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Abstract

This paper is the second one of two papers aimed at constructing hamiltonian systems of n degrees of freedom.

In molecular spectroscopy, the construction of vibrational Hamiltonians for highly excited molecular systems through

algebraic formalism implies to introduce "by hand" the operators reflecting the exchanges of quanta of energy between

the different oscillators. It is thus tedious to predict, for any given order of the development of the Hamiltonian, the total

number of operators which should appear in the Hamiltonian ([1], [2], [3]). In this second paper, we propose a method

of construction of a normalized vibrational Hamiltonian of a highly excited molecular system with n degrees of freedom

in the case of a a p : q resonance. We present also the counting of all the independent operators and the counting of all

the parameters included in the Hamiltonian (Counting theorems 1 to 8). The method introduces, on a systematic way,

all the operators, in particular the coupling operators, that can be built from the polynomials formed by products of

powers of the generators of a Lie algebra: the algebra of the invariant polynomials built in classical mechanics from the

the kernel Ker adH0 of the adjoint operator adH0 (see [6] or [4], [5]). Application to the non-linear triatomic molecule

ClOH is then given, taking into account the Fermi resonance between the O-Cl stretching oscillators and the bending

motion. The study of this molecular system in highly excited vibrational states (until almost the dissociation limit) has

been realized in [2], with a fit of 725 levels of energy. On the 86 coefficients (among which 31 coupling coefficients) that

we count, and completely compatible with [2], the smallest rms value leads to keep only 28 non-zero coefficients. In

the appendix, we explain the vocabulary and the strategy employed in order to demonstrate the theorems of coupling

operators included in the Hamiltonian.

Keywords: Molecular structure ; Vibrational Hamiltonian ; Lie Algebra ; Polynomial Invariants ; Resonance p : q.

1. Introduction

This second article is the continuation of a first one [6]

where we applied an algebraic approach to study highly

excited molecular systems with no resonance between two

of the oscillators representing the molecular system.

After some basic reminders about the normalization

∗Corresponding author.

Email address: claude.leroy@u-bourgogne.fr (C. Leroy )

([7], [8], [9]), we built a vibrational Hamiltonian written

as a Dunham expansion on the basis of the generators of

the invariant polynomial algebra and we have counted all

the operators included in the Hamiltonian developed until

the order N (Eq. (13) of [6]). An application to the non-

linear triatomic molecule of ClOH has been performed as

the highly excited vibrational states of this molecule have

been widely studied ([10], [11], [12]). Thus the Hamilto-

nian (Table 2 of [6]) allows to reproduce the vibrational
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structure of 314 energy levels (until 70 % of the dissocia-

tion energy) with a set of 34 coefficients which is in good

agreement with [2]. In order to describe the vibrational

structure of more excited levels, it is necessary to take

into account a 2 : 1 resonance between the stretching os-

cillator associated with the O-Cl bond and the bending

oscillator associated to the angular deformation between

bonds O-Cl and O-H. The coupling operators are then im-

plemented by hand on a more or less arbitrary manner

and it is a laborious task to predict in advance the total

number of operators appearing in the Hamiltonian.

In the present paper, after some definitions and re-

minders about the standard normalization of the harmonic

oscillator of quadratic part H0 (section 2), we present a

building method of the normalized vibrational Hamilto-

nian for a molecular system having two degrees of freedom

fulfilling a p : q resonance condition (p and q are positif

integers with a gcd equal to 1). We derive also the enumer-

ation of all the independent operators and the number of

involved coefficients. Then we extend the method to sys-

tems having n degrees of freedom (section 3). The method

introduces on a systematic way all the operators, in par-

ticular the coupling operators, which can be obtained from

polynomial formed by products of powers of the genera-

tors of the invariant polynomial algebra. Then we estab-

lish the theorems counting the coupling operators involved

in the Hamiltonian (sections 3.4 and 3.5). Demonstration

of these theorems imply to implement a specific vocabu-

lary which is given in Appendix. We end our paper with

the counting of all the operators and parameters involved

in the normalized Hamiltonian describing the vibrational

structure of ClOH molecule until 98 % of the dissociation

limit (section 4).

2. Normalization

2.1. Lowest order Hamiltonian: H0

SupposeH(q1, ..., qn, p1, ..., pn) the classical vibrational

Hamiltonian of an Hamiltonian system with n degrees of

freedom, the quadratic part of which is an anisotropic

harmonic oscillator H0 =
∑n

k=1
ωk(q

2
k+p2

k)
2 , where the n

quantities ωk are characteristic pulsations of the oscilla-

tors (with 1 ≤ i, j ≤ n, ωi 6= ωj) and qk, pk are the

canonical dimensionless variables generalized coordinates

and conjugate momenta defined on the phase space Γ.

2.2. Definition of the p : q resonance

The hamiltonian H0 shows a unique p : q resonance

if two pulsations (refer here-after as ω1 and ω2) are con-

nected through a relation of the form:

ω2

ω1
=

p

q
, (1)

p and q are two positif integers with gcd(p, q) = 1 and

p ≥ q [4], the n − 2 others pulsations ωk satisfying to the

condition of non resonance (Equation (3) of [6]).

2.3. Equations of motion

We introduce the complex variables zk and z∗k defined

in function of the canonical variables qk and pk (1 ≤
k ≤ n) as: zk = 1√

2
(qk + ipk) and z∗k = 1√

2
(qk − ipk).

The lowest order Hamiltonian can be now rewritten H0 =

−ı(ω1z1z1
∗ + p

q
ω1z2z2

∗ +
∑n

k=3 ωkzkzk
∗). With these new

variables zk, the equations of motion reads:

dz1
dt

= −ıω1z1,
dz2
dt

= −ıp
q
ω1z2,

dzk
dt

= −ıωkzk (3 ≤ k ≤ n).

(2)

2.4. Hamiltonian flow

From an initial condition z0 = (z1,0, ..., zn,0), formally

the solution of the equations of motion is written as z(t) =

φt
H0(z0). φt

H0 : Γ→ Γ is the Hamiltonian flow generated

by H0 ([13, 14, 15])

We have: z(t) = φt
H0(z0) =⇒








z1(t)

...

zn(t)








=











e−ıω1t 0 . . . 0

0 e−ı
p
q
ω1t . . . 0

0 0
. . . 0

0 0 0 e−ıωnt


















z1,0
...

zn,0








. (3)

2



Solutions z(t) are the trajectories of the Hamiltonian flow

or the orbits of the harmonic oscillator with a p : q reso-

nance.

2.5. Hilbert basis

The condition of resonance (1) implies that the ker-

nel Ker adH0 of the adjoint operator adH0 , (defined by

equations (4) and (5) of [6]), is generated by the n + 2

monomials ([4]) (n ≥ 2 integer) :

σ−1 = z1
∗pz2

q, σ0 = zp1z2
∗q, σ1 = z1z1

∗, ..., σn = znzn
∗.

(4)

The kernel has the structure of a Lie algebra, called

algebra of the invariant polynomials. The generators σk

(−1 ≤ k ≤ n) form a basis of Ker adH0 called Hilbert basis

([16, 17, 18]). As in the non resonant case, the generators

of the Hilbert basis are invariant under the flow of the har-

monic oscillator φH0
t , which is a symplectic symmetry for

the generators [6]. While for the case n = 2, [15] used J =

pσ1 + qσ2, Π1 = pσ1− qσ2, Π2 =
√

2p+qpqqpRe

(

z1
∗pz2

q

)

and Π3 =
√

2p+qpqqpIm

(

z1
∗pz2

q

)

, we prefer to conserve

equations (4) which are more easy to use in order to build a

normalized quantum Hamiltonian as we will see in section

3.

2.6. Poisson brackets of the generators

The Poisson brackets of the generators are equal to

zero except: {σ−1, σ1} = ipσ−1, {σ−1, σ2} = −iqσ−1,

{σ0, σ1} = −ipσ0, {σ0, σ2} = iqσ0 and

{σ−1, σ0} = iσ1
p−1σ2

q−1(p2σ2 − q2σ1).

2.7. Reduced phase space

The generators of the invariant polynomials algebra,

σ−1, σ0, σ1 and σ2 (σ1 ≥ 0, σ2 ≥ 0), are not independent.

They satisfy the relation:

(
σ0 + σ−1

2
)2 + (

σ0 − σ−1

2ı
)2 = σ1

pσ2
q. (5)

In the phase space Γ = R
2n, the iso-K-energy surfaces are

hyper-surfaces of R2n−1.

For a given value h0 of H′
0 = −H0

ı
(obviously h0 > 0), in

the case of a p : q resonance, (5) becomes:

σ′
0
2
+ σ′

−1
2
= σ1

p

(
h0

ω2
− q

p
σ1 −

n∑

k=3

(
ωk

ω2
)σk

)q

, (6)

with σ′
0 = σ0+σ−1

2 and σ′
−1 = σ0−σ−1

2ı and the condition

h0 ≥ ω2
q
p
σ2+

∑n
k=3 ωkσk. In the phase space, Eq. (6) de-

fines the reduced phase space [15], on which the dynamics

of the motion is reduced to a space of dimension n.

Figure 1: In the plan (σ1, σ′

0) for h0
ω2

= 1 S.I.: reduced phase space

for different p : q resonance values.

2.8. The normalized Hamiltonian K

We want to define a normalized Hamiltonian K ver-

ifying {H0, K} = −adH0(K) = adK(H0) = 0. K can be

written on the form ([4]): K = H0+f(σ−1, σ0, σ1, ..., σn),

moreover K has to be invariant under time reversal oper-

ation (TRO). Generators τ(σk) = σk for 1 ≤ k ≤ n are

3



also invariant under TRO except σ−1 and σ0 which verify

σ−1 ← TRO → σ0.

3. Construction of the normalized Hamiltonian

3.1. Case n = 2

3.1.1. Development of the Hamiltonian on the Hilbert ba-

sis

We show this case as an example of modeling of the vi-

brational normalized Hamiltonian describing high excited

stretching modes of triatomic ABC or AB2 molecules. The

resonant normalized Hamiltonian K, with quadratic term

H0 = −ıω1

q
(qσ1 + pσ2) is only function of σ−1, σ0, σ1

and σ2: K = H0+f(σ−1, σ0, σ1, σ2). We expand the nor-

malized Hamiltonian as a polynomial development of pow-

ers of the generators until an order N . In what follows,

N ≥ p+ q + 4, q0, q1, q2, q3, δ and β are integers; values

of Q0, Q1, Q2 and Q3 in the sums have to be precise in

order that the development based on the generators of the

algebra be effectively a polynomial expansion. >From [6]

we already know that Q0 = E(N2 ). In the expression of K
here-after, we will need to demonstrate that Q1 = E( N

p+q
),

Q2 = E( δ−(p+q)
2 ) and Q3 = E(β−(p+q)

2 ):

K = H0 +

Q0∑

q0=2

(α1
q0
σ1

q0 + α2
q0
σ2

q0)

+

Q0∑

r=2

∑

1≤i1<i2≤2

ri1+ri2=r
∑

ri1≥1, ri2≥1

αi1, i2
ri1 , ri2

σ
ri1
i1

σ
ri2
i2

+

Q1∑

q1=1

(α0
q1
σq1
−1 + α′0

q1
σq1
0 )

+

N∑

δ=p+q+2

Q2∑

q2=1

(

α−1, 1

E(
δ−2q2
p+q

), q2
σ
E(

δ−2q2
p+q

)

−1 σq2
1

+ α0, 1

E(
δ−2q2
p+q

), q2
σ
E(

δ−2q2
p+q

)

0 σq2
1

)

+

N∑

δ=p+q+2

Q2∑

q2=1

(

α−1, 2

E(
δ−2q2
p+q

), q2
σ
E(

δ−2q2
p+q

)

−1 σq2
2

+ α′0, 2
E(

δ−2q2
p+q

), q2
σ
E(

δ−2q2
p+q

)

0 σq2
2

)

+
N∑

β=p+q+4

Q3∑

q3=2

q3−1
∑

γ=1

(

α−1, 1, 2

E(
β−2q3
p+q

), γ, q3−γ
σ
E(

β−2q3
p+q

)

−1 σγ
1σ

q3−γ
2

+ α0, 1, 2

E(
β−2q3
p+q

), γ q3−γ
σ
E(

β−2q3
p+q

)

0 σγ
1σ

q3−γ
2

)

. (7)

In section 3.1.3, we will prove that the invariance of K
under TRO implies that all the coefficients of K are purely

imaginary.

