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Abstract

The regression discontinuity design (RDD) is a quasi-experimental design that can be used to iden-
tify and estimate the causal effect of a treatment using observational data. In an RDD, a pre-specified
rule is used for treatment assignment, whereby a subject is assigned to the treatment (control) group
whenever their observed value of a specific continuous variable is greater than or equal to (is less than)
a fixed threshold. Sharp RDDs occur when guidelines are strictly adhered to and fuzzy RDDs occur
when the guidelines or not strictly adhered to. In this paper, we take a rigorous decision theoretic
approach to formally study causal effect identification and estimation in both sharp and fuzzy RDDs.
We use the language and calculus of conditional independence to express and explore in a clear and
precise manner the conditions implied by each RDD and investigate additional assumptions under
which the identification of the average causal effect at the threshold can be achieved. We apply the
methodology in an example concerning the relationship between statins (a class of cholesterol-lowering
drugs) and low density lipoprotein (LDL) cholesterol using a real set of primary care data.

1 Introduction

Regression discontinuity designs (RDDs) were first developed during the 1960s with the aim of estimating
the causal effect of an intervention using observational data (Thistlethwaite and Campbell| (1960)). Such
designs occur where a decision to apply a treatment is linked to some continuous ‘assignment variable’
through a decision rule. Here, a ‘treatment’ refers to any action that is taken with the aim of affecting
some response in an outcome variable of interest. For example, in an educational context, the ‘treatment’
might be the assignment of students to a particular school based on an admissions test result (the
assignment variable), where students are given a place at the school based on their attainment of a test
‘pass mark’ (the decision rule). In a medical context the ‘treatment’ might be the prescription of a drug
based on the value of a subject’s diagnostic test result (the assignment variable). Typically, a decision
rule takes the form of a ‘treatment threshold’ whereby a subject receives the treatment if the subject’s
assignment variable value lies at or above the treatment threshold and the subject does not receive the
treatment if the subject’s assignment variable lies below the treatment threshold, at a pre-specified point
in time.

Assuming that subjects with similar assignment variable values are exchangeable and that the deci-
sion rule is identical for all subjects, a comparison of outcome variable values between subjects whose
assignment variables lie ‘just above’ the threshold and ‘just below’ the threshold might be considered ap-
propriate for the calculation of a causal effect of the treatment on the outcome of interest. For example,
in a medical context, statin therapy - that is, prescription of lipid-modifying drugs (the treatment) may
be prescribed to patients only if their 10-year risk of developing cardiovascular disease (the assignment
variable) lies above a pre-specified threshold of 20% (the treatment threshold). Patients whose risk scores
lie close to 20% are perhaps likely to be similar with respect to their age, lifestyle and other variables
implying that we might have a population of exchangeable subjects to whom an external decision rule is
applied to determine allocation to statins.

*E-mail address: a.o’keeffe@ucl.ac.uk; Corresponding author



RDDs have been applied in many areas of economics and social science (see, for example, Berk and
Leeuw| (1999)), [van der Klaauw| (2002)), van der Klaauw| (2008)), [Lalive| (2008)). RDDs have not been used
extensively in medicine and epidemiology, although their use and development is increasing in this field
(Linden et al.| (2006)), Almond and Doyle (2011)), |Linden and Adams| (2012), Bor et al.| (2014)), [Vanden-
broucke and le Cessie (2014), |(O’Keeffe et al.| (2014)). The increasing availability of large observational
healthcare databases suggests that the RDD could be considered more widely and developed for use in
biostatistics and epidemiology.

Decision theory has been developed and used as an approach to causal inference (Rubin| (1978), [Heckerman
and Shachter| (1995]), Dawid| (2000))). By definition, an RDD includes a decision rule and, as such, the link
between the decision theoretic approach to causal inference and the RDD appears natural. A decision
theoretic approach typically involves a set of assumptions made about the probabilistic behaviour of
variables of interest across a variety of regimes. Different regimes might refer to, for example, different
time points, locations or contexts. In our context, we consider a regime to be either ‘interventional’,
when it results from an external intervention (for example, by the statistician) which forces the treatment
variable to take on a particular value, or ‘observational’, when it results from an observed setting where
the treatment was determined by a number of known or unknown factors (e.g. doctor or patient preference
for treatment, governmental guidelines etc.). RDDs represent examples of ‘observational regimes’ and
are commonly classified as either ‘sharp’ or ‘fuzzy’. In a sharp RDD, subjects are assigned the treatment
strictly according to the treatment threshold. In other words, at the point where the decision to assign
a treatment is taken, all subjects who are given the treatment will exhibit an assignment variable value
at or above the treatment threshold and, conversely, all subjects who do not receive the treatment will
exhibit an assignment variable value below the treatment threshold. In a fuzzy RDD, this might not
be the case; there may be some subjects whose receipt (or not) of the treatment is contrary to what is
indicated by the decision rule. Figure [1| shows plots of example fuzzy and sharp RDDs, for a continuous
assignment variable z € X C R such that a subject receives the treatment if x > x, where xy € X
defines the treatment threshold level. In these example plots, we assume a continuous outcome variable
of interest, denoted y € Y C R.

In this work, we define and formulate a decision-theoretic approach to the RDD which, to our knowledge,
has not been attempted. We use ideas of conditional independence (Dawid| (1979)), Dawid| (1980))) to
describe assumptions concerning the variables defined in a RDD and how these assumptions relate to
considered regimes. We derive appropriate causal effect estimators for sharp and fuzzy RDDs and present
examples of treatment effect evaluation using a real example concerning the initiation of statin therapy
for the prevention of cardiovascular disease in UK primary care.

