(B+2)+p
Thus one deduces that:

A2=ﬂ[N—(

o if K =2p+ 1 (p integer) is odd, for k = 0, ..., K,
the following integers appear two times in the sum
S1: 4 associated to E2(2), E?(5/2), 9 for E2(3),
E2(7/2), ..., (p+2)? for E*(p+2) and E*(p+5/2).
Performing all the calculations, it reads:

Sy = PRI 9 and Gy = (5+2)(5+3) - 2.
Finally, the result is given by:

A2=ﬂ[N—(

The number of others monomials involved in the Hamil-
tonian K is given by A = Zi:l C5CE, = W (Eq.
(13) of |6] for n = 2).

3.2. Dissatisfaction of the counting

Eq. (II) to (I4) take into account the redundancy
of some 2-monomials or 3-monomials in the expression of
([@). For instance, for a 1 : 1 resonance, developing K until
N =7 (K = 3), Eq. (I2) predicts six 2-monomials in a

sum S'?) , instead of three in reality.

m,

8.8. Multiplicity of some A-monomials

3.8.1. Pointing the problem

In the formula ([7), we associate the couple of integers
C = (p2, g2) (2-couple) or (p3, g3, ¥) (3-couple) to a 2-
monomial or a 3-monomial. In fact, in the next section,
we will count the A-monomials in the sums Sfj) , and 8’7(7::’)
(m=—1,0; £ =1, 2) step by step from § = p+ g+ 2 or
B = p+q+4 until the desired value of N (N > p+q+2) by

p+q) —2|[N —(p+q) — 1[N —(p+q)] (13)

p+q)=3][N—-(p+q) —1[N—(p+q) +1].(14)



eliminating the 2-monomials and 3-monomials which are
redundant. Firstly, we will define the necessary definitions

and tools in the sections B.3.2] until [3.3.4

8.83.2. Definitions
e We call main interval, any set of values taken by the
integer N, order of development of K, between two
integers N7 and Na (No > Ni): N € [Ny, N3]. The
smallest possible value of N in the relation (7)) is
N = p—+ q+ 2 for the 2-monomials and p + q + 4 for

the 3-monomials.

e For fixed § (respectively (), we call secondary in-
terval 1.5, the set of all the values taken by the
integer g2 (respectively ¢3) between the integers 1
(respectively 2) and Q2 = E(%) (respectively
Q3 = E(W)) We denote 1S5 = [1, Q2]s or
IS5 = [2, Q3]s or even more simply IS.

e For fixed § or 3, we will say that a couple of integers
C is present if it appears in the secondary interval

1S. In the opposite case, it will be declared absent.

e A couple of integers C' is said present on a main
interval [N7, No| if it appears at least one time on
one of the secondary intervals No — N7 + 1, each
of these secondary intervals being constituted from
one of the No — N7 + 1 values of § or § composing
the main interval. If C' does not appear on all the
secondary intervals, it will be said as absent on the

main interval [N, Na].

e We define the multiplicity p of a couple C as being
the number of times this couple appears in an given

interval (main or secondary).

e The cumulative multiplicity (also denoted by u) of a
couple C on a secondary interval IS in the number
of times this couple appears on the greatest main
interval [p+q+2, 8] or [p+ ¢+ 4, 8] built from this

value of § or 3.

e The set of couples C' with same value p; = k' (j =
2, 3) constitutes a class of couples or more simply a
class Cjs. The population of a class is the number of

couples belonging to this class.

e The set of couples C with the same cumulative mul-
tiplicity on IS constitutes a class of multiplicity. We

denote by /~\# its population.

3.3.8. Properties
e By construction, to a given value of g3 corresponds

g3 — 1 3-couples.

e A 2-couple (k¥', ¢2) or a 3-couple (k', g3, v) , present,
appears once and only one on an secondary interval:

their multiplicity is thus equal to 1.

e The multiplicity of an absent couple on a main or

secondary interval is equal to zero.

e In the case of a resonance p : ¢, the cumulative mul-
tiplicity of a couple of integers C' may take all integer
values from 0 to p+¢. This last value is the maximal
cumulative multiplicity of the couple. This result is
easily established from Eq. (I&)). Thus one deduces
that the cumulative multiplicity of an absent cou-
ple is either zero or maximal. We will call switch-off
couple, an absent couple of maximal cumulative mul-

tiplicity.

8.8.4. Calculation of a cumulative multiplicity

By the same way, we calculate the cumulative multi-
plicity of a 2-couple (£, ¢2) or a 3-couple (k’, g3, 7). Also,
the couples of integers belonging to a class Cys (K, g2) or
(k', g3, ) do not still appear in the counting and are ab-
sent (i.e.
Kp+a) +2q (G =23)
(k' +1)(p+q)+2g;—1, they do no more appear: these cou-

cumulative multiplicity equal to zero) if § <

To the contrary, for § >

ples are switch-off; their cumulative multiplicity is maxi-

mal. The only main intervals where the couples of integers



are present are of the form:
[K'(p+q) + 245, (K +1)(p+ q) + 2¢; — 1]. (15)

For a given value of N = N; belonging to the interval given
by (&), the multiplicity of the present couple (k’, g2) or
(k', g3, 7v) on the main interval [k'(p + ¢) + 2¢;, N1] may
be calculated by:

p=Ni = Napp +1, (16)

with Ngpp = k' (p+¢) + 2g; the value of N from which this
couple appears on this main interval. Eq. (I6]) gives also
the cumulative multiplicity of the couple present on the
secondary interval I.Sy,. Indeed, from the definition, the
cumulative multiplicity of the couple (k’, ¢2) or (k', g3, )
on this secondary interval is its multiplicity on the largest
main interval, here [p + ¢ + 2, N1|. But, [p+ ¢+ 2, N1] =
[P+ ¢+ 2, Napp — 1] U[Napp, N1], thus from (I5)), on the
main interval [p+q+2, Ngpp—1], this couple is absent: its
multiplicity is equal to zero. By contrast, it is present on
each of the Ny — Ny, + 1 secondary intervals associated
respectively to the values : Nypp, ..., N1. Its multiplicity

on [Ngpp, N1] is equal to N1 — Ngpp + 1.

8.4. Theorems of the 2-monomials counting
8.4.1. Pointing the problem

The three following theorems about the counting give

d—2q9
the number A; of independent monomials O’m( pta )032
(m = =1,0 and ¢ = 1, 2) present in a sum Sfj?e but

also the number &; of 2-monomials of degree N. Without
limiting the generality of the problem, we will write N =
E'(p+q)+2+i with k' a positive integer and ¢ an integer
such that ¢ € [0, ..., p+ g — 1]. A posteriori we have to
distinguish trois cases in our study according the parity of
p+q and of k¥’: p+ ¢ even whatever the parity of k’; then
for p+ ¢ odd, to study the cases when %’ is even then odd.

Demonstration of these theorems is given in Appendix.

