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We analyze the critical scaling of the large-N O(N) model in higher dimensions using the exact
renormalization group equations, motivated by the recently found non-trivial fixed point in 4 < d < 6
dimensions with metastable critical potential. Particular attention is paid to the case of d = 5 where
the scaling exponent ν has the value 1/3, which coincides with the scaling exponent of quantum
gravity in one fewer dimensions. Convincing results show that this relation could be generalized to
arbitrary number of dimensions above five. Some aspects of the AdS/CFT correspondence are also
discussed.

The non-trivial critical behavior in O(N) theories are
well-known for dimensions d < 4 [1]. Thus, a statement
on the existence of interacting critical theories beyond
four space-time dimensions is rather unusual since one
would expect the triviality of the O(N) vector model
in general [2]. In the recent works [3, 4], however, ex-
haustive one and three loop analyses of the O(N) the-
ory with cubic interactions and N + 1 scalars show that
the large-N O(N) theory could follow the asymptoti-
cally safe scenario under the renormalization group in
the UV. More precisely, it was argued that the IR fixed
point found in the aforementioned O(N) theory with the
cubic interaction is equivalent to a perturbatively uni-
tary UV fixed point in the large-N O(N) model for di-
mensions 4 < d < 6. The presence of such UV fixed
point could be particularly interesting due to the conjec-
tured AdSd+1/CFTd duality between a higher-spin d+1-
dimensional massless gauge theory in AdS space with an
appropriate boundary condition and the large-N critical
O(N) model in d dimensions [5]. The former is called
the Vasiliev theory, which is a minimal interacting the-
ory with gravity and higher-spin fields in its spectrum.
However, a negative cosmological constant needs to be in-
troduced via an AdS vacuum in order to make this model
consistent. The Vasiliev theory can be obtained as the
tensionless limit of string theory, where the infinite tower
of higher-spin string modes are massless, and since there
is no energy scale it can be considered as a toy model
describing physics beyond the Planck scale [6]. The exis-
tence of the UV fixed point in the large-N O(N) model
has been subject to studies using conformal bootstrap
analysis [7, 8] and exact (or functional) renormalization
group (ERG or FRG) methods [9, 10], too.

First we give a brief review of the analytical results
from [9]. Let us consider the effective average action of
the O(N) symmetric theory in d dimensions within the
Local Potential Approximation (LPA):

Γk =

∫
ddx

[
1

2
(∂φ̄)2 + Uk(φ̄2)

]
. (1)

Uk is the dimensionful potential depending on φ̄2, where

φ̄ is the dimensionful vacuum expectation value (VEV)
of the field. The subscript k stands for the RG scale (i.e.
the Wilsonian cutoff), on which the effective theory is
defined. In the large-N limit the anomalous dimension of
the Goldstone modes vanish, therefore, setting the wave
function renormalization constant to unity in (1) gives a
well-justified approximation. In fact, in the large-N limit
of the O(N) model the LPA is considered to be exact [11–
13]. The flow of the effective action is given by the exact
functional differential equation [14]

∂tΓk =
1

2
Tr
(

Γ
(2)
k +Rk

)−1
∂tRk. (2)

Here, we have introduced the logarithmic flow parameter
t = ln(k/Λ) (with the initial UV scale Λ), and a momen-
tum dependent regulating function Rk(q2), ensuring that
only the fluctuations above the Wilsonian cutoff scale are

integrated out. Further, we have Γ
(2)
k [φ̄] as a shorthand

notation for the second derivative with respect to the
field, and the trace denotes the integration over all mo-
menta as well as the summation over internal indices.
The integral can be evaluated by choosing Rk(q2) in a
way that it satisfies some basic requirements: particu-
larly Γk approaches the bare action in the limit k → Λ
and the full quantum effective action when k → 0 [14].
For a detailed study of an extensive class of regulator
functions see e.g. [15]. In the present case we will pick the
so called optimized regulator Rk(q2) = (k2−q2) θ(k2−q2)
which provides an analytic result for the momentum in-
tegral [16]. It is convenient to introduce ρ̄ ≡ 1