2 Notation and Terminology within a Decision Theoretic frame-
work

In this section, we define the notation and terminology that will be used within the Decision Theoretic
(DT) framework of statistical causality. The DT framework was introduced by [Dawid| (2000) and has been
used to address a variety of problems in causality (Geneletti, 2007; Dawid and Didelezl |2010; |Dawid and
Constantinou, [2014)). In this framework, we acknowledge that the distributions of stochastic variables
of interest are different, in principle, between different regimes (observational or interventional). We
explore relationships that may be assumed between the differing distributions using the language and
calculus of conditional independence (Dawid}, {1979} [1980; |Constantinou, 2014). The example that will be
used throughout the paper is the one described previously, where statins may be prescribed to patients
whose risk of developing cardiovascular disease (CVD) within 10 years exceeds 20%. Our objective is
to make causal inference about the effect of the treatment for those individuals who have measurements
around the threshold and thus inform policy makers about the effectiveness of statins on lowering LDL
cholesterol when prescribed according to the guidelines. We note that everything we describe using this
specific example, may be generalised to a variety of contexts.

First, we consider the treatment variable T (prescription of statins). For simplicity, we consider T to
be binary, taking the value 0 when the treatment is not administered and value 1 when the treatment



is administered. We consider X to be a continuous assignment variable (10-year CVD risk score) using
which the treatment guidelines are applied. In addition, we consider a threshold zy, where, when X > x(
the guidelines recommend treatment and when X < zy the guidelines recommend no treatment. In
our example, g = 20%, as recommended by United Kingdom’s National Institute for Health and Care
Excellence (NICE) guidelines (NICE]| (2008)). Associated with these measurements is the binary threshold
indicator Z which denotes the choice for treatment as imposed by the guidelines. So Z = 0, when X < xg
and Z = 1, when X > xy. We consider the response variable of interest (LDL cholesterol level) and
denote this by Y. We aim to identify the causal effect of T on Y and estimate this for patients around
the threshold. Further to the above variables, we consider confounding variables; in other words, variables
that can influence the treatment choice and at the same time affect the response variable Y. We denote
these variables by C' and note that a subset of C' may be taken into account for determining X. In
our example, some variables such as age, gender, smoking status, cholesterol levels, etc., are those using
which the 10-year risk score is calculated but some variables, such as a doctor’s preference for treatment,
patient’s preference for treatment, allergies, reactions to previous treatments, etc., might be additional to
those encompassed in X (i.e., X is a function of C). In the sharp design none of these variables (except
through X) can affect the treatment that will be administered. However, in the fuzzy design some of
these variables might outweigh the guidelines, especially if the doctor believes that the guidelines did
not put appropriate weight on specific measurements considered important and that the patient would
benefit from a different treatment than that which the guidelines recommend.

Further to the stochastic variables, we introduce a non-stochastic variable, ¥, which will indicate the
operating regime. Interpreting as causal the effect of an intervention, we want to compare the distribution
of the response variable Y, around the threshold z, between the two interventional regimes; the regime
where we intervene to give treatment with the regime where we intervene not to give treatment. These
two interventional regimes are considered otherwise identical. However, the regimes from which we
obtain data (sharp or fuzzy RDD) do not necessarily represent interventional settings but only provide
a (usually incomplete) record of observations as they have been generated by Nature and collected by
the GP /hospital. Thus, in order to make inference for the interventional regimes using information from
the observational regime, we need to introduce and justify assumptions that connect the probabilistic
behaviour of the random variables of interest across the differing regimes. Here, we emphasise that the
regime indicator ¥ has no uncertainty associated with it, and serves only as a parameter to index the
regimes. More precisely,

for the interventional regime under control treatment,
, for the interventional regime under active treatment,
, for the observational regime under a sharp RDD,

f, for the observational regime under a fuzzy RDD.

»n = O

We emphasise that any probabilistic statement concerning the stochastic variables should be made,
explicitly or implicitly, conditional on the value of the regime. Thus, we will write Po(Y") to denote the
distribution of Y under the interventional regime ¥ = 0, E;(Y | X = z¢) to denote the conditional
distribution of Y given X = x(, under the observational sharp RDD ¥ = s, and use similar notation
throughout the paper. Note that when an observational regime is in operation, the distribution of all
the random variables involved, and in particular the treatment variable T', will be determined by Nature.
On the contrary, when an interventional regime is in operation, the treatment 7" will take the same value
as the one of the regime with probability 1, i.e., Po(T = 0) = 1 and P1(T = 1) = 1. Hence, in the
interventional regimes, T is a degenerate random variable with all probability on one value, the same as
the value of X.

Our principal aim is to measure the impact of the treatment intervention on Y, at the threshold z.
As such, the quantity we seek to identify and estimate is the Average Causal Effect at the threshold x,
denoted by ACE,,, where

ACEIO = El(Y ‘ X = LL‘()) — EO(Y | X = 3?0). (1)

The ACE,, is the difference in expectation of Y, between the two interventional regimes ¥ = 0 and
> = 1, at the threshold zg. Thus, a non-zero value admits a causal interpretation. In the following



sections, we will explore assumptions, expressed in the language of conditional independence, that allow
the identification of the ACE,, from the corresponding observational regime (sharp or fuzzy RDD).

3 Conditional independence

Conditional independence in a form that encompasses simultaneously stochastic and non-stochastic vari-
ables (extended conditional independence) was first introduced by |Dawid| (1979, [1980) and the required
calculus, known as the axioms of conditional independence, has been established under conditions by
Constantinou/ (2014)). In this section, we give definitions for extended conditional independence as they
will be used in the paper and state the properties that will be needed in the following section. Where
theorems and lemmas are given, corresponding proofs are provided in the appendix for this paper.