Theorem 1. If p+ q is even and k' an integer > 1:

A, :k’[1+E(%)+%4(p+q)]. (17)

Theorem 2. If p+ q odd and k' an even integer > 2:

(K —1)(p+q)+2i+3

Ay = K] y ]. (18)

Theorem 3. If p+ q odd and k' an odd integer > 1:
E(p+q)+2i+3

Ar=1+E(5) + (K 1) y ). (19)
N ilpt+tq|Ar|p+tqg|Ar|ptqg| A |ptaqg]| A
4 2 1 3 0 4 0 5 0
5 2 1 3 4 0 ) 0
6 2 3 3 1 4 1 5 0
7 2 3 3 2 4 1 5 1
8 2 6 3 3 4 2 5 1
9 2 6 3 4 4 2 5 2
10 2 10 3 ) 4 4 5 2
11 2 10 3 7 4 4 5 3
12 2 15 3 8 4 6 5 4
13 2 15 3 10 4 6 ) )
14 2 21 3 12 4 9 5 6
15 2 21 3 14 4 9 5 7
16 2 28 3 16 4 12 5 8
17 2 28 3 19 4 12 5 10
18 2 36 3 21 4 16 5 11

Table 1: Counting of the 2-monomials present in a sum Sfj)e (m =

—1,0;¢=1,2) from (@) for4 < N<18and 2<p+q <5.

8.5. Theorems of the 3-monomials counting
3.5.1. Pointing the problem

In this section, we give the theorems of the counting
(B2

B(2 20 -
of the 3-monomials o, "7 "0702*™7 (m = —1,0), As

in number, appearing in a sum 57(,3) of (@), but also the
number &g of 3-monomials of degree N. Without limiting
the generality of the problem, we will write N = k'(p +
q) + 4 + ¢ with k" a positive integer and 4 an integer such
that ¢ € [0, ..., p+ ¢ — 1]. As for the 2-monomials, three
cases should be distinguished in our study according to
the parity of p + ¢ and of &¥’. In what follows, we denote
e=1i—2E(%): e=0ifi even and e = 1 if i odd.




Theorem 4. If p+ q even and k' an integer > 1:

[E(%) +1][E($) + 2]
2
E'(K'=1)(p+4q)

+ g 12K — D+ q) +6(i+3 )]

(k/; D [i(i + 6) — 46E(%) — Te+8].

Ay =

+ (20)

Theorem 5. If p+ q odd and k' an even integer > 2:
[E(3) + EG) +2]

Ay =
2
¢ BEZDOED 00 1)y 4 g) + 321+ 5)
K —1) i
+ 3 [2(z+6? —46E(§) — Te + 8]
B

Theorem 6. If p+ q odd and k' an odd integer > 1:
[E(3) +1][E(5) +2]

Ay = 5

b B0 510 1)+ g) + 3021 +5)

+ Lg_l)[i(i +6) — 46E(%) — e+ 8]

+ W[4E(%)f(p+q)+5+26]. (22)
Nip+tqg|As|ptqg|De|ptg|As|ptq]| A
6 2 1 3 0 4 0 5 0
7 2 1 3 1 4 0 5 0
8 2 4 3 1 4 1 5 0
9 2 4 3 3 4 1 5 1
10 2 |10 3 4 4 3 5 1
1| 2 |10 3 7 4 3 5 3
12 2 |20 3 9 4 7 5 3
13 2 |20 3 | 14 4 7 5 6
4] 2 |35 3 |17 4 | 13 5 7
5] 2 |35 3 | 24 4 | 13 5 |11
6] 2 |56 3 |29 4 | 22 5 | 13
17 2 | 56 3 | 38 4 | 22 5 | 18
18] 2 | 84 3 | 45 4 | 34 5 |21

Table 2: 3-monomials counting present in a sum S5 (m = —1, 0)

of @) for 6 < N <18 and 2<p+q <5.

Theorem 7. The normalized Hamiltonian K given by ()
with a p : q resonance between its two oscillators, is de-
scribed by Neoey coefficients, Nop independent monomials

among which N, are coupling monomials and given by:

Qo(Qo +3) N

Neer = <2079 L Bp(——)+2A;+ Ay, (23
f 5 (p+q) 1+A2,  (23)
Qo(Qo +3) N
N, ————— +2F(——) +4A1 + 2A,, (24
p 5 (p n q) 1 2, (24)
N
N. = 2BE(——)+4A1 +2A,. (25)
p+q
Ay and Agy are given by the counting theorems (Theo-
rems 1 to 6).
p+q Ncoef Nop NC
2 55 90 | 70
3 37 54 | 34
4 33 46 | 26
5 27 34 | 14

Table 3: Counting of the coefficients, monomials and independent

coupling monomials in (@) for N =10 and 2 <p+ ¢ < 5.

3.6. The general case
3.6.1. Construction of the normalized Hamiltonian

We consider a Hamiltonian system described by n > 3
oscillators among which oscillators "1" and "2" are in
Hamiltonian X is supposed to be in-

Ho =

p : ¢ resonance.
variant under TRO. The quadratic part of I is :
—1 ZZ:1 wrok. The n quantities wy are characteristic pul-
sations of the oscillators. The Hamiltonian can be ex-
pressed as a function of the generators of the Hilbert ba-
siss K = Ho+ f(o-1, 00, 01, ..., o). If we write K as a
polynomial development of the generators of the Hilbert

basis until the order N > p + ¢ + 4, it reads:

n Qo
_ k 9o
K=Ho+) > agoi'+
k=1 qo=2
Qo T.,;1+...+T.,;[:T

D1y eeey bt Tiq 07_"’5

Tips ooy Tip 01 °° ¢

> > > :

=2 r=21<i1<i2<...<iy<nri; >1,...,7,>1



+ Z 042 (0% +og")
=1
n N 5—2
B( g2 )
CY S, (A
k=1 d6=p+q+2 q2=1 pta
(5 iQZ) q
2
4 p+a > o}
n—1 n N Qs g3—1
0,7,7
DIPIEDY Z 2 OB s
i=1 j=i+1 f=p+q+d gs=2 vy=1 p+q
E B—2q3 B—2q3
(U—i p+aq )+0. ( p+q ))O.’YO.;JJ ’Y (26)

In Eq.(26), all the coefficients are purely imaginary; i1, ...,
ie (2 < ¢ < n) are positive integers satisfying the partial

order: 1 <4y <ip <...<iy<mn;ry, .., ry are positive

integers satisfying the relation r;, + ... +7;, = r, with r
an integer between 2 and Qg; Qo = ( ), @1 =
Qo= E(C20) and Q3 = E

K involves two contributions: a first one corresponding to

(p+q)
(ﬁ*(ng‘I)).

a Dunham development on the basis of the generators [6]
and a second contribution corresponding to a polynomial
expansion of the coupling terms.

Furthermore, using the same method as here-before in
B3l one obtains that the different coefficients involved
in the normalized Hamiltonian K given by Eq. (26]) are

independent.

