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A comparison of simulation results with the prediction of the structural properties of square-
shoulder fluids is carried out to assess the performance of three theories: Tang–Lu’s first-order
mean spherical approximation, the simplified exponential approximation of the latter and the
rational-function approximation. These three theoretical developments share the characteristic
of being analytical in Laplace space and of reducing in the proper limit to the Percus–Yevick
result for the hard-sphere fluid. Overall, the best agreement with the simulation data is
obtained with the simplified exponential approximation.
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1. Introduction

Simple models of the intermolecular potential describing a fluid are often useful
to gain insight into many interesting phenomena occurring in real fluids. This is
the case of the ‘square-shoulder’ (SS) interaction, a purely repulsive potential,
first used in this context by Hemmer and Stell [1, 2], which has been the subject
of many papers in the literature, including some rather recent ones [3–25]. This
model may be considered to be the simplest one of the family of core-softened
potentials that have been employed to study systems such as water [18], metallic
systems [3], colloidal suspensions [5, 6] and aqueous solutions of electrolytes [11].
The expression for the SS potential reads

φSS(r) =







∞, r < σ,
ǫ, σ < r < λσ,
0, r > λσ,

(1)
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where r is the distance, σ is the diameter of the hard core, ǫ > 0 is the shoulder
height and (λ−1)σ is the shoulder width. Note that the thermodynamic properties
of the SS fluid only depend on three dimensionless parameters, namely the pack-
ing fraction η ≡ (π/6)ρσ3 (ρ being the number density), the reduced temperature
T ∗ = kBT/ǫ (kB and T being the Boltzmann constant and the absolute tempera-
ture, respectively) and the width parameter λ. It is known in particular that the
SS potential may lead to an isostructural solid-solid transition [7, 8], to a fluid-
solid coexisting line with a maximum melting temperature [4], to unusual phase
behaviour [9, 10, 17] and to a rich variety of (self-organised) ordered structures
[13, 14, 16, 20].
On the other hand, it is interesting to note that the SS potential becomes equiv-

alent to a hard-sphere (HS) interaction of diameter σ in the limits of vanishing
shoulder height (ǫ → 0) or width (λ → 1), and to an HS interaction of diameter
λσ in the limit of infinite shoulder height (ǫ → ∞). These three limiting situations
imply that

lim
T ∗→∞

gSS(r;σ, λ, η, T
∗) =gHS(r;σ, η), (2a)

lim
λ→1

gSS(r;σ, λ, η, T
∗) =gHS(r;σ, η), (2b)

lim
T ∗→0

gSS(r;σ, λ, η, T
∗) =gHS(r;λσ, λ

3η), (2c)

where gSS(r;σ, λ, η, T
∗) is the radial distribution function (RDF) of the SS fluid

and gHS(r;σ, η) is the RDF of the HS fluid. Also, in the low-density limit one has
gSS → e−φSS/kBT , i.e.

lim
η→0

gSS(r;σ, λ, η, T
∗) =







0, r < σ,

e−1/T ∗

, σ < r < λσ,
1, r > λσ.

(3)

Furthermore, continuity of gSS(r) exp [φSS(r)/T
∗] at r = λσ implies the exact prop-

erty

gSS(r = λσ+;σ, λ, η, T ∗) = gSS(r = λσ−;σ, λ, η, T ∗)e1/T
∗

. (4)

Irrespective of all the previous interesting findings, no exact results for the ther-
modynamic or structural properties of the SS fluid have been derived up to now.
Moreover, not even the Percus–Yevick (PY) closure for the Ornstein–Zernike (OZ)
integral equation for this system has led to analytical results. Therefore, the avail-
able data come from other approximate theories, from numerical solutions of the
OZ equation with various closures and from simulation. Lang et al. [12] studied
theoretically the SS fluid using the optimized random-phase approximation and
the numerical solution of the OZ equation with the Rogers–Young closure, and
also performed Monte Carlo (MC) simulations. Zhou and Solana [19] also reported
MC simulations for this system and theoretical results based on a bridge function
approximation to close the OZ equation. Further simulation data for the SS fluid
and a parametrization of the direct correlation function which quantitatively agrees
with the numerical solution of the OZ equation with the PY closure were presented
by Guillén-Escamilla et al. [21].
A few years ago, we carried out a theoretical study of the structural properties

of this system [23] using the rational-function approximation (RFA) methodology
that had been earlier employed successfully for other systems [26, 27]. More re-
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cently, Hlushak et al. [24] considered both the Tang–Lu first-order mean spherical
approximation(FMSA) [28–31] and its associated simplified exponential approxi-
mation (SEXP/FMSA) [32] for the RDF of the SS fluid and reported additional
MC data for the system. These three approaches (FMSA, SEXP/FMSA and RFA)
are formulated in terms of the Laplace transform

