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A POLYNOMIAL DEFINED BY THE SL(2;C)-REIDEMEISTER
TORSION FOR A HOMOLOGY 3-SPHERE OBTAINED BY
DEHN-SURGERY ALONG A TORUS KNOT

TERUAKI KITANO

Asstract. Let M, be a homology 3-sphere obtained %)5Dehn surgery
along a 0, g)-torus knot. We consider a polynomiapqn)(t) whose
zeros are the inverses of the Reideimeister torsioMgfor SL(2;C)-
irreducible representations. We give an explicit formulghis polyno-
mial by using Tchebychev polynomials of the first kind. Ferttve also
give a 3-term relations of these polynomials.

1. INTRODUCTION

Let T(p, q) be a , g)-torus knot inS3. Herep, g are coprime and posi-
tive integers. LetM, be a homology 3-sphere obtained ﬁ)@ehn surgery
alongT(p, g). It is well known thatM, is a Brieskorn homology 3-sphere
>(p, g, N) where we writeN for |pgn+ 1|. HereZ(p, g, N) is defined as

3 N 2 2 2
(1, 2,) €C° |+ 2+ Z) =0, |z + |z + |z8]” = 1}.

In this paper we consider the Reidemeister torsigiM,) of M, for an
irreducible representatign: m,(M,) — SL(2;C).

In the 1980’s Johnson [1] gave an explicit formula for any -tavial
value of r,(M,). Furthermore, he proposed to consider the polynomial
whose zero set coincides with the set of all non-trivial ea[gp(lTn)}, which
is denoted byr, 3 (t). Under some normalization of 3, (t), he gave a 3-
term relation amongr 3 n+1)(1), o230 (t) andoz3n-1)(t) by using Tcheby-
chev polynomials of the first kind.

Recently in[[5] we gave one generalization of the Johnsanimndla for
a (2p', g)-torus knot. Hergy', g are coprime odd integers. In this paper, we

show the formula for any torus kndt(p, q).
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2. DEFINITION OF REIDEMEISTER TORSION

First let us describe definitions and properties of the Realster torsion

for SL(2; C)-representations. See Johndon [1], Kitano [2, 3] and PArti

for details.

Letb = (by,---,bg) andc = (cy, - - - , Cq) be two bases for d-dimensional
d

vector spacdV overC. Settingb; = Z pjiCj, we obtain a nonsingular
j=1

matrix P = (p;;) € GL(d; C). Let [b/ c] denote the determinant &%

Suppose

Ok Ok-1 02 01
C.:0-C—>C.1—--->5C;,=>Cy—>0

is an acyclic chain complex of finite dimensional vector gsaaverC. We
assume that a preferred basisor C; is given for each. Thatis,C, is a
based acyclic chain complex ovér

Choose any basls; for B; = Im(d;.,1) and take a lift of it inC;,1, which is
denoted byb;. SinceB; = Z = Kerd;, the basid; can serve as a basis for
Z;. Furthermore since the sequence

0—>Zi—>CiiBi_1—>0

is exact, the vectorsy, bj_,) form a basis foC;. Hereb;_; is a lift of bj_
in C;. Itis easily shown thatd, b;_;/c;] does not depend on a choice of a
lift b;_;. Hence we can simply denote it bly;[b;_,/c].

Definition 2.1. The torsionr(C,) of a based chain complex. @vith {c.} is
given by the alternating product

k
7(C.) = [ [l bia/c] V"
i=0

Remark 2.2. It is easy to see that(C,) does not depend on choices of the
basesby, - - -, by}.

Now we apply this torsion invariant of chain complexes torgetric
situations as follows. LeX be a finite CW-complex anX a universal
covering ofX with the lifted CW-complex structure. The fundamental
groupr; X acts onX from the right-hand side as deck transformations. We
may assume that this action is free and cellular by takingodisision if

we need. Then the chain compléx(X; Z) has the structure of a chain
complex of freeZ[n;X]-modules.

Letp : ;X — SL(2;C) be a representation. We denote the 2-dimensional
vector spac€? by V. Using the representatign V admits the structure of
aZ[m X]-module and then we denote it .
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Define the chain compleR.(X; V,) by C.(X; Z) ®zx,x V, and choose a
preferred basis

(ﬂl®e1’l:ll®e2"" sud®e1’l:ld®e2)
of Ci(X; V,)) where{ey, &} is a canonical basis &f = C?, {uy, - - - , Ug} are
thei-cells giving a basis of;(X; Z) and{ly, - - - , Ug} are lifts of them orX.
Now we suppose thdl.(X; V,) is acyclic, namely all homology groups
H.(X;V,) are vanishing. In this cageis called an acyclic representation.