Furthermore, one distinguishes in K the monomials built

as powers of σ−1 or σ0 and we will call them coupling

monomials between the two resonant oscillators : they ap-

pear in the sums S0 =
∑Q1

q1=1(α
0
q1
σq1
−1 + α′0

q1
σq1
0 ),

S
(2)
m, ℓ =

∑N
δ=p+q+2

∑Q2

q2=1 α
m, ℓ

E(
δ−2q2
p+q

), q2
σ
E(

δ−2q2
p+q

)
m σq2

ℓ or S
(3)
m

=
∑N

β=p+q+4

∑Q3

q3=2

∑q3−1
γ=1 αm, 1, 2

E(
β−2q3
p+q

), γ, q3−γ
σ
E(

β−2q3
p+q

)
m σγ

1σ
q3−γ
2 .

(m = −1, 0; ℓ = 1, 2)

Others monomials are the non resonant monomials.

3.1.2. Invariance of K under TRO

Hypothesis of the invariance of the Hamiltonian K un-

der TRO implies the following identification:

α0
q1

= α′0
q1

α−1, ℓ

E(
δ−2q2
p+q

), q2
= α0, ℓ

E(
δ−2q2
p+q

), q2
(ℓ = 1, 2)

α−1, 1, 2

E(
β−2q3
p+q

), γ, q3−γ
= α0, 1, 2

E(
β−2q3
p+q

), γ, q3−γ
. (8)
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Taking into account the relations Eq. (8), one may fac-

torize sets of λ-monomials of same coefficients in Eq. (7).

These λ-monomials are all real, in particular the follow-

ing coupling monomials:

(

σ
E(

δ−2q2
p+q

)

−1 + σ
E(

δ−2q2
p+q

)

0

)

σq2
ℓ and

(

σ
E(

β−2q3
p+q

)

0 + σ
E(

β−2q3
p+q

)

−1

)

σγ
1σ

q3−γ
2 . Moreover the transfor-

mation of the (qk, pk) in (zk, z
∗
k) is symplectic of multiplier

−i, like the Hamiltonian K. One thus deduce that all the

coefficients in Eq. (7) are purely imaginary.

3.1.3. Independence of the coefficients

>From the Jacobi identity (−1 ≤ j ≤ 2): {K, {σj , H0}}+
{H0, {K, σj}}+{σj, {H0, K}} = 0 and calculating all the

Poisson brackets {K, σj}, knowing that (K, σj) ∈ Ker

adH0 , one deduces that none relation exists between the

coefficients of the development of Eq. (7): the different

λ-monomials are independent between them.

3.1.4. Range of variation of the Qi

We will now precise the range of variation of the inte-

gers appearing in (7).

• For Q1: the monomials σq1
−1 and σq1

0 are of degree

d′ = (p + q)q1. q1 takes all integer values from 1

to the maximal value Q1 satisfying (N ≥ p + q):

Q1 = E( N
p+q

). If N < p + q, all the coefficients α0
q1

are equal to zero.

• For Q2: the 2-monomials σp2

−1σ
q2
1 , σp2

0 σq2
1 , σp2

−1σ
q2
2

and σp2

0 σq2
2 (p2 positive integer) are of degree (p +

q)p2 + 2q2. In an expansion of K to a given order

δ, the following condition should be verified for the

degree of the different 2-monomials:

(p+ q)p2 + 2q2 = δ. (9)

As the products of the powers of these 2-monomials

should always appear in K, it implies p2 ≥ 1 and

q2 ≥ 1, i.e. δ ≥ p + q + 2. The integer q2 may

vary from 1 to a maximal value Q2, obtained for the

smallest value of p2 (p2 = 1). From (9), one deduces

that Q2 = E( δ−(p+q)
2 ).

We determine now the range of variation of the in-

teger p2. Conditions (9) and p2 integer imply that,

for a fixed value of δ , with 1 ≤ q2 ≤ Q2, p2 varies

between the integer values of E( δ−2Q2

p+q
) and E( δ−2

p+q
).

In particular, for δ = p+q+2 or p+q+3: Q2 = 1 and

p2 = 1; however for δ = p+ q + 3, the condition (9)

is not satisfied. This will not be detrimental to the

counting of the coefficients in the sums S
(2)
m, ℓ but will

introduce redundancies among the 2-monomials (See

paragraph 3.3) which will then be eliminated (See

appendix). Thereafter, we denote p2 = E( δ−2q2
p+q

).

Finally δ varies from p+q+2 to N (N ≥ p+q+2). If

δ < p+q+2, all the coefficients in the sums involving

2-monomials are equal to zero.

• For Q3: the 3-monomials σp3

−1σ
γ
1σ

r3
2 and σp3

0 σγ
1σ

r3
2

(p3, γ and r3 are positive integers) are of degree (p+

q)p3+2γ+2r3. As for the 2-monomials, one requires

that the following condition is respected:

(p+ q)p3 + 2γ + 2r3 = β. (10)

As the products of powers of the 3-monomials have

to be include in K: p3 ≥ 1, γ ≥ 1 and r3 ≥ 1, thus

β ≥ p + q + 4. We denote q3 = γ + r3. For a fixed

value of q3, γ takes all the values from 1 to q3 − 1.

Furthermore we impose no constraint to the integer

q3 which takes all values from 2 (r3 = γ = 1) to a

maximal value Q3, obtained for p3 = 1. With (10),

we find that Q3 = E(β−(p+q)
2 ).

We determine now the range of variation of the in-

teger p3. For a fixed value of β, conditions (10) and

p3 integer imply that, for 2 ≤ q3 ≤ Q3, p3 varies be-

tween the integer values of E(β−2Q3

p+q
) and E(β−4

p+q
).

In particular, for β = p + q + 4 or β = p + q + 5:

Q3 = 2 and p3 = 1. For β = p + q + 5, condition

(10) is not fulfilled, thus the counting of the coeffi-

cients in the sums S
(3)
m will show redundancies among

the 3-monomials (See section 3.3) that will have to

5



be removed (See appendix). Thereafter, we denote

p3 = E(β−2q3
p+q

). All the coefficients in the sums in-

volving 3-monomials are a priori non equal to zero

except if p+ q + 4 ≤ β ≤ N .

3.1.5. Counting

For a given value of N , 2E( N
p+q

) monomials appear in

the sum S0. For given values of N and δ, a sum S
(2)
m, ℓ

contains Q2 2-monomials. Thus one deduces that it con-

tains Λ1 =
∑N

δ=p+q+2 E( δ−(p+q)
2 ) 2-monomials. Denoting

N = p+q+2+K with K integer and δ = p+q+2+k with

k an integer such that k = 0, ..., K: Λ1 =
∑K

k=0 E(1+ k
2 ).

The sum contains K +1 monomials but the calculation of

Λ1 depends on the parity of K:

• if K = 2p̃ (p̃ integer) is even, thus for k = 0, ..., K,

each integer in the sum appears two times: 1 associ-

ated to E(1), E(3/2), ..., except the last term giving

E(p̃+ 1) = p̃+ 1 which appears only one time, thus

we get:

Λ1 =
1

4
[N − (p+ q)]2. (11)

• if K = 2p̃+1 (p̃ integer) is odd, thus for k = 0, ..., K,

each integer in the sum appears two times: 1 asso-

ciated to E(1), E(3/2), ..., p̃ + 1 for E(p̃ + 1) and

E(p̃+ 3/2). After calculations, one obtains:

Λ1 =
1

4
[N − (p+ q)− 1][N − (p+ q) + 1]. (12)

For fixed values of N and β, a sum S
(3)
m contains

∑Q3

q3=2(q3−
1) = Q3(Q3−1)

2 . This sum has

Λ2 =
∑N

β=p+q+4

(

E( β−(p+q)
2 )

)(

E( β−(p+q)
2 )−1

)

2 3-monomials.

We denote now N = p + q + 4 + K with K integer and

β = p + q + 4 + k with k integer such that k = 0, ..., K,

Λ2 =
∑K

k=0

(

E(2+ k
2 )

)(

E(2+ k
2 )−1

)

2 . Also we denote S̃1 =
∑K

k=0 E
2(2+ k

2 ) and S̃2 =
∑K

k=0 E(2+ k
2 ). The calculation

of these two sums depends on the parity of K:

• if K = 2p̃ (p̃ integer) is even, then for k = 0, ..., K,

the following integers appear two times in the sum

S̃1: 4 associated to E2(2), E2(5/2), 9 for E2(3),

E2(7/2), ...; only the last term giving E2(p̃ + 2) =

(p̃+2)2 appears once. With the same process applied

for S̃2, one finally obtains: S̃1 = (p̃+1)(2p̃2+4p̃+3)
3 and

S̃2 = (p̃+ 1)(p̃+ 2) + p̃.

Thus one deduces that:

Λ2 =
1

24
[N − (p+ q)− 2][N − (p+ q)− 1][N − (p+ q)]. (13)

• if K = 2p̃ + 1 (p̃ integer) is odd, for k = 0, ..., K,

the following integers appear two times in the sum

S̃1: 4 associated to E2(2), E2(5/2), 9 for E2(3),

E2(7/2), ..., (p̃+2)2 for E2(p̃+2) and E2(p̃+5/2).

Performing all the calculations, it reads:

S̃1 = (p̃+2)(p̃+3)(2p̃+5)
3 −2 and S̃2 = (p̃+2)(p̃+3)−2.

Finally, the result is given by:

Λ2 =
1

24
[N − (p+ q)− 3][N − (p+ q)− 1][N − (p+ q) + 1]. (14)

The number of others monomials involved in the Hamil-

tonian K is given by Λ =
∑2

k=1 C
k
2C

k
Q0

= Q0(Q0+3)
2 (Eq.

(13) of [6] for n = 2).

3.2. Dissatisfaction of the counting

Eq. (11) to (14) take into account the redundancy

of some 2-monomials or 3-monomials in the expression of

(7). For instance, for a 1 : 1 resonance, developing K until

N = 7 (K = 3), Eq. (12) predicts six 2-monomials in a

sum S
(2)
m, ℓ instead of three in reality.

3.3. Multiplicity of some λ-monomials

3.3.1. Pointing the problem

In the formula (7), we associate the couple of integers

C = (p2, q2) (2-couple) or (p3, q3, γ) (3-couple) to a 2-

monomial or a 3-monomial. In fact, in the next section,

we will count the λ-monomials in the sums S
(2)
m, ℓ and S

(3)
m

(m = −1, 0; ℓ = 1, 2) step by step from δ = p + q + 2 or

β = p+q+4 until the desired value of N (N ≥ p+q+2) by

6



eliminating the 2-monomials and 3-monomials which are

redundant. Firstly, we will define the necessary definitions

and tools in the sections 3.3.2 until 3.3.4.

