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We study in detail the strong-field QED process of non-linear Compton scattering in
short intense laser pulses. Our main focus is placed on how the spectrum of the back-
scattered laser light depends on the shape and duration of the initial short intensive
pulse. Although this pulse shape dependence is very complicated and highly non-linear,
and has never been addressed explicitly, our analysis reveals that all the dependence on
the laser pulse shape is contained in a three-parameter master integral. Here we present
completely analytical expressions the non-linear Compton spectrum in terms of a master
integral. Moreover, we analyse the universal behaviour of the shape of the spectrum for
very high harmonic lines.

1. Introduction

The non-linear Compton scattering of high-intensity laser pulses off counterpropagat-
ing high-energetic electrons is one of the fundamental processes in strong-field QED. Its
theoretical description goes back to the 1960’s where many strong-field QED processes
had been studied in a series of seminal papers (Nikishov & Ritus 1964b,a, 1965; Goldman
1964; Brown & Kibble 1964). For instance, these authors predicted the emission of high
harmonics and a non-linear intensity-dependent red-shift of the emitted radiation, which
is proportional to a20, where a0 is the dimensionless normalized laser amplitude that is
related to the laser intensity (I) and wavelength (λ) via a20 = 0.73×I[1018 W/cm2]λ2[µm].
In a classical picture the generation of high harmonics and the non-linear red-shift of the
emitted radiation can be understood as the influence of the laser’s magnetic field due to
the v ×B term in the classical Lorentz force equation.

However, while most contemporary high-intensity laser facilities generate laser pulses
with femtosecond duration (Mourou et al. 2006; Korzhimanov et al. 2011; Di Piazza et al.
2012), most of the early papers on non-linear Compton scattering did not consider the
effect of the finite duration of the intensive laser pulse. For a realistic laser pulse with a
finite duration the laser intensity gradually increases from zero to its maximum value.
Consequently, the non-linear red-shift is not constant during the course of the laser pulse
and the harmonic lines of the emitted radiation are considerably broadened, with a large
number of spectral lines for each harmonic (Narozhnyi & Fofanov 1996; Boca & Florescu
2009; Seipt & Kämpfer 2011; Hartemann & Kerman 1996; Hartemann et al. 1996, 2010;
Mackenroth & Di Piazza 2011). In the classical picture this broadening is caused by a
gradual slow-down of the longitudinal electron motion as the laser intensity ramps up
(Seipt et al. 2015a). The occurrence of the additional line structure can be interpreted
as interference of the radiation that is emitted during different times (Seipt & Kämpfer
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2013b). The broadening of the spectral lines is especially important with regard to the
application of non-linear Compton scattering as an x- and gamma-ray radiation source
(Jochmann et al. 2013; Sarri et al. 2014; Rykovanov et al. 2014; Seipt et al. 2015a;
Khrennikov et al. 2015).

For ultra-high laser intensities a0 � 1 the formation time of the emitted photon is much
shorter than the laser period and the interference of radiation that is emitted at different
times during the course of the pulse is suppressed (Dinu et al. 2015). In this regime, where
the Compton emission becomes vital for the formation of QED cascades, the spectrum
can be effectively simulated using the photon emission probabilities in a constant crossed
field (Ritus 1985; Fedotov et al. 2010; King et al. 2013; Harvey et al. 2015; Narozhny
& Fedotov 2015). We therefore focus in this paper on the intermediate intensity region
a0 ∼ 1, where the interference matters and a general relation between the shape and
duration of the laser pulse and the shape of the spectrum of the backscattered light is
very complicated and highly non-linear. The shape of the harmonic lines is determined
by an interplay between the laser pulse duration, (ii) spectral composition of the pulse
and (iii) the non-linear ponderomotive broadening which depends on the laser intensity
ramps.