We denote by S the set of contemplated regimes, where S C {0, 1, s, f}. Also, X1, Xa, ... denote stochas-
tic variables and ¥ denotes the non-stochastic regime indicator that takes values ¢ in the set S. To
specify explicitly the underlying probability measure considered in regime o, we write P,.

Definition 3.1. We say that X1 is (conditionally) independent of Xo given (X3, %) and write X; 1L X5 | (X3,%)
if, for any o € S and any (bounded, real and measurable) function h(Xy),

E,[h(X1) | X2, X5] = Eo[h(X1) | X3] as. [By]. (2)

In other words, X; 1 X, | (X3,Y) if, separately in each regime o € S, the distribution of X; given
(X2, X3) depends, in fact, only on X3. So under each regime, upon information on X3, further informa-
tion on X5 becomes redundant for making probabilistic inference about X;. If such a statement is not
true, we will write instead X; U Xo | (X3,%).

Definition 3.2. We say that X; is (conditionally) independent of ¥ given X5, and write X; 1 ¥ | X,
if for any (bounded, real and measurable) function h(X1), there exists a function w(Z) such that, for all
oc€S,

Eo[h(X1) | Xo] = w(X2) as. [Ps]. (3)

Interpreting the above definition, X; 1L X | X5 requires that, there exists a function w(X3), which does
not depend on the regime, and can serve as a version of the conditional expectation E[h(X7) | X2]
simultaneously in all regimes. So (3) provides a link between the (conditional) distribution of X; | X5
in all s € S. Intuitively, X; 1 ¥ | X, reflects the understanding that, upon information on Xs, further
information on the operating regime becomes irrelevant for making probabilistic inference about Xj.
Similarly to the above, if such a statement is not true, we will write instead X; U ¥ | Xo.

Starting with a set of assumptions (which we believe represent the problem under study), we want to
explore if they lead to identification of the ACE,  from observational data. Identification can follow
directly (by definition of such assumptions) or indirectly (by further properties which can be induced by
such assumptions). In order to explore such paths, we use the axioms of conditional independence. In
Theorem [B.3] we write W <Y to mean that W is a function of Y.

Theorem 3.3 (Axioms of conditional independence). Let X,Y,Z W be random variables. Then the
following properties hold.

P1. [Symmetry/ X L Y |Z=Y UL X|Z.

P2. X ULY|X.

P3. [Decomposition] X 1LY |Z and W XY = X 1 W | Z.

P4. [Weak Union] X LY |Z and W <Y =X 1LY |(W2Z2).

P5. [Contraction] X 1LY |Zand X UL WI|(YV,Z2)=X 1L (Y,W)|Z.



Theorem [B.3] stated above for stochastic variables, also holds under conditions when some of the variables
involved are non-stochastic and conditional independence is defined as in Definition [3.1]and Definition [3.2]
(Constantinoul, 2014)). More precisely, suppose that we are given a collection of extended conditional
independence properties. Any deduction made using the axioms of stochastic conditional independence
will be valid, so long as, in both premises and conclusions, no non-stochastic variables appear in the left-
most term in a conditional independence statement and one of the following conditions holds: the regime
space is discrete or the stochastic variables involved are discrete or there exists a dominating regime. In
our context, we only consider a finite regime space (S = {0,1,s} or § = {0,1, f}) which validates the
use of Theorem [B.3] for stochastic and non-stochastic variables together.

4 Identification of the Average Causal Effect at the Threshold

To compute the ACE,,, we explore conditions that allow us to identify the conditional expectations
Ei(Y | X = 20) and Eo(Y | X = x¢) from observational data. Before we examine the sharp and fuzzy
RDD separately, we assume that the following two properties ( and ) hold regardless of which is
the operating observational regime.

Condition 4.1 (Sufficiency).

(C,X) 1L % (4a)
Y 1L 3| (C,X,T) (4b)

Variables (C, X) which satisfy are called covariates and variables (C, X) which satisfy and
are called sufficient covariates (Guo and Dawid, |2010). While the formal definitions for these
properties follow from Definition 3.2 (for either S = {s,0,1} or S = {f,0,1}), here we emphasize on
the intuitive understanding. Property requires that the distribution of (C, X) is the same in all
regimes. We consider this assumption appropriate as (C, X) represent attributes of the individuals which
are determined independently of how the treatment is allocated. Thus the joint distribution of (C, X) is
considered independent of the regime Y. Property requires that the conditional distribution of Y
given (C, X, T) also does not depend on the regime. Informally, this means that conditioning on (C, X, T')
we do not need further information on the regime ¥ to make probabilistic inference about Y. Property
is problem-specific as there may be several (distinct) choices for C, or none at all that validate this
property. It lies on the researcher to identify appropriate (possibly multivariate) covariates C' so that
holds, but without it further progress seems impossible. Property has also been described as
‘strongly ignorable treatment assignment, given U’ (Rosenbaum and Rubin [1983]).

Conditional independence properties and can be represented graphically (see Figure . In
general, we shall present corresponding influence diagrams (when such diagrams exist) but, for a detailed
account of the semantics of influence diagrams and how they can be used to graphically derive further
conditional independence properties, the reader is referred to Dawid| (2002)) and |Cowell et al.| (2007)). We
note that graphical representation, when available, may be helpful as it provides a visually transparent
way of deriving further conditional independence properties. However, it is never essential and all that
can be achieved using the graphical approach, and more, can be achieved using an algebraic approach.

4.1 Sharp Design

The property that characterises the sharp RDD and separates it from the fuzzy RDD is that the guide-
lines are strictly adhered to. This property can be expressed mathematically as follows.