3.3.2. Definitions

• We call main interval, any set of values taken by the

integer N , order of development of K, between two

integers N1 and N2 (N2 > N1): N ∈ [N1, N2]. The

smallest possible value of N in the relation (7) is

N = p+ q+ 2 for the 2-monomials and p+ q+ 4 for

the 3-monomials.

• For fixed δ (respectively β), we call secondary in-

terval IS, the set of all the values taken by the

integer q2 (respectively q3) between the integers 1

(respectively 2) and Q2 = E( δ−(p+q)
2 ) (respectively

Q3 = E(β−(p+q)
2 )). We denote ISδ = [1, Q2]δ or

ISβ = [2, Q3]β or even more simply IS.

• For fixed δ or β, we will say that a couple of integers

C is present if it appears in the secondary interval

IS. In the opposite case, it will be declared absent.

• A couple of integers C is said present on a main

interval [N1, N2] if it appears at least one time on

one of the secondary intervals N2 − N1 + 1, each

of these secondary intervals being constituted from

one of the N2 − N1 + 1 values of δ or β composing

the main interval. If C does not appear on all the

secondary intervals, it will be said as absent on the

main interval [N1, N2].

• We define the multiplicity µ of a couple C as being

the number of times this couple appears in an given

interval (main or secondary).

• The cumulative multiplicity (also denoted by µ) of a

couple C on a secondary interval IS in the number

of times this couple appears on the greatest main

interval [p+ q+2, δ] or [p+ q+4, β] built from this

value of δ or β.

• The set of couples C with same value pj = k′ (j =

2, 3) constitutes a class of couples or more simply a

class Ck′ . The population of a class is the number of

couples belonging to this class.

• The set of couples C with the same cumulative mul-

tiplicity on IS constitutes a class of multiplicity. We

denote by Λ̃µ its population.

3.3.3. Properties

• By construction, to a given value of q3 corresponds

q3 − 1 3-couples.

• A 2-couple (k′, q2) or a 3-couple (k′, q3, γ) , present,

appears once and only one on an secondary interval:

their multiplicity is thus equal to 1.

• The multiplicity of an absent couple on a main or

secondary interval is equal to zero.

• In the case of a resonance p : q, the cumulative mul-

tiplicity of a couple of integers C may take all integer

values from 0 to p+q. This last value is the maximal

cumulative multiplicity of the couple. This result is

easily established from Eq. (15). Thus one deduces

that the cumulative multiplicity of an absent cou-

ple is either zero or maximal. We will call switch-off

couple, an absent couple of maximal cumulative mul-

tiplicity.

3.3.4. Calculation of a cumulative multiplicity

By the same way, we calculate the cumulative multi-

plicity of a 2-couple (k′, q2) or a 3-couple (k′, q3, γ). Also,

the couples of integers belonging to a class Ck′ (k′, q2) or

(k′, q3, γ) do not still appear in the counting and are ab-

sent (i.e. cumulative multiplicity equal to zero) if δ <

k′(p + q) + 2qj (j = 2, 3). To the contrary, for δ >

(k′+1)(p+q)+2qj−1, they do no more appear: these cou-

ples are switch-off; their cumulative multiplicity is maxi-

mal. The only main intervals where the couples of integers

7



are present are of the form:

[k′(p+ q) + 2qj , (k
′ + 1)(p+ q) + 2qj − 1]. (15)

For a given value of N = N1 belonging to the interval given

by (15), the multiplicity of the present couple (k′, q2) or

(k′, q3, γ) on the main interval [k′(p + q) + 2qj , N1] may

be calculated by:

µ = N1 −Napp + 1 , (16)

with Napp = k′(p+q)+2qj the value of N from which this

couple appears on this main interval. Eq. (16) gives also

the cumulative multiplicity of the couple present on the

secondary interval ISN1 . Indeed, from the definition, the

cumulative multiplicity of the couple (k′, q2) or (k′, q3, γ)

on this secondary interval is its multiplicity on the largest

main interval, here [p+ q + 2, N1]. But, [p+ q + 2, N1] =

[p + q + 2, Napp − 1]
⋃
[Napp, N1], thus from (15), on the

main interval [p+q+2, Napp−1], this couple is absent: its

multiplicity is equal to zero. By contrast, it is present on

each of the N1 − Napp + 1 secondary intervals associated

respectively to the values : Napp, ..., N1. Its multiplicity

on [Napp, N1] is equal to N1 −Napp + 1.

3.4. Theorems of the 2-monomials counting

3.4.1. Pointing the problem

The three following theorems about the counting give

the number ∆1 of independent monomials σ
E(

δ−2q2
p+q

)
m σq2

ℓ

(m = −1, 0 and ℓ = 1, 2) present in a sum S
(2)
m, ℓ but

also the number α̃1 of 2-monomials of degree N . Without

limiting the generality of the problem, we will write N =

k′(p+ q) + 2+ i with k′ a positive integer and i an integer

such that i ∈ [0, ..., p + q − 1]. A posteriori we have to

distinguish trois cases in our study according the parity of

p+ q and of k′: p+ q even whatever the parity of k′; then

for p+ q odd, to study the cases when k′ is even then odd.

Demonstration of these theorems is given in Appendix.

Theorem 1. If p+ q is even and k′ an integer ≥ 1:

∆1 = k′[1 + E(
i

2
) +

(k′ − 1)(p+ q)

4
]. (17)

Theorem 2. If p+ q odd and k′ an even integer ≥ 2:

∆1 = k′[
(k′ − 1)(p+ q) + 2i+ 3

4
]. (18)

Theorem 3. If p+ q odd and k′ an odd integer ≥ 1:

∆1 = 1 + E(
i

2
) + (k′ − 1)[

k′(p+ q) + 2i+ 3

4
]. (19)

N p+ q ∆1 p+ q ∆1 p+ q ∆1 p+ q ∆1

4 2 1 3 0 4 0 5 0

5 2 1 3 1 4 0 5 0

6 2 3 3 1 4 1 5 0

7 2 3 3 2 4 1 5 1

8 2 6 3 3 4 2 5 1

9 2 6 3 4 4 2 5 2

10 2 10 3 5 4 4 5 2

11 2 10 3 7 4 4 5 3

12 2 15 3 8 4 6 5 4

13 2 15 3 10 4 6 5 5

14 2 21 3 12 4 9 5 6

15 2 21 3 14 4 9 5 7

16 2 28 3 16 4 12 5 8

17 2 28 3 19 4 12 5 10

18 2 36 3 21 4 16 5 11

Table 1: Counting of the 2-monomials present in a sum S
(2)
m, ℓ

(m =

−1, 0; ℓ = 1, 2) from (7) for 4 ≤ N ≤ 18 and 2 ≤ p+ q ≤ 5.

3.5. Theorems of the 3-monomials counting

3.5.1. Pointing the problem

In this section, we give the theorems of the counting

of the 3-monomials σ
E(

β−2q3
p+q

)
m σγ

1σ
q3−γ
2 (m = −1, 0), ∆2

in number, appearing in a sum S
(3)
m of (7), but also the

number α̃2 of 3-monomials of degree N . Without limiting

the generality of the problem, we will write N = k′(p +

q) + 4 + i with k′ a positive integer and i an integer such

that i ∈ [0, ..., p + q − 1]. As for the 2-monomials, three

cases should be distinguished in our study according to

the parity of p + q and of k′. In what follows, we denote

ǫ = i− 2E( i2 ): ǫ = 0 if i even and ǫ = 1 if i odd.
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Theorem 4. If p+ q even and k′ an integer ≥ 1:

∆2 =
[E( i

2 ) + 1][E( i2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 6(i+ 3− ǫ)]

+
(k′ − 1)

8
[i(i+ 6)− 4ǫE(

i

2
)− 7ǫ+ 8]. (20)

Theorem 5. If p+ q odd and k′ an even integer ≥ 2:

∆2 =
[E( i

2 ) + 1][E( i2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 3(2i+ 5)]

+
(k′ − 1)

8
[i(i+ 6)− 4ǫE(

i

2
)− 7ǫ+ 8]

+
k′(2ǫ− 1)

16
[4E(

i

2
) + (p+ q) + 5 + 2ǫ]. (21)

Theorem 6. If p+ q odd and k′ an odd integer ≥ 1:

∆2 =
[E( i

2 ) + 1][E( i2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 3(2i+ 5)]

+
(k′ − 1)

8
[i(i+ 6)− 4ǫE(

i

2
)− 7ǫ+ 8]

+
(k′ − 1)(2ǫ− 1)

16
[4E(

i

2
)− (p+ q) + 5 + 2ǫ]. (22)

N p+ q ∆2 p+ q ∆2 p+ q ∆2 p+ q ∆2

6 2 1 3 0 4 0 5 0

7 2 1 3 1 4 0 5 0

8 2 4 3 1 4 1 5 0

9 2 4 3 3 4 1 5 1

10 2 10 3 4 4 3 5 1

11 2 10 3 7 4 3 5 3

12 2 20 3 9 4 7 5 3

13 2 20 3 14 4 7 5 6

14 2 35 3 17 4 13 5 7

15 2 35 3 24 4 13 5 11

16 2 56 3 29 4 22 5 13

17 2 56 3 38 4 22 5 18

18 2 84 3 45 4 34 5 21

Table 2: 3-monomials counting present in a sum S
(3)
m (m = −1, 0)

of (7) for 6 ≤ N ≤ 18 and 2 ≤ p+ q ≤ 5.

Theorem 7. The normalized Hamiltonian K given by (7)

with a p : q resonance between its two oscillators, is de-

scribed by Ncoef coefficients, Nop independent monomials

among which Nc are coupling monomials and given by:

Ncoef =
Q0(Q0 + 3)

2
+ E(

N

p+ q
) + 2∆1 +∆2, (23)

Nop =
Q0(Q0 + 3)

2
+ 2E(

N

p+ q
) + 4∆1 + 2∆2, (24)

Nc = 2E(
N

p+ q
) + 4∆1 + 2∆2. (25)

∆1 and ∆2 are given by the counting theorems (Theo-

rems 1 to 6).

p+ q Ncoef Nop Nc

2 55 90 70

3 37 54 34

4 33 46 26

5 27 34 14

Table 3: Counting of the coefficients, monomials and independent

coupling monomials in (7) for N = 10 and 2 ≤ p+ q ≤ 5.