Theorem 8. K is described by Neoey coefficients (among
which % coupling coefficients), No, independent monomi-
als whose N, are coupling monomials, satisfying the fol-

lowing equations:

n(n—1)
Ncoe = A+E— + A +7A7 27
f (p+q) naq 9 2 ( )
N
Nop = A+2B(——)+2nAi+n(n—1)A,  (28)
N, = 2E +2nA1 +n(n —1)As. 29
(p-i-q) nAy +n(n—1) (29)

A1 and Ay are given by the counting theorems (Theo-
rems 1 to 6) and A = ZT:Z'?("’QO) ChCp, (l6]).
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4. Applications

4.1. The molecule of CIOH

4.1.1. Conwventions of notation

CIOH is a non linear triatomic molecule with 3 vibra-
tional degrees of freedom. (n = 3). In the local modes
representation, we attach a stretching oscillator to each of
the bonds Cl-O (oscillator "1") and O-H (oscillator "3")
and a bending oscillator (oscillator "2") to the angle be-

tween these bonds.

4.1.2. Quantum vibrational Hamiltonian
The classical relations between dimensionless variables
7laj, af]

These

{2;, 21} = —idk, take now the following form:

= —idjk, that is 1 < j, k < 3, [aj,af] = 6.
operators satisfy the Bose commutation relations and are
defined as the Boson creation operator az and Boson an-
nihilation operator a;.

Generators o; and Hamiltonian function KC are respec-
tively replaced by the number operators Nk = azak, which
physically express the number of quanta of excitation of
each oscillator k, and the Hamiltonian operator K. By

convention, for the expression of powers of number opera-

tors, we adopt the following form (|19]):

771 \TTe + . + . +, ..
NN =afai e ai, o afag, e ag; (30)

r1 times r¢ times

but we will write under normal form, as a function of the

Bose operators, all the coupling operators: 6_1 4+ gy =
+P +4
ai a? +ay ai?,
541 ~qr +P +P
oy + oo = aj ...a] a2?...a?
q1 times g1 times
q q
+ af’ . af @ aqP. (31)
q1 times q1 times

On a more compact way, Eq. (3I) may be rewritten:

61 + o = (afpagq)ql + (a;qalp)‘“.



Similarly, the treatment of others coupling operators in K

gives:

(@’

(673 + G0N =
——
g2 times

(673 + G?* )N NE ™7 =

<(afpa2q)p3 + (a;qalp)pg) a;rai...a;rai a;raj a a;. (34)

v times q3—

~ times

Hamiltonian K is Hermitian and the Neoey coeflicients are

real.

4.1.3. Eigen basis of the Hamiltonian H,
The eigenstates of H, are generated from the vacuum
state with the relation (ni, na, ns are integers):

1 +n1_4n2 4ng
as

T4 G
vV n1!n2!n3!

)

(35)

‘ ny,n2,ng > =

>From Theorem 8, the quantum vibrational Hamil-
tonian, developed until the order N = 10 (Qp = 5), is
described by 115 operators, 60 of which are coupling op-

erators and 85 coefficients; so, we write (with the usual

11

K =

convention that 7 is equal to 1):

(W1N1 + w2N2 + wst

as N2+ a3N3 + N+ a5N5

a%NQ + 0431\72 + a4N2 + a5N25

agﬁg + a§N§’ + aiN;} + agﬁé’

ozl 1]\71]\72 + 041 N1N2 + a2 1]\71 N2

aigNlNS + CY272]\712N22 + 0‘3’1N§N2

ayiN1Ng + aysNENS + ag SNP NG + oy INT N

o&’?NlNg + a1’§N1N3 + a2 1]\71 N3

a3 NiNG + ay s NENG + ag't N7 N3

0414N1N3 +0‘2§N1N3 é’gﬁf’Ns +0‘41N1N3

oI NaNs + a5 Na N3 + a3 N3 N3

oy 3N2N3 + ag SNZNG + 0‘3 NG N3

aiiNoNg + a3 3NFN3 + a3 3N N3 + o TNy N

ayTiN1N2 N

a};f;gﬁ NyN3§ + o735 I NINZ N3 + ay TN N2 Ny
UTANINNS + a5 I NINSN; + o TN N2 N3

%ﬁM%@+é£MMM+@“MM%

2
+ a22)

2 2 4
ar? + a} az) + od(a’art + o
6

O+ af as”)
aga® 4+ af a)N+a Yafa® +af a)N
9 U1 1 2 1 1,2\02 d1 1 2 1
+2
2

a14+a1 )N1+a13(a2a1 Jral ag)ng’

2 4 -
ag art + ai " ax®) N}
2 2 Y 0,2 2 2 ¢
+ai as) Ny + af Q(a;al +af az) N3
2
ag a4+ af g DNy +a? 3(a2 a1 +af ag)N3

+2 4 +4 2\ x72
ay a1” +al a2’)N;

+ + + + + + + + +F + + + + o+ o+ A+ A+ o+ o+ o+ o+ o+ 4+ A+ 4

+.2 42 \n 03¢ 4+ 2 42 \x72
ay a1” + aj ag)N3+a172(a2 a1+ ay “az)N;



as) N3

+ o+ + o+ o+ o+ o+ o+ o+ o+

0,2,3, +2
Qo 1, 1(as

)

a1 +a1 a2 )N2N3) (36)

4.1.4. Numerical simulations

The vibrational structure of the CIOH molecule has
been studied in 2] until almost the dissociation limit. For
levels of energy less than 70 % of the dissociation limit, the
authors make a Dunham expression based on the number
operators (See [6]). But, for highly excited levels, due
to the more and more frequent accidentally couplings be-
tween levels energetically close, Fermi resonance between
oscillators "1" and "2" (£ ~ 2) has to be taken into ac-
count. Quantum numbers n, and no are "no more good
quantum numbers", as refers in the literature, and they
are replaced by the polyad number P = nj; + 2ny (See
for instance [20]). In [2], the authors determine 725 lev-
els of energy, which means to take into account up to 38
quanta of excitation exchanged between oscillator "1" and
"2" (P < 38) and 7 quanta for the oscillator "3", la-
beling of the states being made with the polyad number
[P, n3]. Furthermore, these authors add a coupling oper-
ator o/lo(ajga3 + afay®) in the Hamiltonian K in order
to describe the 3 : 1 resonance between oscillators "2" and

"3" (&2 ~ 3). Our model predicts that the Hamiltonian K

12

. . -1
coefficients in cm

= 4753.834, wy = +1258.914
=43777.067

= —80.277
= —19.985

—7.123, 0% = +3.204, o

3
Qg
a} = —10.637, oy} =0, a7}

,2
1
19 al = 40.0825, , af = 0, a3 = —0.3619
= —0.0532, a3 = —1.9534
3
1

P

ayy = —0.2503, a3 v
ay’ =—0.0802, ay] =0, 057 =0

)

