
Improper Gaussian Signaling in Full-Duplex Relay
Channels with Residual Self-Interference
Mohamed Gaafar, Mohammad Galal Khafagy, Osama Amin, and Mohamed-Slim Alouini

Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division
King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province, Saudi Arabia.

Email: {mohamed.gaafar, mohammad.khafagy, osama.amin, slim.alouini}@kaust.edu.sa}@kaust.edu.sa

Abstract—We study the potential employment of improper
Gaussian signaling (IGS) in full-duplex cooperative settings with
residual self-interference (RSI). IGS is recently shown to be
the optimal signaling scheme for interference channels, which
subsumes traditional proper Gaussian signaling (PGS) as a
special case. In this work, IGS is employed in an attempt to
alleviate the RSI adverse effect in full-duplex relaying (FDR).
To this end, we derive a tight upper bound expression for the
end-to-end outage probability in terms of the relay signal pa-
rameters represented in its power and circularity coefficient. We
further show that the derived upper bound is either monotonic
or unimodal in the relay’s circularity coefficient. This result
allows for easily locating the global optimal point using known
numerical methods. Based on the analysis, IGS allows FDR
systems to operate even with high RSI. It is shown that, while the
communication totally fails with PGS as the RSI increases, the
IGS outage probability approaches a fixed value that depends on
the channel statistics and target rate. The obtained results show
that IGS can leverage higher relay power budgets than PGS to
improve the performance, meanwhile it relieves its RSI impact
via tuning the signal impropriety.

I. INTRODUCTION

Contrary to a long-held acceptance that radio front-ends
cannot simultaneously transmit and receive, a truly promising
potential for full-duplex communications has been shown by
recent hardware developments [1], [2]. Indeed, by multiplexing
inbound and outbound traffic over the same channel resource, a
full-duplex radio can recover the spectral efficiency loss known
to be encountered by its half-duplex counterpart. Performance
merits of full-duplex radio have been recently investigated in
different communication settings, including full-duplex bidi-
rectional communication, full-duplex base stations, and full-
duplex relaying (FDR) [3], with the latter being the focus of
this work. These merits have qualified full-duplex communi-
cation to be considered as a candidate technology for future
fifth generation (5G) wireless networks [4].

FDR allows a relay node to listen to an information source
and simultaneously forward to its intended destination. Theo-
retically, this simultaneous transmission/reception doubles the
spectral efficiency in the relay channel. However, in practice,
this comes at the expense of a self-interference level intro-
duced at the receiver of the relay node from its own transmit-
ter. Even with the application of advanced self-interference
isolation and cancellation techniques, a level of residual self-
interference (RSI) persists. Such a persistent RSI link and the
means to mitigate it represent the main challenge in full-duplex

communications, especially with the fact that its adverse effect
can typically be an increasing function of the relay power.
Therefore, increasing the relay power no longer guarantees an
enhanced end-to-end performance. For instance, by increasing
the relay power in a fixed-rate transmission scheme, the relay
may forward more reliably to the destination in the second
hop. However, it also increases the RSI level which negatively
affects the reliability in the first hop. Hence, higher relay power
budgets cannot be always utilized beyond a certain threshold.
Consequently, employing interference mitigation strategies in
FDR is crucial to accomplish a satisfactory performance of
full-duplex transmissions.

Improper Gaussian signaling (IGS) has been recently shown
to be the optimal input signaling scheme for interference
channels [5]. This comes in contrary to other communication
systems with interference-free channels where proper Gaus-
sian signaling (PGS) is the optimal choice. PGS assumes the
zero-mean complex Gaussian transmit signal to be statistically
circularly symmetric with uncorrelated real and imaginary
components. On the other hand, IGS is a more general class of
signals where circularity and uncorrelatedness conditions can
be relaxed, subsuming PGS as a special case [6]. The results
in [5] motivate the need to further study the potential gains of
IGS in communication scenarios where interference imposes
a noticeable limitation.