3.6. The general case

3.6.1. Construction of the normalized Hamiltonian

We consider a Hamiltonian system described by n ≥ 3

oscillators among which oscillators "1" and "2" are in

p : q resonance. Hamiltonian K is supposed to be in-

variant under TRO. The quadratic part of K is : H0 =

−ı
∑n

k=1 ωkσk. The n quantities ωk are characteristic pul-

sations of the oscillators. The Hamiltonian can be ex-

pressed as a function of the generators of the Hilbert ba-

sis: K = H0 + f(σ−1, σ0, σ1, ..., σn). If we write K as a

polynomial development of the generators of the Hilbert

basis until the order N ≥ p+ q + 4, it reads:

K = H0 +

n∑

k=1

Q0∑

q0=2

αk
q0
σq0
k +

n∑

ℓ=2

Q0∑

r=2

∑

1≤i1<i2<...<iℓ≤n

ri1+...+riℓ=r
∑

ri1≥1, ..., riℓ≥1

αi1, ..., iℓ
ri1 , ..., riℓ

σ
ri1
i1

. . . σ
riℓ
iℓ
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+

Q1∑

q1=1

α0
q1
(σq1

−1 + σq1
0 )

+

n∑

k=1

N∑

δ=p+q+2

Q2∑

q2=1

α0, k

E(
δ−2q2
p+q

), q2

(

σ
E(

δ−2q2
p+q

)

−1

+ σ
E(

δ−2q2
p+q

)

0

)

σq2
k

+

n−1∑

i=1

n∑

j=i+1

N∑

β=p+q+4

Q3∑

q3=2

q3−1
∑

γ=1

α0, i, j

E(
β−2q3
p+q

), γ, q3−γ

(

σ
E(

β−2q3
p+q

)

−1 + σ
E(

β−2q3
p+q

)

0

)

σγ
i σ

q3−γ
j . (26)

In Eq.(26), all the coefficients are purely imaginary; i1, ...,

iℓ (2 ≤ ℓ ≤ n) are positive integers satisfying the partial

order: 1 ≤ i1 < i2 < . . . < iℓ ≤ n; ri1 , ..., riℓ are positive

integers satisfying the relation ri1 + ... + riℓ = r, with r

an integer between 2 and Q0; Q0 = E(N2 ), Q1 = E( N
p+q

),

Q2 = E( δ−(p+q)
2 ) and Q3 = E(β−(p+q)

2 ).

K involves two contributions: a first one corresponding to

a Dunham development on the basis of the generators [6]

and a second contribution corresponding to a polynomial

expansion of the coupling terms.

Furthermore, using the same method as here-before in

3.1.3, one obtains that the different coefficients involved

in the normalized Hamiltonian K given by Eq. (26) are

independent.

Theorem 8. K is described by Ncoef coefficients (among

which Nc

2 coupling coefficients), Nop independent monomi-

als whose Nc are coupling monomials, satisfying the fol-

lowing equations:

Ncoef = Λ+ E(
N

p+ q
) + n∆1 +

n(n− 1)

2
∆2, (27)

Nop = Λ+ 2E(
N

p+ q
) + 2n∆1 + n(n− 1)∆2, (28)

Nc = 2E(
N

p+ q
) + 2n∆1 + n(n− 1)∆2. (29)

∆1 and ∆2 are given by the counting theorems (Theo-

rems 1 to 6) and Λ =
∑min(n,Q0)

λ=1 Cλ
nC

λ
Q0

([6]).

4. Applications

4.1. The molecule of ClOH

4.1.1. Conventions of notation

ClOH is a non linear triatomic molecule with 3 vibra-

tional degrees of freedom. (n = 3). In the local modes

representation, we attach a stretching oscillator to each of

the bonds Cl-O (oscillator "1") and O-H (oscillator "3")

and a bending oscillator (oscillator "2") to the angle be-

tween these bonds.

4.1.2. Quantum vibrational Hamiltonian

The classical relations between dimensionless variables

{zj , z∗k} = −iδjk, take now the following form: 1
i
[aj , a

+
k ]

= −iδjk, that is 1 ≤ j, k ≤ 3, [aj , a
+
k ] = δjk. These

operators satisfy the Bose commutation relations and are

defined as the Boson creation operator a+k and Boson an-

nihilation operator aj .

Generators σk and Hamiltonian function K are respec-

tively replaced by the number operators N̂k = a+k ak, which

physically express the number of quanta of excitation of

each oscillator k, and the Hamiltonian operator K̂. By

convention, for the expression of powers of number opera-

tors, we adopt the following form ([19]):

N̂ r1
i1

. . . N̂ rℓ
iℓ

= a+i1ai1 . . . a
+
i1
ai1

︸ ︷︷ ︸

r1 times

. . . a+iℓaiℓ . . . a
+
iℓ
aiℓ

︸ ︷︷ ︸

rℓ times

; (30)

but we will write under normal form, as a function of the

Bose operators, all the coupling operators: σ̂−1 + σ̂0 =

a+1
p
a2

q + a+2
q
a1

p,

σ̂q1
−1 + σ̂0

q1 = a+1
p
. . . a+1

p

︸ ︷︷ ︸

q1 times

a2
q . . . a2

q

︸ ︷︷ ︸

q1 times

+ a+2
q
. . . a+2

q

︸ ︷︷ ︸

q1 times

a1
p . . . a1

p

︸ ︷︷ ︸

q1 times

. (31)

On a more compact way, Eq. (31) may be rewritten:

σ̂q1
−1 + σ̂0

q1 = (a+1
p
a2

q)q1 + (a+2
q
a1

p)q1 . (32)
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Similarly, the treatment of others coupling operators in K̂

gives:

(σ̂p2

−1 + σ̂0
p2)N̂ q2

k =
(

(a+1
p
a2

q)p2 + (a+2
q
a1

p)p2

)

a+k ak...a
+
k ak

︸ ︷︷ ︸

q2 times

. (33)

(σ̂p3

−1 + σ̂0
p3)N̂γ

i N̂
q3−γ
j =

(

(a+1
p
a2

q)p3 + (a+2
q
a1

p)p3

)

a+i ai...a
+
i ai

︸ ︷︷ ︸

γ times

a+j aj ...a
+
j aj

︸ ︷︷ ︸

q3−γ times

. (34)

Hamiltonian K̂ is Hermitian and the Ncoef coefficients are

real.

4.1.3. Eigen basis of the Hamiltonian Ĥ0

The eigenstates of Ĥ0 are generated from the vacuum

state with the relation (n1, n2, n3 are integers):

∣
∣
∣ n1, n2, n3

〉

=
1√

n1!n2!n3!
a+1

n1
a+2

n2
a+3

n3

∣
∣
∣ 0, 0, 0

〉

.

(35)

>From Theorem 8, the quantum vibrational Hamil-

tonian, developed until the order N = 10 (Q0 = 5), is

described by 115 operators, 60 of which are coupling op-

erators and 85 coefficients; so, we write (with the usual

convention that ~ is equal to 1):

K̂ =

(

ω1N̂1 + ω2N̂2 + ω3N̂3

+ α1
2N̂

2
1 + α1

3N̂
3
1 + α1

4N̂
4
1 + α1

5N̂
5
1

+ α2
2N̂

2
2 + α2

3N̂
3
2 + α2

4N̂
4
2 + α2

5N̂
5
2

+ α3
2N̂

2
3 + α3

3N̂
3
3 + α3

4N̂
4
3 + α3

5N̂
5
3

+ α1,2
1,1N̂1N̂2 + α1,2

1,2N̂1N̂
2
2 + α1,2

2,1N̂
2
1 N̂2

+ α1,2
1,3N̂1N̂

3
2 + α1,2

2,2N̂
2
1 N̂

2
2 + α1,2

3,1N̂
3
1 N̂2

+ α1,2
1,4N̂1N̂

4
2 + α1,2

2,3N̂
2
1 N̂

3
2 + α1,2

3,2N̂
3
1 N̂

2
2 + α1,2

4,1N̂
4
1 N̂2

+ α1,3
1,1N̂1N̂3 + α1,3

1,2N̂1N̂
2
3 + α1,3

2,1N̂
2
1 N̂3

+ α1,3
1,3N̂1N̂

3
3 + α1,3

2,2N̂
2
1 N̂

2
3 + α1,3

3,1N̂
3
1 N̂3

+ α1,3
1,4N̂1N̂

4
3 + α1,3

2,3N̂
2
1 N̂

3
3 + α1,3

3,2N̂
3
1 N̂

2
3 + α1,3

4,1N̂
4
1 N̂3

+ α2,3
1,1N̂2N̂3 + α2,3

1,2N̂2N̂
2
3 + α2,3

2,1N̂
2
2 N̂3

+ α2,3
1,3N̂2N̂

3
3 + α2,3

2,2N̂
2
2 N̂

2
3 + α2,3

3,1N̂
3
2 N̂3

+ α2,3
1,4N̂2N̂

4
3 + α2,3

2,2N̂
2
2 N̂

2
3 + α2,3

3,2N̂
3
2 N̂

2
3 + α2,3

4,1N̂
4
2 N̂3

+ α1,2,3
1,1,1N̂1N̂2N̂3

+ α1,2,3
1,1,2N̂1N̂2N̂

2
3 + α1,2,3

1,2,1N̂1N̂
2
2 N̂3 + α1,2,3

2,1,1N̂
2
1 N̂2N̂3

+ α1,2,3
1,1,3N̂1N̂2N̂

3
3 + α1,2,3

1,3,1N̂1N̂
3
2 N̂3 + α1,2,3

3,1,1N̂
3
1 N̂2N̂3

+ α1,2,3
1,2,2N̂1N̂

2
2 N̂

2
3 + α1,2,3

2,1,2N̂
2
1 N̂2N̂

2
3 + α1,2,3

2,2,1N̂
2
1 N̂

2
2 N̂3

+ α0
1(a

+
2 a1

2 + a+1
2
a2) + α0

2(a
+
2

2
a1

4 + a+1
4
a2

2)

+ α0
3(a

+
2

3
a1

6 + a+1
6
a2

3)

+ α0,1
1,1(a

+
2 a1

2 + a+1
2
a2)N̂1 + α0,1

1,2(a
+
2 a1

2 + a+1
2
a2)N̂

2
1

+ α0,1
2,1(a

+
2

2
a1

4 + a+1
4
a2

2)N̂1 + α0,1
1,3(a

+
2 a1

2 + a+1
2
a2)N̂

3
1

+ α0,1
2,2(a

+
2

2
a1

4 + a+1
4
a2

2)N̂2
1

+ α0,2
1,1(a

+
2 a1

2 + a+1
2
a2)N̂2 + α0,2

1,2(a
+
2 a1

2 + a+1
2
a2)N̂

2
2

+ α0,2
2,1(a

+
2

2
a1

4 + a+1
4
a2

2)N̂2 + α0,2
1,3(a

+
2 a1

2 + a+1
2
a2)N̂

3
2

+ α0,2
2,2(a

+
2

2
a1

4 + a+1
4
a2

2)N̂2
2

+ α0,3
1,1(a

+
2 a1

2 + a+1
2
a2)N̂3 + α0,3

1,2(a
+
2 a1

2 + a+1
2
a2)N̂

2
3
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+ α0,3
2,1(a

+
2

2
a1

4 + a+1
4
a2

2)N̂3 + α0,3
1,3(a

+
2 a1

2 + a+1
2
a2)N̂

3
3

+ α0,3
2,2(a

+
2

2
a1

4 + a+1
4
a2

2)N̂2
3

+ α0,1,2
1,1,1(a

+
2 a1

2 + a+1
2
a2)N̂1N̂2

+ α0,1,3
1,1,1(a

+
2 a1

2 + a+1
2
a2)N̂1N̂3

+ α0,2,3
1,1,1(a

+
2 a1

2 + a+1
2
a2)N̂2N̂3

+ α0,1,2
1,1,2(a

+
2 a1

2 + a+1
2
a2)N̂1N̂

2
2

+ α0,1,3
1,1,2(a

+
2 a1

2 + a+1
2
a2)N̂1N̂

2
3

+ α0,2,3
1,1,2(a

+
2 a1

2 + a+1
2
a2)N̂2N̂

2
3

+ α0,1,2
1,2,1(a

+
2 a1

2 + a+1
2
a2)N̂

2
1 N̂2

+ α0,1,3
1,2,1(a

+
2 a1

2 + a+1
2
a2)N̂

2
1 N̂3

+ α0,2,3
1,2,1(a

+
2 a1

2 + a+1
2
a2)N̂

2
2 N̂3

+ α0,1,2
2,1,1(a

+
2

2
a1

4 + a+1
4
a2

2)N̂1N̂2

+ α0,1,3
2,1,1(a

+
2

2
a1

4 + a+1
4
a2

2)N̂1N̂3

+ α0,2,3
2,1,1(a

+
2

2
a1

4 + a+1
4
a2

2)N̂2N̂3

)