Property 4.2.
T U C|(X,2=59) (5)

Property [£.2]states that in the observational regime ¥ = s, T' does not depend on C, given X. That is, the
only information that is used to decide on the treatment 7', is that provided by the assignment variable



X, and no further information that might be contained in C is relevant. This property is trivially true
for the interventional regimes as well. Once we condition on the value of the interventional regime, the
treatment takes the same value as the value of the regime with probability one and further information
on any other variable becomes irrelevant. Thus, when the observational regime represents a sharp RDD
and S = {0, 1, s}, Condition below holds.

Condition 4.3.
T UL C|(X,3) (6)

We can represent , and @ graphically using an influence diagram (see Figure . Combining
Condition 1] and Condition 3] we can show that Y 1L 3| (X,T).

Theorem 4.4. Let (C, X) be sufficient covariates and assume that Condition [{.3 holds. Then,

Y 1 Y| (X,T). (7)

Theorem [£.4] implies that the outcome of interest Y, no longer depends on the regime ¥, once we have
information on the assignment variable X and the treatment variable 7. What is important to notice
about this result, is that it allows us to transfer probabilistic information about Y, between the regimes,
completely disregarding the extra information that is provided by C. This result (see Theorem [L6]),
allows us to identify the ACE,, from the observational sharp RDD.

The last condition that is required, in order to justify estimation of the ACE,, from observations around
the threshold (as opposed to observations at the threshold), is the continuity assumption, expressed in

Condition [4.5]

Condition 4.5 (Continuity in the interventional regimes).
Eo(Y |X:£L'0):11£{)1E0(Y ‘XZZL'()—E) (Sa)

Condition [£5] requires that the expectation of the variable of interest Y is left (right) continuous at the
threshold zg, in the interventional regime ¥ = 0 (¥ = 1). Violation of this assumption would suggest that
a change in the expectation of Y is due to a change in X (around the threshold zy) and not necessarily
a change in T. Analogues of this assumption can also be found in the counterfactual framework (Hahn
et al.l 20015 Lee, 2008)).

Theorem 4.6. Let (C,X) be sufficient covariates and assume that Condition[{.3 and Condition [{.5
hold. Then,
ACE,, = 11&1[1[*]8(5/ | X =20+6T=1)-Es;(Y | X =29—¢,T =0)].

This theorem shall be used to prove Theorem (see supporting material).

The RDD has been linked with the instrumental variables (IV) framework as the threshold indicator Z
satisfies the properties of a binary IV (Imbens and Lemieux] 2008} [Didelez et al.l 2010 |Geneletti et al.,
2015). For the sharp RDD, it appears that we do not need to use the properties of an IV, in order to
prove an alternative identification formula based on the threshold indicator Z.

Theorem 4.7. Let (C,X) be sufficient covariates and assume that Condition[{.3 and Condition [].5
hold. Then,
ACE,, = liﬁ)l[IEs(Y | X =20+¢6Z=1)—E,(Y | X =20—¢,Z=0)].

Hence, the ACE,, is identified under a sharp RDD. We now turn our attention to the, more common,
fuzzy RDD.



4.2 Fuzzy Design

In the fuzzy RDD, in addition to information contained in X, further information contained in C' is
taken into account in order to determine the treatment 7. Thus T U C | (X,X = f) and, as a con-
sequence, we cannot derive which allows us to identify the ACE,, from the observational regime.
In this section, we explore different conditions which allow identification of the ACE,, from a fuzzy RDD.

Condition 4.8. Fort=0,1,
P(T=t|C,X)>0 as. [Pf] (9)

Variables (C, X') which satisfy , and @[) are called strongly sufficient covariates (Guo and Dawid,
2010). Condition L8] states that, given any observable values of (C, X), there is positive probability to
observe both active and control treatment in the observational regime. For values (C, X) = (¢, z) around
the threshold X = zg, we expect this condition to hold as both treatments will be observed with high
probability. Here we also require that both treatments are observed with probability greater than zero
for values (C, X) = (¢, z) away from the threshold X = xy.

Condition 4.9 (Continuity in the observational regime). Fort¢ = 0,1, the conditional expectation E;(Y |
C, X, T =1) is continuous in x at xg.

Condition [£9] requires that for given values of the treatment T' (active and control), the conditional
expectation of Y, given C, X and T is continuous at the threshold xy. This condition suggests that it is
the treatment and not any of the other variables that is responsible for the discontinuity in the outcome
around the threshold. Similar assumptions can be found in (Hahn et al., 2001} [Lee, 2008}, |Geneletti et al.),
2015)).

Theorem 4.10. Let (C, X) be strongly sufficient covariates. Then for t = 0,1 and any versions of the
conditional expectations,
E(Y |CX)=Es(Y | C, X, T =1) (10)

almost surely in any regime. In particular,

E(Y |C,X)=E;(Y |C,X,T=t) as. [Pf]. (11)

Theorem 4.11. Let (C, X) be strongly sufficient covariates and assume that Condition [{.9 holds. Then,
ACE,, = ]Ef[liﬁ)l h(C) | X = o]

where

hO)=Es(Y | C, X =ao+6,T=1)—EpY | C,X =29 — ¢, T =0).

Theorem [£.17] provides a formula for identifying the ACE,,, purely from observational data as we have
shown that the ACE,, is expressible purely in terms of properties of the observational joint distribution
of (Y,C, X, T), where (C, X) are strongly sufficient covariates.

To identify the ACE,, in terms of the threshold indicator Z which is considered a special case of a binary
IV (Imbens and Lemieux, 2008} Didelez et al., [2010; (Geneletti et al, [2015), we invoke the following IV
property for S = {0, 1, f}.

