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SYMMETRIC NORMS AND THE LEIBNIZ PROPERTY

ZOLTÁN LÉKA

Abstract. We prove that symmetric norms on the space of bounded centered
random variables, defined on uniform discrete spaces, have the strong Leibniz
property. As an application, we shall obtain that the pth central seminorms
on arbitrary probability spaces are strongly Leibniz.

1. Introduction

We say that a seminorm L on a unital normed algebra (A, ‖·‖) is strongly Leibniz
if (i) L(1A) = 0, (ii) the Leibniz property

L(ab) ≤ ‖a‖L(b) + ‖b‖L(a)

holds for every a, b ∈ A and, furthermore, (iii) for every invertible a,

L(a−1) ≤ ‖a−1‖2L(a)

follows. The study of strong Leibniz seminorms regarded as non-commutative met-
rics on quantum metric spaces was initiated by M. Rieffel in his seminal papers
[6] and [7]. Several examples show that property (ii) and (iii) are independent, see
[7]. Recently, Rieffel has observed that the standard deviation is a strongly Leibniz
seminorm, see [8]. For a probability space (Ω,F , µ) this means that for every f and
g ∈ L∞(Ω, µ), we have the inequalities

‖fg − E(fg)‖2 ≤ ‖g‖∞‖f − Ef‖2 + ‖f‖∞‖g − Eg‖2

and
‖f−1 − E(f−1)‖2 ≤ ‖f−1‖2∞‖f − Ef‖2 if f−1 ∈ L∞(Ω, µ).

In addition, with a proper notion of non-commutative (or quantum) deviation in
unital C∗-algebras the non-commutative versions of the above inequalities can be
proved as well (see [2] and [8]).

It seems to be a natural problem to investigate whether seminorms determined
by higher order moments, or fractional moments, have the strong Leibniz property
or not. A few particular answer related to this question has already been given in
[2]. For instance, the seminorm ‖f −Ef‖∞ possesses the previous properties in the
real Banach space L∞(Ω, µ). However, we were only able to prove the general case
in discrete spaces containing at most 5 atoms.

In this paper we shall present a completely different approach. It turns out that
the problem has nothing to do with the Lp norms but symmetric norms on Rn.
We prove that every centered symmetric norm on the real ℓ∞n is strongly Leib-
niz. Applying a simple approximation and uniformization method (see [2]), we can
prove the similar result for the pth central seminorms in the real L∞(Ω, µ) for any
probability measure µ.
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2 ZOLTÁN LÉKA

2. Preliminaries

We say that a norm ‖ · ‖ on Rn is symmetric if it is invariant under sign-changes
and permutations of the components. Symmetric norms are monotone which means
that

‖x‖ ≤ ‖y‖ if |x|↓ ≤ |y|↓

holds, where |x|↓ is the usual non-increasing rearrangement of the vector |x|. Fur-
thermore, ‖ · ‖ is absolute:

‖x‖ = ‖|x|‖

for every x ∈ Rn (see [1, Section 2]).
The vector k-norms (or Ky Fan k-norms) are special examples of symmetric

norms. In fact, the vector k-norm of x is defined by

‖x‖(k) =

k∑

i=1

|xi|
↓.

In the case of k = n and k = 1, we obtain the usual ℓ1 and ℓ∞ norms on Rn,
denoted by ‖ · ‖1 and ‖ · ‖∞, respectively. We recall that the dual norm of any
symmetric norm is symmetric as well.

A celebrated theorem of Ky Fan says that, for any x, y ∈ Rn
+, the inequalities

‖x‖(k) ≤ ‖y‖(k)

hold for every 1 ≤ k ≤ n if and only if

‖x‖ ≤ ‖y‖

for every symmetric norm ‖ · ‖ on Rn (see [1]). Hence one can look upon the vector
k-norms as the cornerstones of symmetric norms.

