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ABSTRACT
We use self-consistent numerical simulations of the evolution and disruption of the Sun’s birth
cluster in the Milky Way potential to investigate the present-day phase space distribution of
the sun’s siblings. The simulations include the gravitational N -body forces within the clus-
ter and the effects of stellar evolution on the cluster population. In addition the gravitational
forces due to the Milky Way potential are accounted for in a self-consistent manner. Our aim is
to understand how the astrometric and radial velocity data from the Gaia mission can be used
to pre-select solar sibling candidates. We vary the initial conditions of the Sun’s birth cluster,
as well as the parameters of the Galactic potential. In particular, we use different configura-
tions and strengths of the bar and spiral arms. We show that the disruption time-scales of the
cluster are insensitive to the details of the non-axisymmetric components of the Milky Way
model and we make predictions, averaged over the different simulated possibilities, about the
number of solar siblings that should appear in surveys such as Gaia or GALAH. We find a
large variety of present-day phase space distributions of solar siblings, which depend on the
cluster initial conditions and the Milky Way model parameters. We show that nevertheless ro-
bust predictions can be made about the location of the solar siblings in the space of parallaxes
($), proper motions (µ) and radial velocities (Vr). By calculating the ratio of the number
of simulated solar siblings to that of the number of stars in a model Galactic disk, we find
that this ratio is above 0.5 in the region given by: $ > 5 mas, 4 6 µ 6 6 mas yr−1, and
−2 6 Vr 6 0 km s−1. Selecting stars from this region should increase the probability of
success in identifying solar siblings through follow up observations. However the proposed
pre-selection criterion is sensitive to our assumptions, in particular about the Galactic poten-
tial. Using a more realistic potential (e.g., including transient spiral structure and molecular
clouds) would make the pre-selection of solar sibling candidates based on astrometric and ra-
dial velocity data very inefficient. This reinforces the need for large scale surveys to determine
precise astrophysical properties of stars, in particular their ages and chemical abundances, if
we want to identify the solar family.

Key words: Galaxy: kinematics and dynamics — open clusters and associations: general —
solar neighbourhood — Sun: general

1 INTRODUCTION

Since most of the stars are born in star clusters (Lada & Lada 2003),
these systems are considered the building blocks of galaxies. In the
Milky Way star clusters located in the Galactic halo (Globular clus-
ters) populate the Galactic disk through mergers (Lee et al. 2013).
On the other hand star clusters formed in the Galactic disk (open

? E-mail: cmartinez@strw.leidenuniv.nl
† E-mail: brown@strw.leidenuniv.nl

clusters) supply new stars to the disk of the Galaxy through several
processes, such as shocks from encounters with spiral arms and Gi-
ant Molecular Clouds (Gieles et al. 2006, 2007).

The dynamical evolution of star clusters involves several phys-
ical mechanisms. At earlier stages of their evolution, star clusters
lose mass mainly due to stellar evolution and two-body relaxation
processes, which in turn, enlarge the size of star clusters (Taka-
hashi & Portegies Zwart 2000; Baumgardt & Makino 2003; Madrid
et al. 2012). This evolutionary stage is called the expansion phase
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2 C.A. Martı́nez-Barbosa et al.

(Gieles et al. 2011), which takes about 40% of the star cluster’s life-
time. Once star clusters overcome the expansion phase, the effects
of the external tidal field of the Galaxy become important, depend-
ing on their location with respect to the Galactic centre. This stage
is called the evaporation phase (Gieles et al. 2011) and it is charac-
terized by the gradual dissolution of star clusters in the Galaxy.

The dissolution rate of star clusters depends on their Galacto-
centric distance (Madrid et al. 2012), orbit (Baumgardt & Makino
2003), orbital inclination (Webb et al. 2014) and on Galaxy prop-
erties such as the mass and size of the Galactic disk (Madrid
et al. 2014). Additionally, open clusters in the Milky Way are
also dissolved due to non axisymmetric perturbations such as bars
(Berentzen & Athanassoula 2012), spiral arms (Gieles et al. 2007)
and giant molecular clouds (Gieles et al. 2006; Lamers & Gieles
2006). The strongest tidal stripping occurs at times when open clus-
ters cross regions of high density gas, for instance, during spiral
arms passages (Gieles et al. 2007; Kruijssen et al. 2011) or during
collisions with giant molecular clouds (Gieles et al. 2006). Open
clusters can also radially migrate over distances of up to 1 kpc in
a short time scale (∼ 100 Myr) when the Galactic spiral struc-
ture is transient (Fujii & Baba 2012). This radial migration pro-
cess can also be efficient in the absence of transient structure if
the resonances due the bar and spiral structure overlap (Minchev
& Famaey 2010). Radial migration affects the orbits of open clus-
ters in the Galaxy, increasing or decreasing their perigalacticon
distance, which in turn influences their dissolution times (see e.g.
Jı́lková et al. 2012).

The high eccentricities and inclinations observed in the
Edgeworth-Kuiper belt objects together with the discovery of de-
cay products of 60Fe and other radioactive elements in the mete-
orite fossil record, suggest that the Sun was born in an open cluster
4.6 Gyr ago (Portegies Zwart 2009, and references therein). Iden-
tifying the stars that were formed together with the Sun (the solar
siblings) would enable the determination of the Galactic birth ra-
dius of the Sun as well as further constrain the properties of its
birth cluster (Bland-Hawthorn et al. 2010; Adams 2010). The birth
radius affects the evolution of the solar system, and in particular
the Oort cloud, which is sensitive to the Galactic environment the
Sun passes through along its orbit (e.g. Portegies Zwart & Jı́lková
2015).

The Sun’s birth cluster will undergo all the disruptive pro-
cesses described above and thus dissolve, leading to the spreading
out of its stars over the Galactic disk. The subsequent distribution
of the solar siblings was studied by Portegies Zwart (2009), who
evolved the Sun’s birth cluster in an axisymmetric model for the
Galactic potential and concluded that tens of solar siblings might
still be present within a distance of 100 pc from the Sun. Several
attempts have since been made to find solar siblings (e.g. Brown
et al. 2010; Bobylev et al. 2011; Liu et al. 2015); however, only
four plausible candidates have been identified so far (Batista & Fer-
nandes 2012; Batista et al. 2014; Ramı́rez et al. 2014). This small
number of observed solar siblings might be a consequence of the
lack of accurate predictions of the present-day phase space distri-
bution of solar siblings together with insufficiently accurate stellar
kinematic data.

Brown et al. (2010) used test particle simulations to predict the
current distribution of solar siblings in the Milky Way. They con-
cluded that stars with parallaxes ($) > 10 mas and proper motions
(µ) 6 6.5 mas yr−1, should be considered solar sibling candidates.
Their conclusions were criticised by Mishurov & Acharova (2011)
who pointed out that in more realistic Galactic potentials the solar
siblings are expected to be much more spread out over the Galactic

disk. For small birth clusters (few thousand stars with a total mass
of the order of 1000 M�) such as employed by Brown et al. (2010)
and Portegies Zwart (2009), Mishurov & Acharova (2011) predict
that practically no solar siblings will currently be located within
100 pc from the sun. However, for larger birth clusters (of order 104

stars, in line with predictions from e.g. Dukes & Krumholz 2012)
one can still expect to find a good number of siblings presently or-
biting the Galaxy within 100 pc from the Sun.

Ongoing surveys of our galaxy, in particular the Gaia mis-
sion (Lindegren et al. 2008) and the GALAH survey (De Silva et al.
2015), will provide large samples of stars with accurately deter-
mined distances, space motions, and chemical abundance patterns,
thus enabling a much improved search for the sun’s siblings. In this
paper we investigate the potential of the Gaia astrometric and ra-
dial velocity data to narrow down the selection of candidate solar
siblings for which detailed chemical abundance studies should be
undertaken in order to identify the true siblings. Our investigation
is done by performing simulations of the evolution and disruption
of the Sun’s birth cluster in a realistic (although static) Galactic po-
tential, including the bar and spiral arms. The aim is to predict the
present-day phase space distribution of the siblings and simulate
the astrometric and radial velocity data collected by Gaia. We in-
clude the internal N−body processes in the cluster to account for
the disruption time scale. We use a full stellar mass spectrum and
a parametrized stellar evolution code to make accurate predictions
of how the solar siblings are observed by Gaia. To this end we also
account for the effects of extinction and reddening.