Property 4.12 (IV property).
Y U Z|(C,X,T,%) (12)

Property [£.12] requires that the conditional distribution of Y given (C,X,T) in any regime o € S =
{0,1, f} does not depend on Z. This property readily follows as Z is a function of X and, once X is
given, further information about Z becomes redundant for Y.



Lemma 4.13. Assume that Condition[{.9 and Property[{.19 hold. Then a.s. [Py],
B (Y | C.X =+ T =1) ~Ef(Y | C.X =20 — T =0)

o BV ICX—ag+eZ= DBV |CX a0~ 2 =0)
Celo Pf(TZl|C,X:LE0—|—6,Z:1)—PJC<T:1|C,X:JJ0—€7Z:0)

Lemma leads to the following Theorem, in which the average causal effect is identified.

Theorem 4.14. Let (C, X) be strongly sufficient covariates and assume that Condition [{.9 and Property
hold. Then,
ACE,, = ]Ef[liﬁ)l h(C) | X = )

where
Es(Y | C, X=20+¢,Z2=1)-E;(Y|C,X =20—¢,Z=0)

TP (T=1]CX=a0+6Z=1)-P;(T=1|C,X=a20—¢,Z=0)

h(C)

In the next section, we present a worked example in which the methods described are applied to real
example concerning the prescription of statins in UK primary care.

5 Example: Prescription of Statins in UK Primary Care

We describe an example in which the methods outlined in Sections 2—4 are applied to a set of real
data. We use The Health Improvement Network (THIN) database, a large source of UK primary care
data, consisting of routine, anonymised, patient records collected during patient consultations at over
500 general practices (GPs) (www.epic-uk.org). We wish to examine the causal relationship between the
initiation of statin therapy and the low density lipoprotein (LDL) cholesterol level. Many randomised
trials and other studies have established the effect of statins on LDL cholesterol level (Scandinavian
Simvastatin Survival Study Group| (1994)), Heart Protection Study Collaborative Group| (2002), Baigent
et al.|(2005), Brugts et al.| (2009)) which makes this choice of example useful for demonstrative purposes.

In January 2006, the UK National Institute of Health and Care Excellence (NICE) issued guidelines
stating that individuals whose 10-year risk of cardiovascular disease (CVD) development was greater
than 20% should be prescribed statins, a class of cholesterol-lowering drugs (NICE| (2008))). Here, 10-year
CVD risk is measured using an appropriate risk predictor, such as the 10-year Framingham risk score
(Wilson et al.| (1998))) or Q-RISK score (Hippisley-Cox et al.| (2007))). We consider an individual’s 10-year
CVD risk score as the ‘assignment variable’ for statin therapy.

We chose to use data from 1386 male patients in THIN, for whom a 10-year CVD risk was calculated
between 01 January 2007 and 31 December 2008, aged 50-70 who were non-diabetic, non-smokers, had
not previously experienced a cardiovascular event (e.g. stroke, myocardial infarction) and who had not
previously been prescribed statins. We define three key variables of interest in this example, where
i€ {l,...,1386} denotes the patient index:

e X; €[0,1]: Risk score of the i*® patient (the assignment variable).
e Y; €[0,00): LDL cholestrol level of the i*"" patient (the continuous outcome variable).

e T; € {0,1}: Treatment indicator for the i*® patient (= 0 if patient is not prescribed statins, = 1 if
patient is prescribed statins).

We note that Y; is measured between one and six months after the risk score calculation, so that the effect
of statins on LDL cholesterol level can be observed. Furthermore, we define the threshold attainment
indicator Z; (Z; = 1 if risk score is at or above the threshold and Z; = 0 otherwise).

Figure [4| shows a simple scatter plot of the assignment variable (10-year CVD risk score) against the
outcome variable (LDL cholesterol level), with different icons to differentiate between patients who did
and did not receive statins. We see that, as would be expected, the RDD is fuzzy in this example.
Nonetheless, there appears to be an obvious separation in the LDL cholesterol levels of the treated and



the untreated at the treatment threshold suggesting, at first sight, that the use of a fuzzy RDD may be
appropriate for these data.

We consider the possible confounders. Since 10-year risk score is calculated based on: age, gender,
smoking status, diabetic status, systolic and diastolic blood pressures and total cholesterol level, it is
perhaps reasonable to consider these variables as the main confounders in this example. The data have
been stratified by choosing only males aged 50-70 who are non-diabetic and non-smokers. We assume
that other confounders are similarly distributed for patients whose risk scores lie close enough to the
treatment threshold. The notion of patients ‘lying close to the treatment threshold’ is reflected in the
choice of RDD bandwidth, which we denote ¢ (with ¢ > 0). Patients’ data are considered in the RDD if
their assignment variable value lies within the interval (xg—(, xo+(), representing the range of assignment
variable values for which patients are considered to be exchangeable in the RDD.

For most patients, we would expect this assumption of confounders being similarly distributed above and
below the threshold to be reasonable, especially after stratification and where the chosen bandwidth is
reasonably small, although the assumption is untestable. However, as is often seen in randomised trials,
it can be useful to compare basic summary statistics of possible confounders between treatment groups.
Summary statistics for confounders compared between groups above and below the threshold are shown
in Table [1} for ¢ € {0.05,0.10,0.15}. These show that, in general, confounders appear to be similarly
distributed in groups above and below the threshold.