For Gaussian channels, and within the class of Gaussian
signals, IGS has been recently adopted to improve the per-
formance of different interference channel communication
systems [7]–[9]. In general, recent work on the interference
channel showed that IGS can actually support higher rates
in certain interference-limited scenarios [7]. In an underlay
cognitive radio setting, IGS increases the spectrum sharing
opportunity for secondary users by relieving the interference
impact on the authorized users [8], [9].

The potential gains of IGS have been also recently stud-
ied in [10] for the multiple-input multiple-output (MIMO)
relay channel when a partial decode-and-forward strategy is
adopted. In such a relaying strategy, the relay only decodes a
part of the message, while the rest of the message is treated
as an additional interference term. It was shown in [10] that
PGS is optimal within the class of Gaussian signals. However,
the work in [10] assumed an ideal full-duplex relay channel,
where the self-interference imposed by the relay’s transmitter
on its own receiver is perfectly canceled.
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Fig. 1. A full-duplex cooperative setting in coverage extension scenarios.

In this work, we investigate the potential gains of IGS in
decode-and-forward FDR with RSI. This work is the first to
study IGS in FDR settings with imperfect self-interference
cancellation to the best of the authors’ knowledge. First, we
assume the relay transmits with IGS and derive a closed-
form upper bound on the end-to-end outage probability using
Jensen’s inequality. We compare the derived outage upper
bound of IGS to the exact outage probability of PGS from
the literature. Also, we show that depending on the channel
parameters and transmission rate, the derived upper bound
is either monotonic or unimodal in the relay’s circularity
coefficient, which allows for locating the global optimal value
using simple known numerical methods. Through numerical
optimization, we show that the use of IGS can yield an outage
upper bound that is less than the exact outage probability of
PGS. We also numerically validate the derived upper bound
by comparing it to the well-matching numerically computed
exact outage probability.

The rest of the paper is organized as follows. The system
model is detailed in section II. In section III, a closed-form
expression for the outage probability upper bound is derived.
The presented theoretical results are numerically verified in
section IV, with discussions on the potential gains of IGS over
conventional PGS. Finally, conclusions are drawn in section
V. Lengthy proofs are deferred to the appendices.

II. SYSTEM MODEL

We consider the communication setting depicted in Fig. 1,
where a source (S) intends to communicate with a distant
destination (D). The direct S−D link is assumed of a rel-
atively weak gain due to path loss and shadowing effects.
Accordingly, a full-duplex relay (R) is utilized to assist the
end-to-end communication and extend the coverage. FDR
can offer higher spectral efficiency when compared to its
half-duplex counterpart. However, FDR in practice suffers
from a RSI level which imposes an additional communication
challenge. In addition, the received signal component via the
S−D link is assumed to be weak and hence, it is considered
as interference at the destination. Thus, the FDR system under
consideration suffers from two interference sources; the RSI
at the relay, and the direct S−D link signal received at the
destination. This model has been widely studied for PGS in
the literature, and the end-to-end outage probability is derived
in closed-form in [11].

A. Channel Model

The fading coefficient of the i − j link is denoted by hij ,
for i ∈ {s, r} and j ∈ {r,d}, where s, r and d refer to the
source, relay, and destination nodes, respectively. Moreover,
the i− j link gain is denoted by gij = |hij |2, where |.| is the
absolute value. All channels are assumed to follow a block
fading model, where hij remains constant over one block, and
varies independently from one block to another following a
Rayleigh fading model with average gain E

{
|hij |2

}
= πij ,

with E{.} denoting the expectation operator. Accordingly, the
channel gain, gij , is an exponential random variable with mean
parameter πij . All channel fading gains are assumed to be
mutually independent.

The relay operates in a full-duplex mode where simul-
taneous listening/forwarding is allowed with an introduced
level of loopback interference. The link gain hrr is assumed
to represent the RSI after undergoing all possible isolation
and cancellation techniques [11]–[13]. The source and the
relay powers are denoted by Ps and Pr, respectively, where
both are restricted to a maximum allowable value of Pmax.
Also, nr and nd denote the circularly-symmetric complex
additive white Gaussian noise components at the relay and
the destination, with variance σ2

r and σ2
d, respectively. Without

loss of generality, we assume that σ2
r = σ2

d = 1.

