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Abstract

The spectral k-support norm enjoys good estimation properties in low rank matrix learning
problems, empirically outperforming the trace norm. Its unit ball is the convex hull of rank k
matrices with unit Frobenius norm. In this paper we generalize the norm to the spectral (k, p)-
support norm, whose additional parameter p can be used to tailor the norm to the decay of the
spectrum of the underlying model. We characterize the unit ball and we explicitly compute
the norm. We further provide a conditional gradient method to solve regularization problems
with the norm, and we derive an efficient algorithm to compute the Euclidean projection on
the unit ball in the case p = ∞. In numerical experiments, we show that allowing p to
vary significantly improves performance over the spectral k-support norm on various matrix
completion benchmarks, and better captures the spectral decay of the underlying model.

Keywords. k-support norm, orthogonally invariant norms, matrix completion, multitask learn-
ing, proximal point algorithms.
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1 Introduction

The problem of learning a sparse vector or a low rank matrix has generated much interest in recent
years. A popular approach is to use convex regularizers which encourage sparsity, and a number
of these have been studied with applications including image denoising, collaborative filtering and
multitask learning, see for example, [Buehlmann and van der Geer 2011, Wainwright 2014] and
references therein.

Recently, the k-support norm was proposed by [Argyriou et al. 2012], motivated as a tight
relaxation of the set of k-sparse vectors of unit Euclidean norm. The authors argue that as a regu-
larizer for sparse vector estimation, the norm empirically outperforms the Lasso [Tibshirani 1996]
and Elastic Net [Zou and Hastie 2005] penalties. Statistical bounds on the Gaussian width of the
k-support norm have been provided by [Chatterjee et al. 2014]. The k-support norm has also been
extended to the matrix setting. By applying the norm to the vector of singular values of a matrix,
[McDonald et al. 2014] obtain the orthogonally invariant spectral k-support norm, reporting state
of the art performance on matrix completion benchmarks.

Motivated by the performance of the k-support norm in sparse vector and matrix learning prob-
lems, in this paper we study a natural generalization by considering the `p-norms (for p ∈ [1,∞])
in place of the Euclidean norm. These allow a further degree of freedom when fitting a model to
the underlying data. We denote the ensuing norm the (k, p)-support norm. As we demonstrate in
numerical experiments, using p = 2 is not necessarily the best choice in all instances. By tuning
the value of p the model can incorporate prior information regarding the singular values. When
prior knowledge is lacking, the parameter can be chosen by validation, hence the model can adapt
to a variety of decay patterns of the singular values. An interesting property of the norm is that it
interpolates between the `1 norm (for k = 1) and the `p-norm (for k = d). It follows that varying
both k and p the norm allows one to learn sparse vectors which exhibit different patterns of decay
in the non-zero elements. In particular, when p =∞ the norm prefers vectors which are constant.

A main goal of the paper is to study the proposed norm in matrix learning problems. The (k, p)-
support norm is a symmetric gauge function hence it induces the orthogonally invariant spectral
(k, p)-support norm. This interpolates between the trace norm (for k = 1) and the Schatten p-
norms (for k = d) and its unit ball has a simple geometric interpretation as the convex hull of
matrices of rank no greater than k and Schatten p-norm no greater than one. This suggests that the
new norm favors low rank structure and the effect of varying p allows different patterns of decay
in the spectrum. In the special case of p = ∞, the (k, p)-support norm is the dual of the Ky-Fan
k-norm [Bhatia 1997] and it encourages a flat spectrum when used as a regularizer.

The main contributions of the paper are: i) we propose the (k, p)-support norm as an extension
of the k-support norm and we characterize in particular the unit ball of the induced orthogonally
invariant matrix norm (Section 3); ii) we show that the norm can be computed efficiently and
we discuss the role of the parameter p (Section 4); iii) we outline a conditional gradient method
to solve the associated regularization problem for both vector and matrix problems (Section 5);
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and in the special case p = ∞ we provide an O(d log d) computation of the projection operator
(Section 5.1); finally, iv) we present numerical experiments on matrix completion benchmarks
which demonstrate that the proposed norm offers significant improvement over previous methods,
and we discuss the effect of the parameter p (Section 6). The appendix contains derivations of
results which are sketched in or are omitted from the main body of the paper.

Notation. We use Nn for the set of integers from 1 up to and including n. We let Rd be the
d-dimensional real vector space, whose elements are denoted by lower case letters. For any vector
w ∈ Rd, its support is defined as supp(w) = {i ∈ Nd : wi 6= 0}, and its cardinality is defined
as card(w) = | supp(w)|. We let Rd×m be the space of d ×m real matrices. We denote the rank
of a matrix as rank(W ). We let σ(W ) ∈ Rr be the vector formed by the singular values of W ,
where r = min(d,m), and where we assume that the singular values are ordered nonincreasing,
that is σ1(W ) > · · · > σr(W ) > 0. For p ∈ [1,∞) the `p-norm of a vector w ∈ Rd is defined
as ‖w‖p = (

∑d
i=1 |wi|p)1/p and ‖w‖∞ = maxdi=1 |wi|. Given a norm ‖ · ‖ on Rd or Rd×m, ‖ · ‖∗

denotes the corresponding dual norm, defined by ‖u‖∗ = sup{〈u,w〉 : ‖w‖ 6 1}. The convex
hull of a subset S of a vector space is denoted co(S).