2 φ̄
2, which

we will use throughout this paper. By inserting (1) into
(2), and taking the limit N →∞, yields the flow for the
effective potential in the large-N [13]:

∂tu = −du+ (d− 2)ρu′ +
1

1 + u′
. (3)

Here we switched to dimensionless quantities u = Uk−d,
ρ = ρ̄k−d+2 and u′ = ∂ρu. There exists an exact solu-
tion for the ρ derivative of (3) which can be obtained by
using the method of characteristics [13, 17]. In fact, the
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fixed point solutions associated to (3) can be given as an
implicit function ρ = ρ(u′∗).
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FIG. 1. Each curve corresponds to a critical potential deriva-
tive with a particular choice of c in d = 5. The thick black
line is for the c = 0 solution. We will consider the red line
segment as the physical branch. The axes are rescaled for
better display.

Here we introduced u∗ which denotes the dimensionless
effective potential at the fixed point. Their most compact
form for d = 2n+ 1 and d = 2n (n ∈ Z) are respectively

ρ = cu
′ d2−1
∗ +

1

(d− 2)
2F1

(
2, 1− d

2
; 2− d

2
;−u′∗

)
(4)

and

ρ = c̄u
′ d2−1
∗ +

1

(d+ 2)(1 + u′∗)
2 2F1

(
1, 2; 2 +

d

2
;

1

1 + u′∗

)
,

(5)
where c is an arbitrary constant obtained from the in-
tegration, c̄ = c − dπ

4 sin(dπ/2) and 2F1 is the hyperge-
ometric function. The solutions for the d = 5 case are
shown in Fig. 1, where each curve corresponds to a so-
lution with a particular value of the parameter c. For
u′∗ ≥ 0 (4) holds for every c ∈ R, however, to obtain a
continuation of the solutions to u′∗ ≤ 0 one needs to give
imaginary values for the constant c, except for one solu-
tion, namely, which corresponds to c = 0. This latter is
depicted in Fig. 1 as the thick black curve, that smoothly
goes through u∗ = 0, and intersects the horizontal and
vertical axes at ρ = 1/3 and u′∗(0) ≈ 0.1392 on the up-
per plane, respectively. It is tempting to consider this
fixed point potential as the physical one, as it is ana-
lytic at its extremum. On the other hand, this curve still
has the problem that all the others have (with their con-
tinuation): u′∗ can be considered only as a multivalued

function of ρ as it was pointed out in [9]. Nevertheless,
we can still define two branches of this solution on a re-
stricted interval of the field, namely, for ρ ∈ [0, 0.6214].
We only need to decide which one will we choose.

Now, we turn to the results of [10]. Here another tech-
nique was used to solve the flow equation of the effective
potential, which is based on its polynomial expansion,
hence it is assumed to be analytic around zero:

u(ρ) = lim
n→∞

n∑
i=1

u(i)(0)

i!
ρi. (6)

The derivatives of the potential can be considered as the
couplings of the theory: u′(0) = g1 = m2 (squared mass),
u′′(0) = g2 = λ (quartic coupling), etc... In [10] an effi-
cient algorithm was worked out for finding the true fixed
points of the theory up to expansion order 50 if neces-
sary, based on the observation that all the couplings can
be expressed through the squared mass of the system at
the fixed point (g∗i = g∗i (m2

∗)).
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FIG. 2. The RG flow in the {m2, λ} hyperplane of the theory
space. The drifting of the non-trivial fixed point is shown
towards {m2

∗, λ∗} ≈ {0.1392,−0.3613} as the expansion order
is increased. The blue dot is the GFP.

