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A POLYNOMIAL DEFINED BY THE SL(2;C)-REIDEMEISTER
TORSION FOR A HOMOLOGY 3-SPHERE OBTAINED BY

DEHN-SURGERY ALONG A TORUS KNOT

TERUAKI KITANO

Abstract. Let Mn be a homology 3-sphere obtained by1
n-Dehn surgery

along a (p, q)-torus knot. We consider a polynomialσ(p,q,n)(t) whose
zeros are the inverses of the Reideimeister torsion ofMn for SL(2;C)-
irreducible representations. We give an explicit formula of this polyno-
mial by using Tchebychev polynomials of the first kind. Further we also
give a 3-term relations of these polynomials.

1. Introduction

Let T(p, q) be a (p, q)-torus knot inS3. Herep, q are coprime and posi-
tive integers. LetMn be a homology 3-sphere obtained by1

n-Dehn surgery
alongT(p, q). It is well known thatMn is a Brieskorn homology 3-sphere
Σ(p, q,N) where we writeN for |pqn+ 1|. HereΣ(p, q,N) is defined as

{(z1, z2, z3) ∈ C3 | zp
1 + zq

2 + zN
3 = 0, |z1|2 + |z2|2 + |z3|2 = 1}.

In this paper we consider the Reidemeister torsionτρ(Mn) of Mn for an
irreducible representationρ : π1(Mn)→ SL(2;C).

In the 1980’s Johnson [1] gave an explicit formula for any non-trivial
value of τρ(Mn). Furthermore, he proposed to consider the polynomial
whose zero set coincides with the set of all non-trivial values{ 1

τρ(Mn) }, which
is denoted byσ(2,3,n)(t). Under some normalization ofσ(2,3,n)(t), he gave a 3-
term relation amongσ(2,3,n+1)(t), σ(2,3,n)(t) andσ(2,3,n−1)(t) by using Tcheby-
chev polynomials of the first kind.

Recently in [5] we gave one generalization of the Johnson’s formula for
a (2p′, q)-torus knot. Herep′, q are coprime odd integers. In this paper, we
show the formula for any torus knotT(p, q).
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2. Definition of Reidemeister torsion

First let us describe definitions and properties of the Reidemeister torsion
for SL(2;C)-representations. See Johnson [1], Kitano [2, 3] and Porti[7]
for details.
Let b = (b1, · · · , bd) andc = (c1, · · · , cd) be two bases for ad-dimensional

vector spaceW overC. Settingbi =

d
∑

j=1

p ji cj, we obtain a nonsingular

matrix P = (pi j ) ∈ GL(d;C). Let [b/ c] denote the determinant ofP.
Suppose

C∗ : 0→ Ck
∂k→ Ck−1

∂k−1→ · · ·
∂2→ C1

∂1→ C0→ 0

is an acyclic chain complex of finite dimensional vector spaces overC. We
assume that a preferred basisci for Ci is given for eachi. That is,C∗ is a
based acyclic chain complex overC.
Choose any basisbi for Bi = Im(∂i+1) and take a lift of it inCi+1, which is
denoted bỹbi. SinceBi = Zi = Ker∂i, the basisbi can serve as a basis for
Zi. Furthermore since the sequence

0→ Zi → Ci
∂i→ Bi−1→ 0

is exact, the vectors (bi, b̃i−1) form a basis forCi . Hereb̃i−1 is a lift of bi−1

in Ci. It is easily shown that [bi, b̃i−1/ci] does not depend on a choice of a
lift b̃i−1. Hence we can simply denote it by [bi, bi−1/ci].

Definition 2.1. The torsionτ(C∗) of a based chain complex C∗ with {c∗} is
given by the alternating product

τ(C∗) =
k

∏

i=0

[bi , bi−1/ci]
(−1)i+1
.

Remark 2.2. It is easy to see thatτ(C∗) does not depend on choices of the
bases{b0, · · · , bk}.