G(s) =

∫

∞

0
dr e−srrg(r) (5)

of rg(r), where, for simplicity, we have dropped the subscript SS and the arguments
(σ, λ, η, T ∗). Moreover, the three of them reduce to the exact solution of the PY
approximation of the HS fluid (of diameter σ) [33–35] in the limits λ→ 1 or T ∗ →
∞ [see Eqs. (2a) and (2b)], although only the RFA reduces to such a solution (of
diameter λσ) in the limit T ∗ → 0 [see Eq. (2c)]. The aim of this paper is to perform a
comparison of the results arising in the above three theoretical approximations with
simulation data in order to asses the merits and limitations of each formulation.
The paper is organized as follows. In order to make it self-contained, in Section 2

we present the main steps leading to derivation of the structural properties of the SS
fluid using the three theoretical approaches referred to above, namely the FMSA,
the SEXP/FMSA and the RFA. This is followed in Section 3 by a comparison
of the results of the different analytical approximations and those obtained from
simulation. The paper is closed in Section 4 with further discussion and some
concluding remarks.

2. Radial distribution function of the square-shoulder fluid

2.1. General properties

We begin by recalling general results that apply exactly to fluids whose molecules
interact via any intermolecular potential having a hard core at r = σ, as is the
case of the SS fluid. In what follows we will set, without loss of generality, σ = 1.
This means that henceforth all distances will be measured in units of the hard-core
diameter σ. In order to determine the structural properties of such fluids, it is
convenient to deal with the Laplace transform defined in Eq. (5). Also, for later
use, we introduce the auxiliary function F (s) defined through [26, 27, 36]

G(s) =
sF (s)e−s

1 + 12ηF (s)e−s
. (6)

Due to the hard-core condition g(r) = 0 for r < 1, while g(1+) = finite, one has

g(r) = Θ(r − 1)
[

g(1+) + g′(1+)(r − 1) + · · ·
]

, (7)

where g′(r) ≡ ∂g(r)/∂r and Θ (x) is the Heaviside step function. In view of Eq.
(7), the large-s behaviours of G(s) and F (s) are constrained, so that

essG(s) =g(1+) +
[

g(1+) + g′(1+)
]

s−1 +O(s−2), (8a)

F (s) =g(1+)s−2 +
[

g(1+) + g′(1+)
]

s−3 +O(s−4). (8b)

Therefore,

lim
s→∞

essG(s) = lim
s→∞

s2F (s) = g(1+) = finite. (9)

3
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On the other hand, the (reduced) isothermal compressibility is given by

χ ≡kBT

(

∂ρ

∂p

)

T

= 1 + 24η

∫

∞

0
dr r2 [g(r)− 1]

=1− 24η lim
s→0

∂

∂s

∫

∞

0
dr e−srr [g(r)− 1]

=1− 24η lim
s→0

∂

∂s

[

G(s)− s−2
]

. (10)

Note that χ must also be finite, and so
∫

∞

0 dr r2 [g(r)− 1] = finite. Therefore,

the weaker condition
∫

∞

0 dr r [g(r)− 1] = lims→0[G(s) − s−2] = finite must hold.
Taking those constraints into account leads to the following small-s behaviours:

s2G(s) =1 +O(s2), (11a)

F (s) =−
1

12η

[

1 + s+
s2

2
+

1 + 2η

12η
s3 +

1 + η/2

12η
s4
]

+O(s5). (11b)

The introduction of the auxiliary function F (s) in Eq. (6) allows us to obtain
convenient expressions for the RDF in the coordination shells n < r < n + 1. We
first rewrite Eq. (6) as

G(s) =

∞
∑

n=1

(−12η)n−1 s [F (s)]n e−ns. (12)

Then, the RDF may be obtained from

g(r) =
1

r

∞
∑

n=1

(−12η)n−1 ψn(r − n)Θ(r − n), (13)

where ψn(r) is the inverse Laplace transform of s [F (s)]n.
Clearly, knowledge of F (s) immediately yields G(s) and g(r). Irrespective of

how G(s) is determined, once it is available another general result is that the
static structure factor S(q) (where q is the wavevector) of the fluid may be readily
obtained from

S(q) = 1 + ρ

∫

dr e−iq·r[g(r) − 1] = 1− 12η
G(s)−G(−s)

s

∣

∣

∣

∣

s=iq

, (14)

where i is the imaginary unit. This confirms the important role played by G(s) in
the derivation of the structural properties of hard-core fluids.