3
17=0

1,2
'y
2

34 = —0.00171, a2 = —0.04117, a3 = 0

usH

—0.01229, a’j =
a};1;2 = +0.02381, a3} =

10 | 55 1 =0, a2 = 40.00151, a?
=0
=0

—0.00066

Table 4: List of the Dunham coefficients given by |2]. For a given

order N (4 < N < 10), a line contains the numbers of additional
coefficients to the order N — 2.

has to be described by 86 coefficients (the 85 coefficients of
Eq. @8) + }°) 5.29

cm—

. However the smallest rms value (=
1) is obtained for a fit with only 28 coefficients differ-
ent from zero, some coefficients have been set at zero by a

more or less arbitrary way. Results are given in the tables

M and [Al

5. Conclusion and perspectives

We have presented a method of construction of a vi-
brational normalized Hamiltonian, modeled by a set of
n oscillators until a high order N. It allows to describe
the highly excited vibrational levels in the case of a p : ¢

resonance. We have also counted all the operators intro-



N % coefficients in cm™*
3] 1 al=0
411 (a},® = 40.19520)
5| 4 | al]=-024939, o]} =0, af"} = —0.76017
6|5 a9 =0
7 | 11 | a3 = +0.00583, a3 = 0, af’s = —0.01158
a1l = 40.04075, a1} =0, a7 =0
8 | 14 agﬁ =0, agf =0, agﬁ’ =0
9 |24 a=0,a3=0a]3=0a13=0
a1 =0, ayT =0, a5 =0, 0157 =0
a’is =0, 057 =0
10 | 30 ayri=0,a17=00a377=0
agé =0, agé =0, ag:g =0

Table 5: List of the coupling coeflicients given by |2]. For a given
order N (4 < N < 10), a line contains the number of additional
coefficients to the order N — 1. The coupling coefficient of the 3 : 1

resonance is in brackets and is not accounting for in the enumeration.

duced in the Hamiltonian, in particular the coupling oper-
ators. This building method has been successfully applied
to the CIOH molecule taking into account a 2 : 1 reso-
nance. To go further, in a strict manner, for molecular
systems having at least 3 oscillators, we should add in the
Hamiltonian polynomial expansion, 4-monomials based on
the generators of the invariant algebra (Eq.(26])) as soon
as N > p+ q + 6. If the method of construction is eas-
ily adaptable, the counting theorems for these monomials

remain to be done.
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7. Appendix

7.1. 2-monomials counting

In this section, we present the demonstration of the
three counting theorems of the 2-monomials. We denote
the order N of the development of (26]) under the form N =
K (p+q)+2+iwith ¥ and i € [0, ..., p+q—1] two positive
integers. Thus we are working on the secondary interval

IS =1, Q2] N=k' (p+q)+2+i With Q2 = E(%)-

7.1.1. The different classes of couples

On IS, the different values taken by g2 belong to dif-
ferent classes of couples: C1, ..., Cr/—1 and Cy. We begin
by searching the couples belonging to the class Cys as well
as the population A” of this class. The couples (k’, g2) of

this class are: (K, 1), (K, 2), ..., (k', =) with g2 the highest

M):

possible value of ¢ such that ps = E( e

K, that is o = 1+ E(%).
1+ E(%) couples are easily calculated with the Eq. (1)

the multiplicities of these

and ([0). The cumulative multiplicities of the couples
(K, 1), (K, 2), ..., (K',g2) on IS are respectively equal to
p=i+1,i—1, ., i+3—2qs, ..., 1+ € withe =i—2E(3).
It is possible now to evaluate the numbers of couples of this
class: the population of Cy is the sum of all the couples
present in this class taking into account the cumulative
multiplicity of each of the couples on 1.5, which is equiva-
lent to calculate the number of times a couple appears on
the main interval [p 4+ ¢+ 2, k'(p + q) + 2 + i]. We get:

P

Z (i + 3 — 2g2),

g2=1

A//

= [B(;)+1li+1-E(3)), (37)
or accordingly to the parity of i:
[ 38
=7 i+ 1 (i even), (38)
A i : 3.
A :Z+l+1(l odd). (39)

Couples of the others different classes of I.S break down
as follows: (k' —1,E(%) +2), (K —1,E(%) +3), ..., (k' —



1, B(PE2)) for the class Cl—_1, (K — 2,E(%)),
(K — 2, B(RELEHS )y - () — 2, BRIy for the

class Cir g, ..., (2, B(E=2Uptatitdy)

(2, B(W=Aatin6y) - (o pE=2ratit?y) o the
(1, B2 e)

o (1, Q2

class Cy and finally

)

(1, B(E =2t tizoy) = p(EDetaticey)

for the class Cj.

Calculation of the cumulative multiplicity of the 2-
couples implies to distinguish three cases: p+ ¢ even (case
A), p+ q odd with k¥’ even (case B) and p + ¢ odd with &’
odd (case C). Results are given in the tables [ to [I0l

7.1.2. Case A

We denote by A’ the population of the classes Cjy_1 to
C1; on each of these classes, each cumulative multiplicity
(% in number) p+q—1+¢€,p+qg—3+e¢, ..., 1 +€ appears

only one time; we may write:

A= (K -1 22)(2j+1+e>,
j=0
(K =Dlp+q ptq
= 9 [ 5 + €. (40)

The population A of all the classes C; j=1,..,FK)is
the sum of (B7) and (@Q). In order to obtain the number
of 2-monomials, we have first to determine the number of
switch-off couples a on IS. To do it, depending of the
parity of K = (k' — 1)(p + ¢) + 4, we have to substract
from A; (given by (II) or (I2)) the population A of all the
couples present on [.S. As the cumulative multiplicity of
all the switch-off couples is equal to p + ¢, A is divisible
by p+ ¢q. More precisely, one calculates A; by replacing in
() or (I2) N by k' (p+ q) + 2 + i; one obtains:

A = i(kz'—1)2(p+q)2+%(k/’l_l)(P‘i‘Q)(i‘f‘Q)"'Ra (41)

with
i2

R=_+i+1 (K even), (42)
i .3
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For the case A, K has the same parity as i thus R is
canceled by A” in a = Ay — A’ — A”. We obtain:

(K = 1) (K —2)(p+q)*

+ (K =1D(i+2-¢(p+q). (44)

DN — | =

To eliminate the redundancies in the switch-off couples in
1S, it is enough to divide a by p + ¢. The number of cou-
ples, thus the number of 2-monomials A; in a sum 8’7(3) ’
(m = -1,0, £ = 1, 2) is obtained by summing ﬁ and
@y, the number of couples present without multiplicity on
IS (to do it, one attributes artificially a cumulative mul-
tiplicity of 1 to each of the couples of the k' — 1 different
classes Cy/—1 to C, each cumulative multiplicity appear-
ing exactly 1 time in each class, and to add the g2 couples

the class Cy/), that is:

~ Ptgq
:(—

i =TI 1)+ B + 1.

From which we deduce that: Ay = k'[1+E(%)+ WM].

Theorem 1 is thus proved.