In this paper we analytically analyse for the first time the non-linear Compton scat-
tering process in a short intensive laser pulse. In particular, we investigate how the
duration and the shape of the short intensive laser pulse affect the spectrum of the emitted
radiation. We derive a scale invariant master integral that contains all dependence on the
shape of the laser pulse, and we give explicit analytical expressions for several specific
laser pulse shapes. Our paper is organized as follows: In Section 2 we briefly outline the
calculation of the transition amplitude and the energy and angular differential emission
probability for non-linear Compton scattering using Volkov states in a pulsed laser field.
The transition amplitude is analysed further in Section 3 where we extract the dependence
on the duration and shape of the laser pulse in the form of a master integral. Explicit
analytic expressions for the master integral for different pulse shapes are given in Section
3.4. Throughout the paper we use units with ~ = c = 1. Scalar products between four-
vectors are denoted by a · b ≡ aµbµ = a0b0−ab, and the Feynman slash notation is used
for scalar products between four-vectors and the Dirac matrices: /a ≡ γ · a.

2. Theoretical Background

The non-linear Compton scattering process, i.e. the emission of a photon by an electron
under the action of an intense laser field, is conveniently described theoretically in the
Furry picture. The interaction of the electrons with the laser pulse is treated non-
perturbatively by using Volkov electron states Ψ as solutions of the Dirac equation
(i/∂ − e /A −m)Ψ = 0 in the plane-wave background laser field A. Here m and e = −|e|
denote the mass and charge of the electron, respectively. By employing these Volkov states
and the strong-field S matrix in the Furry picture can be represented by the Feynman
diagram in Fig. 1. It is given by the expression

S = −ie
∫

d4x Ψ̄p′(x)γµAµk′(x)Ψp(x) , (2.1)

whereAµk′(x) = (ε′∗)µeik
′ · x is the amplitude for the emission of a (non-laser) photon with

four momentum k′ and polarization ε′, while p and p′ are the asymptotic four-momenta
of the electron before and after the photon emission.

In the following, we shall restrict our discussion to the case of a circularly polarized
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Figure 1. Feynman diagram for the emission of a photon with four-momentum k′ (wiggly line)
by a laser-dressed Volkov electron with asymptotic four-momentum p (double-line). After the
photon emission the electron has the asymptotic four-momentum p′. The double-lines indicate
the non-perturbative interaction of the electron with the intense short laser pulse.

laser pulse with the four-vector potential in the axial gauge (k ·A = 0)

Aµ(φ) = A0 g(φ) Re εµ+e
−iφ . (2.2)

It depends only on the phase variable φ = k ·x with the laser photon four-momentum k =
(ω, 0, 0,−ω), and with the normalized polarization four-vector εµ± = (0, 1,±i, 0)/

√
2, with

ε+ · ε− = −1. The dimensionless normalized laser amplitude is given by a0 = |e|A0/m.
The shape of the laser pulse is described by an envelope function g(φ), that depends
on φ only via the ratio φ/∆φ with the pulse duration ∆φ. Moreover, we use symmetric
pulse envelopes with g(φ) = g(−φ), g(0) = 1 and g(±∞) = 0. For the following we shall
assume that the laser pulse consists of several optical cycles such that ∆φ � 1 and we
may employ the slowly varying envelope approximation.

One can perform the spatial integrations in the S matrix most conveniently in light-
front coordinates, defined as x± = x0 ± x3 and x⊥ = (x1, x2), such that the laser phase
is proportional to φ = ωx+, and d4x = (2ω)−1dφdx−d2x⊥. After integrating over three
light-front coordinates, the S matrix can be represented in a form (Seipt & Kämpfer
2013a)

S = −ie(2π)3δl.f.(p− p′ − k′) M (s) (2.3)

with the light-front delta function δl.f.(p−p′−k′) = 1
ω δ

2(p⊥−p′⊥−k′⊥)δ(p+−p′+−k′+),
enforcing the conservation of three momentum components, and the transition amplitude

M = T0C0 + T+C+ + T−C− + T2C2 . (2.4)

Here, the quantities Tj denote the transition operators

T0 = ūp′/ε
′∗up ,

T± =
ma0

4
ūp′

(
/ε±/k/ε

′∗

(k · p′) +
/ε
′∗/k/ε±
(k · p)

)
up , (2.5)

T2 =
m2a20 (ε′∗ · k)

4(k · p)(k · p′) ūp′/kup ,

which are sensitive to the spin of the incident and final electrons (via the spinors up
and ūp′) and the polarization of the emitted photon. However, they are only weakly
dependent on the energy and momentum of the emitted photon. The dependence on the
dynamics of the scattering process is mainly contained in the so-called dynamic integrals
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over the laser phase