2 Background and Previous Work

For every k ∈ Nd, the k-support norm ‖ · ‖(k) is defined as the norm whose unit ball is given by

co
{
w ∈ Rd : card(w) 6 k, ‖w‖2 6 1

}
, (2.1)

that is, the convex hull of the set of vectors of cardinality at most k and `2-norm no greater than
one [Argyriou et al. 2012]. We readily see that for k = 1 and k = d we recover the unit ball of the
`1 and `2-norms respectively.

The k-support norm of a vector w ∈ Rd can be expressed as an infimal convolution
[Rockafellar 1970, p. 34],

‖w‖(k) = inf
(vg)

{∑
g∈Gk

‖vg‖2 :
∑
g∈Gk

vg = w

}
, (2.2)

where Gk is the collection of all subsets of Nd containing at most k elements and the infimum
is over all vectors vg ∈ Rd such that supp(vg) ⊆ g, for g ∈ Gk. Equation (2.2) highlights that
the k-support norm is a special case of the group lasso with overlap [Jacob et al. 2009], where
the cardinality of the support sets is at most k. This expression suggests that when used as a
regularizer, the norm encourages vectors w to be a sum of a limited number of vectors with small
support. Due to the variational form of (2.2) computing the norm is not straightforward, however
[Argyriou et al. 2012] note that the dual norm has a simple form, namely it is the `2-norm of the k
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largest components,

‖u‖(k),∗ =

√√√√ k∑
i=1

(|u|↓i )2, u ∈ Rd, (2.3)

where |u|↓ is the vector obtained from u by reordering its components so that they are nonin-
creasing in absolute value. Note also from equation (2.3) that for k = 1 and k = d, the dual
norm is equal to the `∞-norm and `2-norm, respectively, which agrees with our earlier observation
regarding the primal norm.

A related problem which has been studied in recent years is learning a matrix from a set of linear
measurements, in which the underlying matrix is assumed to have sparse spectrum (low rank). The
trace norm, the `1-norm of the singular values of a matrix, has been shown to perform well in this
setting, see e.g. [Argyriou et al. 2008, Jaggi and Sulovsky 2010]. Recall that a norm ‖ · ‖ on Rd×m

is called orthogonally invariant if ‖W‖ = ‖UWV ‖, for any orthogonal matrices U ∈ Rd×d and
V ∈ Rm×m. A classical result by von Neumann establishes that a norm is orthogonally invariant
if and only if it is of the form ‖W‖ = g(σ(W )), where σ(W ) is the vector formed by the singular
values of W in nonincreasing order, and g is a symmetric gauge function [Von Neumann 1937].
In other words, g is a norm which is invariant under permutations and sign changes of the vector
components, that is g(w) = g(Pw) = g(Jw), where P is any permutation matrix and J is diagonal
with entries equal to ±1 [Horn and Johnson 1991, p. 438].

Examples of symmetric gauge functions are the `p norms for p ∈ [1,∞] and the corresponding
orthogonally invariant norms are called the Schatten p-norms [Horn and Johnson 1991, p. 441].
In particular, those include the trace norm and Frobenius norm for p = 1 and p = 2 respectively.
Regularization with Schatten p-norms has been previously studied by [Argyriou et al. 2007] and a
statistical analysis has been performed by [Rohde and Tsybakov 2011]. As the set Gk includes all
subsets of size k, expression (2.2) for the k-support norm reveals that is a symmetric gauge func-
tion. [McDonald et al. 2014] use this fact to introduce the spectral k-support norm for matrices, by
defining ‖W‖(k) = ‖σ(W )‖(k), for W ∈ Rd×m and report state of the art performance on matrix
completion benchmarks.

3 The (k, p)-Support Norm

In this section we introduce the (k, p)-support norm as a natural extension of the k-support norm.
This follows by applying the `p-norm, rather than the Euclidean norm, in the infimum convolution
definition of the norm.

Definition 1. Let k ∈ Nd and p ∈ [1,∞]. The (k, p)-support norm of a vector w ∈ Rd is defined
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as

‖w‖(k,p) = inf
(vg)

{∑
g∈Gk

‖vg‖p :
∑
g∈Gk

vg = w

}
. (3.1)

where the infimum is over all vectors vg ∈ Rd such that supp(vg) ⊆ g, for g ∈ Gk.

Let us note that the norm is well defined. Indeed, positivity, homogeneity and non degeneracy
are immediate. To prove the triangle inequality, let w,w′ ∈ Rd. For any ε > 0 there exist {vg}
and {v′g} such that w =

∑
g vg, w

′ =
∑

g v
′
g,
∑

g ‖vg‖p 6 ‖w‖(k,p) + ε/2, and
∑

g ‖v′g‖p 6
‖w′‖(k,p) + ε/2. As

∑
g vg +

∑
g v
′
g = w + w′, we have

‖w + w′‖(k,p) 6
∑
g

‖vg‖p +
∑
g

‖v′g‖p

6 ‖w‖(k,p) + ‖w′‖(k,p) + ε,

and the result follows by letting ε tend to zero.

Note that, since a convex set is equivalent to the convex hull of its extreme points, Definition 1
implies that the unit ball of the (k, p)-support norm, denoted by Cp

k , is given by the convex hull of
the set of vectors with cardinality no greater than k and `p-norm no greater than 1, that is

Cp
k = co

{
w ∈ Rd : card(w) 6 k, ‖w‖p 6 1

}
. (3.2)

Definition 1 gives the norm as the solution of a variational problem. Its explicit computation
is not straightforward in the general case, however for p = 1 the unit ball (3.2) does not depend
on k and is always equal to the `1 unit ball. Thus, the (k, 1)-support norm is always equal to the
`1-norm, and we do not consider further this case in this section. Similarly, for k = 1 we recover
the `1-norm for all values of p. For p = ∞, from the definition of the dual norm it is not difficult
to show that ‖ · ‖(k,p) = max{‖ · ‖∞, ‖ · ‖1/k}. We return to this in Section 4 when we describe
how to compute the norm for all values of p.