The THIN data have been generated under an observational regime. In accordance with the ideas
presented in Section 4, we must examine whether or not we can identify the average causal effect of
statins on the LDL cholesterol level using these data. Condition (4.1a) implies that the distributions of
the 10-year risk score and the confounding variables should be independent of the regime under which
the data were obtained. Whilst this condition is untestable, pragmatically, it appears reasonable that
the way in which treatment arises is unlikely to have affected the distributions of confounders and the
10-year CVD risk score, especially in patients whose 10-year CVD risk scores lie close to the threshold.
For Condition (4.1b) to be satisfied, we consider the further assumption that the LDL cholesterol level
is independent of the regime, conditional on the confounders, 10-year CVD risk score and treatment
allocation. Again, although this is untestable, it seems reasonable to assume there may be correlation
between the confounders, the risk score and LDL cholesterol level and, if statins affect LDL cholesterol
level, correlation between LDL cholesterol level and treatment allocation via some biological mechanism
through which statins work on human subjects. Once these relationships have been accounted for, we
assume that the mechanism through which the data concerning treatment (or non-treatment) arose
(i.e. interventional or observational) is of limited importance. Consequently, we argue that Condition
(4.1Db) is likely to be satisfied in this example.

Condition 4.8 states that the both the probability of treatment and the probability of non-treatment
should be non-zero, almost surely, under the fuzzy RDD, conditional on the assignment variable and
the set of confounders. In this example, Figure [4 and the results in Table [I] show that the probability
of treatment is non-zero under many different levels of the possible confounding variables and the 10-
year risk score. Hence, we argue that the confounders and the 10-year risk score are strongly sufficient
covariates.

Condition 4.9 states that the expected value of the outcome variable should be continuous in the assign-
ment variable, z, at the threshold conditional on the confounders, 10-year risk score and where treatment
does not change. In this example, it is unlikely that the expected LDL cholesterol value is likely to ‘jump’
where treatment assignment does not change.

Finally, we need to argue that Property 4.12 holds with these data. In essence, Property 4.12 implies
that the outcome variable value is independent of the threshold variable conditional on the assignment
variable, treatment, regime indicator and confounders. In this example, the treatment rule (prescription
of statins if the 10-year CVD risk score is 20% or greater) is determined by the UK government and is not
patient-specific. Furthermore, since Z is determined solely by the 10-year CVD risk score, conditioning
on this variable implies directly that further knowledge of Z is unnecessary to make inference regarding
the LDL cholesterol level. Hence, we apply the result of Theorem 4.14 to estimate the causal effect of
statin therapy on LDL cholesterol level, using a fuzzy RDD and the THIN subset of data.



5.1 Models and Estimation

For a chosen bandwidth ¢ (¢ € (0,1)), we define A¢ and B to be the sets of patients whose 10-year
CVD risk scores lie above and below the threshold, respectively. Setting the treatment threshold to be
xo = 0.2 and defining X& = X; — 0.2 to be the centred 10-year CVD risk score for the i'" patient, we
consider the following linear models:

Y; = Boa + Bra X +w; (fori € Ae);
Y; = Bop + Bro Xy +w; (for i € Be).
with w; ~ N(0,0?) for i € Ac U B¢. The function that we wish to evaluate is

Ef(Y |C,X =zg+6,Z=1)—Ey(Y |C,X =20 —¢€,Z=0)

h = .
(C) Pf(TZl|C,X:.’I,‘0—|—€,Z:1)—]Pf(T:1|C,X:JJ0—€,Z:0)

(13)

The numerator of l) is estimated by B()a — BOb. To estimate the denominator of we consider the
following estimates:

Q

Py(T=1|C,X=z9+¢2Z=1)

R 1
Evn PO

iEAg

3

1
Pf(T=1|C,X=x0—e,Z=0)z“F@ZTZ-
iEBg

Hence, the causal effect estimate for the effect of statins on LDL cholesterol level is given by

L Boa — Boy
nN= ————=-
Tqg — Tp
where (BOQ, BOb) denote the maximum likelihood estimates of (8oq, Bo»). We consider the calculation of n
using the THIN subset data and a choice of three RDD bandwidths (¢ = 0.05,0.1 and 0.15). Estimated
values, 7, together with associated 95% confidence intervals, are shown in Table

Examining Table [2] we see that for each chosen RDD bandwidth, the estimated causal effect of statins
on LDL cholesterol level appears to differ from zero, suggesting that statins appear to reduce the LDL
cholesterol level in general. This would be expected, especially in light of the many large-scale randomised
trials that have provided substantial evidence in favour of the beneficial effect of statins with respect to
LDL cholesterol level. We have used the arguments and results presented in earlier sections of the paper
to justify and construct a regression discontinuity design on real observational data, through a decision
theoretic approach. We note that the use of a restricted sample of patients for this demonstrative
example implies that the results reported are not necessarily applicable to the general population, or of
strict clinical/epidemiological significance.

6 Discussion

We have developed a formal, decision theoretic approach to the regression discontinuity design using
the language of conditional independence. Conditions under which the causal effect of a treatment on a
continuous outcome of interest can be identified were defined and the corresponding causal effect estimator
derived, for both sharp and fuzzy RDDs. Full theoretical justification for causal effect identification was
made.

In line with other methods for causal inference in observational studies, assumptions involving con-
founders are necessary, though we argue that, where such assumptions are reasonable, carefully-argued
and example-specific, estimation of a causal effect can be made in either a sharp or fuzzy RDD. Spec-
ification of a full and appropriate set of confounders remains important, as with other causal inference
methods. With an RDD, the comparison of groups above and below the treatment threshold, but whose
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assignment variable values lie close to the treatment threshold, aims to ensure that the distributions of
confounders, both observed and unobserved, are balanced between comparative groups. This assumption
highlights the link between the RDD in an observational setting and the randomised controlled trial
in an experimental setting. Although this assumption is untestable, it may seem reasonable in many
scenarios and simple methods, such as basic plots and summary statistics, can be helpful in highlighting
fundamental distributional discrepancies in confounders between groups above and below the treatment
threshold.