Now we apply this torsion invariant of chain complexes to geometric
situations as follows. LetX be a finite CW-complex and̃X a universal
covering ofX with the lifted CW-complex structure. The fundamental
groupπ1X acts onX̃ from the right-hand side as deck transformations. We
may assume that this action is free and cellular by taking a subdivision if
we need. Then the chain complexC∗(X̃;Z) has the structure of a chain
complex of freeZ[π1X]-modules.
Let ρ : π1X→ SL(2;C) be a representation. We denote the 2-dimensional
vector spaceC2 by V. Using the representationρ, V admits the structure of
aZ[π1X]-module and then we denote it byVρ.
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Define the chain complexC∗(X; Vρ) by C∗(X̃;Z) ⊗Z[π1X] Vρ and choose a
preferred basis

(ũ1 ⊗ e1, ũ1 ⊗ e2, · · · , ũd ⊗ e1, ũd ⊗ e2)

of Ci(X; Vρ) where{e1, e2} is a canonical basis ofV = C2, {u1, · · · , ud} are
the i-cells giving a basis ofCi(X;Z) and{ũ1, · · · , ũd} are lifts of them onX̃.
Now we suppose thatC∗(X; Vρ) is acyclic, namely all homology groups
H∗(X; Vρ) are vanishing. In this caseρ is called an acyclic representation.

Definition 2.3. Letρ : π1(X)→ SL(2;C) be an acyclic representation.
Then the Reidemeister torsionτρ(X) ∈ C \ {0} is defined by the torsion
τ(C∗(X; Vρ)) of C∗(X; Vρ).

Remark 2.4.
(1) We defineτρ(X) = 0 for a non-acyclic representationρ.
(2) The definition ofτρ(X) depends on several choices. However it is

well known that it is a piecewise linear invariant in the caseof
SL(2;C)-representations.

3. Johnson’s theory

Let T(p, q) ⊂ S3 be a (p, q)-torus knot with coprime integersp, q. Now we
write Mn to a closed orientable 3-manifold obtained by a1

n-Dehn surgery
alongT(p, q). Here the fundamental group ofS3 \ T(p, q) has the
presentation as follows;

π1(S
3 \ T(p, q)) = 〈x, y | xp

= yq〉.
Furthermoreπ1(Mn) admits the presentation as follows;

π1(Mn) = 〈x, y | xp
= yq,mln = 1〉

wherem= x−rys (r, s ∈ Z, ps− qr = 1) is a meridian ofT(p, q) and
similarly l = x−pmpq

= y−qmpq is a longitude.
It is seen [1, 5] that the set of the conjugacy classes of the irreducible
representations ofπ1(Mn) in SL(2;C) is finite. Any conjugacy class can be
represented byρ(a,b,k) : π1(Mn)→ SL(2;C) for some triple (a, b, k) such that

(1) 0< a < p, 0 < b < q, a ≡ b mod 2,
(2) 0< k < N = |pqn+ 1|, k ≡ namod 2,
(3) tr(ρ(a,b,k)(x)) = 2 cosaπ

p ,

(4) tr(ρ(a,b,k)(y)) = 2 cosbπ
q ,

(5) tr(ρ(a,b,k)(m)) = 2 coskπ
N .

Furthermore Johnson computedτρ(a,b,k)(Mn) as follows.

Theorem 3.1(Johnson).
(1) A representationρ(a,b,k) is acylic if and only if a≡ b ≡ 1.
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(2) For any acyclic representationρ(a,b,k) with a≡ b≡1, then one has

τρ(a,b,k)(Mn) =
1

2
(

1− cosaπ
p

) (

1− cosbπ
q

) (

1+ cospqkπ
N

) .

4. Main theorem

In this section we give a formula of the torsion polynomialσ(p,q,n)(t) for
Mn = Σ(p, q,N) obtained by a1

n-Dehn surgery alongT(p, q). Now we
define torsion polynomials as follows.

Definition 4.1. A one variable polynomialσ(p,q,n)(t) is called the torsion
polynomial of Mn if the zero set coincides with the set of all non trivial
values

{

1
τρ(Mn) | τρ(Mn) , 0

}

and it satisfies the following normalization
condition as

σ(p,q,n)(0) =







































(−1)
(N−1)p(q−1)

8 p is even, q is odd,

(−1)
(N−1)(p−1)q

8 q is even, q is odd,

(−1)
(N−1)(p−1)(q−1)

8 p, q are odd, n is even,

(−1)
N(p−1)(q−1)

8 p, q are odd, n is odd

where N= |pqn+ 1|.

Remark 4.2.
(1) For M0 = S3, the torsion polynomialσ(p,q,0)(t) is defined by
σ(p,q,0)(t) = 1.

(2) In the case that p= 2p′ is even and p′ is odd, then this
normalization condition coincides with the one in[5].