Additionally, if one can assure a proper linear connection between the vectors x
and y, i.e. Sy = x for some S ∈ Rn×n, interpolation methods are at our disposal
to obtain the previous inequalities. Actually, the Calderón–Mityagin theorem (see
[3], [4]) tells us that if S is an ℓ1–ℓ∞ contraction, that is,

‖Sy‖1 ≤ ‖y‖1 and ‖Sy‖∞ ≤ ‖y‖∞

hold for every y ∈ Rn, then

‖Sy‖ ≤ ‖y‖

follows for every symmetric norm ‖ · ‖.

3. Leibniz inequality for symmetric norms

Let x : Zn → R. Define the Hermitian matrix Ix ∈ Rn×n as follows

Ix =












1− 1
2n

∑

1�i≤n

(x1 + xi)
x1+x2

2n . . . x1+xn

2n

x1+x2

2n 1− 1
2n

∑

1≤i6=2≤n

(x2 + xi)
x2+xn

2n

...
. . .

...
x1+xn

2n
x2+xn

2n . . . 1− 1
2n

∑

1≤i�n

(xn + xi)












,

that is, (Ix)ij = (xi + xj)/2n if i 6= j and (Ix)ii = 1 −
∑

j 6=i(Ix)ij . Our first
proposition connects the product of two functions f, g : Zn → R with the matrices
If+1 and Ig+1.

Proposition 1. For any f, g : Zn → R,

If+1(g − Eg) + Ig+1(f − Ef) = E(fg)− fg.
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Proof. Clearly, it is enough to show that

If (g − Eg) + Ig(f − Ef) = E((f − 1)(g − 1))− (f − 1)(g − 1)

holds. A straightforward calculation gives for every index 1 ≤ m ≤ n that

n(If (g − Eg)+Ig(f − Ef))m

=
1

2n

∑

1≤i6=m≤n

∑

1≤j≤n

(fi + fm)(gi − gj)

+
(

1−
1

2n

∑

1≤i6=m≤n

(fm + fi)
) ∑

1≤i≤n

(gm − gi)

+
1

2n

∑

1≤i6=m≤n

∑

1≤j≤n

(gi + gm)(fi − fj)

+
(

1−
1

2n

∑

1≤i6=m≤n

(gm + gi)
) ∑

1≤i≤n

(fm − fi)

=
1

2n

∑

1≤i6=m≤n

(fi + fm)

(
∑

1≤j≤n

(gi − gj)−
∑

1≤i≤n

(gm − gi)

)

+
1

2n

∑

1≤i6=m≤n

(gi + gm)

(
∑

1≤j≤n

(fi − fj)−
∑

1≤i≤n

(fm − fi)

)

+
∑

1≤i≤n

(gm − gi) +
∑

1≤i≤n

(fm − fi)

=
1

2

∑

1≤i≤n

((fi + fm)(gi − gm) + (gi + gm)(fi − fm))

+
∑

1≤i≤n

(gm − gi + fm − fi)

=
∑

1≤i≤n

(figi − fmgm + gm − gi + fm − fi)

=
∑

1≤i≤n

(fi − 1)(gi − 1)− n(fm − 1)(gm − 1)

= n(E((f − 1)(g − 1))− (f − 1)(g − 1))m,

which is what we intended to have. �

We recall that the dual norm of the vector k-norm is

‖x‖(k)∗ = max

(

‖x‖∞,
‖x‖1
k

)

x ∈ Rn

(e.g. [1, Exercise IV.1.18]).
Let B(k)∗ = {x ∈ Rn : ‖x‖(k)∗ ≤ 1} denote the closed unit ball of the dual space

(Rn, ‖ · ‖(k))
∗. The set of extreme points of B(k)∗ can be readily described. The

result is well-known, however, for the sake of completeness, we sketch a proof.

Lemma 1.

extB(k)∗ =

{
∑

i∈S

±ei : S ⊆ {1, . . . , n} and |S| = k

}

,

where ei-s denote the standard basis elements of Rn.
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Proof. Denote K0 the points of the n-cube [−1, 1]n which has at most k non-zero
coordinates. It is not difficult to see that

conv K0 = B(k)∗ .