B. Signal Model

Motivated by the results in [8] and [9], which show that
IGS significantly improves the system performance if the
interference gain at the receiver is not weak, we assume a PGS
at the source, xs[t], at time t. On the other hand, the relay uses
a zero-mean IGS, xr[t], to mitigate the non-negligible RSI at
the receiver of the relay. The degree of impropriety of xr[t] is
measured based on the following definitions.

Definition 1. The variance and pseudo-variance of the relay’s
transmit signal, xr[t], are given by σ2

x = E{|xr|2} and σ̃2
x =

E{x2
r}, respectively [14].

Definition 2. A signal is called proper if it has a zero σ̃2
x,

while an improper signal has a non-zero σ̃2
x.

Definition 3. A circularity coefficient is a measure of the
degree of impropriety of the signal xr[t], which is given in
[14] as

Cx =

∣∣σ̃2
x

∣∣
σ2
x

. (1)

Following from Definition 2, Cx = 0 implies a proper signal,
while Cx = 1 implies a maximally improper signal.

The received signals at the relay and the destination at time
t are given, respectively, by

yr[t] =
√
Pshsrxs[t] +

√
Prhrrxr[t] + nr[t], (2)

yd[t] =
√
Prhrdxr[t] +

√
Pshsdxs[t] + nd[t]. (3)

The relay is assumed to adopt a decode-and-forward relaying
strategy, where it does not transmit any message of its own, but
forwards the regenerated source message after decoding. Due



to the source and relay asynchronous transmissions, the signal
transmitted by the relay (source) is considered as an additional
noise term at the relay (destination) in the decoding stage as
commonly treated in the related literature [11], [12].

C. Achievable Rates

From the adopted signal model in (2) and (3), each transmit
signal, i.e., from the source and the relay transmitter, is
considered as a desired signal at one receiver while treated
as interference at the other. Hence, the rate expressions for
the first and second hops have the same form of those of
a two-user interference channel. As a result of using IGS,
the achievable rate supported by the S− R link can be
expressed as [7]:

Rsr(Pr, Cx) = log2

(
1 +

Psgsr

Prgrr + 1

)
+

1

2
log2

(
1− C2

yr

1− C2
Ir

)
, (4)

where Cyr
and CIr are the circularity coefficients of the

received and interference-plus-noise signals at the relay, re-
spectively, which are given by

Cyr =
PrgrrCx

Psgsr + Prgrr + 1
, CIr =

PrgrCx
Prgrr + 1

. (5)

Hence, (4) can be simplified as

Rsr(Pr, Cx)=
1

2
log2

(
(Psgsr + Prgrr + 1)

2−(PrgrrCx)
2

(Prgrr + 1)
2−(PrgrrCx)

2

)
. (6)

Similarly, the achievable rate supported by the R−D link is
given by

Rrd(Pr, Cx)=
1

2
log2

(
(Prgrd+Psgsd + 1)

2−(PrgrdCx)
2

(Psgsd + 1)
2

)
. (7)

One can observe that if Cx = 0, we obtain the well known
expressions of the achievable rates of PGS.

III. OUTAGE PERFORMANCE ANALYSIS

In this section, we analyze the outage performance of the
canonical cooperative setting depicted in Fig. 1 when IGS is
allowed at the relay. The end-to-end outage probability is given
by

Pout = 1− Psr Prd, (8)

where Psr and Prd denote the outage probability in the S− R
and the R−D links, respectively, while Pij = 1 − Pij . In
what follows, we derive the outage probability expressions in
the individual links, i.e., Psr and Prd.

A. Outage Probability of S− R Link

Let R denotes the target rate of the S− R link, then its
outage probability is defined as

Psr (Pr, Cx) = P {Rsr (Pr, Cx) < R} , (9)

where P {A} denotes the probability of occurence of the event
A. To this end, the S - R link outage probability can be
obtained from Lemma 1.