. (36)

4.1.4. Numerical simulations

The vibrational structure of the ClOH molecule has

been studied in [2] until almost the dissociation limit. For

levels of energy less than 70 % of the dissociation limit, the

authors make a Dunham expression based on the number

operators (See [6]). But, for highly excited levels, due

to the more and more frequent accidentally couplings be-

tween levels energetically close, Fermi resonance between

oscillators "1" and "2" (ω2

ω1
≈ 2) has to be taken into ac-

count. Quantum numbers n1 and n2 are "no more good

quantum numbers", as refers in the literature, and they

are replaced by the polyad number P = n1 + 2n2 (See

for instance [20]). In [2], the authors determine 725 lev-

els of energy, which means to take into account up to 38

quanta of excitation exchanged between oscillator "1" and

"2" (P ≤ 38) and 7 quanta for the oscillator "3", la-

beling of the states being made with the polyad number

[P, n3]. Furthermore, these authors add a coupling oper-

ator α′
1
0
(a+2

3
a3 + a+3 a2

3) in the Hamiltonian K̂ in order

to describe the 3 : 1 resonance between oscillators "2" and

"3" (ω3

ω2
≈ 3). Our model predicts that the Hamiltonian K̂

N Λ coefficients in cm−1

2 3 ω1 = +753.834, ω2 = +1 258.914

ω3 = +3 777.067

4 9 α1
2 = −7.123, α2

2 = +3.204, α3
2 = −80.277

α1,2
1,1 = −10.637, α1,3

1,1 = 0, α2,3
1,1 = −19.985

6 19 α1
3 = +0.0825, , α2

3 = 0, α3
3 = −0.3619

α1,2
1,2 = −0.2503, α1,3

1,2 = −0.0532, α2,3
1,2 = −1.9534

α1,2
2,1 = −0.0802, α1,3

2,1 = 0, α2,3
2,1 = 0

α1,2,3
1,1,1 = 0

8 34 α1
4 = −0.00171, α2

4 = −0.04117, α3
4 = 0

α1,2
3,1 = 0, α1,3

3,1 = 0, α2,3
3,1 = 0

α1,2
2,2 = 0, α1,3

2,2 = 0, α2,3
2,2 = −0.15070

α1,2
1,3 = −0.01229, α1,3

1,3 = 0, α2,3
1,3 = +0.13189

α1,2,3
1,1,2 = +0.02381, α1,2,3

1,2,1 = 0, α1,2,3
2,1,1 = 0

10 55 α1
5 = 0, α2

5 = +0.00151, α3
5 = 0

α1,2
4,1 = 0, α1,3

4,1 = 0, α2,3
4,1 = 0

α1,2
3,2 = 0, α1,3

3,2 = 0, α2,3
3,2 = 0

α1,2
2,3 = 0, α1,3

2,3 = 0, α2,3
2,3 = −0.00066

α1,2
1,4 = 0, α1,3

1,4 = 0, α2,3
1,4 = 0

Table 4: List of the Dunham coefficients given by [2]. For a given

order N (4 ≤ N ≤ 10), a line contains the numbers of additional

coefficients to the order N − 2.

has to be described by 86 coefficients (the 85 coefficients of

Eq. (36) + α′
1
0
). However the smallest rms value (= 5.29

cm−1) is obtained for a fit with only 28 coefficients differ-

ent from zero, some coefficients have been set at zero by a

more or less arbitrary way. Results are given in the tables

4 and 5.

5. Conclusion and perspectives

We have presented a method of construction of a vi-

brational normalized Hamiltonian, modeled by a set of

n oscillators until a high order N . It allows to describe

the highly excited vibrational levels in the case of a p : q

resonance. We have also counted all the operators intro-

12



N Nc

2 coefficients in cm−1

3 1 α0
1 = 0

4 1 (α′
1
0
= +0.19520)

5 4 α0,1
1,1 = −0.24939, α0,2

1,1 = 0, α0,3
1,1 = −0.76017

6 5 α0
2 = 0

7 11 α0,1
1,2 = +0.00583, α0,2

1,2 = 0, α0,3
1,2 = −0.01158

α0,1,2
1,1,1 = +0.04075, α0,1,3

1,1,1 = 0, α0,2,3
1,1,1 = 0

8 14 α0,1
2,1 = 0, α0,2

2,1 = 0, α0,3
2,1 = 0

9 24 α0
3 = 0, α0,1

1,3 = 0, α0,2
1,3 = 0, α0,3

1,3 = 0

α0,1,2
1,1,2 = 0, α0,1,2

1,2,1 = 0, α0,1,3
1,1,2 = 0, α0,1,3

1,2,1 = 0

α0,2,3
1,1,2 = 0, α0,2,3

1,2,1 = 0

10 30 α0,1,2
2,1,1 = 0, α0,1,3

2,1,1 = 0, α0,2,3
2,1,1 = 0

α0,1
2,2 = 0, α0,2

2,2 = 0, α0,3
2,2 = 0

Table 5: List of the coupling coefficients given by [2]. For a given

order N (4 ≤ N ≤ 10), a line contains the number of additional

coefficients to the order N − 1. The coupling coefficient of the 3 : 1

resonance is in brackets and is not accounting for in the enumeration.

duced in the Hamiltonian, in particular the coupling oper-

ators. This building method has been successfully applied

to the ClOH molecule taking into account a 2 : 1 reso-

nance. To go further, in a strict manner, for molecular

systems having at least 3 oscillators, we should add in the

Hamiltonian polynomial expansion, 4-monomials based on

the generators of the invariant algebra (Eq.(26)) as soon

as N ≥ p + q + 6. If the method of construction is eas-

ily adaptable, the counting theorems for these monomials

remain to be done.
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7. Appendix

7.1. 2-monomials counting

In this section, we present the demonstration of the

three counting theorems of the 2-monomials. We denote

the order N of the development of (26) under the form N =

k′(p+q)+2+i with k′ and i ∈ [0, ..., p+q−1] two positive

integers. Thus we are working on the secondary interval

IS = [1, Q2]N=k′(p+q)+2+i with Q2 = E( (k
′−1)(p+q)+2+i

2 ).

7.1.1. The different classes of couples

On IS, the different values taken by q2 belong to dif-

ferent classes of couples: C1, ..., Ck′−1 and Ck′ . We begin

by searching the couples belonging to the class Ck′ as well

as the population Λ̃′′ of this class. The couples (k′, q2) of

this class are: (k′, 1), (k′, 2), ..., (k′, q̃2) with q̃2 the highest

possible value of q2 such that p2 = E(k
′(p+q)+2+i−2q̃2

p+q
) =

k′, that is q̃2 = 1 + E( i
2 ). the multiplicities of these

1 + E( i
2 ) couples are easily calculated with the Eq. (15)

and (16). The cumulative multiplicities of the couples

(k′, 1), (k′, 2), ..., (k′, q̃2) on IS are respectively equal to

µ = i+1, i−1, ..., i+3−2q2, ..., 1+ǫ with ǫ = i−2E( i2 ).

It is possible now to evaluate the numbers of couples of this

class: the population of Ck′ is the sum of all the couples

present in this class taking into account the cumulative

multiplicity of each of the couples on IS, which is equiva-

lent to calculate the number of times a couple appears on

the main interval [p+ q + 2, k′(p+ q) + 2 + i]. We get:

Λ̃′′ =

q̃2∑

q2=1

(i+ 3− 2q2),

= [E(
i

2
) + 1][i+ 1− E(

i

2
)], (37)

or accordingly to the parity of i:

Λ̃′′ =
i2

4
+ i+ 1 (i even), (38)

Λ̃′′ =
i2

4
+ i+

3

4
(i odd). (39)

Couples of the others different classes of IS break down

as follows: (k′ − 1, E( i
2 ) + 2), (k′ − 1, E( i

2 ) + 3), ..., (k′ −
13



1, E(p+q+i+2
2 )) for the class Ck′−1, (k′ − 2, E(p+q+i+4

2 )),

(k′ − 2, E(p+q+i+6
2 )), ..., (k′ − 2, E(2(p+q)+i+2

2 )) for the

class Ck′−2, ..., (2, E( (k
′−3)(p+q)+i+4

2 )),

(2, E( (k
′−3)(p+q)+i+6

2 )), ..., (2, E( (k
′−2)(p+q)+i+2

2 )) for the

class C2 and finally (1, E( (k
′−2)(p+q)+i+4

2 )),

(1, E( (k
′−2)(p+q)+i+6

2 )), ..., (1, Q2 = E( (k
′−1)(p+q)+i+2

2 ))

for the class C1.

Calculation of the cumulative multiplicity of the 2-

couples implies to distinguish three cases: p+ q even (case

A), p+ q odd with k′ even (case B) and p+ q odd with k′

odd (case C). Results are given in the tables 6 to 10.

7.1.2. Case A

We denote by Λ̃′ the population of the classes Ck′−1 to

C1; on each of these classes, each cumulative multiplicity

(p+q
2 in number) p+q−1+ǫ, p+q−3+ǫ, ..., 1+ǫ appears

only one time; we may write:

Λ̃′ = (k′ − 1)

p+q−2
2∑

j=0

(2j + 1 + ǫ),

=
(k′ − 1)(p+ q)

2
[
p+ q

2
+ ǫ]. (40)

The population Λ̃ of all the classes Cj (j = 1, ..., k′) is

the sum of (37) and (40). In order to obtain the number

of 2-monomials, we have first to determine the number of

switch-off couples α on IS. To do it, depending of the

parity of K = (k′ − 1)(p + q) + i, we have to substract

from Λ1 (given by (11) or (12)) the population Λ̃ of all the

couples present on IS. As the cumulative multiplicity of

all the switch-off couples is equal to p + q, Λ̃ is divisible

by p+ q. More precisely, one calculates Λ1 by replacing in

(11) or (12) N by k′(p+ q) + 2 + i; one obtains:

Λ1 =
1

4
(k′− 1)2(p+ q)2+

1

2
(k′− 1)(p+ q)(i+2)+R, (41)

with

R =
i2

4
+ i+ 1 (K even), (42)

R =
i2

4
+ i+

3

4
(K odd). (43)

For the case A, K has the same parity as i thus R is

canceled by Λ̃′′ in α = Λ1 − Λ̃′ − Λ̃′′. We obtain:

α =
1

4
(k′ − 1)(k′ − 2)(p+ q)2

+
1

2
(k′ − 1)(i + 2− ǫ)(p+ q). (44)

To eliminate the redundancies in the switch-off couples in

IS, it is enough to divide α by p+ q. The number of cou-

ples, thus the number of 2-monomials ∆1 in a sum S
(2)
m, ℓ

(m = −1, 0, ℓ = 1, 2) is obtained by summing α
p+q

and

α̃1, the number of couples present without multiplicity on

IS (to do it, one attributes artificially a cumulative mul-

tiplicity of 1 to each of the couples of the k′ − 1 different

classes Ck′−1 to C1, each cumulative multiplicity appear-

ing exactly 1 time in each class, and to add the q̃2 couples

the class Ck′), that is:

α̃1 = (
p+ q

2
)(k′ − 1) + E(

i

2
) + 1.

From which we deduce that: ∆1 = k′[1+E( i
2 )+

(k′−1)(p+q)
4 ].

Theorem 1 is thus proved.