In fact, pick a point v in B(k)∗ which has at most k+1 non-zero coordinates. Denote
vi a coordinate of v which has the smallest non-zero modulus. Obviously, |vi| ≤ 1.
Now choose a vector c ∈ {−1, 0, 1}n such that the support of c has cardinality k,
i ∈ supp c and sign cj = sign vj for every j ∈ supp c. Then it is simple to see that

v − |vi|c

1− |v|i
∈ B(k)∗ .

Iterating the previous process, we arrive a point which has at most k non-zero
coordinates. This point is the convex combination of vertices of a proper k-cube in
[−1, 1]n. �

Now we are ready to prove the following proposition.

Proposition 2. For every f ∈ [−1, 1]n and 1 ≤ k ≤ n, the operator

I∗f+1 : (R
n, ‖ · ‖(k)∗) → (Rn, ‖ · ‖(k)∗)/R, x 7→ If+1x+ λ1

is a contraction.

Proof. First, to get an upper bound on the norm of I∗f+1, it is enough to calculate

the norm of the class If+1v for every extreme point v of the unit ball (Rn, ‖ · ‖(k)∗).
From Lemma 1, we can assume that

v =
∑

i∈S+

ei −
∑

i∈S−

ei

for some disjoint sets S+, S− ⊆ Zn such that |S−|+ |S+| = k. For any x, y ∈ Rn and
0 ≤ s ≤ 1, we have I∗sx+(1−s)y = sI∗x + (1 − s)I∗y . Furthermore, since the quotient

norm is convex, one has

‖If+1v‖(k)∗ = min
λ∈R

‖If+1v − λ1‖(k)∗

≤ max
x∈[0,2]n

min
λ∈R

‖Ixv − λ1‖(k)∗

= max
x∈{0,2}n

min
λ∈R

‖Ixv − λ1‖(k)∗ .

Next, pick an x ∈ {0, 2}n. Set

rv =
1

n
〈x, v〉.

In order to prove that Ixv is in the unit ball of the quotient space, it is enough to
show that

‖Ixv − rv1‖(k)∗ ≤ 1.

In fact,

‖Ixv − rv1‖∞ = max
1≤i≤n

∣
∣
〈
Ixei − n−1x, v

〉∣
∣

≤ max
1≤i≤n

∥
∥(Ix − n−1x⊗ 1)ei

∥
∥
(k)

‖v‖(k)∗

≤ max
1≤i≤n

∥
∥(Ix − n−1x⊗ 1)ei

∥
∥
1
.
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Let s = card{i : xi = 2}. For any 1 ≤ i ≤ n, note that

∥
∥(Ix − n−1x⊗ 1)ei

∥
∥
1
=

∣
∣
∣
∣
∣
1−

1

2n

n∑

j=1

(xi + xj)

∣
∣
∣
∣
∣
+

1

2n

n∑

j=1

|xi − xj |

=

{
s
n + n−s

n if xi = 2,
(
1− s

n

)
+ s

n if xi = 0

= 1.

Thus

‖Ixv − rv1‖∞ ≤ 1.

Now, let PS denote the projection
∑n

i=1 xiei 7→
∑

i∈S xiei on Rn, where S =
S− ∪ S+ is the support of v. Then

‖Ixv − rv1‖1 =
n∑

i=1

∣
∣
∣
∣

〈

PS

(

Ixei −
1

n
x

)

, v

〉∣
∣
∣
∣

≤

n∑

i=1

∥
∥
∥
∥
PS

(

Ixei −
1

n
x

)∥
∥
∥
∥
(k)

‖v‖(k)∗

≤

n∑

i=1

∥
∥
∥
∥
PS

(

Ixei −
1

n
x

)∥
∥
∥
∥
1

=
∑

i∈S





∣
∣
∣
∣
∣
∣

1−
1

2n

n∑

j=1

(xi + xj)