We applied the methodology to an example based on real data concerning the prescription of statins to
patients at moderate risk of cardiovascular disease development, according to a 10-year CVD risk score.
In this example, the main observed confounders were specified and values compared between groups above
and below the treatment threshold. A basic scatter plot of the assignment variable against the outcome
of interest (Figure [4)) suggested that the use of a fuzzy RDD was likely to be appropriate for these data.
It is important to note the value of plots such as Figure [4] which should always be produced whenever
the use of an RDD is considered for any observational dataset. Justification of each assumption required
in our decision theoretic approach was made and the causal effect of statins on LDL cholesterol level was
calculated using a selection of pre-specified bandwidths. This example showcases the use of a rigorous
approach to RDD analyses in medical studies and epidemiology.

Further methodological extensions to our work include the development of RDD methods for non-
continuous outcomes and dynamic processes. We encourage the wider use of the RDD as a valid method
for treatment effect estimation in biostatistics and epidemiology. We hope that the use of RDD meth-
ods will become more widespread in this field, particularly with the increasing availability of large-scale
electronic healthcare databases.
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Figure 1: Graphical representations of example sharp (left-hand plot) and fuzzy (right-hand plot) regres-
sion discontinuity designs. ‘Untreated’ icons denote subjects who do not receive the treatment whereas
‘Treated’ icons denote subjects who received the treatment. The treatment threshold is depicted by a
dashed line at z = z.
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Figure 2: Influence Diagram representing (4a) and (4b). Property (4a) is represented by the absence of
arrows from ¥ to (C, X) and property (4b) is represented by the absence of a direct arrow from ¥ to Y.
The dotted arrows from X to T and from C to T indicate a link that disappears under an interventional
regime.

T
©

Figure 3: Influence Diagram representing (4a), (4b) and (6). Property (6) is represented by the absence
of an arrow from C to T.
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Risk Score vs. LDL Cholesterol Level
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Figure 4: Scatter plot showing 10-year CVD risk score against LDL cholesterol level for the THIN subset
data. Patients who receive statins are indicated by blue icons and patients who do not receive statins are
indicated by red icons. The dashed vertical line denotes the treatment threshold at the 20% risk score.
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Table 1: Table showing summary statistics for a variety of possible confounding variables for patients
above and below the threshold, using a variety of RDD bandwidths (¢ = 0.05,0.1 or 0.15), for the THIN
data subset.

Bandwidth = 0.05
Variable Group Mean Median Std. Dev. Minimum Maximum
Sl BP (nfe) 123 o080 a7 1o 1ed0
Distolic BP (i) 7 =Y 06 0 50 W0
LDL Cholesterol (mmol/L) Z i (1) ggg ggg gii 122 g;g
HDL Cholesterol (mmol/L) Z z ? 12;1 138 83; 8;2 ;22
Digyeorides uool/1) 770 0 16 0 o o
Bandwidth = 0.10
Variable Group Mean Median Std. Dev. Minimum Maximum
Solie BP (i) 720 00 jm0 124 im0 1900
Diastolic BP (mmHg) Z i ? 2;; g?g S} ?8)8 388
LDL Cholesterol (mmol/L) Z z (1) 2352) ggg 82(2) ?gg 238
HDL Cholesterol (mmol/L) g: i (1) 121 }gg 832 8;3 ggg
Triglycerides (mmol/L) Z z ? 12(7) 1;18 8;11 82? 3(1)8
Bandwidth = 0.15
Variable Group Mean Median Std. Dev. Minimum Maximum
Solie BP (unfle) 7120 1o o0 1o a0 200
Diastolic BP (mmHg) gj i (1) ggg Sgg S; 228 ﬂgg
LDL Cholesterol (mmol/L) Z i ? igg 357)8 8?2 (1)32 252)8
HDL Cholesterol (mmol/L) g: z (1) ig? }gg 832 8;8 ggg
Tigyeorides (uol/5) 20 U v e os oo

Table 2: Table showing the estimated causal effect of statin therapy on LDL cholesterol level, together
with associated standard errors and 95% confidence intervals using the THIN data subset for chosen
bandwidths: 0.05, 0.10 and 0.15.

Bandwidth ({) Estimate 7 (Standard Error) 95% Confidence Interval
0.05 ~0.766 (0.373) (-1.497, -0.035)
0.10 -0.889 (0.209) (-1.299, -0.479)
0.15 -0.934 (0.165) (-1.258, -0.610)
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A Proofs of Theorems in Section 4

A.1 Proof of Theorem 4.4
Theorem 4.4. Let (C, X) be sufficient covariates and assume that Condition 4.3 holds. Then,

Y 1L 3| (X,T). (14)
Proof. Applying the axioms of Theorem 3.3, we obtain:

(da) 25 ¥ 1 (C, X)
Ly 1 (@Xx)|X
Ly uco|x

LL o 1 2| X. (15)
Also,
6) 2 C 1L T|(X,Y), (16)

and applying P5 to and , we see that C' 1L (T,X) | X. Then applying in turn P4, P3 and P1
we obtain

S AL C | (X,T). (17)

Lastly,
)£y 1Y |(CX,T) (18)
and applying P5 to and we see that ¥ 1L (C,Y) | (X,T). Applying in turn P3 and P1
concludes the proof. O

We note that the result of Theorem 4.4, can also be verified using graphical techniques (in particular, the
d-separation (Pearl, [1986; Verma and Pearl, |1990), or the equivalent moralization criterion (Lauritzen
et al.l |1990))).

A.2 Proof of Theorem 4.6

Theorem 4.6 Let (C, X) be sufficient covariates and assume that Condition 4.3 and Condition 4.5 hold.
Then,

ACE,, = hﬁ)l[Es(Y | X =20+6T=1)—E(Y | X =29 —¢T =0)].
Proof.