Definition 2.3. Letp : 71(X) — SL(2;C) be an acyclic representation.
Then the Reidemeister torsiop(X) € C \ {0} is defined by the torsion
7(C.(X; V,)) of C.(X; V,).

Remark 2.4.

(1) We define,(X) = 0 for a non-acyclic representatign

(2) The definition of,(X) depends on several choices. However it is
well known that it is a piecewise linear invariant in the cade
SL(2; C)-representations.

3. JHNSON’S THEORY

Let T(p,q) c S be a , g)-torus knot with coprime integers g. Now we
write M, to a closed orientable 3-manifold obtained b%(—E)ehn surgery
alongT(p, g). Here the fundamental group 8f \ T(p, q) has the
presentation as follows;

S\ T(p,q) = 6y xP = y9).
Furthermorer;(M,) admits the presentation as follows;

m1(Mp) = %,y xP =y, ml" = 1)
wherem= x"y® (r,se Z, ps—qr = 1) is a meridian off (p, q) and
similarly | = x"PmP9 = y"9mP9is a longitude.
It is seen([1, 5] that the set of the conjugacy classes of teduicible

representations of;(M,) in SL(2; C) is finite. Any conjugacy class can be
represented by by : 11(Mn) — SL(2;C) for some triple &, b, k) such that

(1) O<a<p,0<b<ga=bmod?2,
(2) 0O<k< N =|pgn+1],k=namod 2,
(3) trlp@bi(X) = 2 cosT,
(4) tr(p@bi(¥)) = 2 cos,
(5) tr(pgapi (M) = 2 cosi.
Furthermore Johnson computeg, , (M,) as follows.

Theorem 3.1(Johnson)
(1) Arepresentatiomy is acylic if and only if a= b = 1.
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(2) For any acyclic representation, k) With a= b=1, then one has

Tpanw(Mn) = :
Pb YIS = 2(1 - cos%) (1 - COS%) (1 + COS%).

4. MAIN THEOREM

In this section we give a formula of the torsion polynonai@j qn (t) for
M, = Z(p, g, N) obtained by aﬁ-Dehn surgery alon@(p, g). Now we
define torsion polynomials as follows.

Definition 4.1. A one variable polynomiat 4 (t) is called the torsion
polynomial of M if the zero set coincides with the set of all non trivial
values{%(—bn) | 7,(My) # O} and it satisfies the following normalization

condition as

(1) pis evenq is odd

(-1 qis evenq is odd

(1) p,q are oddn is even
N(p-1)(@-1)

(-1)~ = — p,gareoddnisodd

T(pqn(0) =

where N= |pgn+ 1].

Remark 4.2.
(1) For Mg = S3, the torsion polynomiadp q0)(t) is defined by
Tpgo)) =1

(2) In the case that p= 2p’ is even and pis odd, then this
normalization condition coincides with the one[&j.

From here assume+ 0. Recall Johnson'’s formula
1 = 2(1 — cos%) (1 - COS%) (1 + COSM)
Tp(a,b,k) (Mn) p q N
whereO<a< p,0<b<g,a=b=1mod2k=nmod 2. Here by
putting
ar br
Cipgab) = (1 - COSF) (1 - COSE) ,

one has

: ! Pq )
o Cpany- (14 cosPE).
Tpank (Mn) (Paab) " 5 ( 3

Main result is the following.

Theorem 4.3. The torsion polynomial of iis given by

Tpan® = | | Yinan ()

(a,b)
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where

Tn+a(9)-Tn-1(8)

2F1) (p or gis evenn > 0),
_ Tn+1(9-Tn-1(9)

217 (p or qis evenn < 0),
Yoan(t) =1 4800 (p g are oddn is evenn > 0),
(p,q are oddn is evenn < 0).

_ Thra(9-Tn-1(9)
2(s?-1)?
Tn(s) (p,q,n are odd.

Here

e T/(X) is the I-th Tchebychev polynomial of the first kind.
Vi

2/Cpaab)
¢ Cipgan = (1 - cosZ)(1 - cos).
e a pair of integerqa, b) is satisfying the following conditions;
—0<a<pO0O<b<q,
—a=b=1mod2.

e S

Remark 4.4. Recall that the I-th Tchebychev polynomiglx) is defined
by T,(cosh) = cos(6).

Proof. We consider the following;

Tne1(¥)=Tn-1(%)
n>0
Xn(X) = { 2(¢-1) ( )

Tnea(0-Tn-1(X)
-~ Tl Tl (n < ).

Xa(X) = Tn(X).