From here assumen , 0. Recall Johnson’s formula
1

τρ(a,b,k)(Mn)
= 2

(

1− cos
aπ
p

) (

1− cos
bπ
q

) (

1+ cos
pqkπ

N

)

where 0< a < p, 0 < b < q, a ≡ b ≡ 1 mod 2, k ≡ n mod 2. Here by
putting

C(p,q,a,b) =

(

1− cos
aπ
p

) (

1− cos
bπ
q

)

,

one has
1

τρ(a,b,k)(Mn)
= 4C(p,q,a,b) ·

1
2

(

1+ cos
pqkπ

N

)

.

Main result is the following.

Theorem 4.3.The torsion polynomial of Mn is given by

σ(p,q,n)(t) =
∏

(a,b)

Y(n,a,b)(t)
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where

Y(n,a,b)(t) =



















































TN+1(s)−TN−1(s)
2(s2−1)2 (p or q is even, n > 0),

−TN+1(s)−TN−1(s)
2(s2−1)2 (p or q is even, n < 0),

TN+1(s)−TN−1(s)
2(s2−1)2 (p, q are odd, n is even, n > 0),

−TN+1(s)−TN−1(s)
2(s2−1)2 (p, q are odd, n is even, n < 0).

TN(s) (p, q, n are odd).

Here

• Tl(x) is the l-th Tchebychev polynomial of the first kind.

• s=

√
t

2
√

C(p,q,a,b)

.

• C(p,q,a,b) =

(

1− cosaπ
p

) (

1− cosbπ
q

)

.
• a pair of integers(a, b) is satisfying the following conditions;

– 0 < a < p, 0 < b < q,
– a ≡ b ≡ 1 mod2.

Remark 4.4. Recall that the l-th Tchebychev polynomial Tl(x) is defined
by Tl(cosθ) = cos(lθ).

Proof. We consider the following;

Xn(x) =















TN+1(x)−TN−1(x)
2(x2−1) (n > 0)

−TN+1(x)−TN−1(x)
2(x2−1) (n < 0).

X′n(x) = TN(x).

First we assumep = 2p′ is even. For the case thatp′ is odd, then it is
proved in [5]. Then we suppose thatp′ is even. HereN = |2p′qn+ 1| is
always odd.

Case 1:p = 2p′, p′ is even andn > 0

We modify one factor (1+ cos2p′qkπ
N ) of

1
τρ(Mn)

as follows. See [5] for the

proof.

Lemma 4.5. The set{cos2p′qkπ
N | 0 < k < N, k ≡ n mod2} is equal to the set

{cos2p′kπ
N | 0 < k < N−1

2 }.

Now we can modify

1
2

(

1+ cos
2p′kπ

N

)

=
1
2
· 2 cos2

2p′kπ
2N

= cos2
p′kπ
N
.
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We put

zk = cos
p′kπ
N

(1 ≤ k ≤ N − 1).

By the definition, it is seen

zN−k = cos
p′(N − k)π

N

= cos(p′π −
p′kπ
N

)

= zk

becausep′ is even.
Therefore it is enough to consider onlyzk (1 ≤ k ≤ N−1

2 ).
Now we substitutex = zk to TN+1(x). Then one has

TN+1(zk) = cos

(

(N + 1)
p′kπ
N

)

= cos
p′kπ
N

= zk

and

TN−1(zk) = cos

(

(N − 1)
p′kπ
N

)

= cos
p′kπ
N

= zk.

Hence it holds
TN+1(zk) − TN−1(zk) = 0.

By properties of Tchebychev polynomials, it is seen that

• TN+1(1)− TN−1(1) = 0,
• TN+1(−1)− TN−1(−1) = 0.

We remark that the degree ofXn(x) = TN+1(x)−TN−1(x)
2(x2−1) is N − 1 and

z1, · · · , zN−1
2

are zeros. Because both ofTN+1(x) andTN−1(x) are even
functions, then−z1, · · · ,−zN−1

2
are also zeros ofXn(x). HenceXn(x) is a

functions ofx2. Here by replacingx by
√

t

2
√

C(p,q,a,b)
, the degree ofY(n,a,b)(t) is

N−1
2 , and the roots ofY(n,a,b)(t) are

4C(p,q,a,b)z
2
k = 4C(p,q,a,b) cos2

πk
N

(

0 < k <
N − 1

2

)

,

which are all non trivial values of 1
τρ(a,b,k) (Mn) .
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Here we check the normalization condition. By the definitionof Y(n,a,b)(t)
and properties ofTN+1(x),TN−1(x), one has

Y(n,a,b)(0) =
TN+1(0)− TN−1(0)

2(0− 1)

= −
(−1)

N+1
2 − (−1)

N−1
2

2
= (−1)

N−1
2 .