The rest of this paper is organized as follows. In Sect. 2 we
describe the simulations. In Sect. 3 we explore the evolution and
disruption of the Sun’s birth cluster due to the bar and spiral arms
of the Galaxy. In Sect. 4 we present the current phase-space dis-
tribution of solar siblings obtained from the simulations. In Sect.
5 we make use of the simulated positions and motions of the solar
siblings to investigate the robustness of the selection criterion pro-
posed by Brown et al. (2010) to the uncertainties in the present-day
phase space distribution of the solar siblings. An updated set of se-
lection criteria based on parallax, proper motion and radial velocity
information is presented. In Sect. 6 we use these criteria to exam-
ine stars that were previously suggested as solar siblings candidates
and further discuss our results. In Sect. 7 we summarize.

2 SIMULATION SET-UP

The goals of the simulations of the Sun’s birth cluster are to predict
the present-day phase space distribution of the solar siblings and
how these are expected to appear in the Gaia catalogue. In particu-
lar we wish to account for the uncertainties in the initial conditions
of the birth cluster and the parameters of the Milky Way poten-
tial. The predictions of the Gaia observations require the use of a
realistic mass spectrum for the siblings, and accounting for stellar
evolution and extinction and interstellar reddening effects. We thus
employ the following elements in the simulations:

Galactic model The Milky Way potential is described by an ana-
lytic model containing a disk, bulge and halo, as well as a bar and
spiral arms. The parameters of the bar and spiral arms are varied in
the simulations to account for uncertainties in their strengths and
pattern speeds (Sect. 2.1).
Cluster model The Sun’s birth cluster is modelled with a mass

spectrum for the stars and we account for the gravitational N -body
effects within the cluster as well as the effect of the Galaxy’s grav-
itational field on the cluster stars. The use of N -body models for
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The evolution of the Sun’s birth cluster and the search for the solar siblings 3

Table 1. Parameters of the Milky Way model potential.

Axisymmetric component
Mass of the bulge (Mb) 1.41× 1010 M�
Scale length bulge (b1) 0.38 kpc
Disk mass (Md) 8.56× 1010 M�
Scale length disk 1 (a2) 5.31 kpc
Scale length disk 2 (b2) 0.25 kpc
Halo mass (Mh) 1.07× 1011 M�
Scale length halo (a3) 12 kpc

Central Bar
Pattern speed (Ωbar) 40–70 km s−1 kpc−1

Semi-major axis (a) 3.12 kpc
Axis ratio (b/a) 0.37

Mass (Mbar) 9.8× 109–1.4× 1010 M�
Present-day orientation 20◦

Initial orientation 1◦ − 167◦

Spiral arms
Pattern speed (Ωsp) 15–30 km s−1 kpc−1

Locus beginning (Rsp) 3.12 kpc
Number of spiral arms (m) 2, 4

Spiral amplitude (Asp) 650–1100 km2 s−2 kpc−1

Pitch angle (i) 12.8◦

Scale length (RΣ) 2.5 kpc
Present-day orientation 20◦

Initial orientation 103◦ − 173◦

the birth cluster is motivated by the desire to account for the dis-
ruption time of the cluster which can be a substantial fraction of the
lifetime of the Sun (Sect. 2.2).
Stellar evolution Predicting the observations of the Sun’s birth

cluster by Gaia requires that we account for the mass-dependent
evolution of the solar siblings, in order to obtain the correct present-
day apparent magnitudes and colours which are used to predict
which stars end up in the Gaia catalogue. This prediction also re-
quires us to account for interstellar extinction and reddening for
which we employ a Galactic extinction model (Sects. 2.3, 5).

These elements are described in more detail in the subsequent sub-
sections.

2.1 Galactic model

We use an analytical potential to model the Milky Way. This po-
tential contains two parts: an axisymmetric component, which cor-
responds to a bulge, disk and a dark matter halo, and a non-
axisymmetric component which includes a central bar and spiral
arms. Bellow we explain these components in more detail.

Axisymmetric component We use the potential of Allen & San-
tillán (1991) to model the axisymmetric component of the Galaxy.
In this approach, the bulge is modelled with a Plummer (Plum-
mer 1911) potential; the disk is modelled with a Miyamoto-Nagai
(Miyamoto & Nagai 1975) potential and the dark matter halo with
a logarithmic potential. The parameters used to model the axisym-
metric component of the Galaxy are listed in table 1.

The model introduced by Allen & Santillán (1991) predicts a
rotational velocity of 220 km s−1 at the solar radius, which does
not match with the recent observational estimates (see e.g McMil-
lan 2011; Reid et al. 2014). However, Jı́lková et al. (2012) did not
find substantial variations in the orbits of open clusters when us-
ing different models of the axisymmetric structure of the Galaxy.
Therefore, we do not expect that the evolution of the Sun’s birth

Table 2. Parameters of the composite Galaxy model potential.

Main spiral structure
Pattern speed (Ωsp1

) 26 km s−1 kpc−1

Amplitude (Asp1
) 650–1300 km2 s−2 kpc−1

Pitch angle (i1) −7◦

Present-day orientation 20◦

Initial orientation 171◦

Secondary spiral structure
Pattern speed (Ωsp2

) 15.8 km s−1 kpc−1

Amplitude (Asp2
) 0.8Asp1

Pitch angle (i2) −14◦

Present-day orientation 220◦

Initial orientation 158◦

Bar
Pattern speed (Ωbar) 40 km s−1 kpc−1

Semi-major axis (a) 3.12 kpc
Axis ratio (b/a) 0.37

Mass (Mbar) 9.8× 109 M�
Strength of the bar (εb) 0.3
Present-day orientation 20◦

Initial orientation 1◦

cluster and the present-day distribution of solar siblings will be af-
fected due to the choice of the axisymmetric potential model.

The Galactic bar The central bar is modelled with a Ferrers po-
tential (Ferrers 1877) which describes the potential associated to
an elliptical distribution of mass. In an inertial frame located at
the Galactic centre, the bar rotates with a constant pattern speed of
40–70 km s−1 kpc−1 (Martı́nez-Barbosa et al. 2015). This range
of angular velocities places the Outer Lindblad resonance of the
bar (OLRbar) at 10–5 kpc from the Galactic centre. In the same
inertial frame, the present-day orientation of the bar with respect
to the negative x-axis is 20◦ (Pichardo et al. 2004, 2012; Romero-
Gómez et al. 2011, and references therein). In the left panel of Fig.
1 we show the present-day orientation of the Galactic bar. In Table
1 we show the parameters used in this study. For further details on
the choice of the bar parameters, we refer the reader to Martı́nez-
Barbosa et al. (2015).

The spiral arms We model the spiral arms as periodic perturba-
tions of the axisymmetric potential (tight winding approximation,
Lin et al. 1969). The spiral arms rotate with a constant pattern
speed of 15–30 km s−1 kpc−1 (Martı́nez-Barbosa et al. 2015). This
range of values places the co-rotation resonance of these structures
(CRsp) at 14–7 kpc from the Galactic centre. We assume that the
Galaxy has two or four non-transient spiral arms with the same am-
plitude. A schematic picture of the present-day configuration of the
spiral arms is shown in the left and middle panels of Fig. 1. The
parameters of the spiral arms used in this study are listed in Table
1. For further details on the choice of these parameters, we refer the
reader to Martı́nez-Barbosa et al. (2015).