Note further that in Equation (3.1), as p tends to ∞, the `p-norm of each vg is increasingly
dominated by the largest component of vg. As the variational formulation tries to identify vectors
vg with small aggregate `p-norm, this suggests that higher values of p encourage each vg to tend to
a vector whose k entries are equal. In this manner varying p allows us adjust the degree to which
the components of vector w can be clustered into (possibly overlapping) groups of size k.

As in the case of the k-support norm, the dual (k, p)-support norm has a simple expression.
Recall that the dual norm of a vector u ∈ Rd is defined by the optimization problem

‖u‖(k,p),∗ = max
{
〈u,w〉 : ‖w‖(k,p) = 1

}
. (3.3)
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Proposition 2. If p ∈ (1,∞] then the dual (k, p)-support norm is given by

‖u‖(k,p),∗ =

(∑
i∈Ik

|ui|q
) 1

q

, u ∈ Rd,

where q = p/(p− 1) and Ik ⊂ Nd is the set of indices of the k largest components of u in absolute
value. Furthermore, if p ∈ (1,∞) and u ∈ Rd\{0} then the maximum in (3.3) is attained for

wi =

sign(ui)
(

|ui|
‖u‖(k,p),∗

) 1
p−1

if i ∈ Ik,
0 otherwise.

(3.4)

If p =∞ the maximum is attained for

wi =


sign(ui) if i ∈ Ik, ui 6= 0,

λi ∈ [−1, 1] if i ∈ Ik, ui = 0,

0 otherwise.

Note that for p = 2 we recover the dual of the k-support norm in (2.3).

3.1 The Spectral (k, p)-Support Norm

From Definition 1 it is clear that the (k, p)-support norm is a symmetric gauge function. This
follows since Gk contains all groups of cardinality k and the `p-norms only involve absolute values
of the components. Hence we can define the spectral (k, p)-support norm as

‖W‖(k,p) = ‖σ(W )‖(k,p), W ∈ Rd×m.

Since the dual of any orthogonally invariant norm is given by ‖ · ‖∗ = ‖σ(·)‖∗, see e.g.
[Lewis 1995], we conclude that the dual spectral (k, p)-support norm is given by

‖Z‖(k,p),∗ = ‖σ(Z)‖(k,p),∗, Z ∈ Rd×m.

The next result characterizes the unit ball of the spectral (k, p)-support norm. Due to the rela-
tionship between an orthogonally invariant norm and its corresponding symmetric gauge function,
we see that the cardinality constraint for vectors generalizes in a natural manner to the rank opera-
tor for matrices.

Proposition 3. The unit ball of the spectral (k, p)-support norm is the convex hull of the set of
matrices of rank at most k and Schatten p-norm no greater than one.
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In particular, if p = ∞, the dual vector norm is given by u ∈ Rd, by ‖u‖(k,∞),∗ =
∑k

i=1 |u|
↓
i .

Hence, for any Z ∈ Rd×m, the dual spectral norm is given by ‖Z‖(k,∞),∗ =
∑k

i=1 σi(Z), that
is the sum of the k largest singular values, which is also known as the Ky-Fan k-norm, see e.g.
[Bhatia 1997].

4 Computing the Norm

In this section we compute the norm, illustrating how it interpolates between the `1 and `p-norms.

Theorem 4. Let p ∈ (1,∞). For every w ∈ Rd, and k 6 d, it holds that

‖w‖(k,p) =

[∑̀
i=1

(|w|↓i )p +

(∑d
i=`+1 |w|

↓
i

q
√
k − `

)p ] 1
p

(4.1)

where 1
p

+ 1
q

= 1, and for k = d, we set ` = d, otherwise ` is the largest integer in {0, . . . , k − 1}
satisfying

(k − `)|w|↓` >
d∑

i=`+1

|w|↓i . (4.2)

Furthermore, the norm can be computed in O(d log d) time.

Proof. Note first that in (4.1) when ` = 0 we understand the first term in the right hand side to
be zero, and when ` = d we understand the second term to be zero.

We need to compute

‖w‖(k,p) = max

{
d∑
i=1

uiwi : ‖u‖(k,p),∗ 6 1

}

where the dual norm ‖ · ‖(k,p),∗ is described in Proposition 2. Let zi = |w|↓i . The problem is then
equivalent to

max

{
d∑
i=1

ziui :
k∑
i=1

uqi 6 1, u1 > · · · > ud

}
. (4.3)

This further simplifies to the k-dimensional problem

max

{
k−1∑
i=1

uizi + uk

d∑
i=k

zi :
k∑
i=1

uqi 6 1, u1 > · · · > uk

}
.
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Note that when k = d, the solution is given by the dual of the `q-norm, that is the `p-norm. For
the remainder of the proof we assume that k < d. We can now attempt to use Holder’s inequality,
which states that for all vectors x such that ‖x‖q = 1, 〈x, y〉 6 ‖y‖p, and the inequality is tight if
and only if

xi =

(
|yi|
‖y‖p

)p−1
sign(yi).