C±1 =

∞∫
−∞

dφ g(φ)e∓iφ exp

{
i`

[
φ+ αg(φ) sin(φ+ ϕ) + β

∫ φ

0

dφ′ g2(φ′)

]}
,

C2 =

∞∫
−∞

dφ g2(φ) exp

{
i`

[
φ+ αg(φ) sin(φ+ ϕ) + β

∫ φ

0

dφ′ g2(φ′)

]}
. (2.6)

Here we employed the slowly varying envelope approximation for the laser pulse and we
use the definition ϕ = arctan k′y/k

′
x. The fourth dynamic integral C0 is represented as a

combination of the other three integrals, defined in Eqs. (2.6), as

C0 = −α
2

(
e−iϕC+ + eiϕC−

)
− βC2 , (2.7)

by the requirement of the gauge invariance of the S matrix (Ilderton 2011; Seipt 2012).
Here we have defined ` as the amount of four-momentum that is absorbed from the

laser field

` ≡ k′ · p
k · p′ =

p′− + k′− − p−
k−

, (2.8)

and provides a Lorentz-invariant way to parametrise the frequency of the emitted photon

ω′(`) =
`ω

1 + ` ωm (1 + cosϑ)
. (2.9)

For convenience, we moved to the rest-frame of the incident electron, where
p = (m, 0, 0, 0). Moreover, we defined the coefficients

α =
a0√

2
sinϑ , (2.10)

β =
a20
4

(1 + cosϑ) . (2.11)

Using the the transition amplitude (2.4), the angular- and energy-differential photon
emission probability is given by (Seipt & Kämpfer 2011; Seipt 2012)

dW

dω′dΩ
=

e2ω′|M |2
64π3(k · p)(k · p′) . (2.12)

In order to study how the differential emission probability depends on the laser pulse
parameters—the laser strength a0, pulse duration ∆φ, or the shape of the pulse envelope
g—it is required to evaluate the dynamic integrals Cj .

For many purposes it is sufficient to perform the integrations over the laser phase
numerically, as was done for instance in Refs. (Seipt & Kämpfer 2011; Mackenroth &
Di Piazza 2011; Krajewska & Kamiński 2012; Twardy et al. 2014). Another approach to
calculate the spectrum (2.12) relies on a saddle point analysis of the highly oscillating
phase integrals in (2.6) (Narozhnyi & Fofanov 1996; Seipt & Kämpfer 2013b; Mackenroth
et al. 2010; Seipt et al. 2015a,b). A third possibility to evaluate the dynamic integrals
would be an attempt to find analytic solutions. Such a completely analytical evaluation
has been done for instance in (Hartemann et al. 1996) for the on-axis radiation. This
approach will be pursued in this paper for arbitrary emission angles and general pulse
shapes. In the following we will present a completely analytical evaluation of the dynamic
integrals to gain more insight on the dependence of the spectrum of the backscattered
light on the laser pulse duration and envelope shape.
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3. Analytic Evaluation of the Dynamic Integrals

In this section we further analyse the properties of the spectrum of the emitted
radiation. We apply a detailed mathematical analysis to the transition amplitude M ,
and in particular the dynamic integrals Cj , from the previous section in order to extract
how they depend on the laser pulse duration and pulse shape. Here, we aim to provide
explicit analytic expressions for the dynamic integrals (2.6).

It is known from previous studies (Narozhnyi & Fofanov 1996; Seipt & Kämpfer
2013b; Seipt et al. 2015a) that the oscillating term (∝ α) in the exponent of the
dynamic integrals, Eq. (2.6), is responsible for the emission of high harmonics. The term
containing the integral over the squared pulse envelope (∝ β) changes only slowly as a
function of φ. This so-called ponderomotive term is responsible for the broadening of the
harmonic lines and the spectral structures seen within each harmonic. In the following,
we first disentangle these two effects (Section 3.1) and later on analyse the ponderomotive
broadening for each harmonic line (Sections 3.2 et seq.)