7.1.8. Case B
Compared with case A, for a given class of couples, the
cumulative multiplicities are either all even or all odd. We

have to distinguish the "sub-cases" i even and i odd:

% odd cumulative mul-

e If 7 is even, one counts
tiplicities 1, 3, ..., p + ¢, which appear exactly one

2
) Cb

’
time on each of the kT_ even classes Cy/_o, ..

/ .
whereas the odd classes Cy/_1, ..., C1, % in number,

ptq—1
2

contain the even cumulative multiplicities : 2

to p+¢q— 1. We denote [\’Odd and A’ the number

even
of couples of, respectively, odd and even cumulative
multiplicity on IS, except the couples of the class

C which population is given by ([37). We have:

ptg—1
v -2 <
odd - 92

(2) + 1),
=0

(K —2)(p+q+1)°
< :



, B Ay is determined by @I and @2), A” by B9), from
even T 9 Z (27), which one has a = A; — A/ — A”:
j

_ k’(p‘i’Q*l)(pﬁLQﬁLl). (46) a:i(k’—1)(k’—2)(p+q)2+%[3k’+2i(k/*1)*4](p+q),

8

One deduces: (52)

o W=D +q)? LK =2p+g 1 () then the sum of &) = (2£2)(k' — 1) + E(%) + 2 and
() divided by p+q gives: A, = /[ E=1eta)£2i48]

4 4 4’

then the population A of all the classes, the popula- This proves the theorem 2 .
tion of Cys being still given by Eq. (B8). The deter-

mination of switch-off couples is made analogously to 7.1.4. Case C

the case A. For i and k' even, K = (k' —1)(p+q) +i As for case B, the study implies to consider all the
is odd, A; is obtained with @I) and @3), thus it  "sub-cases" i even and i odd:

gives: e If 7 is even, there is % odd cumulative multiplic-

ities 1, 3, ..., p+ ¢, which appear exactly one time on

each of the % odd classes Cy/—a, ..., C1, the %

o= (K = 1)K = 2)(p+a)*+ 713 +2i(K ~1)~2(p+a),

(48)

even classes Cy/_1, ..., Cy having the L;ﬂ even
One checks that [@R) is divisible by p + ¢, R being cumulative multiplicities: 2, ..., p + ¢ — 1. It gives:
canceled by the contributions B8) and —1 of (@T). (K —1) S B
-, _ - )
Eq. [@R) divided by p+ ¢ and d; = (&2)(k' — 1) + odd ™ 2 — () +1),
’ . =
E(%) + % gives: Ay = k/[—(k 71)(p1q)+21+3]. (k' —1)(p+q+1)2 (53)
= ) 53
8
e If i is odd, there is %’Hl odd cumulative multiplici-
ties 1, 3, ..., p+ ¢, which appear exactly one time on K —1) =t
-, B — ,
each of the % odd classes Cy/—_1, ..., C; whereas the Acven = 2 z; (27),
’ ]:
@ even classes Cy/_o, ..., Cy contain the L;* (K —=1)(p+q—1D(p+q+1) (54)
even cumulative multiplicity : 2, ..., p+q — 1. We a 8 .
have now: >From which we deduce:
pig-t o (K -1 1
-, [ . A= ( Jp+a)(p+q+ ), (55)
odd = o (27 +1), 4
=0 then the population A of all the classes, the pop-
Kp+qg+1)?
= - 5 (49) ulation of Cy is determined by (B8). The number
of switch-off couples is obtained on a analogous way
, pha=t that cases A and B. K = (k' — 1)(p + q) + 7 being
[\/ _ (k *2) Z (2 ) -
even 2 — 1), even, A is given by [@I) and [@2), A” is given by
‘7:
_ A/ A1,
_ (K =2)pte-Vp+aq+1) (50) @3), then a = Ay — A" — A"
8 ' 1 .
a= 7K =1 +gl* =2)(p+q) +2i+3]. (56)
It gives: .
/ . Using Eq. (B6) and a; = (E£9)(k' — 1) + E(4) + 1,
~ E—1)(p+gqg E'(p+q 1 , ) ;
N = ( )4( ) + ( 1 ) + (51) one deduces: A, = (k' —1)[Feta) 2043 (p+qi+21+3]+E(%)+1.



e If 4 is odd, there is % odd multiplicities 1, 3,
..., p + q, which appear exactly one time on each
of the &1 .y Cy while the

WT_” odd classes Cj/_o to C; contain the L;ﬂ

even classes Cy/_1,

even multiplicities 2 to p + ¢ — 1. Populations A/ ;,,
A, and A = A/

even even

G3), B4) and (BA); A" is calculated by Eq. B9
and A; deduced by Eqs. [#I) and [@3). One obtains
once again Eq. (B6) for o. From Eq. (B and a3 =
(E£2)(K' — 1) + E(%) + 1, one may write:

Ay = (K —1)[Het0s2id3) | piy 4,

+ [\gdd are still given by Egs.

Theorem 3 is thus demonstrated.

7.2. 3-monomials counting

In this section, we give the demonstration of the three
3-monomials counting theorems. For the following, with-
out limiting the generality of the problem, the order N of
the expansion (26)) is denoted N = k'(p+q) +4+ ¢ with &’
and i € [0, ..., p+ ¢ — 1] two strictly positive integers. We
work on the secondary interval 1.S = [2, Qg]N:k/(p+q)+4+i

with Qg = B(W=LEratisiy

7.2.1. The different classes of couples

Successive values taken by the integer g3 on IS com-
pose the classes of the couples : C, ..., Cx—2, Crr—1 and
Cy (classes Cyr—1 and Cjs_o exist if, respectively, k' >
2 and k' > 3). We begin by giving explicitly the 3-
couples belonging to the class Cy as well as its popu-
lation A”. The 3-couples (K, ¢3,7) (v = 1, ..., g3 — 1)
of this class are: (K, 1, ), (K, 2, ), ..., (K',ds, ) with
q3 the highest integer value of g3 allowed such that ps =
BRIy  j/ that is G = 2+ E(4). We de-
termine the multiplicities of these 3-couples with the help
of (I58) and (I@). Thus, the cumulative multiplicities of
the couples (K, 1, v), (K, 2, 7), ..., (kK',Gs, v) on IS are,
respectively, u =¢+1,¢1—1, ..., i+5—2qs, ..., 1 + € with
e =i — 2F(%). However, to a given value of g3, there is
gs — 1 3-couples (£, g3, 7). The counting of the popula-

tion of Cy is equivalent to the counting of all the 2-couples
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(k’, ¢3) which cumulative multiplicities on IS is the prod-
uct of one of the g3 —1 3-couples (k’, g3, v) which it relates
and of g3 — 1. It reads:

qs

Z (i+5—2g3)(gs — 1),

q3=2

S DB+ 1[E) +4+2 - i+ 5)[EE) +1]