Initial orientation of the bar and spiral arms The orientation
of the bar and spiral arms at the beginning of the simulations (i.e
4.6 Gyr ago) are defined through the following equations:

ϕb = ϕb(0)− Ωbart ,

ϕs = ϕs(0)− Ωspt . (1)

Here ϕb(0) is the present-day orientation of the bar. We assume
that the spiral arms start at the tips of the bar, i.e. ϕs(0) = ϕb(0)
(see Fig. 1). The time, t = 4.6 Gyr corresponds to the age of the

c© 2002 RAS, MNRAS 000, 1–13
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Figure 1. Configurations of the Galactic potential at the present time. Left: Galaxy with two spiral arms. Middle: Galaxy with four spiral arms. Right: (2 + 2)
composite model.

Sun (Bonanno et al. 2002). The initial orientations of the bar and
spiral arms are listed in Table 1.

Multiple spiral patterns We also consider a more realistic Galaxy
model with multiple spiral patterns, as suggested by Lépine et al.
(2011). In this model, often called the (2 + 2) composite model,
two spiral arms have a smaller amplitude and pattern speed than
the main structure, which is also composed of two spiral arms.
A schematic picture of the composite model is shown in the right
panel of Fig. 1. We use the parameters of the composite model sug-
gested by Mishurov & Acharova (2011) and Lépine et al. (2011).
These values are listed in Table 2. Here, Asp1

corresponds to a
strength of 0.06; that is, the main spiral structure has 6% the
strength of the axisymmetric potential. Additionally, the value of
Ωsp1

places the co-rotation resonance (CR) of the main spiral struc-
ture at the solar radius. The value of Ωsp2

on the other hand, places
the CR of the secondary spiral structure at 13.6 kpc. The orientation
of the spiral arms at the beginning of the simulation is set accord-
ing to Eq. 1, where ϕ0s1 = 20◦ and ϕ0s2 = 220◦ are the initial
phases of the main and secondary spiral structures respectively. In
the composite model we also fixed the parameters of the bar. The
corresponding values are listed in Table 2.

2.2 The Sun’s birth cluster

2.2.1 Initial conditions

We model the Sun’s birth cluster with a spherical density distri-
bution corresponding to a Plummer potential (Plummer 1911). We
also assume that the primordial gas was already expelled from the
cluster when it starts moving in the Galaxy. The initial mass (Mc)
and radius (Rc) of the Sun’s birth cluster were set according to
Portegies Zwart (2009), who suggested that the Sun was probably
born in a cluster with Mc = 500–3000 M� and Rc = 0.5–3 pc.
In table 3 we show the initial mass and radius of the Sun’s birth
cluster used in the simulations. From this table we note that the
number of stars belonging to the Sun’s birth cluster (N ) is around
102–103 in accordance with previous studies (see e.g. Adams &
Laughlin 2001; Adams 2010). In table 3 we also show the initial
velocity dispersion of the Sun’s birth cluster (σv). This quantity
can be computed by means of the virial theorem. As can be ob-

Table 3. Radius (Rc), mass (Mc), number of particles (N ) and velocity
dispersion (σv) adopted for the parental cluster of the Sun

Rc (pc) Mc (M�) N σv(kms−1)

0.5 510 875 2.91
1 641 1050 2.29

765 1050 2.27
1007 1741 2.96

1.5 525 875 1.61
1067 1740 2.42

2 1023 1741 2.12
883 1350 2.05

3 804 1500 1.44

served, for the initial mass and radius adopted, σv is between 1.4
and 2.9 km s−1.

We used a Kroupa initial mass-function (IMF) (Kroupa 2001)
to model the mass distribution of the Sun’s birth cluster. The mini-
mum and maximum masses used are 0.08M� and 100M� respec-
tively. In this regime the IMF is a two-power law function described
by the relation:

ψ(m) =

{
A1m

−1.3 0.08 < m 6 0.5 M�,

A2m
−2.3 m > 0.5 M�.

(2)

Here A1 and A2 are normalization constants which can be deter-
mined by evaluating ψ(m) at the limit masses. We also set the
metallicity of the Sun’s birth cluster to Z = 0.02 ([Fe/H] = 0).

2.2.2 Primordial binary stars

The dynamical evolution of stellar systems is affected by a non-
negligible fraction of primordial binaries (see e.g. Tanikawa &
Fukushige (2009)). Therefore, we also modelled the Sun’s birth
cluster with different primordial binary fractions in order to ob-
serve their effect on the current phase-space distribution of the solar
siblings. We varied the primordial binary fraction from zero (only
single stars) up to 0.4.

We find that binaries have an effect on the internal evolution
of the Sun’s birth cluster, in the sense that they tend to halt core
collapse. The influence of binaries on the dissolution of siblings
throughout the Galactic disk is negligible. We observe that the cur-
rent spatial distribution of the solar siblings and their astrometric

c© 2002 RAS, MNRAS 000, 1–13



The evolution of the Sun’s birth cluster and the search for the solar siblings 5

properties are little affected by the primordial binary fraction of the
Sun’s birth cluster. Thus hereafter we focus only on clusters with a
primordial binary fraction of zero.

2.2.3 Initial phase-space coordinates

The initial centre of mass coordinates of the Sun’s birth cluster
(xcm,vcm) were computed by integrating the orbit of the Sun
backwards in time taking into account the uncertainty in its cur-
rent Galactocentric position and velocity, using the same methods
as Martı́nez-Barbosa et al. (2015). In these simulations we ignore
the vertical motion of the Sun.

We generate 5000 random positions and velocities from a nor-
mal distribution centred at the current Galactocentric phase-space
coordinates of the Sun (r�, v�). Thus, the standard deviations (σ)
of the normal distribution correspond to the measured uncertainties
in these coordinates. We assume that the Sun is currently located
at: r� = (−8.5, 0, 0) kpc, with σr = (0.5, 0, 0) kpc. In this man-
ner, the uncertainty in y� is set to zero given that the Sun is located
on the x-axis of the Galactic reference frame (see e.g. Martı́nez-
Barbosa et al. 2015, figure 1).

The present-day velocity of the Sun is v� = (U�, V�); where

U� ± σU = 11.1± 1.2 km s−1

V� ± σV = (12.4 + VLSR)± 2.1 km s−1 . (3)

Here, the vector (11.1 ± 1.2, 12.4 ± 2.1) km s−1 is the peculiar
motion of the Sun (Schönrich et al. 2010) and VLSR is the velocity
of the local standard of rest which depends on the choice of Galactic
parameters.

We integrate the orbit of the Sun backwards in time during
4.6 Gyr, for each of the initial conditions in the ensemble. At the
end of the integration, we obtain a distribution of possible phase-
space coordinates of the Sun at birth (p(xb,vb)). This procedure
was carried out for 125 different Galactic parameters and models,
according to the parameter value ranges listed in Tables 1 and 2. We
used 111 different combinations of bar and spiral arm parameters
for the 2 and 4-armed spiral models, and 14 different parameters
for the composite model.

Once the distribution p(xb,vb) is obtained for a given galac-
tic model we use the median of the values of p(xb,vb) as the
value for (xcm,vcm). For the combinations of Galactic parame-
ters used, we found that the median value of p(xb,vb) remains in
the range of 8.5–9 kpc. This is consistent with Martı́nez-Barbosa
et al. (2015), who found that the Sun hardly migrates in a Galactic
potential as the one explained in Sect. 2.1. We therefore chose to
fix ||xcm|| = ||xb|| to a value of 9 kpc, with the velocity vcm cor-
responding to this value. We note that restricting the birth radius of
the Sun for a given Galactic model (fixed bar and spiral arm param-
eters) limits the possible outcomes for the phase space distribution
of the solar siblings. Different starting radii would lead to differ-
ent orbits which are affected differently by the bar and spiral arm
potentials, which in turn implies different predicted distributions of
the solar siblings after 4.6 Gyr. Although we do not account for
these differences in outcomes in our simulations there is still sig-
nificant spread in the predicted solar sibling distribution caused by
the different bar and spiral arm parameters combinations we used
(as demonstrated in Sect. 4).