7.1.3. Case B

Compared with case A, for a given class of couples, the

cumulative multiplicities are either all even or all odd. We

have to distinguish the "sub-cases" i even and i odd:

• If i is even, one counts p+q+1
2 odd cumulative mul-

tiplicities 1, 3, ..., p + q, which appear exactly one

time on each of the k′−2
2 even classes Ck′−2, ..., C2

whereas the odd classes Ck′−1, ..., C1,
k′

2 in number,

contain the p+q−1
2 even cumulative multiplicities : 2

to p+ q − 1. We denote Λ̃′
odd and Λ̃′

even the number

of couples of, respectively, odd and even cumulative

multiplicity on IS, except the couples of the class

Ck′ which population is given by (37). We have:

Λ̃′
odd =

(k′ − 2)

2

p+q−1
2∑

j=0

(2j + 1),

=
(k′ − 2)(p+ q + 1)2

8
. (45)
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Λ̃′
even =

k′

2

p+q−1
2∑

j=1

(2j),

=
k′(p+ q − 1)(p+ q + 1)

8
. (46)

One deduces:

Λ̃′ =
(k′ − 1)(p+ q)2

4
+

(k′ − 2)(p+ q)

4
− 1

4
, (47)

then the population Λ̃ of all the classes, the popula-

tion of Ck′ being still given by Eq. (38). The deter-

mination of switch-off couples is made analogously to

the case A. For i and k′ even, K = (k′−1)(p+ q)+ i

is odd, Λ1 is obtained with (41) and (43), thus it

gives:

α =
1

4
(k′−1)(k′−2)(p+q)2+

1

4
[3k′+2i(k′−1)−2](p+q),

(48)

One checks that (48) is divisible by p + q, R being

canceled by the contributions (38) and − 1
4 of (47).

Eq. (48) divided by p+ q and α̃1 = (p+q
2 )(k′ − 1) +

E( i
2 ) +

1
2 gives: ∆1 = k′[ (k

′−1)(p+q)+2i+3
4 ].

• If i is odd, there is p+q+1
2 odd cumulative multiplici-

ties 1, 3, ..., p+ q, which appear exactly one time on

each of the k′

2 odd classes Ck′−1, ..., C1 whereas the

(k′−2)
2 even classes Ck′−2, ..., C2 contain the p+q−1

2

even cumulative multiplicity : 2, ..., p + q − 1. We

have now:

Λ̃′
odd =

k′

2

p+q−1
2∑

j=0

(2j + 1),

=
k′(p+ q + 1)2

8
. (49)

Λ̃′
even =

(k′ − 2)

2

p+q−1
2∑

j=1

(2j),

=
(k′ − 2)(p+ q − 1)(p+ q + 1)

8
. (50)

It gives:

Λ̃′ =
(k′ − 1)(p+ q)2

4
+

k′(p+ q)

4
+

1

4
, (51)

Λ1 is determined by (41) and (42), Λ̃′′ by (39), from

which one has α = Λ1 − Λ̃′ − Λ̃′′:

α =
1

4
(k′−1)(k′−2)(p+q)2+

1

4
[3k′+2i(k′−1)−4](p+q),

(52)

then the sum of α̃1 = (p+q
2 )(k′ − 1) + E( i

2 ) +
3
2 and

(52) divided by p+q gives: ∆1 = k′[ (k
′−1)(p+q)+2i+3

4 ].

This proves the theorem 2 .

7.1.4. Case C

As for case B, the study implies to consider all the

"sub-cases" i even and i odd:

• If i is even, there is p+q+1
2 odd cumulative multiplic-

ities 1, 3, ..., p+q, which appear exactly one time on

each of the k′−1
2 odd classes Ck′−2, ..., C1, the k′−1

2

even classes Ck′−1, ..., C2 having the p+q−1
2 even

cumulative multiplicities: 2, ..., p+ q − 1. It gives:

Λ̃′
odd =

(k′ − 1)

2

p+q−1
2∑

j=0

(2j + 1),

=
(k′ − 1)(p+ q + 1)2

8
. (53)

Λ̃′
even =

(k′ − 1)

2

p+q−1
2∑

j=1

(2j),

=
(k′ − 1)(p+ q − 1)(p+ q + 1)

8
. (54)

>From which we deduce:

Λ̃′ =
(k′ − 1)(p+ q)(p+ q + 1)

4
, (55)

then the population Λ̃ of all the classes, the pop-

ulation of Ck′ is determined by (38). The number

of switch-off couples is obtained on a analogous way

that cases A and B. K = (k′ − 1)(p + q) + i being

even, Λ1 is given by (41) and (42), Λ̃′′ is given by

(38), then α = Λ1 − Λ̃′ − Λ̃′′:

α =
1

4
(k′ − 1)(p+ q)[(k′ − 2)(p+ q) + 2i+ 3]. (56)

Using Eq. (56) and α̃1 = (p+q
2 )(k′ − 1) + E( i

2 ) + 1,

one deduces: ∆1 = (k′− 1)[k
′(p+q)+2i+3

4 ]+E( i
2 )+1.
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• If i is odd, there is p+q+1
2 odd multiplicities 1, 3,

..., p + q, which appear exactly one time on each

of the (k′−1)
2 even classes Ck′−1, ..., C2 while the

(k′−1)
2 odd classes Ck′−2 to C1 contain the p+q−1

2

even multiplicities 2 to p+ q − 1. Populations Λ̃′
odd,

Λ̃′
even and Λ̃′ = Λ̃′

even + Λ̃′
odd are still given by Eqs.

(53), (54) and (55); Λ̃′′ is calculated by Eq. (39)

and Λ1 deduced by Eqs. (41) and (43). One obtains

once again Eq. (56) for α. From Eq. (56) and α̃1 =

(p+q
2 )(k′ − 1) + E( i

2 ) + 1, one may write:

∆1 = (k′ − 1)[k
′(p+q)+2i+3

4 ] + E( i
2 ) + 1.

Theorem 3 is thus demonstrated.

7.2. 3-monomials counting

In this section, we give the demonstration of the three

3-monomials counting theorems. For the following, with-

out limiting the generality of the problem, the order N of

the expansion (26) is denoted N = k′(p+ q)+4+ i with k′

and i ∈ [0, ..., p+ q− 1] two strictly positive integers. We

work on the secondary interval IS = [2, Q3]N=k′(p+q)+4+i

with Q3 = E( (k
′−1)(p+q)+4+i

2 ).

7.2.1. The different classes of couples

Successive values taken by the integer q3 on IS com-

pose the classes of the couples : C1, ..., Ck′−2, Ck′−1 and

Ck′ (classes Ck′−1 and Ck′−2 exist if, respectively, k′ ≥
2 and k′ ≥ 3). We begin by giving explicitly the 3-

couples belonging to the class Ck′ as well as its popu-

lation Λ̃′′. The 3-couples (k′, q3, γ) (γ = 1, ..., q3 − 1)

of this class are: (k′, 1, γ), (k′, 2, γ), ..., (k′, q̃3, γ) with

q̃3 the highest integer value of q3 allowed such that p3 =

E(k
′(p+q)+4+i−2q̃3

p+q
) = k′, that is q̃3 = 2 + E( i

2 ). We de-

termine the multiplicities of these 3-couples with the help

of (15) and (16). Thus, the cumulative multiplicities of

the couples (k′, 1, γ), (k′, 2, γ), ..., (k′, q̃3, γ) on IS are,

respectively, µ = i+1, i− 1, ..., i+5− 2q3, ..., 1+ ǫ with

ǫ = i − 2E( i2 ). However, to a given value of q3, there is

q3 − 1 3-couples (k′, q3, γ). The counting of the popula-

tion of Ck′ is equivalent to the counting of all the 2-couples

(k′, q3) which cumulative multiplicities on IS is the prod-

uct of one of the q3−1 3-couples (k′, q3, γ) which it relates

and of q3 − 1. It reads:

Λ̃′′ =

q̃3∑

q3=2

(i+ 5− 2q3)(q3 − 1),

=
1

2
(i + 7)[E(

i

2
) + 1][E(

i

2
) + 4] + 2− (i+ 5)[E(

i

2
) + 1]

− 1

3
[E(

i

2
) + 2][E(

i

2
) + 3][2E(

i

2
) + 5], (57)

or also, depending of the parity of i:

Λ̃′′ =
i3

24
+

3i2

8
+

13i

12
+ 1 (i even), (58)

Λ̃′′ =
i3

24
+

3i2

8
+

23i

24
+

5

8
(i odd). (59)

The 3-couples of the others different classes of IS divide

as follows: (k′−1, E( i
2 )+3, γ), (k′−1, E( i

2 )+4, γ), ..., (k′−
1, E(p+q+i+4

2 ), γ) for the class Ck′−1, (k
′−2, E(p+q+i+6

2 ), γ),

(k′ − 2, E(p+q+i+8
2 ), γ), ..., (k′ − 2,

E(2(p+q)+i+4
2 ), γ) for the class Ck′−2, ..., (2, E( (k

′−3)(p+q)+i+6
2 )

, γ), (2, E( (k
′−3)(p+q)+i+8

2 ), γ), ..., (2, E( (k
′−2)(p+q)+i+4

2 ), γ)

for the class C2 and finally (1, E( (k
′−2)(p+q)+i+6

2 ), γ), (1,

E( (k
′−2)(p+q)+i+8

2 ), γ), ..., (1, Q3 = E( (k
′−1)(p+q)+i+4

2 ), γ)

for the class C1. As for the 2-monomials, the calculation of

a cumulative multiplicity implies to distinguish the three

cases: p+ q even (case A), p+ q odd with k′ even (case B)

and p + q odd with k′ odd (case C). Results are given in

the tables 11 to 15.

7.2.2. Case A

We denote by Λ̃′ the population of the classes Ck′−1

to C1; the counting of Λ̃′ is more tedious than for the 2-

monomials, because, for one given class of couples, there is

q3 − 1 3-couples of same multiplicity on IS and this value

varies from a class of couples to another. The method used

here, consists in counting successively the populations of

the p+q
2 classes of multiplicity Λ̃p+q−1+ǫ, Λ̃p+q−3+ǫ, ...,

Λ̃1+ǫ. For instance, there is E( i
2 ) + 1 + j(p+q)

2 3-couples

(1 ≤ j ≤ k′ − 1) of cumulative multiplicity µ = 1 + ǫ in
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each of the classes Cj . Thus one has:

Λ̃1+ǫ = (1 + ǫ)

k′−1∑

j=1

[E(
i

2
) + 1 +

j(p+ q)

2
],

= (1 + ǫ)(k′ − 1)[E(
i

2
) + 1 +

k′(p+ q)

4
]. (60)

Doing similarly for the others populations:

Λ̃3+ǫ = (3 + ǫ)
k′−1∑

j=1

[E(
i

2
) +

j(p+ q)

2
],

= (3 + ǫ)(k′ − 1)[E(
i

2
) +

k′(p+ q)

4
], (61)

...

Λ̃p+q−1+ǫ = (p+ q − 1 + ǫ)
k′−2∑

j=0

[E(
i

2
) + 2 +

j(p+ q)

2
],

= (p+ q − 1 + ǫ)(k′ − 1)[E(
i

2
) + 2

+
(k′ − 2)(p+ q)

4
]. (62)

Population Λ̃′ is the sum of Eqs. (60) to (62):

Λ̃′ =

p+q−2
2∑

j=0

(ǫ + 2j + 1)(k′ − 1)[E(
i

2
)

+ 1− j +
k′(p+ q)

4
],

=
(k′ − 1)(p+ q)

2
[(ǫ +

p+ q

2
)(E(

i

2
) +

k′(p+ q)

4
)

+
(p+ q − 2)

12
(5− 2ǫ− 2(p+ q)) + ǫ+ 1]. (63)

The population Λ̃ = Λ̃′ + Λ̃′′ of all the classes Cj (j =

1, ..., k′) is the sum of Eqs. (57) and (63). To count the

number of 3-monomials in a sum S
(3)
m , one has at first

to determine the number of switch-off couples α on IS,

the method remaining the same as for the 2-monomials.