3.1. Expansion into Harmonics

Let us first expand the dynamic integrals into a sum of partial terms which can be
interpreted as the emission of higher harmonics in analogy to the case of infinite plane
waves. Following Narozhnyi & Fofanov (1996) and Seipt & Kämpfer (2013b), we define
a generalized floating-window Fourier series for a non-periodic function f(φ)

f(φ) =

∞∑
n=−∞

cn(φ)e−inφ , cn(φ) =
1

2π

φ+π∫
φ−π

dφ′ f(φ′) einφ
′

(3.1)

with Fourier coefficients cn(φ) that depend on the location of the window centre. Applying
this floating window Fourier series to the integrand of the dynamic integrals, and using the
slowly varying envelope approximation (Narozhnyi & Fofanov 1996), yields a generalized
Jacobi-Anger type expansion

ei`αg(φ) sin (φ+ϕ) =
∑
n

(−1)n Jn(`αg(φ)) e−in(φ+ϕ) , (3.2)

with the Bessel function of the first kind Jn(z) (Watson 1922). This expansion strongly
resembles the expansion into harmonics known from the well-studied case of infinite plane
waves (Berestetzki et al. 1980), where g = 1. Note, however, that here the argument of
the Bessel functions depends on the laser phase φ via laser pulse envelope g(φ).

Employing the above expansion we can cast the dynamic integrals into a form

C2(`) =
∑
n

(−1)n e−inϕ C(n)
2 (`) ,

C±(`) =
∑
n

(−1)n e−i(n∓1)ϕ C(n)
± (`) , (3.3)

with

C
(n)
2 (`) =

∞∫
−∞

dφ g2(φ)Jn(`αg)ei(`−n)φ+i`β
∫
dφ g2 ,

C
(n)
± (`) =

∞∫
−∞

dφ g(φ)Jn∓1(`αg)ei(`−n)φ+i`β
∫
dφ g2 . (3.4)
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Note that for symmetric laser pulse envelopes, as we use in this paper, all the coefficients

C
(n)
j (`) are purely real-valued. Making use of the expansions (3.3), the transition ampli-

tude M can be written as a sum of partial amplitudes M =
∑∞
n=1 M (n) representing

the emission of the n-th harmonic. The shape of each of the harmonic lines is determined

by the integrals C
(n)
j (`), which might be called the partial dynamic integrals for the n-th

harmonic. Unfortunately, in these integrals the pulse envelope g appears as the argument
of the Bessel function, preventing their immediate analytic evaluation.

The parameter α that appears in the argument of the Bessel functions goes to zero
for on-axis radiation, ϑ = 0. Since the Bessel functions behave as Jn(z) ≈ zn

2nn! for
small argument z this means that only the first harmonic n = 1 is emitted on-axis for a

circularly polarized laser pulse, with the only contribution coming from C
(1)
+ . The result

that no higher harmonics occur on-axis is known from the case of infinitely long plane
waves as “blind spot” or “dead cone” in the literature (see e.g. Harvey et al. (2009) and
references therein).

3.2. Reduction to a Master Integral

The next important step is to extract the pulse shape function g from the argument

of the Bessel functions in the definition of the integrals C
(n)
j . This will eventually allow

to define a master integral that contains all the dependence on the laser pulse envelope.
Such an extraction is achieved by applying the multiple argument expansion for the
Bessel functions (Watson 1922)

Jn (`αg(φ)) = gn(φ)

∞∑
k=0

[
1− g2(φ)

]k Jn+k(`α)

k!

(
`α

2

)k
. (3.5)

Thus, instead of having to deal with the pulse envelope g as an argument of the n-th
Bessel function we now get a power series in (1 − g2), with the coefficients containing
higher-order Bessel functions. We should note that the overlap of the functions gn and
some power of (1− g2)k rapidly gets small for increasing n and k. The powers of gn are
localized at the origin φ = 0 more strongly for larger values of n, while the powers of
(1− g2) vanish at the origin. Their product in the expansion (3.5) samples the edges of
the laser pulse.

Employing the above expansions we obtain for the partial dynamic integrals for the
n-th harmonic the series

C
(n)
2 (`) =

∞∑
k=0

Jn+k(`α)

k!