2.3 Numerical simulations

The various simulation elements described above were to carry out
simulations of the evolution of the Sun’s birth cluster as it orbits in
the Milky Way potential. We used 9× 125 = 1125 different com-
binations of birth cluster and Galactic potential parameters, using
the parameter choices listed in tables 1, 2 and 3, in order to study
a large variety of possible present-day phase space distributions of
the solar siblings.

We use the HUAYNO code (Pelupessy et al. 2012) to compute
the gravity among the stars within the cluster. We set the time-step
parameter to η = 0.03. We also use a softening length given by
(Aarseth 2003):

ε =
4Rvir

N
, (4)

where Rvir is the initial virial radius of the cluster and N the num-
ber of stars.

To calculate the external force due to the Galaxy we use
a 6th-order Rotating BRIDGE (Pelupessy et al. in preparation;
Martı́nez-Barbosa et al. 2015). We set the BRIDGE time-step to
dt = 0.5 Myr1.

The stellar evolution effects were modelled with the popula-
tion synthesis code SEBA (Portegies Zwart & Verbunt 1996; Too-
nen et al. 2012). The magnitudes and colours of the stars were sub-
sequently calculated from synthetic spectral energy distributions
corresponding to the present-day effective temperature and surface
gravity of the solar siblings. In addition the effects of extinction are
accounted for. The simulation of photometry is described further in
Sect. 4.

The various codes used to include the simulation elements
above are all coupled through the AMUSE framework (Portegies
Zwart et al. 2013). In the simulations we evolve the Sun’s birth
cluster during 4.6 Gyr.

3 DISRUPTION OF THE SUN’S BIRTH CLUSTER

As the Sun’s birth cluster orbits in the Milky Way potential the tidal
field and the effects of the bar and spiral arms will cause the gradual
dissolution of the cluster, its stars spreading out over the Galactic
disk. Here we briefly summarize our findings on the cluster disso-
lution times in our simulations. The results are in line with what is
already known about the dynamical evolution of open clusters.

To compute the disruption rate of the Sun’s birth cluster it is
necessary to know its tidal radius as a function of time. In its gen-
eral form, the tidal radius is defined by the following expression
(Renaud et al. 2011; Rieder et al. 2013):

rt =

(
GMc

λmax

)1/3

. (5)

Here G is the gravitational constant, Mc is the mass of the cluster
and λmax is the largest eigenvalue of the tidal tensor Tij which is
defined as: Tij = − ∂2φ

∂xi∂xj
, with φ being the Galactic potential.

We use the method of Baumgardt & Makino (2003) to com-
pute the bound mass of the Sun’s birth cluster iteratively. At each
time-step, we first assume that all stars are bound and we calcu-
late the tidal radius of the system through Eq. 5, using the value of
Tij at the cluster centre. We use the method of Eisenstein & Hut

1 This set-up in the dynamical codes give a maximum energy error per
time-step in the simulations of the order of 10−7.

c© 2002 RAS, MNRAS 000, 1–13
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Figure 2. Top: Bound mass of the Sun’s birth cluster as a function of time
for different masses of the central bar of the Galaxy. The dashed black line
corresponds to the bound mass of the Sun’s birth cluster for a purely ax-
isymmetric Galactic model. Bottom: Bound mass of the Sun’s birth cluster
as a function of time for different amplitudes of the spiral arms. The dashed
black line has same meaning as above. Here the initial mass and radius of
the Sun’s birth cluster are 1023 M� and 2 pc respectively.

(1998) to calculate the cluster centre. With this first estimate of rt

we compute the bound mass, which is the mass of the stars that
have a distance from the cluster centre smaller than rt. We use this
bound mass and the density centre of the bound particles to recal-
culate rt and make a final estimate of the bound mass. We consider
the Sun’s birth cluster disrupted when 95% of its initial mass is
unbound from the cluster.

We studied the effect of the mass of the bar and the spiral
arms on the cluster evolution by varying the bar mass or the spi-
ral arm strength, while keeping the other Galactic model param-
eters fixed. The mass of the bar was varied for a fixed pattern
speed of Ωbar = 70 km s−1 kpc−1, and with a fixed two-arm
spiral with pattern speed Ωsp = 20 km s−1 kpc−1 and amplitude
Asp = 650 km2 s−2 kpc−1. The effect of the spiral arm ampli-
tude was studied for a two-arm spiral with pattern speed Ωsp =
18 km s−1 kpc−1, and a fixed bar withMbar = 9.8×109 M� and
Ωbar = 40 km s−1 kpc−1. The resulting evolution of the bound
mass of the clusters is shown in Fig. 2, where the top panel shows
the effect of varying the bar mass and the bottom panel shows the
effect of varying the spiral arm strength. In both cases we also show
the evolution for the case of a purely axisymmetric model of the
Galaxy.

From Fig. 2 is is clear that the disruption time of the cluster
is not very sensitive to the parameters of the Galactic model. The
range of disruption times across all our simulations is 0.5–2.3 Gyr,
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Figure 3. Present-day distribution of solar siblings in the xy plane. The
point (0, 0) is the centre of the Milky Way. The dashed black lines represent
the potential of the spiral arms at present. The dotted blue and green circles
correspond to the CRsp and OLRbar respectively. The black crosses in each
panel mark the initial location of the Sun’s birth cluster, which is at 9 kpc.
Here, the initial mass and radius of the Sun’s birth cluster are 1023 M�
and 2 parsec respectively. Top panels: Distribution of solar siblings in a
Galactic model with two spiral arms. The position of the CRsp and OLRbar

are respectively: (11, 6.7) kpc (a) and (9, 10.2) kpc (b). Bottom panels:
c. Distribution of solar siblings in a (2+2) composite model with Asp1 =

1300 km2 s−2 kpc−1 . The solid and dashed black lines represent the main
and secondary spiral structures with co-rotation resonances located at 8.4

and 13.7 kpc respectively. The OLRbaris at 10.2 kpc. d. Distribution of
solar siblings in a Galactic model with four spiral arms. The CRsp and
OLRbar are located at 8 and 10.2 kpc respectively.

with additional scatter introduced due to the different perigalactica
and eccentricities of the cluster orbits.

4 CURRENT DISTRIBUTION OF SOLAR SIBLINGS IN
THE MILKY WAY

If the Sun’s birth cluster was completely disrupted in the Galaxy
at around 1.8 Gyr, the Sun and its siblings are currently spread
out over the Galactic disk, since they have been going around the
Galaxy on individual orbits during the last 2.8 Gyr. In Fig. 3 we
show four possible distributions of the solar siblings in the Galactic
disk. Note that in contrast to the cluster disruption time, the present-
day distribution of solar siblings depends strongly on the Galactic
parameters, especially on changes in m, Ωsp and Ωbar. This is be-
cause the motion of the solar siblings depends on whether their
orbits are affected by the CRsp or by the OLRbar. For instance, in
panel a of Fig. 3 we observe that there is not much radial migra-
tion with respect to the initial position of the Sun’s birth cluster
(R̄sib − Ri ∼ 0.5 kpc, where Ri = ||xcm||). In this example, the
Sun and its siblings are not considerably influenced by the CRsp or
by the OLRbar during their motion in the Galactic disk. The apoc-
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Figure 4. Radial and angular dispersion of the current distribution of so-
lar siblings as a function of different Galactic parameters. Top: The mass
and pattern speed of the bar are varied. Here Asp = 650 km2 s−2 kpc−1,
Ωsp = 20 km s−1 kpc−1 and m = 2. Middle: The amplitude and pat-
tern speed of the spiral structure changes. The Galaxy has two spiral arms.
Bottom: The same as in the middle panel but for a Galaxy with four spi-
ral arms. In the Middle and bottom panels, Mbar = 9.8 × 109 M� and
Ωbar = 40 km s−1 kpc−1. For this set of simulations Mc = 1023 M�
and Rc = 2 pc. The dotted black line in the panels corresponds to
||xcm||. The dotted green line in the middle and bottom panels represents
the OLRbar which is located at 10.2 kpc from the Galactic centre. In the
top panel the value of CRsp is fixed at 10.9 kpc.

entre and pericentre of the solar siblings is at around 7 and 10 kpc;
while the CRsp and OLRbar are located at 11 and 6.7 kpc respec-
tively. This distribution of solar siblings is similar to the distribu-
tions predicted by Portegies Zwart (2009) and Brown et al. (2010).