In the case of the five-dimensional large-N O(N)
model the fixed point structure shows besides the non-
interacting Gaussian (GFP) a non-trivial fixed point, too.
The position of the fixed point drifts as we increase the
order of the Taylor-expansion, and it converges to the
value m2

∗ ≈ 0.1392, see Fig. 2. As m2 = u′(0) we can
safely state that the same fixed point solution was recov-
ered than the one found by using the analytic solution
of the flow when c = 0 in (4). In fact, it seems that
this technique naturally singles out a fixed point solution
from all the others that are present in the analytical case.
In Fig. 1 this corresponds to the red line segment on the
thick black curve and we will consider it as the physical
solution.
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Since both the analytic and the polynomial fixed point
solutions are now available, we can compute the corre-
sponding effective potential. The exact critical poten-
tial computed from (4) is shown in Fig. 3, where it can
be compared to the one that is obtained by the polyno-

mial expansion, u∗(ρ) =
∑n
i=1

g∗i (m
2
∗)

i! ρi. The matching
between the two curves is excellent, however, the non-
analytic nature of the exact potential is obvious as it is
restricted to the finite interval of the field, contrary to
the polynomial case which is of course analytic as it was
assumed.
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FIG. 3. The metastable critical potential in d = 5. Here we
used the variable φ =

√
2ρ and hence the exact potential is

valid between φ ∈ [0, 1.1148].

Perhaps the most important piece of information is that
this potential has a metastable ground state, however,
it does not have a true vacuum. At first sight, this fact
might discourage us from investigating it further, but
metastable and unstable vacua are not unknown in the
world of physics. First of all there is the question on
the electroweak vacuum stability. As of today it is still a
question if the Higgs potential exhibits a ground state or
we sit in a false vacuum (with a very long lifetime) that
implies an unstable universe [18]. On the other hand the
theory could be saved from the AdS side, too. Since, as
it was mentioned above, the critical large-N O(N) the-
ory in d = 5 is possibly dual to a Vasiliev higher-spin
theory in AdS6 space, they must have the same energy
spectrum. In AdS space, on the other hand, the so called
Breitenlohner-Freedman (BF) bound gives a negative, di-
mension dependent lower bound for the squared mass of
the field above which the theory can be considered as sta-
ble [19]. The BF bound can be generalized for massless
higher-spin fields, too, which also depends on the value
of the spin [20]. In turn, the same argument could hold
for the other branch of u′∗(ρ) < 0 for ρ ∈ [0, 0.6214] with
u′∗(0) = m2

∗ ≈ −0.5776, see in Fig. 1. In this case the
potential does not have any metastable minimum, it is
completely unstable in the restricted interval as u′(ρ) < 0
for these field values. However, this fixed point potential
can be found only from the analytic solution, whereas
the polynomial approach ignores it entirely.

Despite the fact that the critical potential is restricted

to a finite interval of the field, it is still possible to
extract the critical exponent ν from it, which is the
scaling exponent of the correlation length (or inverse
mass) and characterizes the system at criticality. For
the exact determination of the exponents in d dimen-
sions we will use the method of eigenperturbation, which
is based on the linearized flow around the fixed point,
i.e. u(ρ, t) = u∗(ρ) + δu(ρ, t) [17, 21]. Using (3) we can
derive the fluctuation equation for the derivative of the
potential

∂tδu
′ = 2

u′∗
u′′∗

(
∂ρ −

(u′∗u
′′
∗)
′

u′∗u
′′
∗
− d− 4

2

u′′∗
u′∗

)
δu′. (7)

Apparently, it can be thought of as an eigenvalue prob-
lem: ∂tδu

′ = θδu′, where the smallest eigenvalue θ equals
the negative inverse of the scaling exponent ν. Solving
this PDE via the method of separation of variables yields

δu′ ∝ etθu′
1
2 (θ+d−2)
∗ u′′∗ . (8)

We demand the regularity of the perturbation at the node
(u′∗(ρ0) = 0), that is we will have a restriction on the val-
ues of θ in order to keep δu′ analytic. It is not hard to
show that for both formula in (4) and (5) the extremum
is at ρ0 = 1/(d − 2) and the behavior for the c = 0 and
c̄ = 0 solutions in the vicinity of the node is linear in ρ,

u′∗ ∝
(
ρ− 1

d−2

)
, which makes u′′∗ a constant. Substitut-

ing back this expression into (8) gives

δu′ ∝ etθ
(
ρ− 1

d− 2

) 1
2 (θ+d−2)