We use it for the vector y = (z1, . . . , zk−1,
∑d

i=k zi). The components of the maximizer u satisfy

ui =
(

zi
Mk−1

)p−1
if i 6 k − 1, and

uk =

(∑d
i=`+1 zi

Mk−1

)p−1

.

where for every ` ∈ {0, . . . , k− 1}, M` denotes the r.h.s. in equation (4.1). We then need to verify
that the ordering constraints are satisfied. This requires that

(zk−1)
p−1 >

(
d∑
i=k

zi

)p−1

which is equivalent to inequality (4.2) for ` = k−1. If this inequality is true we are done, otherwise
we set uk = uk−1 and solve the smaller problem

max

{ k−2∑
i=1

uizi + uk−1

d∑
i=k−1

zi :

k−2∑
i=1

uqi + 2uqk−1 6 1, u1 > · · · > uk−1

}
.

We use again Hölder’s inequality and keep the result if the ordering constraints are fulfilled. Con-
tinuing in this way, the generic problem we need to solve is

max

{∑̀
i=1

uizi + u`+1

d∑
i=`+1

zi :

∑̀
i=1

uqi + (k − `)uq`+1 6 1, u1 > · · · > u`+1

}
where ` ∈ {0, . . . , k − 1}. Without the ordering constraints the maximum, M`, is obtained by
the change of variable u`+1 7→ (k − `)

1
qu` followed by applying Hölder’s inequality. A direct
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computation provides that the maximizer is ui =
(
zi
M`

)p−1
if i 6 `, and

(k − `)
1
qu`+1 =

( ∑d
i=`+1 zi

(k − `)
1
qMp

`

)p−1

.

Using the relationship 1
p

+ 1
q

= 1, we can rewrite this as

u`+1 =

( ∑d
i=`+1 zi

(k − `)Mp
`

)p−1

.

Hence, the ordering constraints are satisfied if

zp−1` >

(∑d
i=`+1 zi

(k − `)

)p−1

,

which is equivalent to (4.2). Finally note that M` is a nondecreasing function of `. This is because
the problem with a smaller value of ` is more constrained, namely, it solves (4.3) with the additional
constraints u`+1 = · · · = ud. Moreover, if the constraint (4.2) holds for some value ` ∈ {0, . . . , k−
1} then it also holds for a smaller value of `, hence we maximize the objective by choosing the
largest `.

The computational complexity stems from using the monotonicity of M` with respect to `,
which allows us to identify the critical value of ` using binary search.

Note that for k = d we recover the `p-norm and for p = 2 we recover the result in
[Argyriou et al. 2012, McDonald et al. 2014], however our proof technique is different from theirs.

Remark 5 (Computation of the norm for p ∈ {1,∞}). Since the norm ‖ · ‖(k,p) computed above
for p ∈ (1,∞) is continuous in p, the special cases p = 1 and p =∞ can be derived by a limiting
argument. We readily see that for p = 1 the norm does not depend on k and it is always equal to
the `1-norm, in agreement with our observation in the previous section. For p =∞ we obtain that
‖w‖(k,∞) = max (‖w‖∞, ‖w‖1/k).

5 Optimization

In this section, we describe how to solve regularization problems using the vector and matrix
(k, p)-support norms. We consider the constrained optimization problem

min
{
f(w) : ‖w‖(k,p) 6 α

}
, (5.1)
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Algorithm 1 Frank-Wolfe.
Choose w(0) such that ‖w(0)‖(k,p) 6 α
for t = 0, . . . , T do

Compute g := ∇f(w(t))
Compute s := argmin

{
〈s, g)〉 : ‖s‖(k,p) 6 α

}
Update w(t+1) := (1− γ)w(t) + γs, for γ := 2

t+2

end for

where w is in Rd or Rd×m, α > 0 is a regularization parameter and the error function f is assumed
to be convex and continuously differentiable. For example, in linear regression a valid choice is
the square error, f(w) = ‖Xw−y‖22, whereX is matrix of observations and y a vector of response
variables. Constrained problems of form (5.1) are also referred to as Ivanov regularization in the
inverse problems literature [Ivanov et al. 1978].

A convenient tool to solve problem (5.1) is provided by the Frank-Wolfe method [Frank and Wolfe 1956],
see also [Jaggi 2013] for a recent account. The method is outlined in Algorithm 1, and it has worst
case convergence rate O(1/T ). The key step of the algorithm is to solve the subproblem

argmin
{
〈s, g〉 : ‖s‖(k,p) 6 α

}
, (5.2)

where g = ∇f(w(t)), that is the gradient of the objective function at the t-th iteration. This problem
involves computing a subgradient of the dual norm at g. It can be solved exactly and efficiently as
a consequence of Proposition 2. We discuss here the vector case and postpone the discussion of
the matrix case to Section 5.2. By symmetry of the `p-norm, problem (5.2) can be solved in the
same manner as the maximum in Proposition 2, and the solution is given by si = −αwi, where wi
is given by (3.4). Specifically, letting Ik ⊂ Nd be the set of indices of the k largest components of
g in absolute value, for p ∈ (1,∞) we have

si =

−α sign(gi)
(

gi
‖g‖(k,p),∗

) 1
p−1

, if i ∈ Ik
0, if i /∈ Ik

(5.3)

and, for p =∞ we choose the subgradient

si =

{
−α sign(gi) if i ∈ Ik, gi 6= 0,

0 otherwise.
(5.4)