∣
∣
∣
∣
∣
∣

+
1

2n

∑

j∈S

|xi − xj |





+
∑

i6∈S

1

2n

∑

j∈S

|xi − xj |

=
∑

i∈S





∣
∣
∣
∣
∣
∣

1−
1

2n

n∑

j=1

(xi + xj)

∣
∣
∣
∣
∣
∣

+
1

2n

n∑

j=1

|xi − xj |



 ,

that is,

‖Ixv − rv1‖1 ≤
∑

i∈S

∥
∥(Ix − n−1x⊗ 1)ei

∥
∥
1

= |S|.

Hence

‖Ixv − rv1‖(k)∗ ≤ 1,

and the proof is complete. �

Let X0 denote the hyperplane {x ∈ Rn : Ex = 0} ⊆ Rn. Obviously, the dual of
the Banach space (X0, ‖ · ‖(k)) is the quotient space (Rn, ‖ · ‖(k)∗)/R. In fact, X0 is
a one co-dimensional subspace of R, whilst 〈y, x− Ex〉 = 0 holds for every y ∈ R1.

Clearly, If+11 = 1. Hence the adjoint of If+1 : (X0, ‖ · ‖(k)) → (Rn, ‖ · ‖(k)) is
the operator

I∗f+1 : (Rn, ‖ · ‖(k)∗) → (Rn, ‖ · ‖(k)∗)/R, x 7→ If+1x+ λ1

defined in Proposition 2. Since ‖If+1|X0‖ = ‖(If+1|X0)
∗‖ (see e.g. [5, Proposition

2.3.10]), a straightforward corollary of the previous result is

Proposition 3. For every f ∈ [−1, 1]n, the operator If+1 is a contraction on the

normed space (X0, ‖ · ‖(k)).

Furthermore, we have the following
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Proposition 4. For every symmetric ‖ · ‖ on Rn and f ∈ [−1, 1]n, If+1 is a

contraction on (X0, ‖ · ‖).

Proof. For every x ∈ X0 and 1 ≤ k ≤ n, Proposition 3 tells us that

k∑

i=1

|If+1x|
↓
i ≤

k∑

i=1

|x|↓i

Thus the vector |If+1x| is weakly majorized by |x|. Now Ky Fan’s theorem for
symmetric norms gives that

‖If+1x‖ = ‖|If+1x|‖ ≤ ‖|x|‖ = ‖x‖,

which is what we intended to have. �

Now one can readily prove the following Leibniz inequality for symmetric norms.

Theorem 1. Let ‖ · ‖ be a symmetric norm on Rn. For every f, g : Zn → R, we

have

‖fg − E(fg)‖ ≤ ‖g‖∞‖f − Ef‖+ ‖f‖∞‖g − Eg‖.

Proof. Without loss of generality, we can assume that ‖f‖∞ = ‖g‖∞ = 1. Applying
Proposition 1 and Proposition 4, it follows that

‖fg − E(fg)‖ = ‖If+1(g − Eg) + Ig+1(f − Ef)‖

≤ ‖If+1|X0‖‖g − Eg‖+ ‖Ig+1|X0‖‖f − Ef‖p

= ‖g − Eg‖+ ‖f − Ef‖,

and the proof is complete. �

3.1. Remark. The operator Ix leaves invariant the subspace X0, since

E(Ix(f − Ef)) =
1

n
〈Ix(f − Ef),1〉

=
1

n
〈f − Ef, Ix1〉

=
1

n
〈f − Ef,1〉

= 0.

3.2. Remark. One can give a short proof of Proposition 4 via the Calderón–
Mityagin interpolation result as we briefly indicate. For an x ∈ [0, 2]n, let us
consider the matrix

Lx = Ix −
1

n
x⊗ 1.