. (9)

The allowed values are then θ = 2(l + 1 − d/2), where
l is a non-negative integer, and the scaling exponent is
obtained by the lowest value of θ, i.e. for l = 0. Thus, the
scaling exponent for arbitrary dimensions in the large-N
O(N) model is

ν = (d− 2)−1. (10)

By using the polynomial expansion one can compute
the critical exponent ν as the negative inverse of the
lowest eigenvalue of the stability matrix at the fixed
point Bij = ∂βi/∂gj |g=g∗ [14]. Here, the beta functions
are defined as the RG scale derivative of the couplings:
βi = ∂gi(t)/∂t. Since the LPA became exact in the large-
N limit, the right value for the critical exponent can be
obtained at every order of the expansion, i.e. we get
back (10) for arbitrary dimensions. This relation, on the
other hand, is well-known for the large-N O(N) theories
in d ≤ 4 [11, 12, 22, 23]. However, it was not extended
to higher dimensions as the upper critical dimension was
considered to be d = 4. Yet, with an accurate anal-
ysis of the fixed point structure, it seems that we can
find, with both the analytical method and the polyno-
mial expansion, a non-trivial fixed point, where, instead
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of the mean-field scaling, the relation (10) still holds for
d > 4. However, we need to be careful with this state-
ment since the effective potentials defined at criticality
are non-analytic and/or metastable for these values of d.
In particular, for d = 5 we have ν = 1/3 and the ground
state seems to be metastable. In fact, in the papers [3, 4]
also an unbounded critical potential is expected, and in
that respect the results presented here are consistent with
those. Although in the large-N the dimensionality is re-
stricted to 4 < d < 6 due to the unitarity bound [3, 4, 24],
we can study further the higher dimensional cases. Fig. 4
displays the solutions (4) and (5) for d > 5 with c = 0
and c̄ = 0, respectively. We can make the following ob-
servations. In d = 6, 8 dimensions u′∗ is singular at ρ = 0
and multivalued for ρ < ρ0, in addition, the function (5)
also gets complex for u′∗ ∈ [0,−1].
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FIG. 4. The fixed point solutions given by (4) and (5) in
d ≥ 6 for c = 0 and c̄ = 0, respectively. The axes are rescaled
for better display.

In d = 7 the potential seems to be stable, however, be-
cause of the turning points it becomes multivalued, al-
though at ρ = 0 it is unique. And in d = 9 we pretty
much have the same situation as in Fig. 1. These three
categories seem to be preserved to all even, d = 4n + 3
and d = 4n + 1 (n ≥ 1) dimensions, respectively. To
the even-dimensional case it is very hard to give a physi-
cal interpretation due to its singular structure and com-
plex nature. For the d = 4n + 3 cases we can define
three branches due to the ”S” shape of the curve around
u′∗ = 0, which makes it challenging to understand its
physical content, if there is any. Perhaps one could
cut out certain parts of the ”S” shape in the spirit of
Maxwell’s construction [25], which will allow us to define
a bounded potential with a cusp at the position of the
cut. In the last case, when d = 4n+1, one can simply use
the same arguments as in d = 5 to define a metastable
potential in a finite interval. It is also worth to mention
that a similar convergence as in Fig. 2 can be observed

clearly only for 4 < d < 6 (d ∈ R) by using the polyno-
mial approximation, and from the analytical side, using
(4), these solutions have the same structure as in Fig. 1.
Considering these facts one can conclude that physically
sensible fixed points exist in 4 < d < 6, provided ac-
cepting the metastable potential. However, although the
relation for the scaling exponent ν holds naively for all
d, one would need to further investigate the d ≥ 6 cases,
both for integer and fractal dimensions.