(
`α

2

)k
Bkn+2(`− n, `β) , (3.6)

C
(n)
± (`) =

∞∑
k=0

Jn+k∓1(`α)

k!

(
`α

2

)k
Bkn+1∓1(`− n, `β) , (3.7)

where we have defined the ponderomotive integrals

Bkr (`− n, `β) =

∞∫
−∞

dφ gr(φ)
[
1− g2(φ)

]k
ei(`−n)φ+i`β

∫
dφ g2 . (3.8)

They contain all dependence on the laser pulse shape and pulse duration and its influence
on the longitudinal electron motion and spectral broadening.

Before evaluating these ponderomotive integrals further, let us first discuss the limit of
infinite plane waves, g → 1, where the laser intensity is switched on adiabatically at past
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infinity and then stays constant. As a consequence there is no ponderomotive broadening
for the infinite plane waves. Because of 1− g2 = 0 we find

Bkr (`− n, `β)
g=1−→ δk0

∫
dφ ei(`−n)φ+i`βφ = 2π δk0 δ(`− n+ `β) . (3.9)

The delta function here restricts the generally continuous variable ` to discrete values
`n = n/(1 + β). Thus, the frequency of the emitted photon, Eq. (2.9), becomes discrete
as well:

ω′n ≡ ω′(`n) =
nω

1 + β + nω
m (1 + cosϑ)

=
nω

1 +
(
nω
m +

a20
4

)
(1 + cosϑ)

(3.10)

with the well-known non-linear intensity dependent red-shift (Berestetzki et al. 1980),
but no spectral broadening. Eq. (3.10) is usually interpreted as the absorption of n laser
photons and the emission of high harmonics. Moreover, in the expansion (3.5) all terms
with k > 0 vanish and we re-obtain the well known result that the partial matrix element
of the n-th harmonic contains the Bessel functions Jn and Jn±1 (Berestetzki et al. 1980;
Ritus 1985).

It is possible to find a recurrence relation for the ponderomotive integrals:

Bkr = Bk−1r −Bk−1r+2 . (3.11)

Subsequent application of this relation helps to reduce the order of the upper index to
zero:

Bkr =

k∑
ν=0

(−1)ν
(
k

ν

)
B0
r+2ν . (3.12)

Thus, we have to calculate only those ponderomotive integrals with the upper index
k = 0. Let us now re-scale the integration variable in (3.8) as φ→ t = φ/∆φ, in order to
define the three-parameter master integral as

Br(ξ, η) ≡ B0
r (`− n, `β)

∆φ
, (3.13)

as a function of the rescaled variables ξ = (` − n)∆φ and η = `β∆φ and for positive
integer values of r. The master integral explicitly reads

Br(ξ, η) ≡
∞∫
−∞

dt gr(t) eiξt+iη
∫
dt g2(t) . (3.14)

It only depends on the shape of the laser pulse and is completely independent of the
pulse duration. Note that the master integrals are real-valued functions for all symmetric
laser pulse shapes.

From stationary phase arguments one can deduce that the master integrals are essen-
tially different from zero only in the regions bounded by the η–axis and the line η = −ξ.
In this region the master integral is an oscillating function for all values of r. This region
is visualized as a grey shaded area in Fig. 2. Outside of this region it rapidly approaches
zero.

Before we continue our discussion of the properties of the master integral and its pulse
shape dependence, let us first represent the partial transition amplitudes M =

∑
n M (n)
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Figure 2. Illustration how to cut the ξ–η plane in order to obtain the shape of the spectral
lines as a function of `.

in terms of the Br(ξ, η) by putting together all the expansions:

M (n) = ∆φ(−1)ne−inϕ
∞∑
k=0

k∑
ν=0

(−1)ν

k!

(
k

ν

)(
`α

2

)k
×
{
eiϕJn+k−1(`α)

[
T+ −

αe−iφ

2
T0

]
Bn+2ν(ξ, η)

+ eiϕJn+k+1(`α)

[
T− −

αe+iφ

2
T0

]
Bn+2+2ν(ξ, η)

+ Jn+k(`α)
[
T2 − βT0

]
Bn+2+2ν(ξ, η)

}
. (3.15)

To obtain the spectrum of non-linear Compton scattering we have to plug this transition
amplitude into Eq. (2.12).