Lemma 1. In an FDR cooperative system with IGS employed
at the relay, the outage probability of the S− R link with a
target rate R is given by

Psr (Pr, Cx) = 1− 1

πrr

∞∫
0

e
−
(

x
πrr

+
(Prx+1)
Psπsr

Ψ(PrxCx
Prx+1 )

)
dx, (10)

where
Ψ (x) =

√
1 + γ (1− x2)− 1, (11)

and γ = 22R − 1.

Proof: By substituting (6) in (9), we get

Psr (Pr, Cx) =P
{
P 2
s g

2
sr + 2Psgsr (Prgrr + 1)−

γ
(

(Prgrr + 1)
2 − P 2

r g
2
rrC2

x

)
< 0
}
, (12)

Hence, Psr, conditioned on grr, can be calculated as

Psr (Pr, Cx |grr ) =
1

πsr

g◦sr∫
0

e−
x
πsr dx = 1− e−

g◦sr
πsr , (13)

where g◦sr is the non-negative zero obtained by solving the
inequality in (12) with respect to gsr which can be written as

g◦sr =
(Prgrr + 1)

Ps
Ψ

(
PrgrrCx
Prgrr + 1

)
, (14)

Therefore, by averaging over the statistics of grr in (13), we
obtain

Psr (Pr, Cx) = 1− Egrr

{
e−

(Prgrr+1)
Psπsr

Ψ(PrgrrCx
Prgrr+1 )

}
, (15)

which directly yields (10).

Unfortunately, there is no closed-form expression for the
integral in Lemma 1 except at Cx = 0, which gives the known
PGS outage probability given in [11] as

Psr (Pr, 0) = 1− Psπsre
− η
Psπsr

Psπsr + Prπrrη
, (16)

where η = 2R − 1. Otherwise, we resort to obtain an upper
bound on the outage probability of the S− R link as follows.

Proposition 1. The exponential term inside the expectation
operator in (15) is a convex function in grr.

Proof: The proof is given in Appendix A.

Therefore, the upper bound on the S− R link outage
probability is given by the following lemma.

Lemma 2. When the FDR is allowed to adopt IGS, the S− R
link outage probability in terms of the relay’s transmit power
and circularity coefficient is upper-bounded by

PUB
sr (Pr, Cx) = 1− e−

Prπrr+1
Psπsr

Ψ(PrπrrCxPrπrr+1 ). (17)

Proof: Following from Proposition 1, and by the direct
application of Jensen’s inequality for the expectation in (15),
we obtain the given outage probability upper bound.



B. Outage Probability of R−D Link

The outage probability of the R−D link at a target rate R
b/sec/Hz is defined as

Prd (Pr, Cx) = P {Rrd (Ps, Pr, Cx) < R} . (18)

Then, the outage probability of the R−D link can be obtained
from the following result.

Lemma 3. In an FDR cooperative system with IGS employed
at the relay, the outage probability of the R−D link with a
target rate of R b/s/Hz is expressed as a function of the relay’s
transmit power and circularity coefficient as

Prd (Pr, Cx) = 1− e
− Ψ(Cx)

Prπrd(1−C2x)

Psπsd
Ψ(Cx)

Prπrd(1−C2
x) + 1

. (19)

Proof: Similar to the first hop, after substituting (7) in
(18), we obtain the following inequality

Prd (Pr, Cx) =P
{
P 2

r g
2
rd

(
1− C2

x

)
+ 2Prgrd (Psgsd + 1)−

γ(Psgsd + 1)
2
< 0
}
. (20)

Calculating the non-negative zero of the above inequality, we
obtain

g◦rd =
(Psgsd + 1)

Pr

Ψ (Cx)

(1− C2
x)
. (21)

We can express Prd, conditioned on gsd, as

Prd (Pr, Cx |gsd ) = 1− e−
g◦rd
πrd . (22)

By averaging over the exponentially distributed gsd, we di-
rectly obtain (19).