5.1 Projection Operator

An alternative method to solve (5.1) in the vector case is to consider the equivalent problem

min
{
f(w) + δ{‖·‖(k,p)6α}(w) : w ∈ Rd

}
, (5.5)
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where δC(·) is the indicator function of convex set C. Proximal gradient methods can be used
to solve optimization problems of the form min

{
f(w) + λg(w) : w ∈ Rd

}
, where f is a con-

vex loss function with Lipschitz continuous gradient, λ > 0 is a regularization parameter,
and g is a convex function for which the proximity operator can be computed efficiently see
[Beck and Teboulle 2009, Nesterov 2007] and references therein. The proximity operator of g
with parameter ρ > 0 is defined as proxρg(w) = argmin {1

2
‖x − w‖2 + ρg(x) : x ∈ Rd}. The

proximity operator for the squared k-support norm was computed by [Argyriou et al. 2012] and
[McDonald et al. 2014], and for the k-support norm by [Chatterjee et al. 2014].

In the special case that g(w) = δC(w), where C is a convex set, the proximity operator reduces
to the projection operator onto C. For the (k, p)-support norm, for the case p =∞we can compute
the projection onto its unit ball using the following result.

Proposition 6. For every w ∈ Rd, the projection x of w onto the unit ball of the (k,∞)-norm is
given by

xi =

{
sign(wi)(|wi| − β), if ||wi| − β| 6 1,

sign(wi), if ||wi| − β| > 1,
(5.6)

where β = 0 if ‖w‖1 6 k, otherwise β ∈ (0,∞) is chosen such that
∑d

i=1 |xi| = k. Furthermore,
the projection can be computed in O(d log d) time.

Proof. (Sketch) We solve the optimization problem

min
x∈Rd

{
d∑
i=1

(xi − wi)2 : |xi| 6 1,
d∑
i=1

|xi| 6 k

}
. (5.7)

We consider two cases. If
∑d

i=1 |wi| 6 k, then the problem decouples and we solve it com-
ponentwise. If

∑d
i=1 |wi| > k, we solve problem (5.7) by minimizing the Lagrangian function

L(x, β) =
∑d

i=1(xi − wi)2 + 2β(
∑d

i=1 |xi| − k) with nonnegative multiplier β. This can be done
componentwise, and at the optimum the constraint

∑d
i=1 |xi| 6 k will be tight. Finally, both cases

can be combined into the form of (5.6). The complexity follows by taking advantage of the mono-
tonicity of xi(β). We can use Proposition 6 to project onto the unit ball of radius α > 0 by a
rescaling argument (see the appendix for details).

5.2 Matrix Problem

Given data matrixX ∈ Rd×m for which we observe a subset of entries, we consider the constrained
optimization problem

min
W∈Rd×m

{
‖Ω(X)− Ω(W )‖F : ‖W‖(k,p) 6 α

}
(5.8)
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Table 1: Matrix completion on rank 5 matrix with flat spectrum. The improvement of the (k, p)-
support norm over the k-support and trace norms is considerable (statistically significant at a level
< 0.001).

dataset norm test error k p

rank 5 trace 0.8415 (0.03) - -
ρ=10% k-supp 0.8343 (0.03) 3.3 -

kp-supp 0.8108 (0.05) 5.0 ∞

rank 5 trace 0.6161 (0.03) - -
ρ=15% k-supp 0.6129 (0.03) 3.3 -

kp-supp 0.4262 (0.04) 5.0 ∞

rank 5 trace 0.4453 (0.03) - -
ρ=20% k-supp 0.4436 (0.02) 3.5 -

kp-supp 0.2425 (0.02) 5.0 ∞

rank 5 trace 0.1968 (0.01) - -
ρ=30% k-supp 0.1838 (0.01) 5.0 -

kp-supp 0.0856 (0.01) 5.0 ∞

where the operator Ω applied to a matrix sets unobserved values to zero. As in the vector case,
the Frank-Wolfe method can be applied to the matrix problems. Algorithm 1 is particularly con-
venient in this case as we only need to compute the largest k singular values, which can result in
a computationally efficient algorithm. The result is a direct consequence of Proposition 2 and von
Neumann’s trace inequality, see e.g. [Marshall and Olkin 1979, Ch. 9 Sec. H.1.h]. We obtain that
the solution of the inner minimization step is Ukdiag(s)V >k where Uk and Vk are the top k left and
right singular vectors of the gradient G of the objective function in (5.8) evaluated at the current
solution, whose singular values we denote by g, and s is obtained from g as per equations (5.3)
and (5.4), for p ∈ (1,∞) and p =∞, respectively.

Note also that the proximity operator of the norm and the Euclidean projection on the associated
unit ball both require the full singular value decomposition to be performed. Indeed, the proximity
operator of an orthogonally invariant norm ‖ · ‖ = g(σ(·)) at W ∈ Rd×m is given by prox‖·‖(W ) =
Udiag(proxg(σ(W )))V >, where U and V are the matrices formed by the left and right singular
vectors of W , see e.g. [Argyriou et al. 2011, Prop. 3.1], and this requires the full decomposition.