For the sake of completeness let us now briefly discuss the partial transition amplitudes
in the limit of infinite plane wave laser fields, g = 1. In this case the master integral turns
into Br(ξ, η)→ 2πδ(ξ + η), i.e. they are localized along the diagonal η = −ξ. Moreover,
the summation over ν yields just a Kronecker delta δk0 such that only the k = 0 term
survives in the sum over k. Therefore we obtain for the transition amplitude for infinite
plane waves

M (n) = 2πδ(`− n+ `β)∆φ(−1)ne−inϕ
{
eiϕJn−1(`nα)

[
T+ −

αe−iφ

2
T0

]
+ eiϕJn+1(`nα)

[
T− −

αe+iφ

2
T0

]
+ Jn(`nα)

[
T2 − βT0

]}
, (3.16)

with the argument of the Bessel functions now being `nα = nα/(1+β), which reproduces
the well-known textbook result (Berestetzki et al. 1980). The direct comparison between
(3.15) and (3.16) impressively demonstrates how much more complex and intricate the
case of the pulsed laser fields is, as compared to infinite plane waves. The master integrals
Br(ξ, η), which become trivial in the case of infinite plane waves, cause the increased
complexity of the transition amplitude for pulsed plane wave laser fields. They can be
considered as a fingerprint of the laser pulse shape.

Let us now return to our discussion of the properties of the master integral Eq. (3.8)
by first discussing how the rescaled arguments ξ and η relate to the frequency ω′ and
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Figure 3. Numeric evaluation of the master integral B1(ξ, η) for for different pulse shapes: a

Gaussian g(t) = e−t2/2 (left), an exponential g = e−|t| (centre), and a Supergaussian g = e−t4/2

(right).

−100 −80 −60 −40 −20 0 20
ξ

0

20

40

60

80

100

η

r = 2 −1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−100 −80 −60 −40 −20 0 20
ξ

0

20

40

60

80

100

η

r = 4 −1.0

−0.5

0.0

0.5

1.0

−100 −80 −60 −40 −20 0 20
ξ

0

20

40

60

80

100

η

r = 6
−1.0

−0.5

0.0

0.5

1.0

Figure 4. Numeric evaluation of the master integral (3.14) for a Gaussian pulse envelope

g = e−t2/2 in the ξ–η plane for increasing values of r from left to right.

scattering angle ϑ of the emitted photon. In order to obtain the shape of the frequency
spectrum as a function of ` (or the photon frequency ω′ by means of Eq. (2.9)) one has
to cut the functions Br(ξ, η) along the straight line η = βξ + nβ∆φ in the ξ–η plane,
depicted as a red diagonal line in Fig. 2. This line intersects the ξ–axis at ξ = −n∆φ,
the slope is just β (i.e. it depends on the laser intensity), and the intersection with the
η–axis is at η = βn∆φ. Note that the dependence on the scattering angle ϑ is entirely
contained in the parameter β, see Eq. (2.11).

It is important to note which values of ` lie inside the grey shaded area where the
master integral is non-zero: They are exactly those values between the red-shifted and
unshifted n-th harmonic lines in the infinite plane wave: n/(1 + β) 6 ` 6 n, see Fig. 2.
Moreover, we see that the diagonal η = −ξ represents the red-shifted harmonics in the
infinite monochromatic plane wave. That means, the region close to the diagonal line
η = −ξ is formed close to the centre of the laser pulse where the intensity is largest. In
the region close to the η–axis the master integral is formed at the very edges of the laser
pulse where the intensity is very low.