We note that the off-diagonal part of Lx is skew-symmetric: (Lx)i,j = −(Lx)j,i
for every i 6= j, hence ‖LT

x ‖1→1 = ‖LT
x ‖∞→∞. From the proof of Proposition 2, it

follows that

‖LT
x ‖1→1 ≤ 1 and ‖LT

x ‖∞→∞ ≤ 1.

Moreover, for any symmetric norm ‖·‖, the adjoint of Ix : (X0, ‖·‖) → (Rn, ‖·‖), v 7→
Ixv, is the operator

I∗x : (R
n, ‖ · ‖∗) → (Rn, ‖ · ‖∗)/R,

where

I∗xv = Ixv + λ1
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and ‖ · ‖∗ denotes the dual norm. Again, for any v ∈ Rn, let rv =
1

n
〈x, v〉. Then

‖Ixv − rv1‖∗ = ‖Ixv −
1

n
〈x, v〉‖∗

= ‖〈(Ix −
1

n
x⊗ 1)ei, v〉i‖∗

= ‖LT
x v‖∗.

Since the dual norm ‖ · ‖∗ is symmetric, the Calderón–Mityagin theorem tells us
that

min
λ∈R

‖Ixv − λ1‖∗ ≤ ‖LT
x v‖∗ ≤ ‖v‖∗.

That is,

‖I∗x‖ ≤ 1,

and the operator Ix is a contraction on (X0, ‖ · ‖) as well.

3.3. Remark. It is worth to note that if x ∈ [0, 1]n then Ix is doubly stochastic.
Hence, the Birkhoff–von Neumann theorem gives that ‖Ix‖‖·‖→‖·‖ ≤ 1 for any
permutation invariant norm ‖ · ‖ on Rn. Now assume that f, g are nonnegative and
‖f‖∞ = ‖g‖∞ = 1 Then

I−f+1(Eg − g) + I−g+1(Ef − f) = E(fg)− fg,

and the matrices I−f+1, I−g+1 are doubly stochastic as well. A simple corollary is

Theorem 2. Let ‖·‖ be a permutation invariant norm on Rn. For any nonnegative

functions f and g on Zn, we have

‖fg − E(fg)‖ ≤ ‖g‖∞‖f − Ef‖+ ‖f‖∞‖g − Eg‖.

4. The strong property

With a change of the matrix Ix, we shall prove the inequality

‖f−1 − E(f−1)‖ ≤ ‖f−1‖2∞‖f − Ef‖

for every symmetric norm on Rn.
Let x ∈ Rn such that xi 6= 0 for every 1 ≤ i ≤ n. Let us consider the Hermitian

Sx =








y1
1+x1x2

nx1x2
. . . 1+x1xn

nx1xn

1+x1x2

nx1x2
y2 . . . 1+x2xn

nx2xn

...
. . .

...
1+x1xn

nx1xn

1+x2xn

nx2xn
. . . yn








,

where

yi =
1

n
−

1

n

∑

1<k 6=i≤n

1

xixk
.

Note that Sx1 = 1 and SxX0 ⊆ X0 follows again. A simple calculation gives

Lemma 2. For any f : Zn → R,

Sf (f − Ef) = f−1 − E(f−1).
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Proof. For every index 1 ≤ m ≤ n,

(Sf (f − Ef))m =
1

n2

∑

1≤i6=m≤n

n∑

j=1

(

1 +
1

fifm

)

(fi − fj)

+
1

n2



n−
∑

1<i6=m≤n

(

1 +
1

fmfi

)




n∑

j=1

(fm − fj)

=
1

n2

∑

1≤i6=m≤n

(

1 +
1

fmfi

)




n∑

j=1

(fi − fj)−

n∑

j=1

(fm − fj)





+
1

n

n∑

j=1

(fm − fj)

=
1

n

n∑

i=1

(
1

fm
−

1

fi

)

,

which completes the proof. �

Lemma 3. For any real numbers y0, y1, . . . , yn−1,

∣
∣
∣

n−1∑

i=0

yi

∣
∣
∣+

n−1∑

i=0

|y0 − yi| ≤ n max
0≤i≤n−1

|yi|.