Hence it can be seen

σ(p,q,n)(0) =
∏

(a,b)

(−1)
N−1

2

=

∏

(a,b)

(

(−1)
N−1

2

)

p(q−1)
4

= (−1)
(N−1)p(q−1)

8 .

Therefore we obtain the formula.

Case 2:p = 2p′ andn < 0
In this case we modifyN = |2p′qn+ 1| = 2p′q|n| − 1. By the same
arguments, it is easy to see the claim of the theorem is proved.
Next assume both ofp, q are odd integers.

Case 3:p, q are odd andn is even
If n is even, thenN = |pqn+ 1| is odd. Then the similar arguments in [5]
work well. Then it can be proved.

Case 4:p, q are odd andn is odd
Supposen is positive. First note thatN = |pqn+ 1| is even. We can modify

one factor (1+ cospqkπ
N ) of

1
τρ(Mn)

as follows. It is clear because

(q,N) = 1.

Lemma 4.6. The set{cospqkπ
N | 0 < k < N, k ≡ n mod2} is equal to the set

{cospkπ
N | 0 < k < N, k ≡ 1 mod2}.

Now we can modify

1
2

(

1+ cos
pkπ
N

)

=
1
2
· 2 cos2

pkπ
2N

= cos2
pkπ
2N
.

We put

z′k = cos
pkπ
2N

(1 ≤ k ≤ N − 1, k ≡ 1 mod 2).
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Here we subsitutex = z′k (1 ≤ k ≤ N−1
2 , k ≡ 1 mod 2) toTN(x). Then one

has

TN(z′k) = cos

(

N(pkπ)
2N

)

= cos

(

pkπ
2

)

= 0

becausepk is odd.
Similarly it can be also seen that

TN(−z′k) = 0.

We mention that the degree ofX′n(x) = TN(x) is N and±z′1, · · · ,±z′N−1 are
the zeros. BecauseX′n(x) is a functions ofx2. Here by replacingx by√

t

2
√

C(p,q,a,b)
, Here it holds that its degree ofY(n,a,b)(t) is N−1

2 , and the roots of

Y(n,a,b)(t) are

4C(p,q,a,b)z
′
k
2
= 4C(p,q,a,b) cos2

πk
N

(

0 < k <
N − 1

2

)

,

which are all non trivial values of 1
τρ(a,b,k) (Mn) .

Finally we can check the normalization condition as follows. By the
definition ofY(n,a,b)(t), one has

Y(n,a,b)(0) = TN(0)

= (−1)
N
2

and

σ(p,q,n)(0) =
∏

(a,b)

(−1)
N
2

=

(

(−1)
N
2

)

(p−1)(q−1)
4

= (−1)
N(p−1)(q−1)

8 .

Therefore we obtain the formula.
In the case thatn is negative, then it can be proved by similar arguments.
Therefore this completes the proof. �

Remark 4.7. By defining as X0(t) = 1, it implies Y(0,a,b)(t) = 1. Then the
above statement is true for n= 0.

By direct computation, one obtains the following corollary.
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Corollary 4.8. The degree deg(σ(p,q,n)(t)) is given by

deg(σ(p,q,n)(t)) =



































(N−1)p(q−1)
8 (p even, q odd),

(N−1)(p−1)q
8 (p odd, q even),

(N−1)(p−1)(q−1)
8 (p, q odd, n even),

N(p−1)(q−1)
8 (p, q odd, n odd).

We mention the 3-term relations. For each factor ofY(n,a,b)(t) of σ(p,q,n)(t),
there exists the following relation.

Proposition 4.9.

(1) Assume one of p and q is even. For any n, it holds that

Y(n+1,a,b)(t) = D(t)Y(n,a,b)(t) − Y(n−1,a,b)(t)

where D(t) = 2Tpq

( √
t

2
√

Cp,q,a,b

)

.

(2) Assume both of p, q are odd. For any n, it holds that

Y(n+2,a,b)(t) = D(t)Y(n,a,b)(t) − Y(n−2,a,b)(t)

where D(t) = 2T2pq

( √
t

2
√

C2p,q,a,b

)

.