ACExO = El(Y | X = Io) - ]EQ(Y | X = Io)
= liﬁ}[IEl(Y | X =20+¢€) —Eo(Y | X =29 —¢€)] (Condition 4.5)

=m[E (Y | X =0+ 6T =1) ~Eo(Y | X =0~ T =0)

= lifg[Es(Y | X =20+6T=1)-E;(Y | X =29—¢T=0)] (Theorem 4.4)
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A.3 Proof of Theorem 4.7

Theorem 4.7 Let (C, X) be sufficient covariates and assume that Condition 4.3 and Condition 4.5 hold.
Then,
ACE,, = lifg[Es(Y | X =20+¢6,Z2=1)-E;(Y | X =29 —¢,Z=0)].

Proof. Noting that for the sharp observational regime, Ps(T = Z) = 1, the proof follows directly from
Theorem 4.6. O

A.4 Proof of Theorem 4.10

Theorem 4.10 Let (C, X) be strongly sufficient covariates. Then for t = 0,1 and any versions of the
conditional expectations,
EY | C,X) =Ef(Y | C,X,T =) (19)

almost surely in any regime. In particular,
E (Y |C,X)=E;(Y | C, X, T=t) as. [Py (20)

Proof. See Theorem 1 in |Guo and Dawid| (2010)). O

A.5 Proof of Theorem 4.11

Theorem 4.11 Let (C, X) be strongly sufficient covariates and assume that Condition 4.9 holds. Then,
ACE,, = ]Ef[leiﬁ)l h(C) | X = )
where
MC)=E;Y |C, X =20+¢6T=1)-Es(Y |C,X =20 —¢,T=0).
Proof.

ACE,, :=E(Y | X = 20) — Eo(Y | X = z0)
=E[E1(Y |C, X =mp) | X = a0] —Eo[Eo(Y | C, X = x¢) | X = x0]
=Ef[Ei(Y | C,X =) | X = 0] —Ef[Eo(Y | C, X =x0) | X = x0] (4a)
—EfE(Y | O X =20, T =1)—Ep(Y | C, X =20, T = 0) | X = ]
(Theorem 4.10)
= Ef[lsif(()l h(C)| X =x¢] (Condition 4.9)

A.6 Proof of Lemma 4.13

Lemma 4.13 Assume that Condition 4.9 and Property 4.12 hold. Then a.s. [Py],
lif(r)l[]Ef(Y |C, X =20+6T=1)—E;(Y | C,X =29g—¢,T =0)]

— lim E_f(Y‘C,X:$0+€,Z:1>Ef<Y|C,XZJT()—G,Z:O)
AP (T=11CX=00+62=1)-P;(T=1|C,X=x0—¢72=0)
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Proof.
hﬁ)l[Ef(Y | C.X=x0+¢,7= 1)—]Ef(Y | C,szo—G,ZZO)]
:liﬁ)l[Ef(Y |C. X =20+6Z=1T=0)xP;(T=0|C, X =20+¢,72=1)

FENY | C X =a0+6,Z=1,T=1)xPy(T=1|C,X =xo+¢7=1)
CENY | C X =20— 6, Z=0,T=0)xPs(T'=0|C,X =0 —¢,Z=0)
—E;(Y |C, X =20—€,Z=0,T=1) xPy(T —1|CX—xo—eZ—0)]
:lgig{ E;(Y|C. X=20+6Z=1T=0)x1-P;(T=1|C,X =29+¢€,7Z =1)]

+E/(Y | C X =204+¢6Z=1T=1)xPT=1|C,X=x0+¢€,Z=1)
BV |C X =20—€,Z=0,T=0)x [1—P(T=1|C,X =0 —¢,Z =0)]
—EpY | C X =20—,Z=0T=1)xPs(T=1|C,X =20 —¢,7Z =0)}
:leiﬁ)l{Ef(Y|C,X:xo+e,T:O)><[1 Pi(T=1|C, X =xz9+¢€Z=1)]

+E/(Y | C X =204+eT=1)xP(T=1|C,X=x0+¢,Z=1)

—E;(Y|C,X=200—€T=0)x[1-Py(T=1|C, X =x9—¢,7Z=0)]

—E;/Y|CX=20—€T=1)xP;(T=1|C,X=20—¢,Z=0)} (from (16))
zleiirg{]Ef(Y|C,X=xo+e,T:1)

X [Pf(TZl‘C,X:.’Eo-i-e,Z:l)—]Pf(T:l|C7X:$0—6,Z:0)}

CEjY|C.X =29 —e,T =0)

PHT=1]|C,X =ao+eZ=1)—Pp(T'=1|C,X =20 —¢,Z=0)]} (Condition 4.9)}
= lm{[E(Y | C.X =20+ T =1) ~Es(Y | C.X =20 —,T = 0]

X[PHT=1]|CX=a20+e6Z=1)—P(T=1|C,X =29 —¢,Z=0)]}

where all the equalities hold a.s. [Pf]. Rearranging we conclude the proof. O

A.7 Proof of Theorem 4.14

Theorem 4.14 Let (C, X) be strongly sufficient covariates and assume that Condition 4.9 and Property
4.12 hold. Then,
ACEwD = Ef[hjl})lh(O) | X = J)o]

where
h(C)— Ef(Y|C,X:.’I,‘0—|—€,Z:1)—Ef(Y|C,X:J?0—€,Z:0)
CP(T=1|CX=20+6Z=1)-P;(T=1|C,X=20—¢72=0)
Proof. Applying the result of Lemma 4.13 in Theorem 4.11 we conclude the proof. O
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