2.2. Solution of the Percus–Yevick integral equation for hard-sphere fluids

As is well known, the PY integral equation is exactly solvable for the HS fluid [33–
35]. In such a solution, the Laplace transform is given by Eq. (6) with the auxiliary
function F (s) expressed as the simplest rational function complying with the
physical requirements (9) and (11b) [26, 27, 36]. More specifically,

G0(s) =
sF0(s)e

−s

1 + 12ηF0(s)e−s
, F0(s) =

L0(s)

R0(s)
, (15)

4
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where

L0(s) =1 + 2η + (1 + η/2)s, (16a)

R0(s) =− 12η(1 + 2η) + 18η2s+ 6η(1 − η)s2 + (1− η)2s3. (16b)

The subscript 0 in Eq. (15) means that the solution is restricted to HS systems
with a diameter σ = 1. In the case of HS systems with a diameter λσ = λ, the
PY solution is given by Eqs. (15) and (16) with the replacements G0 → λ−2G0,
s → λs, and η → λ3η [23]. In real space, according to Eq. (13), the HS RDF is
given by [37]

g0(r) =
1

r

∞
∑

n=1

(−12η)n−1 ψ0n(r − n)Θ(r − n), (17)

with

ψ0n(r) =

n
∑

j=1

∑3
i=1 a

(i)
nje

s0ir

(n− j)!(j − 1)!
rn−j , (18a)

a
(i)
nj = lim

s→s0i

(

∂

∂s

)j−1

{s [(s − s0i)F0(s)]
n} , (18b)

where {s0i, i = 1, 2, 3} are the three roots of the cubic equation R0(s) = 0.

2.3. Tang and Lu’s FMSA and SEXP/FMSA for the structural properties
of the square-shoulder fluid

In this subsection, we consider the results for the structural properties of the SS
fluid as derived from the FMSA and SEXP/FMSA developed by Tang and Lu
[29, 30, 32]. The presentation follows very closely the one given for the square-well
(SW) fluid in Ref. [38] with the simple replacement of T ∗ by −T ∗.

2.3.1. FMSA

The FMSA theoretical approach, applicable to potentials with a spherical hard
core and an arbitrary tail, consists in combining thermodynamic perturbation the-
ory (taking the HS system as the reference fluid) and the mean spherical approx-
imation (MSA) to derive an analytical solution to the OZ equation as a series in
powers of the inverse temperature 1/T ∗. In the SS fluid case, the expansion of the
RDF g(r) to first order reads

G(s) =G0(s) +G1(s)
1

T ∗
, (19a)

g(r) =g0(r) + g1(r)
1

T ∗
, (19b)

where the reference HS functions G0(s) and g0(r) are given by Eqs. (15) and (17),
respectively. The first-order term G1(s) is the opposite of the one for the SW fluid

5
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[29, 30], namely

G1(s) =
(1− η)4

[Q0(s)]
2

{

s4(1 + λs)

[R0(−s)]
2 e

−λs −

3
∑

i=1

s30ie
(λ−1)s0i

(s+ s0i) [R′

0(s0i)]
2 e

−s

×

[

s0i(1− λs0i)

s+ s0i
+ s0i(1− λs0i)

R′′

0(s0i)

R′

0(s0i)
− 4 + (1 + 4λ)s0i + λ(λ− 1)s20i

]}

,

(20)

where the primes in R′

0(s) and R
′′

0(s) denote derivatives with respect to s, and

Q0(s) ≡
R0(s) + 12ηL0(s)e

−s

(1 − η)2s3
. (21)

As in Eq. (18a), the summation over i in Eq. (20) extends over the three zeros of
R0(s). It is straightforward to find from Eq. (20) the jump discontinuity of g1(r)
at r = λ:

g1(λ
+)− g1(λ

−) = lim
s→∞

s

λ

(1 − η)4

[Q0(s)]
2

s4(1 + λs)

[R0(−s)]
2 = 1. (22)

In what concerns the low-density limit η → 0, one has

lim
η→0

G1(s) =s
−2(1 + λs)e−λs − s−2(1 + s)e−s, (23a)

lim
η→0

g1(r) =Θ(r − λ)−Θ(r − 1). (23b)

Performing the inverse Laplace transform of G1(s) one can get explicit expres-
sions for g1(r) inside the shells n < r < n + 1, which become increasingly more
complicated as n grows. Due to the fact that they are not very illuminating and
may be found elsewhere [24], they will be omitted here. Alternatively, G1(s) can
be numerically inverted [39] to obtain g1(r).