If the CRsp and the OLRbar are located in the same region
where the Sun and its siblings move around the Galaxy, these stars
will undergo constant and sudden changes in their angular momen-
tum. As a consequence, the distribution of solar siblings will con-
tain lots of substructures. This effect can be observed in panels b
and c of Fig. 3.

When the Sun’s birth cluster evolves in a Galaxy containing
four spiral arms, the solar siblings undergo considerable radial mi-
gration. As a consequence, the current distribution of solar siblings
is highly dispersed in galactocentric radius and azimuth, as ob-
served in panel d of Fig. 3. In this Galactic environment, some solar
siblings can be located at radial distances of up to 3 kpc different
from the radial distance of the Sun to the Galactic centre.

Mishurov & Acharova (2011) presented the spatial distribu-
tion of solar siblings in a Galactic potential with transient spiral
structure of different life-times. They found that the solar siblings
are dispersed all over the disk. Some of these stars can be even lo-
cated at distances larger than 10 kpc with respect to the Galactic
centre (see Figs. 9 and 10 in their paper). By comparing these re-
sults with the distributions that we obtained for a four-armed spiral
structure (panel d Fig. 3), we infer that the solar siblings would be
even more dispersed and located farther from the Sun if the spiral
structure of the Milky Way were transient.

Bland-Hawthorn et al. (2010) used stellar diffusion modelling
to predict the current distribution of solar siblings in the Galaxy.
They used four different approaches, starting from constant and
isotropic coefficients to models where they accounted for the im-
pact of churning on the solar siblings. In their approach the solar
siblings are always spread all over the Galactic disk (all azimuths),
in a configuration like the one shown in Fig. 3d. None of their solar
siblings distributions show substructures or stellar concentrations
in radius and azimuth, as is shown in Figs. 3a–c. Bland-Hawthorn
et al. (2010) found that a substantial fraction of solar siblings may
be located at galactic longitudes of l = 90◦–120◦ or l = 30◦–60◦,
depending on the diffusion model employed.

We characterize our predicted present-day distributions of so-
lar siblings by means of their radial and azimuthal dispersion (σR

and σφ). These quantities are computed using the Robust Scatter
Estimate (RSE) (Lindegren et al. 2012). The radial dispersion of
the distributions shown in panels a–d in Fig. 3 are σR = 0.1, 0.4,
0.9, and 1.8 kpc, respectively. The angular dispersion of these dis-
tributions is: σφ = 0.1π, 0.2π, 0.4π, and 0.6π rad. Since 0.6π
corresponds to the standard deviation of a uniform distribution in
azimuth, a highly dispersed distribution (as in panel d of Fig. 3)
satisfies σR > 0.9 kpc and σφ > 0.4π rad.

In Fig. 4 we show the radial and angular dispersion of the cur-
rent distribution of solar siblings as a function of different Galactic
parameters. In the top panel we varied the parameters of the bar. In
the middle and bottom panels, we varied the amplitude and pattern
speed of the spiral arms. Note that there is a remarkable increase in
σR and σφ when the Galaxy has four spiral arms. In that Galactic
potential, 83% of the simulations result in the solar siblings cur-
rently being dispersed all over the Galactic disk (σR > 0.9 kpc and
σφ > 0.4π rad). On the contrary, in a Galaxy with two spiral arms
(e.g. Fig. 4, top and middle panels), the spatial distribution of solar
siblings is more ‘clustered’ in radius and azimuth. We found that in
84% of these simulations, σR < 0.4 kpc and σφ < 0.2π rad.

We computed σR and σφ for different initial conditions of the
Sun’s birth cluster, according to the values presented in table 3. We
found that σR and σφ do not depend onMc andRc. The maximum
difference in radial and angular dispersion is ∆σRmax = 0.2 kpc
and ∆σφmax = 0.2π rad.

The current distribution of solar siblings constrains the num-
ber of stars that can be observed near the Sun. For instance, if the
solar siblings are ‘clustered’ in galactocentric radius and azimuth
(as shown at the top and middle panels of Fig. 4), the probability of
finding a large fraction of solar siblings in the vicinity of the Sun
increases. Conversely, in more dispersed solar siblings distributions
(e.g. bottom panel Fig. 4), we expect to find a smaller fraction of
solar siblings in the solar vicinity.

We next consider the prospects of identifying solar sibling
candidates from the future Gaia catalogue data.
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5 THE SEARCH FOR THE SOLAR SIBLINGS WITH Gaia

The Gaia mission will provide an astrometric and photometric sur-
vey of more than one billion stars brighter than magnitude G = 20
(Lindegren et al. 2008), where G denotes the apparent magnitude
in the white light band of used for the astrometric measurements,
covering the wavelength range ∼ 350–1050 nm (see Jordi et al.
2010). Parallaxes ($) and proper motions (µ) will be measured
with accuracies ranging from 10 to 30 micro-arcseconds (µas) for
stars brighter than 15 mag, and from 130 to 600 µas for sources at
G = 20. For ∼ 100 million stars brighter than G = 16 Gaia will
also measure radial velocities (Vr), with accuracies ranging from 1
to 15 km s−1. Gaia will not only revolutionize the current view of
the Galaxy but will generate a data set which should in principle
allow for a search for solar siblings even far away from the Sun.

In this section we use our simulations to predict the number
of solar siblings that will be seen by Gaia, and to study their distri-
bution in the space of parallax, proper motion, and radial velocity
with the aim of establishing efficient ways of selecting solar sibling
candidates from the Gaia catalogue.

5.1 The solar siblings in the Gaia catalogue

We first compare the predicted Gaia survey of the solar siblings
with predictions by Bland-Hawthorn et al. (2010), who consid-
ered the prospects for a survey like GALAH (De Silva et al. 2015)
to varying limiting magnitudes. Following Bland-Hawthorn et al.
(2010) we broadly distinguish the possible present-day phase con-
figurations for the solar siblings by referring to the cases shown
in the panels of Fig. 3 as model a and model b (compact spatial
distribution of solar siblings), model c (spatial distribution of solar
siblings obtained with the 2 + 2 composite model) and model d
(highly dispersed spatial distribution of solar siblings).

In predicting the observed kinematic properties of the solar
siblings we want to account for the fact that we do not know which
of the stars in our simulated clusters is the Sun. The location of
the Sun with respect to its siblings will affect the number of sib-
lings that can be observed, especially for clusters that during their
dissolution have not spread all over the Galactic disk in azimuth.
We therefore proceed as follows. All stars in the simulated cluster
located at Galactocentric distances of R = 8–9 kpc and with stel-
lar masses around 1 M� are considered possible ‘suns’. The Gaia
observables ($,µ, Vr) of the siblings are then calculated with re-
spect to each of these candidate suns. This results in a set of dis-
tributions of siblings over the observables which can be considered
collectively in order to account for the uncertain position of the Sun
within its dissolved birth cluster.

We used the PYGAIA2 code to compute the astrometric prop-
erties of the solar siblings. Since we are interested in solar sib-
lings that can be observed by Gaia, we only include stars for which
G 6 20.

The apparent G magnitude is given by the following equation
(Jordi et al. 2010):

G = −2.5 log


∫
λmax

λmin
F (λ)10−0.4AλSx(λ)dλ∫

λmax

λmin
FVega(λ)Sx(λ)dλ

+GVega .