6 Numerical Experiments

In this section we apply the spectral (k, p)-support norm to matrix completion (collaborative filter-
ing), in which we want to recover a low rank, or approximately low rank, matrix from a small sam-
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Figure 1: Optimal p vs. decay a.

ple of its entries, see e.g. [Jaggi and Sulovsky 2010]. One prominent method of solving this prob-
lem is trace norm regularization: we look for a matrix which closely fits the observed entries and
has a small trace norm (sum of singular values) [Jaggi and Sulovsky 2010, Mazumder et al. 2010,
Toh and Yun 2011]. We apply the (k, p)-support norm to this framework and we investigate the
impact of varying p. Next we compare the spectral (k, p)-support norm to the trace norm and the
spectral k-support norm (p = 2) in both synthetic and real datasets. In each case we solve the opti-
mization problem (5.8) using the Frank-Wolfe method as outlined in Section 5. We determine the
values of k and p > 1 by validation, averaged over a number of trials. Specifically, we choose the
optimal p, k, as well as the regularization parameter α by validation over a grid. We let alpha vary
in 100 to 105 with step 100.25, we let p vary over 20 values from 1 to 50, 000, plus p =∞, and vary
k from 1 to 20. Our code is available from http://www0.cs.ucl.ac.uk/staff/M.Pontil/software.html.

Impact of p. A key motivation for the additional parameter p is that it allows us to tune the norm to
the decay of the singular values of the underlying matrix. In particular the variational formulation
of (3.1) suggests that as the spectrum of the true low rank matrix flattens out, larger values of p
should be preferred.

We ran the method on a set of 100 × 100 matrices of rank 12, with decay of the non zero
singular values σ` proportional to exp(−`a), for 26 values of a between 10−6 and 0.18, and we
determined the corresponding optimal value of p. Figure 1 illustrates the optimum value of p as a
function of a. We clearly observe the negative slope, that is the steeper the slope the smaller the
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optimal value of p. Figure 2 shows the spectrum and the optimal p for several decay values.

Note that k is never equal to 1, which is a special case in which the norm is independent of p,
and is equal to the trace norm. In each case the improvement of the spectral (k, p)-support norm
over the k-support and trace norms is statistically significant at a level < 0.001.

Figure 3 illustrates the impact of the curvature p on the test error on synthetic and real datasets.
We observe that the error levels off as p tends to infinity, so for these specific datasets the major
gain is to be had for small values of p. The optimum value of p for both the real and synthetic
datasets is statistically different from p = 2 (k-support norm), and p = 1 (trace norm).

Simulated Data. Next we compared the performance of the (k, p)-support norm to that of the
k-support norm and the trace norm for a matrix with flat spectrum. As outlined above, as the
spectrum of the true low rank matrix flattens out, larger values of p should be preferred. Each
100 × 100 matrix is generated as W = ASB> + E, where U and V are the singular vectors of
the matrix UV >, where U, V ∈ R100×5, the entries of U , V and E are i.i.d. standard Gaussian,
and S is diagonal with 5 non zero constant entries. Table 1 illustrates the performance of the
norms on a synthetic dataset of rank 5, with identical singular values, that is a flat spectrum. In
each regime the case p = ∞ outperforms the other norms by a substantial margin, with statistical
significance at a level < 0.001. We followed the framework of [McDonald et al. 2014] and use
ρ to denote the percentage of the data to use in the training set. We further replicated the setting
of [McDonald et al. 2014] for synthetic matrix completion, and found that the (k, p)-support norm
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Table 2: Matrix completion on real datasets. The improvement of the (k, p)-support norm over
the k-support and trace norms is statistically significant at a level < 0.001.

dataset norm test error k p

MovieLens trace 0.2017 - -
100k k-supp 0.1990 1.9 -

kp-supp 0.1921 2.0 ∞

Jester 1 trace 0.1752 - -
k-supp 0.1739 6.4 -
kp-supp 0.1744 2.0 ∞
kp-supp 0.1731 2.0 6.5

Jester 3 trace 0.1959 - -
k-supp 0.1942 2.1 -
kp-supp 0.1841 2.0 ∞

outperformed the standard k-support norm, as well as the trace norm, at a statistically significant
level (see Table 3 in the appendix for details).

We note that although Frank-Wolfe method for the (k, p)-support norm does not generally
converge as quickly as proximal methods (which are available in the case of k-support norm
[McDonald et al. 2016, McDonald et al. 2014, Chatterjee et al. 2014]), the computational cost can
be mitigated using the continuation method. Specifically given an ordered sequence of parameter
values for p we can proceed sequentially, initializing its value based on the previously computed
value. Empirically we tried this approach for a series of 30 values of p and found that the total
computation time increased only moderately.

Real Data. Finally, we applied the norms to real collaborative filtering datasets. We observe a
subset of the (user, rating) entries of a matrix and predict the unobserved ratings, with the assump-
tion that the true matrix is likely to have low rank. We report on the MovieLens 100k dataset
(http://grouplens.org/datasets/movielens/), which consists of ratings of movies, and the Jester 1
and 3 datasets (http://goldberg.berkeley.edu/jester-data/), which consist of ratings of jokes. We
followed the experimental protocol in [McDonald et al. 2014, Toh and Yun 2011], using normal-
ized mean absolute error [Toh and Yun 2011], and we implemented a final thresholding step as in
[McDonald et al. 2014] (see the appendix for further details). The results are outlined in Table 2.
The spectral (k, p)-support outperformed the trace norm and the spectral k-support norm, and the
improvement is statistically significant at a level < 0.001 (the standard deviations, not shown here,
are of the order of 10−5). In summary the experiments suggest that the additional flexibility of the
p parameter does allow the model to better fit both the sparsity and the decay of the true spectrum.
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7 Conclusion