In the following, we will present an interesting observa-
tion, which might link the large-N O(N) model to quan-
tum Einstein gravity (QEG). As of today many evidences
suggest that QEG admits a continuous phase transi-
tion between physically two distinct phases described by
a strong and weak Newton’s coupling [26]. This phe-
nomenon is naturally associated to a UV fixed point
which is characterized by a non-trivial scaling of the cor-
relation length: ξ ∝ |Gb −G∗|−ν , where the dimension-
less quantities Gb and G∗ are the bare and the fixed point
Newton’s coupling, respectively. Within the framework
of FRG in [27], using the optimized regulator and a spe-
cial reparametrization of the metric fluctuation, that en-
sures the gauge independence, ν−1 = −6 + 4/d + 2d is
obtained. Plugging in d = 4 yields ν = 1/3. The scaling
ν ' 1/3 was found by using the Regge lattice action in
the extensive numerical studies by Hamber [28–30]. In
fact, in [29] a simple geometrical argument is given in
support of the exact value of 1/3. It is based on the
observation that the quantum correction to the static
gravitational potential (due to the vacuum-polarization
induced scale dependence of Newton’s coupling) can be
interpreted as a uniform mass distribution surrounding
the original source only if ν−1 = d−1 for d ≥ 4. In partic-
ular, for d = 4 this gives ν = 1/3. This conjecture can be
compared to the results coming from ν−1 = −6+4/d+2d
in [27] by inserting different values for d greater than
four: ν(d = 5) ≈ 0.2083, ν(d = 6) = 0.15. Moreover,
these values for ν might improve by taking into account
higher order curvature invariants in the approximation
used in [27]. Having these results, it is apparent that an
interesting correspondence can be revealed between the
critical exponents of the large-N O(N) model (νO) and
QEG (νG) as a function of dimension:

νO(d) ' νG(d− 1), for d ≥ 5. (11)

A similar dimensional reduction relates a classical field
theory in a the presence of a random source to the corre-
sponding quantum field theory in two fewer dimensions
[31] as a consequence of a hidden supersymmetry which
was pointed out by Parisi and Sourlas in [32], and proved
rigorously by Klein et al. in [33]. The concept of the
Parisi-Sourlas dimensional reduction was successfully ap-
plied to show that the dilute branched polymers and the
Lee-Yang edge singularity of the Ising model in two fewer
dimensions belong to the same universality class [34, 35].
However, in our case we would need to find a correspon-
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dence between the two theories with only one dimensional
difference, but we also need to keep in mind that the clas-
sical Vasiliev theory, which is supposed to be dual to the
large-N O(N) model in d = 5, lives in a six dimensional
AdS space. Despite the relation found in (11) the two
theory does not necessarily fall into the same universal-
ity class. For that, one would need possibly to relate all
the critical exponents in some way. For instance, from
FRG studies in QEG the most conventional value for the
anomalous dimension of the graviton propagator in four
dimensions is ηG = −2, whereas in the large-N O(N)
model ηO = 0, i.e. they differ. However, if one assumes
the usual scaling laws [22] to be valid in QEG, ηG = −2
in d = 4 [from 2−ηG = d(δG−1)/(δG+1)] gives δG →∞,
which is physically rather questionable for a critical expo-
nent. Perhaps modified scaling laws are required and/or
ηG = −2 is not the right value for the anomalous di-
mension. It would be interesting to find out if (11) is
a mere coincidence or there exists a deeper explanation
that implies a correspondence between QEGd−1 and the
large-N O(N) theory in d dimensions which is in turn
dual to the higher-spin Vasiliev theory in AdSd+1 space
(where d ≥ 5).
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Nándori, A. Trombettoni, JHEP 1505 (2015) 141.

[2] M. Aizenman, Phys.Rev.Lett. 47, 1-4 (1981); J. Frohlich,
Nucl.Phys. B 200, 281-296 (1982); M. Luscher, P. Weisz,
Nucl.Phys. B 290, 25 (1987); M. Luscher, P. Weisz,
Nucl.Phys. B 295, 65 (1988); M. Luscher, P. Weisz,
Nucl.Phys. B 318, 705 (1989); I. Montvay, G. Munster,
U. Wolff, Nucl.Phys. B 305, 143 (1988); Ulli Wolf, Phys.
Rev. D 79, 105002 (2009).

[3] L. Fei, S. Giombi, I. R. Klebanov Phys. Rev. D 90,
025018 (2014).