From Lemma 3, it can be noticed that, for the PGS case,
i.e., Cx = 0, Eq. (19) yields the known expression for PGS in
[11] as

Prd (Pr, 0) = 1− Prπrde
− η
Prπrd

Prπrd + Psπsdη
. (23)

Also, for the maximally improper case, i.e., Cx = 1, it yields

Prd (Pr, 1) = lim
Cx→1

Prd (Pr, Cx) = 1− e
− γ

2Prπrd

γPsπsd

2Prπrd
+ 1

. (24)

C. End-to-End Outage Performance

For the PGS case, from (16) and (23), we have the exact
expression for the end-to-end outage probability [11] as

Pout (Pr, 0) = 1− PsPrπsrπrde
−η

(
1

Psπsr
+ 1
Prπrd

)
(Psπsr + Prπrrη) (Prπrd + Psπsdη)

. (25)

On the other hand, when IGS is used by the relay, the end-
to-end upper bound of the outage probability can be obtained
from Theorem 1.

Theorem 1. In an FDR cooperative system to be used for
coverage extension with IGS adopted at the relay while consid-
ering the direct link as interference at the destination, the end-
to-end outage probability as a function of the relay’s transmit

power and circularity coefficient can be upper bounded by

PUB
out (Pr, Cx)=1− e

−
(

Ψ(Cx)

Prπrd(1−C2x)
+Prπrr+1

Psπsr
Ψ(PrπrrCx

Prπrr+1 )
)

Psπsd
Ψ(Cx)

Prπrd(1−C2
x) + 1

. (26)

Proof: Based on the derived upper bound and exact
expressions of the outage probability for S− R and R−D
links from Lemma 2 and Lemma 3, respectively, and by direct
substitution in (8), we obtain the result.

Asymptiotic Analysis: For maximally IGS, we obtain the
upper bound of the end-to-end outage probability from the
following corollary.

Corollary 1. When the relay node in an FDR cooperative
system uses maximally IGS, the end-to-end outage probability
can be upper-bounded by

lim
Cx→1

PUB
out = 1− 2Prπrde

−
(

γ
2Prπrd

+
(Prπrr+1)

πsr
Ψs( Prπrr

Prπrr+1 )
)

2Prπrd + γPsπsd
.

(27)

In order to evaluate the end-to-end outage probability upper
bound performance with respect to RSI when using maximally
IGS at the relay transmitter, we state the following theorem.

Theorem 2. In the limiting case where πrr → ∞ with a
fixed relay transmit power Pr, the exact end-to-end outage
probability for the PGS case Pout (Pr, 0)→ 1, while the upper
bound for the end-to-end outage probability for the maximally
IGS case PUB

out (Pr, 1)→ K, where

K = 1− 2Prπrde
−
(

γ
Prπrd

+ γ
Psπsr

)
2Prπrd + γPsπsd

. (28)

Proof: The theorem is obtained from (25) and Corollary
1 by taking the limit at πrr →∞.

Interestingly, different from the PGS case, the maximally
IGS introduces immunity against high RSI and achieves less
outage probability with a constant upper bound (28), which
depends on the quality of both S− R and R−D links, in
addition to the target rate.

D. Improper Signaling Optimization

In this part, we optimize the parameters of the IGS transmit
signal in order to minimize the end-to-end outage probability
given some boundaries for the optimization variables. We
consider two scenarios. First, assuming a fixed relay’s transmit
power, we optimize the circularity coefficient. Second, we
optimize the joint power and circularity coefficient.

1) Circularity Coefficient Optimization: In order to inves-
tigate the merits of IGS over conventional PGS in FDR chan-
nels, we aim at finding the optimal circularity coefficient value
that minimizes the end-to-end outage probability. Specifically,
we aim at solving the following optimization problem:

min
Cx

PUB
out (Pr, Cx) (29)

s.t. 0 ≤ Cx ≤ 1.



In order to solve the optimization problem, we analyze the
convexity properties of the objective function PUB

out (Pr, Cx).
In general, the function is found to be non-convex due to
the indefinite sign of the second derivative. However, other
desirable properties that allow us to find the global optimal
point are presented in the following theorem.

Theorem 3. When IGS is employed at the relay, the upper
bound of the end-to-end outage probability is either a mono-
tonic or a unimodal function in Cx over the interior of the
region of interest, 0 ≤ Cx ≤ 1.