Proof. Clearly, we can assume that 0 ≤
∑n−1

i=0 yi. Let I ⊆ {0, 1, . . . , n− 1} denote
the index set such that yi ≤ y0 for all i ∈ I. Hence,

n−1∑

i=0

yi +
n−1∑

i=1

|y0 − yi| = (2|I| − n)y0 + 2
∑

i6∈I

yi

≤ n max
0≤i≤n−1

|yi|.

�

Proposition 5. For any f : Zn → R and symmetric norm ‖ · ‖ on Rn,

‖Sfx‖ ≤ ‖f−1‖2∞‖x‖, if x ∈ X0.

Proof. Fix a 1 ≤ k ≤ n. The dual of Sf : (X0, ‖ · ‖(k)) → (Rn, ‖ · ‖(k)) is

S∗
f : (R

n, ‖ · ‖(k)∗) → (Rn, ‖ · ‖(k)∗)/R, x 7→ Sfx+ λ1.

For any v with ‖v‖(k)∗ = 1, set

rv =
1

n
〈1 − f−2, v〉.

Then

‖Sfv − rv1‖∞ = max
1≤i≤n

∣
∣
〈
Sfei − n−1(1− f−2), v

〉∣
∣

≤ max
1≤i≤n

∥
∥Sfei − n−1(1 − f−2)

∥
∥
1
‖v‖(k)∗

=
∥
∥Sf − n−1(1− f−2)⊗ 1

∥
∥
1→1

.

However, for every 1 ≤ i ≤ n,

∥
∥(Sf − n−1(1− f−2)⊗ 1)ei

∥
∥
1
=

1

n|fi|

∣
∣
∣
∣
∣

n∑

k=1

1

fk

∣
∣
∣
∣
∣
+

n∑

k=1

1

n|fi|

∣
∣
∣
∣

1

fi
−

1

fk

∣
∣
∣
∣
.

Moreover, Lemma 3 gives that
∥
∥(Sf − n−1(1− f−2)⊗ 1)ei

∥
∥
1
≤ ‖f−1‖2∞.
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On the other hand, let us consider a vector v =
∑

i∈S ±ei, where |S| = k. Again,

PS denote the projection
∑n

i=1 xiei 7→
∑

i∈S xiei on Rn. Then

‖Sfv − rv1‖1 =
∑

1≤i≤n

∣
∣
〈
PS

(
Sfei − n−1(1 − f−2)

)
, v
〉∣
∣

=
∑

i∈S

(

1

n|fi|

∣
∣
∣
∣
∣

n∑

k=1

1

fk

∣
∣
∣
∣
∣
+
∑

k∈S

1

n|fi|

∣
∣
∣
∣

1

fi
−

1

fk

∣
∣
∣
∣

)

+
∑

i6∈S

∑

k∈S

1

n|fi|

∣
∣
∣
∣

1

fi
−

1

fk

∣
∣
∣
∣

≤ max
1≤i≤n

(
1

|fi|

)
∑

i∈S

(

1

n

∣
∣
∣
∣
∣

n∑

k=1

1

fk

∣
∣
∣
∣
∣
+

n∑

k=1

1

n

∣
∣
∣
∣

1

fi
−

1

fk

∣
∣
∣
∣

)

≤ max
1≤i≤n

(
1

|fi|

)

max
1≤i≤n

(
1

|fi|

)

|S|,

where we used Lemma 3 in the last inequality. The previous arguments with Lemma
1 readily imply that

min
λ∈Rn

‖Sfv − λ1‖(k)∗ ≤ ‖Sfv − rv1‖(k)∗ ≤ ‖f−1‖2∞‖v‖(k)∗ .