]\//

1 i i i
— —[E(z)+2|[E(= 2FE(=
31E(5) +2[E(5) + 31[2E(5) + 3], (57)
or also, depending of the parity of i:
.3 .2 .
A . S
A =5t 8+12+1(zeven), (58)
.3 .2 .
O L I 3
A—24+8+24+8(zodd). (59)

The 3-couples of the others different classes of IS divide
as follows: (K'—1, E(%)+3, ), (K'—1, E(%)+4, 7), ..., (K'—
1, E(W), ) for the class Cy/—1, (K'—2, E(qu"’i%), ),
(k' — 2, B(EECEER) ), L, (K -2,

E(W), ) for the class Cy_a, ..., (2,E(%)
L), (2, BRI oy (o, p(lE=2lpra i) )

for the class C and finally (l,E(wy v), (1,

E((k'—Q)(pQ-i-q)+i+8)’ Vs ooy (1, Q3 = E((k/—l)(p;q)+i+4), )
for the class C7. As for the 2-monomials, the calculation of
a cumulative multiplicity implies to distinguish the three
cases: p+ q even (case A), p+ ¢ odd with k&’ even (case B)
and p 4+ ¢ odd with &’ odd (case C). Results are given in
the tables [l to

7.2.2. Case A

We denote by A’ the population of the classes Ci/_1
to C1; the counting of A’ is more tedious than for the 2-
monomials, because, for one given class of couples, there is
q3 — 1 3-couples of same multiplicity on IS and this value
varies from a class of couples to another. The method used

here, consists in counting successively the populations of

ptq

2
Ai4.. For instance, there is E(3H)+1+ @ 3-couples

the classes of multiplicity /~\p+q,1+€, /~\p+q,3+€, e

(1 <j <K —1) of cumulative multiplicity p = 1 + € in



each of the classes C;. Thus one has:

k' —1

Aiye = (1+e)Z[E(%)+1+j(p+Q)],
= @ oW - DiEG) 11+ EEED )
Doing similarly for the others populations:
k' —1 . .
fose = @19 LG + 17D,
= B+ - e+ TED) 6
R k' —2 i ( n )
Rpra-tre = <p+q_1+e>;w<§>+2+”2 L),
= (- 1+ ~DE() +2
Population A’ is the sum of Eqgs. [0) to (62):
K= Y 42+ )0~ DEG)
j=0
Fo1—j+ kf’(p4+q)],
_ W-1p+q P+a, iy, Kp+q)
= 5 [(e+ 5 )(E(§)+T)
+ I o st g) et (63)

12
The population A = A’ + A” of all the classes C; (4 =
1, ..., k') is the sum of Eqgs. (B7)) and (63)). To count the
number of 3-monomials in a sum S,(S’), one has at first
to determine the number of switch-off couples a on IS,
the method remaining the same as for the 2-monomials.
It gives: a = Ay — A, where depending on the parity of
K= (K -1)(p+4q) +1i, Ay is given by Eq. (I3)) or (4.
In Egs. (I3) or (I4) we replace N by k'(p+q)+4+14, and

one obtains the following equations:

1 1 .
Ay = (W =1P(p+a) + (K = 1)*(p +9)*(i +3)
1
+ 5 (K =1 (p+q)(3i(i +6) +26 - 3¢)
+ R, (64)
3 32 13
RiﬂjL?Jrﬁqu(Keven), (65)
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(66)

For the case A, K and i have the same parity, thus R is

canceled by A”. All calculations made, it results:

o S+ 020K —1)? = 3K
(p+q)B(E" = 1)(i +3) = ek’ + 2(p + ¢ — 2)

K —1)(p+q) (1

7

6E(;

N4+2B3+0)%+(4+i)(2+19)

1261;(%) (4 q—2)(5—€) —12(c + 1)). (67)

The number of 3-monomials As in a sum ST(S ), is obtained
by summing ﬁ and aso, the number of couples present
without multiplicity on IS take into account the 3-couples

of the classes C; (1 <j <k —1) and of the class Cj:

ptqg—2 ~
. ~ Fot+a . <
@ = Y EG I+ =i+ (1),
Jj=0 q3=2
_ [E(%) +1][E(%) + 2] (k/_l)(p—l—q)[E(z)
2 2 2
3 (K -D+q
+ 2 + 4 ]
One deduces As = pO‘Tq + ap given by Eq. (20); this proves
theorem 4.
7.2.8. Case B

Compared with case A, as for the 2-monomials, one
has to consider the "sub-cases" 7 even and ¢ odd. Once

again, the method consists to begin with the populations

/

of the different classes of multiplicity, to determine A’

and ]\’O 44> the populations of even and odd cumulative mul-
tiplicities on IS, except the class Cys which population is

known and given by Eq. (57).

pta+1
2

e Ifiiseven, thereis classes of odd multiplicities

with populations /~\2j+1 0<j < %), each of

K —2

these classes appears 1 time on each of the “5= even

classes of couples Ci_3, ..., Co. On the set of these

K (pt+q)

classes, one counts E(5) + ~—%5

+ 1 — 7 3-couples



of cumulative multiplicity p = 25 4+ 1. It gives:

Ko =<”;”ig<w+nw§>
n M@;qf:z_ﬁ
_ (k’—2)(i+q+1)(E(%)+@
+ 1+W[2E(%)+1+W]
- Gwraba-D). (69)
pies

One counts also classes of even multiplicity

2
with populations ]\gj (1<5< %), each of these
classes appearing 1 time on each of the %/ odd classes
of couples Cy/_1, ..., C1. Furthermore , to a given

cumulative multiplicity u = 24, correspond E(%) +

k'(Trq_) + % — 4§ 3-couples, thus:
ptg—1
§ "&by Flote 3
A/ = — 2 E 1 - 5
even 92 J:Zl ( .7)( (2)+ 4 +2 .7)
Klp+ta+D) ((p+g—-1), . i
_ 2B (L
: = Dpam(d)+s
E'(p+q 1
n ¥] _ 6(p+q)(p+q_ 1))- (69)

One deduces the population of all the classes C; (j =
1, .., K =1):

< (K = 1)K —4)(p +q)°

AN =
48
N (k:’fl)ggzﬂrq)2 [2E(%)+1]+ k’Q(plg q)?
r+aq),,,, i 13k 7
+ (K =2)E(g) + 45 — 5]
1_ 1 3
- 1BG) -3 (70)

For i and k' even, K = (k' —1)(p+¢) + i is odd, A
is obtained by Eqs. (64) and (@), thus it results:

(K = (K —2)2K = 3)(p + 0)°

48
v EEDOH P 1y 4 -2 1)
_ (”16“) +(pZQ)<W61)[3i(z‘+6)+23]
- (k’—2)E(%)—1f§/+g)- (71)
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Eq.(T1) is divisible by p+g, the sum of terms — 1 E(%)—
3 in Eq. (@) and of A" (Eq. (B8) cancels R
(Eq.(@8])). Moreover, the number of 3-couples present

without multiplicity on 1.5 is:

2
LN ORI
§=0
e g+ Eerd 2y
_[BG) +UEG) +2]
2
(K —1)(p+q) (K — 1)(p+q) ¢
+ 2 [ 4 +E(§)+1]
E(s) 5
- -
We obtain:
N [E(%)+1]2[E(%)+2]
+ E@:{gﬂiﬂK%ﬂﬁxp+®+N%+5ﬂ
(k,/_l) . k/’l {
+ gl 6) + 8] - T UE(S)
+ (p+q) +5] 72)

This is Eq.(2I) for i even (e = 0).