(6)
Here F (λ) and FVega(λ) are the fluxes of a solar sibling and Vega,

2 https://pypi.python.org/pypi/PyGaia/

5 10 15 20

G [mag]

0

10

20

30

40

50

60

70

N
um

be
r

of
so

la
r

si
bl

in
gs a.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d [kpc]

5 10 15 20

G [mag]

0

5

10

15

20

25

30

35

40

N
um

be
r

of
so

la
r

si
bl

in
gs b.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d [kpc]

5 10 15 20

G [mag]

0

5

10

15

20

25

30

35

40

N
um

be
r

of
so

la
r

si
bl

in
gs c.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d [kpc]

5 10 15 20

G [mag]

0

5

10

15

20

25

30

35

40

N
um

be
r

of
so

la
r

si
bl

in
gs d.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d [kpc]

Figure 5. Median number of solar siblings that Gaia is predicted to observe,
as a function of their heliocentric distances d (red histograms) and G mag-
nitudes (blue histograms). The letters in the left corner correspond to the
distributions shown in Fig. 3. The vertical dotted black lines in each panel
represent the limiting magnitude of the GALAH survey, G ∼ 14 mag.

respectively, as measured above the atmosphere of the Earth (in
photons s−1 nm−1). We obtain F (λ) through the BaSeL library of
synthetic spectra (Lejeune et al. 1998), by searching for the stellar
spectral energy distribution which best matches the mass (Ms), ra-
dius (Rs) and effective temperature (Teff ) of a given solar sibling,
where the latter quantities are obtained from the stellar evolution
part of the simulations. FVega(λ) was obtained in the same way by
using the following parameters (Jordi et al. 2010): Teff = 9550 K,
log g = 3.95 dex, [Fe/H] = −0.5 dex and εt = 2 km s−1.

Aλ in Eq. 6 is the extinction, which is described by:

Aλ = AV

(
aλ +

bλ
RV

)
, (7)

where AV is the extinction in the visual (at λ = 550 nm). The
value of AV within our simulated Galaxy is computed by means
of the Drimmel extinction model (Drimmel et al. 2003). RV is the
ratio between the extinction and colour excess in the visual band;
we use RV = 3.1. aλ and bλ are coefficients calculated trough the
Cardelli extinction law (Cardelli et al. 1989).

The function Sx(λ) in Eq. 6 corresponds to the Gaia pass-
bands, which depend on the telescope transmission and the CCD
quantum efficiency. To compute the stellar magnitude in G, we use
the corresponding pass-band described in Jordi et al. (2010).

Finally, GVega is the magnitude zero point which is fixed
through the measurement of the flux of Vega, such that GVega =
0.03 mag.

In Fig. 5 and Table 4 we show the number of solar siblings
that might be observed by Gaia as a function of their heliocentric
distances d and their magnitudes G, where we have averaged over
each of the candidate Suns per model. Note that for models a, c and
d the largest fraction of solar siblings is located within ∼ 500 pc
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Table 4. Median and RSE of the number of solar siblings observed at different
heliocentric distances and to different limits in G. The last column lists the total
number of solar siblings out to the magnitude limit listed. The first column refers
to the distributions shown in Fig. 3. The statistics for a given model were ob-
tained from the distribution of the number of observable solar siblings predicted
for each of the candidate Suns.

Model G [mag] d 6 100 pc d 6 500 pc d 6 1 kpc total
a 6 14 14± 5 26± 7 30± 7 31± 7

6 16 22± 8 50± 16 62± 18 72± 19
6 18 31± 13 95± 33 121± 39 146± 38

6 20 33± 14 145± 49 199± 62 268± 57

b 6 14 1± 0.3 1± 0.6 1± 0.6 1± 0.6
6 16 1± 0.9 3± 1 3± 1 4± 1

6 18 3± 2 8± 4 10± 6 19± 2

6 20 5± 3 14± 8 19± 11 61± 0.3

c 6 14 1± 1 4± 2 5± 3 6± 3

6 16 1± 1 8± 4 11± 5 15± 6

6 18 2± 2 13± 7 19± 11 33± 16
6 20 2± 2 18± 10 37± 18 61± 31

d 6 14 0 0 1± 0.7 1± 1

6 16 0 1± 1 2± 1 4± 1
6 18 0 2± 1 4± 1 9± 2

6 20 0 4± 1 10± 2 22± 4

from the Sun. Yet, the number of solar siblings located at this dis-
tance is rather small for some cases. In models c and d for instance,
just 18 and 4 solar siblings are at d 6 500 pc on average (see
table 4). In model a, on the other hand, 145 ± 49 solar siblings
might be identified. In model b the solar siblings are almost uni-
formly distributed throughout the entire range of d, with more stars
at 1.5 . d . 3.3 kpc. A closer look at Fig. 5 (and also at table 4)
reveals that only in the most ’clustered’ spatial distribution of solar
siblings (model a) there is a chance to observe tens of solar siblings
within 100 pc from the Sun, in accordance with Portegies Zwart
(2009) and Valtonen et al. (2015). In model d, on the contrary, it is
not possible to observe substantial numbers of solar siblings near
the Sun.

Similar predictions of the observable number of solar siblings
were made by Bland-Hawthorn et al. (2010) in the context of prepa-
rations for chemical tagging surveys, (their table 1). They assumed
a larger birth cluster of the Sun (with 2× 104 stars) with a slightly
more massive lower limit on the IMF (0.15 M� vs. 0.08 M� in
our case).

5.2 Selecting solar sibling candidates from the Gaia catalogue

Brown et al. (2010) used their simulated distribution of solar sib-
lings to propose a criterion for the selection of solar sibling can-
didates on the basis of their observed parallax and proper motion.
They basically proposed to select nearby stars with small motions
with respect to the Sun. This was motivated by the observation that
in that region of the parallax vs. proper motion plane the ratio be-
tween the number of siblings and the number of disk stars (in the
Hipparcos catalogue) was largest. Given that this contrast between
the number solar siblings and disk stars depends on the details of
the Galactic potential (as illustrated in Fig. 3) we revisit the selec-
tion criterion proposed by Brown et al. (2010) in order to assess
how robust it is against the uncertainties in the present-day distri-
bution of solar siblings. We proceed in a similar way as Brown
et al. (2010) and examine the simulated present-day distribution of
solar siblings in the space of the astrometric observables (parallax,
proper motion, radial velocity), and compare that to the distribu-
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Figure 6. Distribution of solar siblings (red contours) and simulated Gaia
data for disk stars (black contours) in the proper motion-parallax plane.
Each panel corresponds to the distributions shown in Fig. 3. The red and
black contours indicate the number of stars in bins of 0.1×0.15 mas2yr−1.
The contour levels are at 1, 3, 10, 30, 100, 300, 1000 and 3000 stars/bin. In
the labels of the top, we also show the heliocentric distance corresponding
to each parallax. The proper motion axis represents to total proper motion
of the star.

tion of disk stars. We then search for regions in ($,µ, Vr) where
the contrast between solar siblings and disk stars is high.

We illustrate this procedure in Fig. 6. Here, the distribution of
solar siblings in the proper motion-parallax plane is represented by
the red contours. The black contours correspond to a simulation
of field disk stars as measured by Gaia. We use the Gaia Uni-
verse Model Snapshot (GUMS) (Robin et al. 2012) to generate
a simulated sample of 2.6 × 107 field disk stars. GUMS repre-
sents a synthetic catalogue of stars that simulates what Gaia will
observe. To select only disk stars, we used only the GUMS stars lo-
cated in a cylindrical region of radius 8 kpc and height 300 pc (i.e.
|z| 6 150 pc) centred on to the Sun. The GUMS model includes
multiple-star systems. We determine which ones will be resolved
by Gaia by using a prescription employed within the Data Process-
ing and Analysis Consortium (DPAC, Mignard et al. 2008)3. In this
approach the angular separation on the sky that Gaia can resolve
depends on the apparent magnitudes of the stars in the system, with
the minimum separation being∼ 38 mas. For the unresolved cases,
a single detection is considered by computing the total integrated
magnitude and averaging positions and velocities.