Numeric evaluations of the master integral B1(ξ, η) are depicted in Fig. 3 for three
different pulse envelopes. We see that each pulse shape generates a distinct pattern of
oscillations in the triangular region bounded by the η–axis and the diagonal η = −ξ.
For a Gaussian pulse envelope g(t) = e−t

2/2 numeric evaluations of the master integrals
are depicted in Fig. 4 for different values of r. One can see that the larger the value
of r the stronger the function is localized close to the line η = −ξ (i.e. the non-linear
Compton edge in the limit of infinite plane waves). By recalling how we need to cut the
ξ–η plane to obtain the frequency spectrum we easily deduce that for longer pulses or
higher harmonics the spectral lines contain more oscillations. This observation is in line
with results using the saddle point method (Seipt & Kämpfer 2013b).
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3.3. Universal Behaviour of High Order Harmonics

Let us now draw some conclusions about the shape of very high order harmonics. One
can notice that for large values of r, the powers of gr(t) become strongly localized around
t ≈ 0. Thus, the main contribution to the master integral, Eq. (3.14), is provided by the
region of g(t) around the maximum at t = 0. For sufficiently smooth pulse envelopes†
g(t) a Taylor expansion around the point t = 0 reads

gr(t) ≈
(

1− |g′′(0)| t
2

2

)r
. (3.17)

Defining τ2 = 1/|g′′(0)| and employing the known limit (1 + x/r)r
r→∞→ ex, we find

gr(t) ≈ e− r t
2

2τ2 . (3.18)

which is of Gaussian shape and does not depend on any details of the primary pulse shape,
except for the curvature at the maximum, i.e. the second derivative g′′(0) at t = 0. Note
that if one is concerned about laser pulses with a flat top envelope (in the sense that
g′′(0) = 0), the Taylor series in (3.17) can be extended further, and will eventually lead
to a Supergaussian shape of gr(t).

The conclusion is that for sufficiently high harmonic order the master integral is
approximately given by

Br(ξ, η) ≈
∞∫
−∞

dt e−
r
2 ( tτ )

2
+iξt+iη

∫
dt g2(t) . (3.19)

Because for large values of r the main contributions to this integral come from a narrow
region around t = 0, we can approximate

∫
dt g2(t) polynomially around t = 0 up to the

third order. This allows us to give an analytic expression for the master integral Br for
large values of r →∞ as

Br(ξ, η) ≈ 2πτ2/3

η1/3
exp

(
− r

2η
(ξ + η) +

r3

12(τη)2

)
Ai

(
r2

4(τη)4/3
− τ2/3

η1/3
(ξ + η)

)
(3.20)

in terms of the Airy function Ai (Erdélyi et al. 1953). The central conclusion here is
that for very large values of r the shape of the harmonic lines approximate the shape of
the harmonics for a Gaussian laser pulse with temporal duration τ/

√
r = 1/

√
r|g′′(0)|.

The only specific input from the original pulse shape g that affects the shape of the
high-harmonic spectral lines is the curvature of the pulse envelope at the maximum.

3.4. Explicit Closed Form Analytic Results for the Master Integral

We finally provide explicit closed form analytic expressions for the master integral
Br(ξ, η) for several different laser pulse shapes g.

3.4.1. Hyperbolic Secant Pulse Shape

For a hyperbolic secant pulse, g(t) = 1/ cosh(t), we have
∫
g2dt = tanh t, and the

master integral

Br(ξ, η) =

∞∫
−∞

dt
eiξt+iη tanh t

coshr t
(3.21)

† This means the first derivative of the pulse envelope at t = 0 has to exist. Due to the
symmetry of the pulse envelope it is then equal to zero: g′(0) = 0.
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can be evaluated by transforming the integration variable according to z = 1/(2et cosh t),
yielding

Br(ξ, η) = 2r−1e−iη
1∫

0

dz z
r+iξ

2 −1(1− z) r−iξ2 −1 e2iηz . (3.22)

This integral can be evaluated as

Br(ξ, η) =
2r−1e−iη

Γ (r)
Γ

(
r + iξ

2

)
Γ

(
r − iξ

2

)
1F1

(
r + iξ

2
, r, 2iη

)
, (3.23)

with the Gamma function Γ (z) and the confluent hyperbolic function 1F1(a, b; z) (Erdélyi
et al. 1953). An equivalent representation of (3.23) can be given in terms of the generalized
Laguerre functions Lλν (z) (Erdélyi et al. 1953) as

Br(ξ, η) =
2r−1e−iηπ

sin
(
π
2 (r + iξ)

)Lr−1− r+iξ2

(2iη) . (3.24)