[4] L. Fei, S. Giombi, I. R. Klebanov, G. Tarnopolsky Phys.
Rev. D 91, 045011 (2015).

[5] I. R. Klebanov, A. M. Polyakov, Phys. Lett. B 550,

213-219 (2002); X. Bekaert, E. Joung, and J. Mourad,
Fortsch. Phys. 60, 882-888 (2012); J. Maldacena, A.
Zhiboedov, Class. Quant. Grav. 30, 104003 (2013); S.
Giombi, I. R. Klebanov JHEP 1312, 068 (2013); S.
Giombi, I. R. Klebanov, B. R. Safdi, Phys.Rev. D 89,
084004 (2014).

[6] E. S. Fradkin, M. A. Vasiliev, Ann. Phys. 177, 63
(1987); E. S. Fradkin, M. A. Vasiliev, Nucl. Phys. B
291, 141 (1987); E. S. Fradkin and M. A. Vasiliev, Phys.
Lett. B 189, 89-95 (1987); M.A. Vasiliev, Phys. Lett. B
243, 378-382 (1990); X. Bekaert, N. Boulanger and P.
Sundell, Rev.Mod.Phys. 84, 987-1009 (2012); V.E. Di-
denko, E.D. Skvortsov, ”Elements of Vasiliev theory”,
arXiv:1401.2975 [hep-th].

[7] S. M. Chester, S. S. Pufu, R. Yacoby Phys.Rev. D 91,
086014 (2015).

[8] Y. Nakayama, T. Ohtsuki. Phys.Lett. B 734, 193-197
(2014).

[9] R. Percacci, G. P. Vacca, Phys.Rev. D 90, 107702 (2014).
[10] P. Mati, Phys.Rev. D 91, 125038 (2015).
[11] J. Zinn-Justin, Quantum Field Theory and Critical Phe-

nomena, Oxford University Press, third edition 1996.
[12] M. Moshe, J. Zinn-Justin, Phys.Rept. 385, 69-228

(2003).
[13] N. Tetradis, D.F. Litim, Nucl.Phys. B 464, 492-511

(1996).
[14] A. Ringwald and C. Wetterich, Nucl. Phys. B 334, 506

(1990); U. Ellwanger, Z. Phys. C 62, 503 (1994); C.
Wetterich, Nucl. Phys. B 352, 529 (1991); C. Wetterich,
Phys. Lett. B 301, 90 (1993); N. Tetradis, C. Wetterich,
Nucl. Phys. B 422 [FS], 541 (1994); T.R. Morris, Int. J.
Mod. Phys. A 9, 2411 (1994); T.R. Morris, Phys. Lett.
B 329, 241 (1994).

[15] I. Nándori, JHEP 1304, 150 (2013).
[16] D. F. Litim, Phys. Lett. B 486, 92 (2000); D. F. Litim,

Phys. Rev. D 64, 105007 (2001); D. F. Litim, JHEP
0111, 059 (2001).

[17] E. Marchais, ”Infrared Properties of Scalar Field Theo-
ries”, Ph.D. Thesis , 2012, University of Sussex.

[18] H. D. Politzer and S. Wolfram, Phys. Lett. B 82, 242
(1979); B 83, 421(E) (1979); P. Q. Hung, Phys. Rev.
Lett. 42, 873 (1979); S. Coleman, F. D. Luccia, Phys.
Rev. D 21, 3305 (1980); M. S. Turner, F. Wilczek,
Nature 298, 633-634 (1982); O. Lebedev, A. Westphal
Phys.Lett. B 719, 415-418 (2013); A. Hook, J. Kearney,
B. Shakya, K. M. Zurek, JHEP 1501, 061 (2015).

[19] P. Breitenlohner, D.Z. Freedman; Phys. Lett. B 115, 197
(1982). P. Breitenlohner, D. Z. Freedman, Ann. Phys.
144, 249-281 (1982); D. Marolf, S. F. Ross, JHEP 11,
085 (2006);

[20] H. Lu, Kai-Nan Shao, Phys. Lett. B 706, 106-109 (2011).
[21] D.F. Litim, Nucl.Phys. B 631, 128-158 (2002). D. F.