As can be seen in Fig. 6, most of the solar siblings are located
well within the overall disk population (at distances over 100 pc)
making the selection of sibling candidates on the basis of astromet-
ric and radial velocity data alone very difficult. The only area where
a high contrast between the number of siblings and disk stars can be
expected is at large parallax and small proper motion values. How-

3 http://www.cosmos.esa.int/web/gaia/dpac
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Figure 7. Mean (top), RSE (middle) and survival function (bottom) of P(fsib) (see text). We show the projections of such a distribution in the proper motion
versus parallax plane (left), in the parallax versus radial velocity plane (middle) and in the proper motion versus radial velocity plane (right). The bin area in
each column is (0.1× 0.15) mas2 yr−1, (2× 0.15) km s−1 mas and (2× 0.1) km s−1 mas yr−1respectively.

ever, and as expected, this contrast depends strongly on the Galactic
potential used in predicting the solar sibling distribution. In order
to evaluate the robustness of a selection of sibling candidates in
($,µ, Vr) we must take the uncertainties in their distribution into
account and we proceed as follows.

We divide the space $, µ and Vr into discrete (3D) bins and
determine for a given simulated solar sibling distribution the num-
ber of solar siblings Nsib in each bin. We also determine the num-
ber of disk stars Ndisk in each bin and then calculate the number
fsib = Nsib/Ndisk, which we refer to as the sibling fraction. The
idea is that a high value of fsib (say fsib > 0.5) suggests that
selecting stars from the corresponding ($,µ, Vr) bin in the Gaia
catalogue should increase the success rate of subsequent searches
for solar siblings that examine the astrophysical properties of those
stars (age, metallicity, chemical abundance pattern). Alternatively
the number fsib can be interpreted as meaning that a star selected
from the corresponding bin in ($,µ, Vr) has a probability fsib of

being a solar sibling (provided of course that the simulated popula-
tion of siblings and disk stars is representative of reality).

To account for the uncertainties in the phase space distribution
of siblings we repeat the above procedure for each of our 1125 sim-
ulated solar sibling populations and for each of the ‘suns’ within a
given population of siblings. This leads to a distribution of values
of fsib, p(fsib), for each bin in ($,µ, Vr). This distribution thus re-
flects different Galactic potential parameters, different initial con-
ditions for the Sun’s birth cluster, and different possible locations of
the Sun within the dispersed sibling population. In Fig. 7 we show
the mean value (top panel), the RSE (middle panel) and the survival
function (S(0.5)) (bottom panel) of p(fsib). The survival function
corresponds to the fraction of simulations for which fsib > 0.5,
which provides a more robust indication of bins in ($,µ, Vr) where
a high fraction of solar siblings is likely to be found. Note that the
figure shows the statistics for p(fsib) marginalized over the coordi-
nate not included in the plot.

The statistics of fsib shown in Fig. 7 show that the proposal by
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Brown et al. (2010), to search for solar siblings among nearby stars
with small motions with respect to the Sun, is robust to the uncer-
tainties in the distribution of the solar siblings due to the uncertain
Galactic potential and birth cluster conditions. By examining the
($,µ, Vr) in three dimensions and looking for regions where the
mean of p(fsib) is above 0.5, we refine the solar sibling candidate
selection criterion by Brown et al. (2010) to:

$ > 5 mas;

4 6 µ 6 6 mas yr−1;

−2 6 Vr 6 0 km s−1. (8)

The survival function in this region goes from 0.42 to 0.54. This
indicates that despite the uncertainties in the spatial distributions of
solar siblings it is still possible to identify regions in the space of
$,µ and Vr where more than a half of the stars might be a solar
sibling.

6 DISCUSSION

6.1 Re-evaluation of existing solar sibling candidates

We now use the updated selection criterion from Eq. 8 to examine
the stars that have been proposed in the literature as solar sibling
candidates. The results are shown in table 5. In the first column we
list the names of the solar siblings candidates. From the second to
the ninth columns we show the value and uncertainty of their helio-
centric distances, parallaxes, proper motions and radial velocities
respectively. These values were obtained from the SIMBAD cata-
logue (Wenger et al. 2000). The tenth column lists mean value of
fsib for each star, given its coordinates in the space of $, µ and
V r. The corresponding RSE and the survival fraction for that re-
gion of phase space are shown in the eleventh and twelfth columns
respectively.

Note that the stars HD 147443 and HD 196676 have phase
space coordinates corresponding to sibling fractions of 0.76±0.20
and 0.56 ± 0.38, respectively. Their ages and metallicities are
also consistent with those of the Sun (Ramı́rez et al. 2014). How-
ever, given that these stars do not have solar chemical composition
(Ramı́rez et al. 2014), we can not identify them as solar siblings.
This is consistent with the fact that the value of fsib for these stars
still allows for a significant fraction of stars that are not solar sib-
lings located in the same region of phase space.

Conversely, Ramı́rez et al. (2014) found that the stars HD
28676, HD 91320, HD 154747 and HD 162826 have the same age,
metallicity and chemical composition as the Sun, within the ob-
servational errors. However, according to the numbers in Table 5
these stars have a low probability of being solar siblings. This also
holds for the star HD 68814, which is chemically homogeneous
with the Sun (Liu et al. 2015) but is located in a phase space region
where fsib ∼ 10−4. This discrepancy may be due to the limita-
tions in our simulations, which may lead to underestimates of fsib

(see Sect. 6.2) or may be attributed to the observation that there
is chemical abundance overlap between different clusters (Blanco-
Cuaresma et al. 2015), which implies the presence of stars that look
like solar siblings even if their phase space properties are very dif-
ferent.

From the small number of stars examined as potential solar
siblings it is not possible to draw further conclusions. For more
progress on this issue the results of Gaia and the complementary
abundance surveys, such as GALAH, will have to be awaited.

6.2 Applicability of the sibling selection criteria

We have shown in this study that despite uncertainties in the Galac-
tic potential parameters and solar birth cluster initial conditions, it
is possible to identify a region in the space of parallaxes, proper
motion, and radial velocities which is robustly predicted to contain
a high fraction of solar siblings with respect to disk stars. However,
the selection criterion shown in Eq. 8 is only valid for the cluster
initial conditions and Galaxy models considered here. Changes in
the mass and size of the Sun’s birth cluster or in the modelling of
the Milky Way, might alter the region in phase-space where it is
more likely to identify solar siblings. For instance, massive clus-
ters (with 104 stars) evolving in the Galactic potential described
in Sect. 2.1 might have lifetimes of around 20 Gyr (Gieles et al.
2007). Thus, after 4.6 Gyr of evolution, most of the solar siblings
would still be bound to the cluster, showing a clumped distribution
in the phase-space for most of the Galactic parameters. Conversely,
small open clusters (as those described in Sect. 2.2) only survive
a few Myr in a Galaxy model containing transient spiral structure
and giant molecular clouds (see e.g. Gieles et al. 2006; Lamers &
Gieles 2006; Gieles et al. 2007; Kruijssen et al. 2011). In such a
more realistic potential the solar siblings would be more dispersed
in both radius and azimuth, completely mixed with other disk stars,
which would (much) lower the mean value of fsib in any given re-
gion of ($,µ, Vr). Another limitation is that we do not consider
the vertical motion of the Sun and the vertical force of the bar and
spiral arms in the cluster simulations. Although the solar siblings
are stars that move within the Galactic disk, the mean value of fsib

might change when considering a three-dimensional potential for
the Galaxy. For the types of solar birth clusters studied in this work
the results thus strongly support the need for chemical abundance
surveys to attempt to identify the sun’s siblings (and other disrupted
clusters).