Proof: The proof is provided in Appendix B.
Since monotonicity and unimodality are special cases of

quasi-convexity, such a result allows for the use of quasi-
convex optimization algorithms. For instance, the optimal Cx
can be numerically obtained using the well-known bisection
method operating on its derivative given in appendix B.

2) Joint Power and Circularity Coefficient Optimization:
The power optimization problem in PGS is formulated as

min
Pr

Pout (Pr, 0) (30)

s.t. 0 < Pr ≤ Pmax.

Also, for the IGS case, the joint problem is given as follows:

min
Pr,Cx

PUBout (Pr, Cx) (31)

s.t. 0 < Pr ≤ Pmax,

0 ≤ Cx ≤ 1.

It can be readily verified that the PGS end-to-end outage
prabability function is a non-convex function in the relay
power. However, it can be shown that the interior of the
function is unimodal in the relay power following similar
footsteps of the proof in Theorem 31. Hence, the bisection
method can be used to locate the global optimum.

The second problem is a minimization of non-convex ob-
jective function with simple box constraints. Thus, one may
try to solve it numerically by, for example, the gradient
projected method or the projected Newton’s method without
any guarantee to converge to an optimal solution [15]. For
performance analysis purposes, we find the optimal solution
via an exhaustive search. Moreover, in Theorem 3, we proved
that the objective function is either a monotonic or unimodal
in the relay’s circularity coefficient over the interior of the
constraint set. Although it could not be analytically shown, the
objective function in (31) with a fixed circularity coefficient
is observed to exhibit similar properties in the relay power
which, if true, makes it possible to be solved by the bisection
method to obtain optimal relay power for a given circularity
coefficient. This observation motivates us to use a coordi-
nate descent method based on a two-dimensional bisection
algorithm as in [16]. Fortunately, as it will be shown in the
numerical results section, it always converges numerically to
the optimal solution obtained by exhaustive grid search.

1Proof is omitted due to space limitations.
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Fig. 2. Outage performance vs. πrr for different πsr values.

IV. NUMERICAL RESULTS

We numerically evaluate the benefits that can be reaped by
employing IGS FDR. Throughout the following, we compare
the performance of IGS to that of PGS as a benchmark. For
PGS, we show the unoptimized performance with maximum
power allocation (MPA), alongside that with optimized relay
power using the bisection algorithm (BA) in addition to
a fine grid search (GS) for verification purposes. On the
other hand, the IGS outage performance is shown via two
expressions, namely, a) the derived upper bound (UB) in
(26) and, b) the exact end-to-end expression involving the
numerical computation of the integral in (15). The IGS
optimization involves two variables; Pr and Cx. Hence,
we consider two cases for IGS in the presented figures,
namely, i) one-dimensional (1D) optimization over Cx while
adopting maximum power allocation for Pr, and ii) joint
Pr/Cx two-dimensional (2D) optimization. The optimization
is done for the two aforementioned cases using both BA
and GS, with the prefixes 1D and 2D to distinguish between
them. We use the following parameters unless otherwise
stated: πsr = πrd = 20 dB, πrr = 10 dB and πsd = 3 dB.
The source and relay maximum power budget Pmax = 1 W
and the target rate is R = 1 b/s/Hz. The source is assumed
to use its maximum power budget.

Effect of RSI for different S− R link gains: In Fig. 2, we
plot the end-to-end outage probability versus πrr at different
πsr values. As shown, one can observe that at lower values
of the RSI, the IGS solution reduces to PGS since the RSI is
low and the relay can use more power without deteriorating
the S− R link quality-of-service. As πrr increases, the outage
performance of the PGS is significantly deteriorated. On the
other hand, the IGS design saturates at a fixed level as it
can be seen from (28). However, this constant value of the
outage probability depends on the target rate and the S− R
and R−D link conditions which can be clearly noticed from
the outage performance at the two values of πsr. Similar outage
performance is observed for different πrd.