Since ‖Sf |X0‖ = ‖(Sf |X0)
∗‖, the inequality ‖Sf |X0‖ ≤ ‖f−1‖2∞ follows as well

on the Banach space (X0, ‖ · ‖(k)). A simple application of the Ky Fan dominance
theorem tells us that

‖Sf |X0‖ ≤ ‖f−1‖2∞

for every Banach space (X0, ‖ · ‖). �

A straightforward corollary of the previous proposition and Lemma 2 is the main
result of the section.

Theorem 3. For any f : Zn → R such that f−1 does exist and ‖ · ‖ symmetric

norm on Rn,

‖f−1 − E(f−1)‖ ≤ ‖f−1‖2∞‖f − Ef‖.

5. An application

Rieffel observed that the standard deviation is a strongly Leibniz seminorm in
commutative and non-commutative probability spaces as well [8]. Now we can prove
the strong Leibniz inequality for central seminorms of bounded real-valued random
variables. One can prove analogues of the result for rearrangement invariant Banach
function spaces as well, however, we do not pursue this direction here.

Let (Ω,F , µ) be a probability space and 1 ≤ p < ∞. Then the pth central
seminorm of f ∈ L∞(Ω, µ) is

σp(f) = ‖f − Ef‖p =

(∫

Ω

∣
∣
∣
∣
f −

∫

Ω

fdµ

∣
∣
∣
∣

p

dµ

)1/p

.

Here is one of the main results of the paper.

Theorem 4. Let (Ω,F , µ) be a probability space and 1 ≤ p < ∞. For any real f
and g ∈ L∞(Ω, µ), we have

‖fg − E(fg)‖p ≤ ‖g‖∞‖f − Ef‖p + ‖f‖∞‖g − Eg‖p

and

‖f−1 − E(f−1)‖p ≤ ‖f−1‖2∞‖f − Ef‖p, if f−1 ∈ L∞(Ω, µ).
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Proof. To prove that σp has the strong Leibniz property, we can derive the general
case from the uniform case on Zn as in [2, Proposition 2.1]. Indeed, let us consider
the measurable simple functions fn =

∑n
k=1 akχSk

and gn =
∑n

k=1 bkχSk
, where

χSk
denotes the characteristic function of the set Sk. Moreover, assume that the

sets Sk (1 ≤ k ≤ n) are disjoint and
⋃n

k=1 Sk = Ω, so that µ(Sk)-s define a
probability measure µn on Zn. Then for any ε > 0 we can find a probability
measure νn = (p1, . . . , pn) such that pi ∈ Q (1 ≤ i ≤ n) and the inequalities

|σp(fn;µn)− σp(fn; νn)| ≤ ε

|σp(gn;µn)− σp(gn; νn)| ≤ ε

|σp(fngn;µn)− σp(fngn; νn)| ≤ ε

hold. Now let us choose the integers m and ri such that pi = ri/m for every
1 ≤ i ≤ n. Then the map

Φ: (c1, . . . , cn) 7→ (c1, . . . , c1
︸ ︷︷ ︸

r1

, . . . , cn, . . . , cn
︸ ︷︷ ︸

rn

)

defines an isometric algebra homomorphism from ℓ∞n into ℓ∞m . Let λm denote the
uniform distribution on the set Zm. We clearly have, for instance, σp(fn; νn) =
σp(Φ(fn);λm). Hence

σp(fngn; νn) ≤ ‖fn‖∞σp(gn; νn) + ‖gn‖∞σp(fn; νn)

follows from Theorem 1. Since ε can be arbitrary small, we obtain that σp is a
Leibniz seminorm on ℓ∞n (µn). Now if we choose sequences {fn}

∞
n=1 and {gn}

∞
n=1

of measurable simple functions, where fn → f and gn → g in Lp norm, such that
‖fn‖∞ = ‖f‖∞ and ‖gn‖∞ = ‖g‖∞ hold for every n, we infer that σp has the
Leibniz property.

A very similar argument with Theorem 3 at hand gives the strong part of the
theorem. �
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