Litim, M. C. Mastaler, F. Synatschke-Czerwonka, A.
Wipf, Phys.Rev. D 84, 125009 (2011); O.J. Rosten,
Physics Reports 511, 177-272 (2012).

[22] M. Kardar, Statistical Physics of Fields, Cambridge Uni-
versity Press, Cambridge, 2007.

[23] J. Cardy Scaling and renormalization in statistical
physics, Cambridge University Press, Cambridge, 1996.

[24] G. Parisi, Nucl.Phys. B 100, 368 (1975); G. Parisi,
On non-renormalizable interactions, in New Develop-
ments in Quantum Field Theory and Statistical Mechan-
ics Cargese 1976, pp. 281305. Springer US, 1977; X.
Bekaert, E. Meunier, and S. Moroz, Phys.Rev. D 85,

mailto:Peter.Mati@eli-alps.hu
mailto:matipeti@gmail.com
http://arxiv.org/abs/1401.2975


6

106001 (2012).
[25] J. C. Maxwell, Nature 11: 357359 (1875); Reichl, L. E.

(2009). A Modern Course in Statistical Physics (3rd ed.).
New York, NY USA: Wiley-VCH.

[26] W. Souma, Prog. Theor. Phys. 102, 181 (1999); O.
Lauscher and M. Reuter, Phys. Rev. D 65, 025013
(2002); O. Lauscher and M. Reuter, Phys. Rev. D 66,
025026 (2002); D. F. Litim, Phys.Rev.Lett. 92, 201301
(2004); P. Fischer, D. F. Litim, Phys.Lett. B 638, 497
(2006); A. Codello, R. Percacci, Phys. Rev. Lett. 97,
221301 (2006); A. Codello, R. Percacci, C. Rahmede,
Int. J. Mod. Phys. A 23, 143 (2008); A. Codello, R. Per-
cacci, C. Rahmede, Annals Phys. 324, 414 (2009); P. F.
Machado, F. Saueressig, Phys. Rev. D 77, 124045 (2008);
D. Benedetti, F. Caravelli, JHEP 1206, 017 (2012); J.
A. Dietz, T. R. Morris, JHEP 1301, 108 (2013); S.
Nagy, B. Fazekas, L. Juhász, K. Sailer, Phys. Rev. D
88, 116010 (2013); N. Christiansen, B. Knorr, J. M.
Pawlowski, A. Rodigast, (2014), arXiv:1403.1232 [hep-

th]; K. Falls.Phys. Rev. D 92, 124057 (2015).
[27] K. Falls, arXiv: 1503.06233 [hep-th].
[28] H. W. Hamber, Phys.Rev. D 61, 124008 (2000);
[29] H. W. Hamber, Ruth M. Williams, Phys. Rev. D 70,

124007 (2004);
[30] H. W. Hamber, Phys. Rev. D 92, 064017 (2015).
[31] Y. Imry, S.K. Ma, Phys. Rev. Lett. 35, 1399-1401 (1976);

G. Grinstein, Phys Rev. Lett. 37, 944-947 (1976); A.
Aharony, Y. Imry, S.K. Ma, Phys. Rev. Lett. 37, 1364-
1367 (1976); A.P. Young, J. Phys. C 10, L257-L262
(1977).

[32] G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744-745
(1979).

[33] A. Klein, L. J. Landau, J. F. Perez, Commun. Math.
Phys. 94, 459-482 (1984).

[34] G. Parisi, N. Sourlas Phys. Rev. Lett. 46, 871 (1981).
[35] D. C. Brydges, J. Z. Imbrie, Ann. of Math. 158, 1019-

1039 (2003); D. C. Brydges, J.Z. Imbrie, J. Statist. Phys.
110, 503518 (2003).

http://arxiv.org/abs/1403.1232

	Critical scaling in the large-N O(N) model in higher dimensions and its possible connection to quantum gravity
	Abstract
	 References