First we assume = 2p’ is even. For the case thptis odd, then itis
proved in [5]. Then we suppose thaitis even. HereN = |2p’gqn+ 1| is
always odd.

Case 1p = 2p/, p' isevenanda > 0
We modify one factor (& cos?29<) of

TV as follows. See |5] for the
P n
proof.

Lemma 4.5. The se{cos22% | 0 < k < N,k = n mod2} is equal to the set
{cosZ |0 < k < ML),

Now we can modify

1 2pkr\ 1 2pkn
§(1+cos N )_§ 2 cog N
:co§pkﬂ

N
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We put
zk:cospl\i:ﬂ 1<k<N-1)

By the definition, it is seen
'(N — K
N—k = COS%
p'kr

N
= %

becausgy' is even.
Therefore it is enough to consider omy(1 < k < &1).
Now we substitutex = z to Tn,1(X). Then one has

'k
Tnea(zo) = COS( pN )
_ P’k
= COS N
= Z
and
kr
Tn-1(z0) = COS( il )
_ p’kr
= COS N

= Z.
Hence it holds
Tnea(zd = Tnea(z) = 0

By properties of Tchebychev polynomials, it is seen that

e Tnia(1) - Tnoa(2) =0,

e Tnia(-1)-Tna(-1)=0
We remark that the degree Xf(x) = 1401828 is N - 1 and
Z,- -, Znz1 are zeros. Because both™D§,1(X) andTy_1(X) are even
functlons then-z, - - ,—Zna are also zeros of,(x). HenceX,(X) is a

‘\/ (p.0. a,b)

functions ofx?. Here by replacmg< by

, the degree o¥(,a)(t) is

N1, and the roots 0¥ a(t) are
nk N-1
4C(P,q,a~b)zl§ = 4C(p,q,a,b) CO§ — (O <k< T) ,

which are all non trivial values ofw
P(abk) n
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Here we check the normalization condition. By the definitdrYy .1, (t)
and properties of \;1(X), Tn_1(X), one has
Trn+1(0) — Tn-1(0)
Y, 0) =
(n,a,b)( ) 2(0 1)
_(ED)F -
2

N-1

=(-1)z.
Hence it can be seen

T(pqn)(0) = l_l(_l)¥

(a,b)
=[ [( 1)
(ab)

=)

Therefore we obtain the formula.

(N- l)p(q 1)

Case 2p=2p andn<0

In this case we modifi = |2p’qn+ 1| = 2p’qIn| — 1. By the same
arguments, it is easy to see the claim of the theorem is proved
Next assume both gf, g are odd integers.

Case 3p, g are odd anah is even
If nis even, thelN = |pgn+ 1| is odd. Then the similar arguments in [5]
work well. Then it can be proved.

Case 4p, g are odd andh is odd
Supposen is positive. First note thadll = |pgn+ 1| is even. We can modify

one factor (1+ cosp ) of as follows. It is clear because

(@.N) =
Lemma 4.6. The set{cos% | 0 < k< N,k =nmod2} is equal to the set
{cosB® |0 < k < N,k = 1 mod2}.

7p(Mn)

Now we can modify

We put
zk:cos%(lsksN—l, k=1 mod 2)
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Here we subsitute = Z (1 < k < %2, k=1 mod 2) toTy(X). Then one
has

_ N(pkn)
TN(4)_cos( N )

_ cog PXx
—COS( 2)

=0

becausekis odd.
Similarly it can be also seen that

Tn (—ZL) =0

We mention that the degree ¥f(x) = Tn(X) isN and+z,--- , £z , are
the zeros Becaus€,(x) is a functions of?. Here by replacing< by
—2 TP Here it holds that its degree ¥f, o) (t) | is N-1 and the roots of

Y(n,a,b) (t) are

nk N-1
4C(p’qva»b)2;<2 = 4C(pqab) cos N (O k< 2 ),

which are all non trivial values ofm
p(abk) n

Finally we can check the normalization condition as follo®g the
definition of Y, 4 (t), one has

Ynat(0) = Tn(0)
= (-1)2

and
o (pan(0) = l—[(—l)%

(ab)
(P-1)(@-1)

=(v7)
N(p- l)(q 1)
=(-1)" 7=
Therefore we obtain the formula.
In the case that is negative, then it can be proved by similar arguments.
Therefore this completes the proof. |

Remark 4.7. By defining as ¥t) = 1, itimplies Ypap)(t) = 1. Then the
above statement is true for=n 0.