We presented a generalization of the k-support norm, the (k, p)-support norm, where the addi-
tional parameter p is used to better fit the decay of the components of the underlying model. We
determined the dual norm, characterized the unit ball and computed an explicit expression for
the norm. As the norm is a symmetric gauge function, we further described the induced spectral
(k, p)-support norm. We adapted the Frank-Wolfe method to solve regularization problems with
the norm, and in the particular case p = ∞ we provided a fast computation for the projection
operator. In numerical experiments we considered synthetic and real matrix completion problems
and we showed that varying p leads to significant performance improvements. Future work could
include deriving statistical bounds for the performance of the norms, and situating the norms in the
framework of other structured sparsity norms which have recently been studied.
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A Appendix

In this appendix, we provide proofs of the results stated in the main body of the paper, and we
include experimental details and results that were not included in the paper for space reasons.
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A.1 Proof of Proposition 2

For every u ∈ Rd we have

‖u‖(k,p),∗ = max

{
d∑
i=1

uiwi : w ∈ Cp
k

}

= max

{
d∑
i=1

uiwi : card(w) 6 k, ‖w‖p 6 1

}

= max

{∑
i∈Ik

uiwi :
∑
i∈Ik

|wi|p 6 1

}

=

(∑
i∈Ik

|ui|q
) 1

q

,

where the first equality uses the definition of the unit ball (3.2) and the second equality is true
because the maximum of a linear functional on a compact set is attained at an extreme point of the
set. The third equality follows by using the cardinality constraint, that is we set wi = 0 if i /∈ Ik.
Finally, the last equality follows by Hölder’s inequality in Rk [Marshall and Olkin 1979, Ch. 16
Sec. D.1].

The second claim is a direct consequence of the cardinality constraint and Hölder’s inequality
in Rk.

To prove Proposition 3 we require the following auxiliary result. Let X be a finite dimensional
vector space. Recall that a subset C of X is called balanced if αC ⊆ C whenever |α| 6 1.
Furthermore, C is called absorbing if for any x ∈ X , x ∈ λC for some λ > 0.

Lemma 7. Let C ⊆ X be a bounded, convex, balanced, and absorbing set. The Minkowski
functional µC of C, defined, for every w ∈ X , as

µC(w) = inf

{
λ : λ > 0,

1

λ
w ∈ C

}
is a norm on X .

Proof. We give a direct proof that µC satisfies the properties of a norm. See also e.g.
[Rudin 1991, §1.35] for further details. Clearly µC(w) > 0 for all w, and µC(0) = 0. More-
over, as C is bounded, µC(w) > 0 whenever w 6= 0.

Next we show that µC is one-homogeneous. For every α ∈ R, α 6= 0, let σ = sign(α) and note
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that

µC(αw) = inf

{
λ > 0 :

1

λ
αw ∈ C

}
= inf

{
λ > 0 :

|α|
λ
σw ∈ C

}
= |α| inf

{
λ > 0 :

1

λ
w ∈ σC

}
= |α| inf

{
λ > 0 :

1

λ
w ∈ C

}
= |α|µC(w),

where we have made a change of variable and used the fact that σC = C.

Finally, we prove the triangle inequality. For every v, w ∈ X , if v/λ ∈ C and w/µ ∈ C then
setting γ = λ/(λ+ µ), we have

v + w

λ+ µ
= γ

v

λ
+ (1− γ)

w

µ

and since C is convex, then v+w
λ+µ
∈ C. We conclude that µC(v + w) 6 µC(v) + µC(w). The proof

is completed. Note that for such set C, the unit ball of the induced norm µC is C. Furthermore,
if ‖ · ‖ is a norm then its unit ball satisfies the hypotheses of Lemma 7.

A.2 Proof of Proposition 3

Define the set

T pk = {W ∈ Rd×m : rank(W ) 6 k, ‖σ(W )‖p 6 1},

and its convex hull Apk = co(T pk ), and consider the Minkowski functional

λ(W ) = inf{λ > 0 : W ∈ λApk}, W ∈ Rd×m. (A.1)

We show that Apk is absorbing, bounded, convex and symmetric, and it follows by Lemma 7 that
λ defines a norm on Rd×m with unit ball equal to Apk. The set Apk is clearly bounded, convex and
symmetric. To see that it is absorbing, let W in Rd×m have singular value decomposition UΣV >,
and let r = min(d,m). If W is zero then clearly W ∈ Apk, so assume it is non zero.

For i ∈ Nr let Si ∈ Rd×m have entry (i, i) equal to 1, and all remaining entries zero. We then
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have

W = UΣV >

= U

(
r∑
i=1

σiSi

)
V >

=

(
d∑
i=1

σi

)
r∑
i=1

σi∑r
j=1 σj

(USiV
>)

=: λ
r∑
i=1

λiZi.

Now for each i, ‖σ(Zi)‖p = ‖σ(Si)‖p = 1, and rank(Zi) = rank(Si) = 1, so Zi ∈ T pk for any
k > 1. Furthermore λi ∈ [0, 1] and

∑r
i=1 λi = 1, that is (λ1, . . . , λr) lies in the unit simplex in Rd,

so 1
λ
W is a convex combination of elements of Zi, in other words W ∈ λApk, and we have shown

that Apk is absorbing. It follows that Apk satisfies the hypotheses of Lemma 7, and λ defines a norm
on Rd×m with unit ball equal to Apk.