Proof. Here we need to considerN = |pqn+ 1| is a function ofn ∈ Z for
fixed p, q. Then we writeN(n) for N in this proof.
The proof for the first case is essentially the same one for the3-term
relations [5]. We give the proof only for the second case.
Recall the following property of Tchebychev polynomials

2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x)

for anym, n ∈ Z.

Case 1:n is even
If n > 0 one has

2T2pq(x)Xn(x) = 2T2pq(x)
TN(n)+1(x) − TN(n)−1(x)

2(x2 − 1)

=
T(pqn+1)+1+2pq(x) + T(pqn+1)+1−2pq(x) − (T(pqn+1)−1+2pq(x) + T(pqn+1)−1−2pq(x))

2(x2 − 1)

=
Tpq(n+2)+1+1(x) − Tpq(n+2)+1−1(x) + Tpq(n−2)+1+1(x) − Tpq(n−2)+1−1(x)

2(x2 − 1)

=
TN(n+2)+1(x) − TN(n+2)−1(x) + TN(n−2)+1(x) − TN(n−2)−1(x)

2(x2 − 1)
= Xn+2(x) + Xn−2(x).
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Therefore it can be seen that

Xn+2(x) = 2T2pq(x)Xn(x) − Xn−2(x)

and

Y(n+2,a,b)(t) = 2T2pq















√
t

2
√

C(2p,q,a,b)















Y(n,a,b)(t) − Y(n−2,a,b)(t).

If n < 0, it can be also proved by the above argument.

Case 2:n is odd
If n > 0, one has

2T2pq(x)X′n(x) = 2T2pq(x)TN(n)(x)

= Tpqn+1+2pq(x) + Tpqn+1−2pq(x)

= Tpq(n+2)+1(x) + Tpq(n−2)+1(x)

= TN(n+2)(x) + TN(n−2)(x)

= X′n+2(x) + X′n−2(x).

Therefore it can be seen that

X′n+2(x) = 2T2pq(x)X′n(x) − X′n−2(x)

and

Y(n+2,a,b)(t) = 2T2pq















√
t

2
√

C(2p,q,a,b)















Y(n,a,b)(t) − Y(n−2,a,b)(t).

If n < 0, it can be also proved.
This completes the proof of this proposition. �

5. examples

Finally we give some examples.

Example 5.1.Put p= 4, q = 3. Now N= |12n+ 1|. In this case
(a, b) = (1, 1), (3, 1). By applying the main theorem, one has

σ(4,3,−1)(t) = 34359738368t10− 77309411328t9
+ 66840428544t8

− 28655484928t7
+ 6677331968t6 − 882900992t5

+ 66371584t4

− 2723840t3
+ 55680t2 − 480t + 1.

σ(4,3,0)(t) = 1.

σ(4,3,1)(t) = 4398046511104t12− 12094627905536t11
+ 13434657701888t10

− 7859790151680t9
+ 2670664351744t8 − 552909930496t7

+ 71319945216t6 − 5727322112t5
+ 278757376t4

− 7741440t3
+ 110208t2 − 672t + 1.
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Example 5.2.Put p= 3, q = 5. Now N= |15n+ 1|. In this case
(a, b) = (1, 1), (1, 3). For any odd number n, one has

σ(3,5,n)(t) = Y(n,1,1)(t)Y(n,1,3)(t)

= TN















√
t

2
√

C(3,5,1,1)















YN















√
t

2
√

C(3,5,1,3)















.

By applying the main theorem, we obtain

σ(3,5,−1)(t) = 18014398509481984t14− 47287796087390208t13
+ 51721026970583040t12

− 30847898228883456t11
+ 11085001353330688t10− 2520389888507904t9

+ 372923420377088t8 − 36436086620160t7
+ 2352597696512t6

− 98837200896t5
+ 2605023232t4 − 40341504t3

+ 329280t2 − 1176t + 11.

σ(3,5,0)(t) = 1.

σ(3,5,1)(t) = 4611686018427387904t16− 13835058055282163712t15

+ 17726168133330272256t14− 12754194144713244672t13

+ 5718164151876976640t12− 1682516673287946240t11

+ 334779300425236480t10− 45872724622442496t9

+ 4367893693202432t8
+ −288911712583680t7

+ 13126896451584t6 − 399582953472t5

+ 7798652928t4 − 90832896t3
+ 563200t2 − 1536t + 1.
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