If ¢ is odd, one counts

%‘”1 classes of odd multiplic-

ity with populations /~\2j+1 0<j< L;_l), each of
these classes appearing one time on each of the %/

odd classes of couples Cy/_1, ..., C1. On the set of

these classes, one counts E(%) + W +3-53

couples of cumulative multiplicity p = 25 + 1. It

reads:

s = SED (sep() + 3]+ 20
~ g Dra)+ 2 PEI g
+ W—FS—G]). (73)

There is also L;_l classes of even multiplicity with

populations ]\gj 0 <j < %), each of these



. . (K'=2)
classes appearing one time on each of the 5=

even classes of couples Cy/_a, ..., Cs. Furthermore,
for a given cumulative multiplicity u = 27, there is

B(L) + LAGAL) ) — 7 3-couples. It gives:

% _ K =2)ptg-1)((p+qg—3), . i
Aeven - 4 ( 4 [2E(§)+
erlfe]nL(lee)[E(%)nLl
n k’(p4+q)]_(p+q—2)6(p+q—3)).(74)

One deduces successively the populations A of all
the classes C; (j =1, ..., k¥’) by summing Eqgs. (59),
([@3) and (), then A5 with the help of Egs. (64]) and
©3), @ = Ay — A. One determines then the number

of 3-couples present without multiplicity on IS by:

[E(%) + 1][E(%) + 2]

gy = B
N (k —1;(p+q)[(k —1i(p+q) +E(%)+2]
+ E(f) +£, (75)

It follows that:

A, [EG)UEG) +2

2
K —1D(p+aq)

n = (2" — 1)(p + q) + 3(2i + 5)]
K —1),. i K g
gl 6) — 4B () + 1]+ 5 HE()

+ (p+q+7) (76)

Ay is deduced from (2I]) for the value e = 1. Theo-

rem 5 is demonstrated.

7.2.4. Case C

As for the case B, One has to consider the "sub-cases"

i even and ¢ odd.

e If i is even, there is % classes of odd multiplic-

ity with the populations /~X2j+1 0<j< %),

each of these classes appearing exactly one time on
E—1

each of the *5= odd classes of couples Cy/_2, ...,

19

C1. Furthermore, for a given cumulative multiplic-
ity 4 = 2j + 1, there is B(%) + EHDeta) 4 g _

3-couples. Thus one may write:

V- (k/_1)(i+q+1) (E(%‘)
(K +1)(p+q) (p+q—1) i
+ 0 14+ S ——RE(3)
414 (k +1;(P+Q)]
- %(p+q)(p+q—1))- (77)

There is also L;_l classes of even multiplicity with
populations AQJ‘ (1 <5< %), each of these
classes appearing exactly one time on each of the
(k/Tfl) even classes of couples Cy/—1, ..., C5. Fur-
thermore, for a given cumulative multiplicity p = 27,

there is F(%)+ (k/#fpﬂ) +3 — j 3-couples. It reads:

]\,wm _ (k/1)(Z+q+1)<(p+il)[2E(%')+3
RNESIEY)
- é(p+q)(p+q—1))- (78)

One deduces A’

(K -1DBK -4 (p+9)?

AN =
48
L WoDletar 1)4(p ek [E(%) +1]+ *E-D+a? 11)ép ek
(K -Dp+q) . i, , 19
+ T Bl (79)

Determination of the number of switch-off couples is
made on the same way as for cases A and B. For i
even and k' odd, K = (k' —1)(p+q) + ¢ is even, one
obtains As with ([64) and (€5, thus:

(K — 1)k —2)2K" = 3)(p + )’

48
(K = 1(p+9q)?
8

/

4 [(k’—l)(3+i)—2E(%)—%
5, (W -Dp+aq), 11

- §]+.T['L(Z+6)+?

- 2E(%)]. (80)



([80) is divisible by p + ¢, A” (Eq. (G8)) canceling R
(Eq.(@3). The number of 3-couples present without

multiplicity on 1.5 is given by Eq.:

BG) +U[EG) +2) |

2 2

(- Dp+a) , 3
4

+3].

N 2

One deduces:

A, [EG)+UEG) +2

2
KK —1)p+q)

i i (2" — 1)(p+ q) + 3(2i + 5)]
e R
7(”1’6 D [4E(%) —(p+q) +5). (82)

It is Eq. ([22) for i even.

ptg+1
2

If 7 is odd, one counts classes of odd multiplic-

ity with populations A2j+1 0<j< L;_l), each of
these classes appearing exactly one time on each of

(k' —1) ., C'1. More-

the =

odd classes of couples Cy/_1, ..
over, for a given cumulative multiplicity pu = 25 + 1,

there is E(%) + W + 2 — j 3-couples. One

has:
N/odd = (W 1>(§4+ a+1) <3[2€E(%) + 3¢
+ w —(pt+e-1p+aq)
e(p+g—1) 3(p+qg-1) i
+ 7 + 5 [2E(§)
+ 3e+w0. (83)

ptgq—1
2

populations /~\2j (1 <j< %), each of these

There is also classes of even multiplicity with
classes appearing exactly one time on each of these
(k/Tfl) odd classes of couples Cy/_g, ..., C1. Further-

more, for a given cumulative multiplicity p = 27,

20

there is E(%)Jr Ww +2—j 3-couples. It gives:
even 4 4 2

WADCTD |y g sl

2
(K + 11)1(19 +q) 1]

é(p+q—2)(p+q—3))- (84)

One deduces the populations A of all the classes C;
(j =1, ..., k') by summing the Egs. [£9), (83) and
(84), then Ay with (64) and (66) and o = Ay —A. The
number of 3-couples present without multiplicity on

1S being given by Eq. (&T)), it follows that:

[E(%) + 1][E(%) + 2]

Ay =
2
+ W%W[(zk' —1)(p+q) +3(2i +5)]
+ %[i(i—i—G)—zlE(%)—i-l]
v B Dund) a7 (55)

One obtains Ay by ([22) for ¢ odd (e = 1). Theorem

6 is demonstrated.
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class C; g2 H
Crr—1 E(%)+2 p+qg—1+e
Crr—1 E(%)+3 p+qg—3+e
Cr—1 E(f)+ 24 +1 1+e
Crr—2 E(§)+ 29 +2 ptqg—1l+e
Crr—2 E({)+21+3 p+qg—3+e
Chr o E(f)+p+q+1 1+e
C, E(%)—l— (k'—3%(p+q) +2 | ptg—1+e
Co | B(L)+ ¥=80ta) 130 )y g -34¢
i (k' —2)(p+q)
Ca E(3)+—FF+1 lL+e
Ch E(%)#—%—FQ pt+qg—1+e
Cr | B(A)+ ¥Rt 13 p 434
o} E(%)Jr (k/—lg(P-HZ) +1 1+e€

Table 6: Case A. Table giving the different classes of couples with

the cumulative multiplicities .