Since the constraints in T pk involve spectral functions, the sets T pk andApk are invariant to left and
right multiplication by orthogonal matrices. It follows that λ is a spectral function, that is λ(W ) is
defined in terms of the singular values of W . By von Neumann’s Theorem [Von Neumann 1937]
the norm it defines is orthogonally invariant and we have

λ(W ) = inf{λ > 0 : W ∈ λApk}
= inf{λ > 0 : σ(W ) ∈ λCp

k}
= ‖σ(W )‖(k)

where we have used Equation (3.2), which states that Cp
k is the unit ball of the (k, p)-support norm.

It follows that the norm defined by (A.1) is the spectral (k, p)-support norm with unit ball given by
Apk.

A.3 Proof of Proposition 6

We solve the optimization problem

argmin x∈Rd

{
d∑
i=1

(xi − wi)2 : |xi| 6 1,
d∑
i=1

|xi| 6 k

}
. (A.2)

We consider two cases. If
∑d

i=1 |wi| 6 k, then the problem decouples and we solve it componen-
twise. Specifically we minimize (xi − wi)2 subject to |xi| 6 1, and the solution is immediately
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given by

xi =


−1, if wi < −1,

wi, if − 1 6 wi 6 1,

1, if wi > 1.

(A.3)

We now assume that
∑d

i=1 |wi| > k. Consider the Lagrangian function L(x, β) =
∑d

i=1(xi −
wi)

2 + 2β
(∑d

i=1 |xi| − k
)

with nonnegative multiplier β. We solve problem (A.2) by minimizing
the Lagrangian with respect to x, which can be done componentwise due to the coupling effect
of the Lagrangian. Furthermore, at the optimum the constraint

∑d
i=1 |xi| 6 k will be tight. The

derivative with respect to xi is zero when xi = wi − β sign(xi). Incorporating the constraint
|xi| 6 1 we get the following solution

xi =


−1, if wi + β < −1,

wi + β, if − 1 6 wi + β 6 0,

wi − β, if 0 6 wi − β 6 1,

1, if wi − β > 1,

(A.4)

where β > 0 is chosen such that
∑d

i=1 |xi(β)| = k. Note that for β = 0, which corresponds to
‖w‖1 6 k, (A.4) reduces to (A.3), hence we obtain the compact notation (5.6). Finally, note that
the expression

∑d
i=1 |xi(β)| decreases monotonically as β increases. In the case that ‖w‖1 > k,

β ∈ (0, |wj| − 1), where |wj| = argmin |wi|, hence we can determine β by binary search in
O(d log d) time.

In order to project onto the unit ball of radius α > 0, we solve the optimization problem
min{

∑d
i=1(xi − wi)2 : x ∈ Rd, |xi| 6 α,

∑d
i=1 |xi| 6 αk}. To do so, we make the change of

variables x′i = xi/α and note that the problem reduces to computing the projection x′ of w′ onto
the unit ball of the norm, where w′i = wi/α, which is the problem that was solved in (5.7). Once
this is done, our solution is given by xi = αx′i(β), where x′(β) is determined in accordance with
Proposition 6.

A.4 Numerical Experiments

In this section we report further experimental details and results not included in the main body of
the paper for space reasons.

Simulated Datasets. We replicated the setting of [McDonald et al. 2014] in order to verify
that the additional parameter can improve performance. Each 100 × 100 matrix is generated as
W = UV > + E, where U, V ∈ R100×r, r � 100, and the entries of U , V and E are i.i.d. standard
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Table 3: Matrix completion on synthetic datasets generated with decaying spectrum. The improve-
ment of the (k, p)-support norm over the k-support and trace norms is statistically significant at a
level < 0.001.

dataset norm test error k p

rank 5 trace 0.8184 (0.03) - -
ρ=10% k-supp 0.8036 (0.03) 3.6 -

kp-supp 0.7831 (0.03) 1.8 7.3

rank 5 trace 0.4085 (0.03) - -
ρ=20% k-supp 0.4031 (0.03) 3.1 -

kp-supp 0.3996 (0.03) 2.0 4.7

rank 10 trace 0.6356 (0.03) - -
ρ=20% k-supp 0.6284 (0.03) 4.4 -

kp-supp 0.6270 (0.03) 2.0 4.4

Gaussian. Table 3 illustrates the results. The error is measured as ‖true − predicted‖2/‖true‖2,
standard deviations are shown in brackets and the mean values of k and p are selected by validation.
We note that the spectral (k, p)-support norm outperforms the standard spectral k-support norm in
each regime, and the improvement is statistically significant at a level < 0.01.

Real Datasets. The MovieLens 100k dataset (http://grouplens.org/datasets/movielens/) con-
sists of 943 user ratings of 1,682 movies, the ratings are integers from 1 to 5, and all users have
rated a minimum number of 20 films. The Jester 1 dataset (http://goldberg.berkeley.edu/jester-
data/) consists of ratings of 24,983 users of 100 jokes, and the Jester 3 dataset consists of ratings
of 34,938 users of 100 jokes, and the ratings are real values from −10 to 10.

Following [McDonald et al. 2014, Toh and Yun 2011], for MovieLens for each user we uni-
formly sampled ρ = 50% of available entries for training, and for Jester 1 and Jester 3 we sampled
20, respectively 8 ratings per user, using 10% for validation. We used normalized mean absolute
error,

NMAE =
‖true− predicted‖2

#obs./(rmax − rmin)
,

where rmin and rmax are lower and upper bounds for the ratings [Toh and Yun 2011], and we im-
plemented a final thresholding step as in [McDonald et al. 2014].
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