3.4.2. Exponential Pulse Shape

For a pulse shape of the form g(t) = e−|t| the master integral takes the form

Br(ξ, η) =

∞∫
0

dt e−(r−iξ)t eiηe
−t sinh t + c.c. . (3.25)

After a substitution z = iη
2 e
−2t we get

Br(ξ, η) =
e
iη
2

2

(
2

iη

) r−iξ
2

iη
2∫

0

dz z
r−iξ

2 −1 e−z + c.c. , (3.26)

which can be expressed as

Br(ξ, η) =
eiη/2

2

(
2

iη

) r−iξ
2

γ

(
r − iξ

2
,
iη

2

)
+ c.c. , (3.27)

with the lower incomplete gamma function γ(a, z) (Erdélyi et al. 1953),

3.4.3. Staircase Pulse Shapes

Let us assume the pulse envelope is staircase, defined as g(t) =
∑N
k=1 νkχIk(t) for t > 0,

with νk being the height of the k-th step (as measured from the ground level) and the
characteristic function χIk(t) = 1 if t ∈ Ik = [(k − 1)/N, k/N), and zero otherwise. (For
t < 0 the envelope is fully defined by the symmetry g(−t) = g(t).) For the moment we
assume that the step height increases uniformly, νk = (N−k+1)/N , but a generalization
to arbitrary steps is obvious. A compelling feature of the staircase pulse is the possibility
to approximate many different smooth pulse shapes in the limit of infinite steps N →∞,
just by adjusting the step heights. For instance, the uniform staircase discussed here
would converge to a smooth triangle pulse.

By splitting the t-integration range into the intervals Ik where g is constant we evaluate
the master integral as

Br(ξ, η) =

N∑
k=1

2(νk)r
sin

ξ+η ν2
k

2
ξ+η ν2

k

2

cos

(
η Φk +

2k − 1

N

ξ + η ν2k
2

)
(3.28)
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with

Φk =
1

N

k∑
κ=1

ν2κ −
k

N
ν2k . (3.29)

For N = 1 we recover the well known result of of a sinc profile for the box pulse which
is aligned along the η = −ξ diagonal, i.e. it corresponds to the usual infinite plane wave
red-shift. While the bandwidth of the laser pulse translates to the Compton scattered
light, we see no indication of the ponderomotive broadening due to a gradual ramp up of
the laser intensity. How this ponderomotive broadening effect develops can be seen quite
instructively when going to a pulse with more than one step. For N steps we observe
a total of N strips in the η–ξ plane that are centred along the lines η = −ξ/ν2k . On
each of the steps the radiation is emitted with with their respective red-shift, determined
by the square of the k-th step height as ` = n/(1 + βν2k). With increasing N these
strips eventually are overlapping, reproducing the typical picture from the smooth pulses
discussed before. Thus, the staircase pulse model discussed here helps to investigate
the transition from the case of a constant amplitude laser pulse to the case of smooth
pulses where the ponderomotive broadening sets in and strongly influences the non-linear
Compton spectrum.

4. Conclusions

In summary, we provided in this paper a comprehensive and completely analytical
evaluation of the non-linear Compton transition amplitude. It was found that the de-
pendence on the shape of the strong laser pulse can be traced back to a three-parameter
master integral. In addition, all the dependence on the pulse duration can be conveniently
scaled out from the master integral. For certain shapes of the laser pulse envelope we
provided explicit analytical expressions for the master integral. In addition, for very high
harmonics we find a universal behaviour of the shape of the harmonic lines.

In this paper we studied only the case of circularly polarized laser light. The laser
polarization affects the form of the Jacobi-Anger type expansion (3.2) and the subsequent
extraction of the laser pulse envelope from the argument of the Bessel functions via
Eq. (3.5). In the case of an elliptic or linear laser polarization we would encounter gen-
eralized two-argument Bessel functions (Seipt 2012; Korsch et al. 2006). But eventually
the laser pulse shape dependence is described by exactly the same master integrals (3.8)
as for circular laser polarization discussed in this paper.

We would like to stress that the analytical structure of the strong-field S matrix
is similar also for other first-order strong-field QED processes like Breit-Wheeler pair
production, or pair annihilation. Thus, our analytic results could be easily translated to
these processes too.
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