It gives: α = Λ2 − Λ̃, where depending on the parity of

K = (k′ − 1)(p + q) + i, Λ2 is given by Eq. (13) or (14).

In Eqs. (13) or (14) we replace N by k′(p+ q)+ 4+ i, and

one obtains the following equations:

Λ2 =
1

24
(k′ − 1)3(p+ q)3 +

1

8
(k′ − 1)2(p+ q)2(i+ 3)

+
1

24
(k′ − 1)(p+ q)(3i(i+ 6) + 26− 3ǫ)

+ R, (64)

R =
i3

24
+

3i2

8
+

13i

12
+ 1 (K even), (65)

R =
i3

24
+

3i2

8
+

23i

24
+

5

8
(K odd). (66)

For the case A, K and i have the same parity, thus R is

canceled by Λ̃′′. All calculations made, it results:

α =
1

24
(k′ − 1)(p+ q)

(
1

2
(p+ q)2[2(k′ − 1)2 − 3k′]

+ (p+ q)[3(k′ − 1)(i + 3)− 3ǫk′ + 2(p+ q − 2)

− 6E(
i

2
)] + 2(3 + i)2 + (4 + i)(2 + i)

− 12ǫE(
i

2
)− (p+ q − 2)(5− ǫ)− 12(ǫ+ 1)

)

. (67)

The number of 3-monomials ∆2 in a sum S
(3)
m , is obtained

by summing α
p+q

and α̃2, the number of couples present

without multiplicity on IS take into account the 3-couples

of the classes Cj (1 ≤ j ≤ k′ − 1) and of the class Ck′ :

α̃2 =

p+q−2
2∑

j=0

[E(
i

2
) + 1 +

k′(p+ q)

4
− j] +

q̃3∑

q3=2

(q3 − 1),

=
[E( i

2 ) + 1][E( i
2 ) + 2]

2
+

(k′ − 1)(p+ q)

2
[E(

i

2
)

+
3

2
+

(k′ − 1)(p+ q)

4
]

One deduces ∆2 = α
p+q

+ α̃2 given by Eq. (20); this proves

theorem 4.

7.2.3. Case B

Compared with case A, as for the 2-monomials, one

has to consider the "sub-cases" i even and i odd. Once

again, the method consists to begin with the populations

of the different classes of multiplicity, to determine Λ̃′
even

and Λ̃′
odd, the populations of even and odd cumulative mul-

tiplicities on IS, except the class Ck′ which population is

known and given by Eq. (57).

• If i is even, there is p+q+1
2 classes of odd multiplicities

with populations Λ̃2j+1 (0 ≤ j ≤ p+q−1
2 ), each of

these classes appears 1 time on each of the k′−2
2 even

classes of couples Ck′−2, ..., C2. On the set of these

classes, one counts E( i
2 ) +

k′(p+q)
4 + 1 − j 3-couples

17



of cumulative multiplicity µ = 2j + 1. It gives:

Λ̃′
odd =

(k′ − 2)

2

p+q−1
2∑

j=0

(2j + 1)(E(
i

2
)

+
k′(p+ q)

4
+ 1− j)

=
(k′ − 2)(p+ q + 1)

4

(

E(
i

2
) +

k′(p+ q)

4

+ 1 +
(p+ q − 1)

4
[2E(

i

2
) + 1 +

k′(p+ q)

2
]

− 1

6
(p+ q)(p+ q − 1)

)

. (68)

One counts also p+q−1
2 classes of even multiplicity

with populations Λ̃2j (1 ≤ j ≤ p+q−1
2 ), each of these

classes appearing 1 time on each of the k′

2 odd classes

of couples Ck′−1, ..., C1. Furthermore , to a given

cumulative multiplicity µ = 2j, correspond E( i
2 ) +

k′(p+q)
4 + 3

2 − j 3-couples, thus:

Λ̃′
even =

k′

2

p+q−1
2∑

j=1

(2j)(E(
i

2
) +

k′(p+ q)

4
+

3

2
− j)

=
k′(p+ q + 1)

4

(
(p+ q − 1)

4
[2E(

i

2
) + 3

+
k′(p+ q)

2
]− 1

6
(p+ q)(p+ q − 1)

)

. (69)

One deduces the population of all the classes Cj (j =

1, ..., k′ − 1):

Λ̃′ =
(k′ − 1)(3k′ − 4)(p+ q)3

48

+
(k′ − 1)(p+ q)2

8
[2E(

i

2
) + 1] +

k′2(p+ q)2

16

+
(p+ q)

4
[(k′ − 2)E(

i

2
) +

13k′

12
− 7

3
]

− 1

4
E(

i

2
)− 3

8
. (70)

For i and k′ even, K = (k′ − 1)(p+ q) + i is odd, Λ2

is obtained by Eqs. (64) and (66), thus it results:

α =
(k′ − 1)(k′ − 2)(2k′ − 3)(p+ q)3

48

+
(k′ − 1)(p+ q)2

8
[(k′ − 1)(3 + i)− 2E(

i

2
)− 1]

− k′2(p+ q)2

16
+

(p+ q)

4

(
(k′ − 1)

6
[3i(i+ 6) + 23]

− (k′ − 2)E(
i

2
)− 13k′

12
+

7

3

)

. (71)

Eq.(71) is divisible by p+q, the sum of terms− 1
4E( i

2 )−
3
8 in Eq. (70) and of Λ̃′′ (Eq. (58)) cancels R

(Eq.(66)). Moreover, the number of 3-couples present

without multiplicity on IS is:

α̃2 =
[E( i

2 ) + 1][E( i2 ) + 2]

2

+
(k′ − 2)

2

p+q−1
2∑

j=0

[E(
i

2
) +

k′(p+ q)

4
+ 1− j]

+
k′

2

p+q−1
2∑

j=1

[E(
i

2
) +

k′(p+ q)

4
+

3

2
− j]

=
[E( i

2 ) + 1][E( i2 ) + 2]

2

+
(k′ − 1)(p+ q)

2
[
(k′ − 1)(p+ q)

4
+ E(

i

2
) + 1]

− E( i
2 )

2
− 5

8
.

We obtain:

∆2 =
[E( i

2 ) + 1][E( i
2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 3(2i+ 5)]

+
(k′ − 1)

8
[i(i+ 6) + 8]− k′

16
[4E(

i

2
)

+ (p+ q) + 5]. (72)

This is Eq.(21) for i even (ǫ = 0).

• If i is odd, one counts p+q+1
2 classes of odd multiplic-

ity with populations Λ̃2j+1 (0 ≤ j ≤ p+q−1
2 ), each of

these classes appearing one time on each of the k′

2

odd classes of couples Ck′−1, ..., C1. On the set of

these classes, one counts E( i
2 ) +

k′(p+q)
4 + 3

2 − j 3-

couples of cumulative multiplicity µ = 2j + 1. It

reads:

Λ̃′
odd =

k′(p+ q + 1)

24

(

3ǫ[2E(
i

2
) + 3] +

3ǫk′(p+ q)

2

− (p+ q − 1)(p+ q) +
3(p+ q − 1)

2
[2E(

i

2
)

+
k′(p+ q)

2
+ 3− ǫ]

)

. (73)

There is also p+q−1
2 classes of even multiplicity with

populations Λ̃2j (0 ≤ j ≤ p+q−1
2 ), each of these

18



classes appearing one time on each of the (k′−2)
2

even classes of couples Ck′−2, ..., C2. Furthermore,

for a given cumulative multiplicity µ = 2j, there is

E( i
2 ) +

k′(p+q)
4 + 2− j 3-couples. It gives:

Λ̃′
even =

(k′ − 2)(p+ q − 1)

4

(
(p+ q − 3)

4
[2E(

i

2
) +

k′(p+ q)

2
+ 1− ǫ] + (1 + ǫ)[E(

i

2
) + 1

+
k′(p+ q)

4
]− (p+ q − 2)(p+ q − 3)

6

)

. (74)

One deduces successively the populations Λ̃ of all

the classes Cj (j = 1, ..., k′) by summing Eqs. (59),

(73) and (74), then Λ2 with the help of Eqs. (64) and

(65), α = Λ2 − Λ̃. One determines then the number

of 3-couples present without multiplicity on IS by:

α̃2 =
[E( i

2 ) + 1][E( i
2 ) + 2]

2

+
(k′ − 1)(p+ q)

2
[
(k′ − 1)(p+ q)

4
+ E(

i

2
) + 2]

+
E( i

2 )

2
+

7

8
, (75)

It follows that:

∆2 =
[E( i

2 ) + 1][E( i
2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 3(2i+ 5)]

+
(k′ − 1)

8
[i(i+ 6)− 4E(

i

2
) + 1] +

k′

16
[4E(

i

2
)

+ (p+ q) + 7]. (76)

∆2 is deduced from (21) for the value ǫ = 1. Theo-

rem 5 is demonstrated.

7.2.4. Case C

As for the case B, One has to consider the "sub-cases"

i even and i odd.

• If i is even, there is p+q+1
2 classes of odd multiplic-

ity with the populations Λ̃2j+1 (0 ≤ j ≤ p+q−1
2 ),

each of these classes appearing exactly one time on

each of the k′−1
2 odd classes of couples Ck′−2, ...,

C1. Furthermore, for a given cumulative multiplic-

ity µ = 2j + 1, there is E( i
2 ) +

(k′+1)(p+q)
4 + 1 − j

3-couples. Thus one may write:

Λ̃′
odd =

(k′ − 1)(p+ q + 1)

4

(

E(
i

2
)

+
(k′ + 1)(p+ q)

4
+ 1 +

(p+ q − 1)

4
[2E(

i

2
)

+ 1 +
(k′ + 1)(p+ q)

2
]

− 1

6
(p+ q)(p+ q − 1)

)

. (77)

There is also p+q−1
2 classes of even multiplicity with

populations Λ̃2j (1 ≤ j ≤ p+q−1
2 ), each of these

classes appearing exactly one time on each of the

(k′−1)
2 even classes of couples Ck′−1, ..., C2. Fur-

thermore, for a given cumulative multiplicity µ = 2j,

there is E( i
2 )+

(k′−1)(p+q)
4 + 3

2−j 3-couples. It reads:

Λ̃′
even =

(k′ − 1)(p+ q + 1)

4

(
(p+ q − 1)

4
[2E(

i

2
) + 3

+
(k′ − 1)(p+ q)

2
]

− 1

6
(p+ q)(p+ q − 1)

)

. (78)

One deduces Λ̃′:

Λ̃′ =
(k′ − 1)(3k′ − 4)(p+ q)3

48

+
(k′ − 1)(p+ q)2

4
[E(

i

2
) + 1] +

(k′2 − 1)(p+ q)2

16

+
(k′ − 1)(p+ q)

4
[E(

i

2
) +

19

12
]. (79)

Determination of the number of switch-off couples is

made on the same way as for cases A and B. For i

even and k′ odd, K = (k′− 1)(p+ q) + i is even, one

obtains Λ2 with (64) and (65), thus:

α =
(k′ − 1)(k′ − 2)(2k′ − 3)(p+ q)3

48

+
(k′ − 1)(p+ q)2

8
[(k′ − 1)(3 + i)− 2E(

i

2
)− k′

2

− 5

2
] +

(k′ − 1)(p+ q)

8
[i(i+ 6) +

11

2

− 2E(
i

2
)]. (80)
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(80) is divisible by p+ q, Λ̃′′ (Eq. (58)) canceling R

(Eq.(65)). The number of 3-couples present without

multiplicity on IS is given by Eq.:

α̃2 =
[E( i

2 ) + 1][E( i
2 ) + 2]

2
+

(k′ − 1)(p+ q)

2
[E(

i

2
)

+
(k′ − 1)(p+ q)

4
+

3

2
]. (81)

One deduces:

∆2 =
[E( i

2 ) + 1][E( i
2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 3(2i+ 5)]

+
(k′ − 1)

8
[i(i+ 6) + 8]

− (k′ − 1)

16
[4E(

i

2
)− (p+ q) + 5]. (82)

It is Eq. (22) for i even.