One could consider making more sophisticated phase space
searches for the solar siblings by making use of conserved quan-
tities (energy, angular momentum). However, if open clusters con-
tribute a significant fraction of the stars to the Galactic disk (and all
stars existing on somewhat similar orbits) it is not obvious that dis-
rupted open clusters would stand out in integrals of motion spaces.
Our simple selection criterion also has the advantage of being de-
fined entirely in the space of observables where the properties of
the errors are well understood.

7 SUMMARY

We used numerical simulation to study the evolution and disruption
of the Sun’s birth cluster in the Milky Way. In the simulations we
include the gravitational force among the stars in the cluster and the
stellar evolution effects on the cluster population. We also include
the external tidal field of the Galaxy, which was modelled as an
analytical potential containing a bar and spiral arms. We used two
Galactic models: one in which the Galaxy has two or four spiral
arms and a (2 + 2) composite model in which two spiral arms have
smaller strength and pattern speed than the other two arms. The aim
of this study is to predict the present-day phase space distribution of
the solar siblings (as observed in astrometry and radial velocities)
and to understand how Gaia data might be used to pre-select solar
siblings candidates for follow-up chemical abundance studies.

We found that the dissolution time-scale of the Sun’s birth
cluster is insensitive to the details of the Galactic model, in par-
ticular to the parameters of the bar and spiral arms. For the set of
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Table 5. Current Solar siblings candidates. They are sorted by the value of fsib.

Star name d σd $ σ$ µ σµ V r σVr fsib RSE sf Ref.1

(HD no.) (pc) (pc) (mas) (mas) (mas yr−1) (mas yr−1) (km s−1) (km s−1)

147443 92.0 8.38 10.87 0.99 5.26 0.69 −2.1 7.1 0.76 0.20 0.47 Br10
196676 74.4 2.77 13.44 0.5 5.06 0.54 −0.79 0.1 0.56 0.38 0.42 Br10
192324 67.11 4.82 14.9 1.07 6.36 2.01 −4.4 0.4 0.02 0.01 0.01 Br10
46301 107.64 6.6 9.29 0.57 5.85 0.71 −6.7 0.7 0.01 0.005 0.01 Ba12
162826 33.6 0.41 29.76 0.36 20.14 0.38 1.88 0.0063 0.003 0.001 ∼ 10−4 Bo11
26690 36.34 0.77 27.52 0.58 3.62 0.58 2.4 1.9 0.003 0.001 ∼ 10−4 Ba12
207164 76.1 3.82 13.14 0.66 3.06 0.7 −7.0 0.3 0.001 0.0005 ∼ 10−4 Ba12
35317 55.71 2.39 17.95 0.77 6.08 0.51 15.0 0.1 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
175740 81.97 1.75 12.2 0.26 2.95 0.26 −9.18 0.25 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10+Ba12
199881 72.2 3.65 13.85 0.7 2.64 0.8 −15.7 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
101197 82.99 6.82 12.05 0.99 5.66 0.62 7.5 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
105678 74.02 1.7 13.51 0.31 5.82 0.26 −17.4 0.5 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
219828 72.31 3.87 13.83 0.74 5.86 0.77 −24.14 0.17 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
28676 38.7 0.88 25.84 0.59 4.47 0.73 6.71 0.09 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10+Ba12
52242 68.17 2.74 14.67 0.59 5.07 0.64 31.3 0.9 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
95915 66.62 2.13 15.01 0.48 5.09 0.53 16.9 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
105000 71.07 2.98 14.07 0.59 4.73 0.75 −14.8 1.5 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
148317 79.62 3.49 12.56 0.55 3.45 0.69 −37.6 0.4 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
44821 29.33 0.53 34.1 0.62 5.0 0.44 18.3 0.76 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10+Ba12
68814 80.45 7.57 12.43 1.17 3.65 1.03 34.5 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Liu15
7735 85.69 8.81 11.67 1.2 3.5 1.18 21.7 1.4 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
100382 93.98 3.0 10.64 0.34 4.89 0.35 −10.9 0.4 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10
199951 70.22 1.28 14.24 0.26 1.78 0.21 17.6 0.8 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
168769 50.18 3.7 19.93 1.47 2.14 1.33 26.4 0.2 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10
46100 55.46 2.61 18.03 0.85 9.35 0.94 21.3 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
83423 72.1 4.94 13.87 0.95 7.96 1.2 −7.3 3.4 ∼ 10−4 ∼ 10−4 ∼ 10−4 Bo11+Ba12
91320 90.5 6.88 11.05 0.84 5.18 0.63 17.5 0.4 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10
102928 91.41 4.18 10.94 0.5 0.63 0.34 14.12 0.06 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10
168442 19.56 0.62 51.12 1.63 2.3 1.56 −13.8 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Br10
154747 97.85 8.9 10.22 0.93 8.58 0.78 −14.9 0.3 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12
183140 71.84 6.61 13.92 1.28 13.97 0.91 −28.8 0.4 ∼ 10−4 ∼ 10−4 ∼ 10−4 Ba12

1 Br10= Brown et al. (2010); Bo11= Bobylev et al. (2011); Ba12= Batista & Fernandes (2012); Liu14= Liu et al. (2015)

simulations carried out in this study, the Sun’s birth cluster is com-
pletely disrupted in a time-scale of 0.5 − 2.3 Gyr, where the dif-
ferences are due to different eccentricities and perigalactica of the
cluster orbits.

After the dissolution of the Sun’s birth cluster, the solar sib-
lings move independently within the potential of the Galaxy. De-
pending on the Galactic parameters, the solar siblings may cur-
rently be more or less dispersed in Galactic radius and azimuth.
If the orbits of the solar siblings are not influenced by the CRsp

or by the OLRbar, the present-day distribution of the solar siblings
is such that most of these stars are in the close vicinity of the Sun.
Conversely, if the orbits of the solar siblings are influenced by these
two resonances, the current spatial distribution of the siblings is
more dispersed in radius and azimuth, with substructures in some
regions of the Galactic disk (this is also observed in the (2 + 2)
composite model). In Galaxy models with four spiral arms, the so-
lar siblings are spread all over the Galactic disk.

We predicted the Gaia observations (astrometry and radial ve-
locities) of solar siblings brighter than G = 20 mag. We use the
GUMS simulation (Robin et al. 2012) to generate a large sample of
stars which mimic the disk stars that Gaia will observe. With this
information, we computed the sibling fraction fsib = Nsib/Ndisk,
which can be interpreted as the probability of finding solar sib-
lings in a certain region of the space of $, µ and Vr. Regions in
this phase-space where fsib > 0.5 indicate that a large fraction of

stars located there might be solar siblings. Thus exploring those re-
gions would increase the success rate in finding solar siblings can-
didates in the future. We found that fsib > 0.5 when $ > 5 mas,
4 6 µ 6 6 masyr−1, and −2 6 Vr 6 0 km s−1. This result is
very similar to that by Brown et al. (2010) but is now obtained for
a large fraction of simulations covering a broad range of Galactic
parameters and initial conditions for the Sun’s birth cluster.

However, this selection criterion is only valid under the as-
sumptions made in this study. Introducing more realism into the
simulations (transient spiral arms, molecular clouds) would lower
fsib and make the pre-selection of solar siblings on the basis of
distance and kinematic data very inefficient (unless the sun’s birth
cluster was originally much more massive). This reinforces the con-
clusion already reached by Bland-Hawthorn et al. (2010) that large
scale surveys are needed which are aimed at precisely determin-
ing the astrophysical properties of stars, in particular their ages and
chemical abundances, if we want to identify the solar family.
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Pelupessy F. I., Jänes J., Portegies Zwart S., 2012, New˜Astron.,

17, 711
Pichardo B., Martos M., Moreno E., 2004, ApJ, 609, 144
Pichardo B., Moreno E., Allen C., Bedin L. R., Bellini A.,

Pasquini L., 2012, AJ, 143, 73
Plummer H. C., 1911, MNRAS, 71, 460
Portegies Zwart S. F., 2009, ApJ, 696, L13
Portegies Zwart S. F., Jı́lková L., 2015, MNRAS, 451, 144
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