Effect of Allowable Relay Power Budget: In Fig. 4, we study
the outage performance versus the available power budget at
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the relay. For FDR with PGS, and specifically when the relay
transmits with its maximum power, the outage performance
is known to be enhanced by increasing the allowable power
only till a breakeven point as shown. This point is where the
increasing adverse effect of RSI on the first hop due to higher
relay power starts to exceed any performance returns due to
the higher reliability of the second hop. After such a point, any
increase in the relay power causes a steady increase in the end-
to-end the outage probability. If relay power optimization is
allowed in PGS, the performance can at best be kept constant
after this breakeven point by clipping the transmit power level,
rendering any further increase in the power budget unutilized.
On the other hand, the performance trend is different when
IGS is adopted at the relay node. Indeed, by optimizing the
relay’s circularity coefficient, the outage probability continues
its decreasing trend. It is also observed that, unlike in PGS,
the relay tends to use its maximum power in IGS when joint
power/circularity optimization is considered. For high power
budgets, the optimal circularity coefficient value approaches
unity, denoting a maximally improper signal that tends to
allocate most of its power in only one dimension of the
complex signal space. This renders the worst case scenario
to have the remaining orthogonal signal space dimension
as self-interference-free. The decreasing trend of the outage
probability in IGS, however, still shows diminishing returns
due to the outage performance bottleneck in the first hop,
which is primarily influenced by the first hop gain, πsr.

Effect of average S− R link gain: In Fig. 4, we plot the
outage probability versus πsr for different source target rates.
First, communication fails at low πsr values due to the first
hop bottleneck, causing the outage probability of both PGS
and IGS to start close to unity. As πsr increases, using IGS
enables the relay to utilize more power relative to PGS to boost
the performance. At the end, when πsr reaches a significantly
higher value than the RSI, the first hop no longer operates
in the interference-limited regime, and hence, the IGS merits
become less significant relative to PGS. Finally, as shown,
the merits of IGS over PGS are more clear as the target rate
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Fig. 4. Outage performance vs. πsr for different target rates.

decreases. In this case, the rate requirements in the first hop
become less stringent, allowing IGS to utilize higher transmit
power relative to PGS and yielding a better performance.

Effect of Relay Location: We study the relative relay
location impact on the end-to-end outage performance for
πrr ∈ {0, 15} dB and R = 0.5 b/s/Hz. The relay location
in Fig. 5 is defined as the normalized distance of S− R link
with respect to the distance of S−D link. When the relay
location is closer to the source, the S− R link gain is very
strong relative to the RSI. In such a relatively self-interference-
free scenario, the IGS solution reduces as expected to the
PGS solution. As the relay moves towards the destination, the
relative adverse effect of RSI increases, causing the first hop
to operate in the interference-limited regime. In such a regime,
the benefits of IGS start to show up in mitigating the adverse
effect of the RSI by tuning the signal impropriety. This gives
the performance improvement in the second hop due to the
higher R−D link gain a better opportunity to enhance the
end-to-end performance. When the relay is too close to the
destination, the RSI effect significantly decreases due to the
very low relay power required for successful communication,
yielding similar IGS/PGS performance. It is clear that the
benefits of IGS are noticeable only when the RSI link effect
is non-negligible. When πrr = 0 dB, i.e., at the noise level,
IGS yields the PGS solution.

V. CONCLUSION

In this work, we study the potential merits of employing
improper Gaussian signaling (IGS) in full-duplex relay chan-
nels with non-negligible residual self-interference (RSI). To
analyze the benefits of IGS, we derive an upper bound for the
end-to-end outage probability. Interestingly, it is shown that
IGS offers good immunity against RSI relative to conventional
proper Gaussian signaling (PGS). Moreover, we show that, at
large RSI values, IGS attains a fixed value that depends on
the channel statistics and the target rate. In order to minimize
the end-to-end outage probability, we numerically optimize
the relay transmit power and circularity coefficient based only
on the relay knowledge of the channel statistics. The paper
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findings show that IGS yields a promising performance over
PGS. Specifically, for strong RSI, IGS tends to leverage higher
power budgets to enhance the performance, while alleviating
the RSI impact by tuning the relay’s circularity coefficient.