• If i is odd, one counts p+q+1
2 classes of odd multiplic-

ity with populations Λ̃2j+1 (0 ≤ j ≤ p+q−1
2 ), each of

these classes appearing exactly one time on each of

the (k′−1)
2 odd classes of couples Ck′−1, ..., C1. More-

over, for a given cumulative multiplicity µ = 2j + 1,

there is E( i
2 ) +

(k′−1)(p+q)
4 + 3

2 − j 3-couples. One

has:

Λ̃′
odd =

(k′ − 1)(p+ q + 1)

24

(

3[2ǫE(
i

2
) + 3ǫ]

+
3(k′ − 1)(p+ q)

2
− (p+ q − 1)(p+ q)

+
3ǫ(p+ q − 1)

2
+

3(p+ q − 1)

2
[2E(

i

2
)

+ 3− ǫ+
(k′ − 1)(p+ q)

2
]

)

. (83)

There is also p+q−1
2 classes of even multiplicity with

populations Λ̃2j (1 ≤ j ≤ p+q−1
2 ), each of these

classes appearing exactly one time on each of these

(k′−1)
2 odd classes of couples Ck′−2, ..., C1. Further-

more, for a given cumulative multiplicity µ = 2j,

there is E( i
2 )+

(k′+1)(p+q)
4 +2−j 3-couples. It gives:

Λ̃′
even =

(k′ − 1)(p+ q − 1)

4

(
(p+ q − 3)

4
[2E(

i

2
)

+
(k′ + 1)(p+ q)

2
+ 1− ǫ] + (ǫ + 1)[E(

i

2
)

+
(k′ + 1)(p+ q)

4
+ 1]

− 1

6
(p+ q − 2)(p+ q − 3)

)

. (84)

One deduces the populations Λ̃ of all the classes Cj

(j = 1, ..., k′) by summing the Eqs. (59), (83) and

(84), then Λ2 with (64) and (66) and α = Λ2−Λ̃. The

number of 3-couples present without multiplicity on

IS being given by Eq. (81), it follows that:

∆2 =
[E( i

2 ) + 1][E( i
2 ) + 2]

2

+
k′(k′ − 1)(p+ q)

48
[(2k′ − 1)(p+ q) + 3(2i+ 5)]

+
(k′ − 1)

8
[i(i+ 6)− 4E(

i

2
) + 1]

+
(k′ − 1)

16
[4E(

i

2
)− (p+ q) + 7]. (85)

One obtains ∆2 by (22) for i odd (ǫ = 1). Theorem

6 is demonstrated.
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class Cj q2 µ

Ck′−1 E( i
2 ) + 2 p+ q − 1 + ǫ

Ck′−1 E( i
2 ) + 3 p+ q − 3 + ǫ

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 1 1 + ǫ

Ck′−2 E( i
2 ) +

p+q
2 + 2 p+ q − 1 + ǫ

Ck′−2 E( i
2 ) +

p+q
2 + 3 p+ q − 3 + ǫ

...
...

...

Ck′−2 E( i
2 ) + p+ q + 1 1 + ǫ

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 2 p+ q − 1 + ǫ

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3 p+ q − 3 + ǫ

...
...

...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 1 1 + ǫ

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 2 p+ q − 1 + ǫ

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3 p+ q − 3 + ǫ

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 1 1 + ǫ

Table 6: Case A. Table giving the different classes of couples with

the cumulative multiplicities . If i even (ǫ = 0), all the cumulative

multiplicity are odd; they are all even if i is odd (ǫ = 1).

21



class Cj q2 µ

Ck′−1 E( i
2 ) + 2 p+ q − 1

Ck′−1 E( i
2 ) + 3 p+ q − 3

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 1

2 2

Ck′−2 E( i
2 ) +

p+q
2 + 3

2 p+ q

Ck′−2 E( i
2 ) +

p+q
2 + 5

2 p+ q − 2

...
...

...

Ck′−2 E( i
2 ) + p+ q + 1 1

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3

2 p+ q

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 5

2 p+ q − 2
...

...
...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 1 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 2 p+ q − 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3 p+ q − 3

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 1

2 2

Table 7: Case B. Table giving the different classes of couples with

cumulative multiplicities for k′ and i even.

class Cj q2 µ

Ck′−1 E( i
2 ) + 2 p+ q

Ck′−1 E( i
2 ) + 3 p+ q − 2

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 3

2 1

Ck′−2 E( i
2 ) +

p+q
2 + 5

2 p+ q − 1

Ck′−2 E( i
2 ) +

p+q
2 + 7

2 p+ q − 3

...
...

...

Ck′−2 E( i
2 ) + p+ q + 1 2

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 5

2 p+ q − 1

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 7

2 p+ q − 3
...

...
...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 1 2

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 2 p+ q

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3 p+ q − 2

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 3

2 1

Table 8: Case B. Table giving the different classes of couples with

the cumulative multiplicities for k′ even and i odd.
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class Cj q2 µ

Ck′−1 E( i
2 ) + 2 p+ q − 1

Ck′−1 E( i
2 ) + 3 p+ q − 3

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 1

2 2

Ck′−2 E( i
2 ) +

p+q
2 + 3

2 p+ q

Ck′−2 E( i
2 ) +

p+q
2 + 5

2 p+ q − 2

...
...

...

Ck′−2 E( i
2 ) + p+ q + 1 1

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 2 p+ q − 1

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3 p+ q − 3

...
...

...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 1

2 2

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3

2 p+ q

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 5

2 p+ q − 2

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 1 1

Table 9: Case C. Table giving the different classes of couples with

the cumulative multiplicity for k′ odd and i even.

Class Cj q2 µ

Ck′−1 E( i
2 ) + 2 p+ q

Ck′−1 E( i
2 ) + 3 p+ q − 2

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 3

2 1

Ck′−2 E( i
2 ) +

p+q
2 + 5

2 p+ q − 1

Ck′−2 E( i
2 ) +

p+q
2 + 7

2 p+ q − 3

...
...

...

Ck′−2 E( i
2 ) + p+ q + 1 2

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 2 p+ q

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3 p+ q − 2

...
...

...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 3

2 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 5

2 p+ q − 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 7

2 p+ q − 3

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 1 2

Table 10: Case C. Table giving the different classes of couples with

the cumulative multiplicities for k′ and i odd.

23



class Cj q3 µ

Ck′−1 E( i
2 ) + 3 p+ q − 1 + ǫ

Ck′−1 E( i
2 ) + 4 p+ q − 3 + ǫ

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 2 1 + ǫ

Ck′−2 E( i
2 ) +

p+q
2 + 3 p+ q − 1 + ǫ

Ck′−2 E( i
2 ) +

p+q
2 + 4 p+ q − 3 + ǫ

...
...

...

Ck′−2 E( i
2 ) + p+ q + 2 1 + ǫ

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3 p+ q − 1 + ǫ

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 4 p+ q − 3 + ǫ

...
...

...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 2 1 + ǫ

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3 p+ q − 1 + ǫ

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 4 p+ q − 3 + ǫ

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 2 1 + ǫ

Table 11: Case A. Table giving the different classes of 3-couples as

a function of q3 with the cumulative multiplicities. If i even (ǫ = 0),

all the cumulative multiplicities are odd; they are all even if i is odd

(ǫ = 1).

class Cj q3 µ

Ck′−1 E( i
2 ) + 3 p+ q − 1

Ck′−1 E( i
2 ) + 4 p+ q − 3

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 3

2 2

Ck′−2 E( i
2 ) +

p+q
2 + 5

2 p+ q

Ck′−2 E( i
2 ) +

p+q
2 + 7

2 p+ q − 2

...
...

...

Ck′−2 E( i
2 ) + p+ q + 2 1

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 5

2 p+ q

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 7

2 p+ q − 2
...

...
...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 2 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3 p+ q − 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 4 p+ q − 3

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 3

2 2

Table 12: Case B. Table giving the different classes of 3-couples

function of q3 with the cumulative multiplicities for k′ and i even.
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class Cj q3 µ

Ck′−1 E( i
2 ) + 3 p+ q

Ck′−1 E( i
2 ) + 4 p+ q − 2

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 5

2 1

Ck′−2 E( i
2 ) +

p+q
2 + 7

2 p+ q − 1

Ck′−2 E( i
2 ) +

p+q
2 + 9

2 p+ q − 3

...
...

...

Ck′−2 E( i
2 ) + p+ q + 2 2

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 7

2 p+ q − 1

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 9

2 p+ q − 3
...

...
...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 2 2

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 3 p+ q

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 4 p+ q − 2

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 5

2 1

Table 13: Case B. Table giving the different classes of 3-couples as

a function of q3 with the cumulative multiplicities for k′ even and i

odd (ǫ = 1).

class Cj q3 µ

Ck′−1 E( i
2 ) + 3 p+ q − 1

Ck′−1 E( i
2 ) + 4 p+ q − 3

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 3

2 2

Ck′−2 E( i
2 ) +

p+q
2 + 5

2 p+ q

Ck′−2 E( i
2 ) +

p+q
2 + 7

2 p+ q − 2
...

...
...

Ck′−2 E( i
2 ) + p+ q + 2 1

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3 p+ q − 1

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 4 p+ q − 3

...
...

...

C2 E( i
2 ) +

(k′−2)(p+q)
2 + 3

2 2

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 5

2 p+ q

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 7

2 p+ q − 2
...

...
...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 2 1

Table 14: Case C. Table giving the different classes of 3-couples as

a function of q3 with the cumulative multiplicities for k′ odd and i

even.
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class Cj q3 µ

Ck′−1 E( i
2 ) + 3 p+ q

Ck′−1 E( i
2 ) + 4 p+ q − 2

...
...

...

Ck′−1 E( i
2 ) +

p+q
2 + 5

2 1

Ck′−2 E( i
2 ) +

p+q
2 + 7

2 p+ q − 1

Ck′−2 E( i
2 ) +

p+q
2 + 9

2 p+ q − 3

...
...

...

Ck′−2 E( i
2 ) + p+ q + 2 2

...
...

...

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 3 p+ q

C2 E( i
2 ) +

(k′−3)(p+q)
2 + 4 p+ q − 2

...
...

...

C2 E( i
2 ) +

(k′−2)(p+q)
2 ++ 5

2 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 7

2 p+ q − 1

C1 E( i
2 ) +

(k′−2)(p+q)
2 + 9

2 p+ q − 3

...
...

...

C1 E( i
2 ) +

(k′−1)(p+q)
2 + 2 2

Table 15: Case C. Table giving the different classes of 3-couples as

a function of q3 with the cumulative multiplicities for k′ and i odd.
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