By direct computation, one obtains the following corollary
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Corollary 4.8. The degree dég(,qn)(t)) is given by

(N-1)p(g-1)

m (p evenq odd,
=220 (p odd g even,
WDEDED (b, g odd n even,

N(p-1)(@-1) 1)(q 1) (p’ q oddn OdC)

We mention the 3-term relations. For each facto¥g@f,,(t) of o (pqn)(t),
there exists the following relation.

de9(0'(p,q,n) 1) =

Proposition 4.9.
(1) Assume one of p and g is even. For any n, it holds that

Yn+1ab)(t) = D(1)Ynan)(t) — Yin-1an)(t)

— W
where Ot) = 2T zm)
(2) Assume both of,jg are odd. For any n, it holds that

Yine2ap)(t) = D) Ynan(t) = Yo-2ab)(t)

— Wi
where Ot) = 2T2pq(2m).
Proof. Here we need to consid®l = |pgn+ 1| is a function ofn € Z for
fixed p, g. Then we writeN(n) for N in this proof.
The proof for the first case is essentially the same one foB-#teem
relations[[5]. We give the proof only for the second case.
Recall the following property of Tchebychev polynomials

2Tm(X)Th(X) = Tren(X) + Tren(X)

foranym,n e Z.

Case 1nis even
If n> 0 one has
Tnm+1(¥) = Tng-2(¥)
2(x2-1)
_ T(pqn+1)+1+2pq(x) + T(pqn+1)+1—2pq(x) - (T(pqn+1)—1+2pq(x) + T(pqn+1)—1—2pq(x))
B 2(x2 - 1)
_ qu(n+2)+1+1(x) - qu(n+2)+1—1(x) + qu(n—2)+1+1(x) - qu(n—2)+1—1(x)
B 2(x2 - 1)
~ Tnee2:1(9) = Tngez)-1(9) + Tnn-2)01(X) = Tnn-2)-1(X)
B 202 - 1)

2T2pq(x)xn(x) = 2T2pq(x)

= Xn+2(x) + Xn—Z(X)'
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Therefore it can be seen that
Xn+2(x) = 2T2pq(x)xn(x) - Xn—z(X)
and

Vi
Yinr2an)(t) = 2T2pq[ Yinab)(t) = Yin-2ap)(1).
(2p.g.a,b)

If n< 0, it can be also proved by the above argument.
Case 2nis odd
If n> 0, one has
2T2pq(X)X;](X) = 2T2pq(X)TN(n)(X)
= Tpgn1+2pa(X) + Tpgne1-2pq(X)
= qu(n+2)+1(x) + qu(n—2)+1(x)
= Tne2)(X) + Tnn-2)(X)
= X02(¥) + X1 _5(X).

Therefore it can be seen that
Xir2(X) = 2T2pg(X)X4(X) = Xi-2(X)
and
Vi
Y(n+2,a,b) (t) = 2T2pq [—
2+/Czpgab)

If n< 0, it can be also proved.
This completes the proof of this proposition. |

] Y(n,a,b) (t) - Y(n—2,a,b) (t)

5. EXAMPLES
Finally we give some examples.

Example 5.1.Put p=4,q = 3. Now N= |12n + 1. In this case
(a,b) = (1,1),(3,1). By applying the main theorem, one has

o @3-1)(t) = 34359738368° — 77309411328 + 6684042854¢%

— 28655484928 + 6677331966 — 88290099¢ + 66371584"
— 2723840° + 55680% — 48Qt + 1.

oazo)(t) = L.

o @z1)(t) = 4398046511104% — 12094627905536" + 1343465770188%°
— 7859790151688 + 2670664351744 — 552909930496
+ 71319945216 — 572732211¢ + 278757376
— 774144® + 110208% - 672 + 1.
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Example 5.2. Put p= 3, =5. Now N= |15n + 1]. In this case
(a,b) = (1,1), (1, 3). For any odd number n, one has

o@snt) = Y1) Yz (t)
Vi Vi
=Tn YN )
2,/Cas11) 24/C@as.13)

By applying the main theorem, we obtain

o @s.1)(t) = 1801439850948198% — 4728779608739020%8 + 5172102697058304%
— 30847898228883456 + 1108500135333068% — 252038988850790%
+372923420377088—- 36436086620160+ 2352597696512
— 988372008986 + 260502323 — 40341504 + 32928@* — 1176 + 11

oaso)(t) = L.

o @s1)(t) = 461168601842738796% — 13835058055282163 712
+17726168133330272286— 127541941447132446%3
+57181641518769766486 — 1682516673287946240
+ 334779300425236488 — 4587272462244249%6
+ 436789369320243%+ —288911712583680
+13126896451584 — 399582953471
+ 7798652928 — 90832896° + 56320Q° — 1536 + 1.
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