If ¢ even (e = 0), all the cumulative

multiplicity are odd; they are all even if 4 is odd (e = 1).




class C; q2 I class C; q2 I
Cr—1 E(3)+2 ptqg—1 Cr—1 B(i)+2 p+q
Crr—1 B(Z)+3 p+q—3 Cr—1 BE(3)+3 pt+aq—2
Ci—1 E(§)+21+3 2 Chr—1 E(i)+252+3 1
Cr—2 E($)+ 5 +3 P+q Cr—2 E(f)+224+32 p+q—1
Chr—2 BE(z)+51+5 | pta—2 Chr—a E(A)+294+1 | p+q—3
Chr— E(3)+p+aq+1 1 Cho s E() +p+q+1 2

o, |mpetgen | ¢ | B+t |

Gy | B+ ERe) 4ol pig 1 Cr | B+ ERE 4o pyg
Gy | B+ ERE 450 pyg -3 Cr | B(y)+ ERe 43 pig 2
c, E(%) + (k 71;(p+q) + % 9 Cy E(%) + (k 71%(p+q) + % 1

Table 7: Case B. Table giving the different classes of couples with Table 8: Case B. Table giving the different classes of couples with

cumulative multiplicities for k’ and ¢ even. the cumulative multiplicities for k’ even and 4 odd.
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class C; q2 I Class C} q2 o
Crr—1 BE(L)+2 ptq—1 Cr—1 B(g) +2 pP+q
Crr—1 B(Z)+3 p+q—3 Cr—1 B(3)+3 p+q—2
Ci—1 E(§)+21+3 2 Chr—1 E(A)+22+3 1
Cir—2 B(3)+ 5% +3 p+aq Ch—a E)+214+3 | ptg-1
Chr—2 BE(z)+51+5 | pta—2 Chr—a EQ)+291+1 | p+q-3
Cr—2 E(z)+p+a+l 1 Cr—2 E($)+p+q+1 2

Cy | B+ EReH 49| pyg-1 c B(i) + E=0ta) o

P 5 5 p+q > (3)+—%"+ p+q
Co | B(d)+ &30t 1305143 Co | B(d)+ &0t 1311 g2
C, E(%) 4+ —2;(p+q) + % 9 Cy E(%) + —2%(p+q) _,_% 1
o E(%)Jri(’c 72;(”“) +3 1 p+g C1 E(%)+7(k 72;(”“) +5 p+tg—1
C1 | B+ &Rt 5 g2 C1 | B+ ERED T3

Table 9: Case C. Table giving the different classes of couples with Table 10: Case C. Table giving the different classes of couples with

the cumulative multiplicity for ¥’ odd and i even. the cumulative multiplicities for k’ and ¢ odd.
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class C; qs I
Crr—1 E($)+3 p+qg—1+e class Cj q3 p
Crr—1 E(%)+4 p+qg—3+e Crr-1 E(3)+3 ptq—1
Ck’—l E(%)+p_42’l]+2 1+€
. 7 + 3
Crr—2 E(f)+224+3 prqg—1+e Crr—1 E(z) +514+ 5 2
. 4 + 5
Crr—2 E(L)+ 44 p+qg—3+e Chr—2 E(z) +5" 43 pt+yq
; Cr—2 E(L)+29 47 p+q—2
Chr—2 E($)+p+aq+2 1+e
Cr—2 El)+p+q+2 1
Cy | BE)+EBE) 30 g1+
. ’ 7 k‘/73
Cy | B(E)+E=2et g prg—3+e Cy | B+t L5l pig
: Co | B(i)+ E=Beta 4 T py g2
Cy E(%) + (k/—Q%(p-HJ) 12 1+e :
N iy (=2 (p+a)
C; | B+ &R g g 14 Ca B() + 2t | 9 1
O | B+ ¥R | g3 Cr | BG)+ 5 43 | pg -1
: . c, E(%) + (k’—2%(p+q) +4 | p+qg—3
Cl E(%) + (k'*l%(p+q) + 2 1 +€ .
C E(i) + (K =1)(p+q) + 3 )
Table 11: Case A. Table giving the different classes of 3-couples as 2 2 2
a function of g3 with the cumulative multiplicities. If ¢ even (e = 0), Table 12: Case B. Table giving the different classes of 3-couples
all the cumulative multiplicities are odd; they are all even if i is odd function of g3 with the cumulative multiplicities for k’ and ¢ even.

(e=1).
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class C; q3 ]
Cr—1 E(4)+3 p+q
Cr—1 E(%)+4 pt+q—2
Chr_1 E(i)42a 42 1
Cir—a Bz +54+5 | pta—1
Chr o E(f)+p+q+2 2

02 E(%)+(k_3;(P+Q)+% p+q_1

02 E(%)+(k_3;(P+Q)+% p+q_3

i (k' =2)(p+q)

Cy E(§)+f + 2 2

G| B+ EFE0 13 pg

1 | B(d)+EDEED g ) g2

G |pge e g |

Table 13: Case B. Table giving the different classes of 3-couples as

a function of g3 with the cumulative multiplicities for k¥’ even and 14

odd (e =1).
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Table 14: Case C. Table giving the different classes of 3-couples as

a function of g3 with the cumulative multiplicities for k' odd and 4

even.

class C; qs3 W
Crr—1 E($)+3 p+a—1
Cr—1 E(%)+4 p+q—3
Cr—1 E(%)erTﬂvL% 2
Chr_2 E(L)+443 p+q
- B(z)+5t+5 | ptag-2

Cy E(%) + (kl—3%(P+Q) +3 | ptqg—1
Cp | B(Y)+EeD 4y | pig—3
C E(i) + (k'—2)(p+q) 43 92

2 2 2 2
C, E(%) + (k —2%(13-&-(1) + % p+q
C1 | B(E)+ &Rt 4o 1




class C; q3 I
Cr—1 E(3)+3 pPtq
Crr—1 B(3)+4 p+q—2
Ch_1 E(L)+2443 1
Cr—2 E(f)+22+1 pt+qg—1
Cr—2 E(3)+ 52+ 35 p+q—3
Ck’—? E(%)—l—p-ﬁ-q-ﬁ-? 2

Cs E(%) 4 & *3;(p+q) +3 ptgq
Cs B(i)+ E=30td 4y | pyg—2
Cs E(%)er ++3 1

C B(§)+ &0t L T pyg-1
Cl (%)+(k _2)(P+Q)+9 p+q_3
¢ | B+, |

Table 15: Case C. Table giving the different classes of 3-couples as

a function of g3 with the cumulative multiplicities for k¥’ and 7 odd.
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