APPENDIX A
PROOF OF PROPOSITION 1

We prove the convexity of the exponential term inside the
expectation operator in (15) by expressing it as e−f(grr). In
fact, one can show easily that f (grr) can be written as

f (grr) =
√
Ag2

rr +Bgrr + C − (Dgrr + F ). (32)

where A =
Pr

2(1+γ(1−Cx2))
Ps

2πsr
2 , B = 2(1+γ)Pr

Ps
2πsr

2 , C = (1+γ)
Ps

2πsr
2 ,

D = Pr

Psπsr
, and F = 1

Psπsr
are positive. Indeed, the second

derivative of f (grr) with respect to grr is

∂2f (grr)

∂g2
rr

=
4AC −B2

4(C + grr (B +Agrr))
3/2
≤ 0, (33)

since 1 + γ(1− Cx2) ≤ 1 + γ for 0 ≤ Cx ≤ 1. Hence, f (grr)
is concave and e−f(grr) is convex, which concludes the proof.

APPENDIX B
PROOF OF THEOREM 3

The derived outage probability upper bound as a function
of the relay’s circularity coefficient is given on the form:

f(x) = 1− e
−a Ψ(x)

(1−x2)
−bΨ(cx)

d Ψ(x)
(1−x2) + 1

, (34)

where 0 ≤ x ≤ 1, a = 1
Prπrd

, b = Prπrr+1
Psπsr

, c = Prπrr

Prπrr+1 ,
and d = Psπsd

Prπrd
. We analyze the stationary points of f(x) =

1− f(x). Its derivative is given by

df(x)

dx
= x

e
−a Ψ(x)

1−x2−bΨ(cx)(
d Ψ(x)

1−x2 + 1
)2 S(x), (35)

where

S(x)=

(
d

Ψ (x)

1 − x2
+ 1

)(
a
(
2Ψ (x) + γ

(
x2 − 1

))
(Ψ (x) + 1) (1 − x2)2

+
bγc2

Ψ (cx) + 1

)

+
γd

(Ψ (x) + 1) (1 − x2)
− 2dΨ (x)

(1 − x2)2
. (36)

From the given form, and in addition to the roots of S(x),
it is clear that df(x)

dx admits only a zero at x = 0. Now, we
investigate the roots for S(x), and use the change of variables,
z = Ψ (x) + 2. Hence, 1 − x2 = z(z−2)

γ . After substitution
and some manipulations, S(z) is hence given for our region
of interest, 2 ≤ z ≤ 1 +

√
1 + γ, by

S(z) =
(
d
γ

z
+ 1
)( −aγ2

z2(z − 1)
+

bγc2

Ψ (cx) + 1

)
− γ2d

z2(z − 1)
. (37)

Since 0 < c < 1, we know that 1 − c2x2 ≥ 1 − x2. Hence,
Ψ (cx) + 1 ≥ Ψ (x) + 1 = z − 1. Let Ψ (cx) + 1 = tz(z − 1),
where tz ≥ 1. Therefore,

S(z) =
(dγ + z)(−aγ2tz + bγc2z2)− γ2dtzz

tzz3(z − 1)
. (38)

The numerator is a cubic polynomial in z which is given by

T (z) = bc2γz3 + bc2dγ2z2 − (a+ d)γ2tzz − adγ3tz. (39)

To find the number of positive roots for T (z), we use Descartes
rule of signs [17]. Specifically, for the sequence formed by the
descending order of the cubic equation coefficients, i.e., the
sequence {bc2γ, bc2dγ2,−(a+d)γ2tz,−adγ3tz}, the number
of sign changes is only one. For our real cubic polynomial, this
determines the number of positive roots to be exactly one root.
Hence, in the positive region of interest, 2 ≤ z ≤ 1+

√
1 + γ,

either one or no feasible roots exist for T (z), and hence for
S(z). This shows that f(x) is either monotonic or unimodal
due to the existence of one root at maximum in its interior.
If unimodal, the global optimal point can be numerically
obtained via the bisection method operating on the derivative
function.
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