2.3.2. SEXP/FMSA

Now we turn to the SEXP/FMSA [32]. In this theory, the RDF of the SS fluid
is approximated by

g(r) = g0(r) exp

[

g1(r)

T ∗

]

, (24)

where g0(r) and g1(r) are those of the FMSA theory. This simplified exponential
approximation ensures the positive definite character of the RDF. Notice that the
expansion of the SEXP/FMSA (24) to first order in 1/T ∗ differs from the FMSA
(19b).
In the high-temperature limit T ∗ → ∞, g(r) → g0(r) both in the FMSA and

in the SEXP/FMSA, so that Eq. (2a) is verified. A less trivial consistency test
corresponds to the limit λ→ 1. In that case, taking into account the identity

s4(1 + s)

[R0(−s)]
2 =

3
∑

i=1

s30i
(s+ s0i) [R′

0(s0i)]
2

[

s0i(1− s0i)

s+ s0i
+ s0i(1− s0i)

R′′

0(s0i)

R′

0(s0i)
− 4 + 5s0i

]

,

(25)

6
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one finds that limλ→1G1(s) = 0, so that g(r) → g0(r) in that limit, in agreement
with Eq. (2b). As for conditions (3) and (4), Eqs. (22) and (23b) show that they
are satisfied by the SEXP/FMSA at finite T ∗, but not by the FMSA (except to
first order in 1/T ∗).
On the other hand, in the zero-temperature limit T ∗ → 0 both the FMSA (19b)

and the SEXP/FMSA (24) become singular and none of them complies with Eq.
(2c).

2.4. The rational-function approximation

We now outline the main steps of the RFA approach to the structural properties
of the SS fluid. For further details the reader is referred to Ref. [23].
In the RFA it is assumed that the auxiliary function F (s) in Eq. (6) takes the

following form

F (s) =
L(s)

R(s)
, (26)

where

L(s) =1 + 2η −K(0) + L(1)s+ e−(λ−1)
[

K(0) +K(1)s
]

, (27a)

R(s) =− 12η(1 + 2η) +R(1)s+R(2)s2 +R(3)s3. (27b)

Enforcement of Eq. (11b) allows one to express the coefficients L(1), R(1), R(2) and
R(3) as linear functions of K(0) and K(1):

L(1) =1 +
η

2
+ (λ− 1)

2 + η
(

λ3 + λ2 + λ+ 1
)

2(1 + 2η)
K(0) −

1 + 2λ3η

1 + 2η
K(1), (28a)

R(1) =6η2
[

3− (λ− 1)2
λ2 + 2λ+ 3

1 + 2η
K(0) +

4(λ3 − 1)

1 + 2η
K(1)

]

, (28b)

R(2) =6η

[

1− η − (λ− 1)2
1− η(λ+ 1)2

1 + 2η
K(0) + 2(λ− 1)

1 − 2ηλ(λ + 1)

1 + 2η
K(1)

]

,

(28c)

R(3) =(1− η)2 + η(λ− 1)2
4 + 2λ− η(3λ2 + 2λ+ 1)

1 + 2η
K(0)

− 6η(λ − 1)
λ+ 1− 2ηλ2

1 + 2η
K(1), (28d)

Next, application of condition (4) gives [23, 26, 27]

3
∑

i=1

1 + 2η −K(0) +K(1)si
R′(si)

sie
(λ−1)si =

K(1)

(

e1/T ∗ − 1
)

R(3)
, (29)

where {si, i = 1, 2, 3} are the three roots of the cubic equation R(s) = 0 and it has
been assumed that λ ≤ 2. To close the description, the coefficient K(0)/(1 + 2η) is
fixed at its exact zero-density limit value, namely [23]

K(0) = (1 + 2η)(1 − e−1/T ∗

). (30)

7
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Table 1. Summary showing which ones of the exact conditions (2)–(4) are

fulfilled by the FMSA, SEXP/FMSA and RFA approaches.

Approximation Eq. (2a) Eq. (2b) Eq. (2c) Eq. (3) Eq. (4)

FMSA Yes Yes No No No
SEXP/FMSA Yes Yes No Yes Yes

RFA Yes Yes Yes Yes Yes

1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
g(
r)

r/

 MC
 FMSA
 SEXP/FMSA
 RFA  

 

 

Figure 1. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.2,
T ∗ = 0.5 and η = 0.4 (ρσ3 = 0.764) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [12] (circles).

Therefore, Eq. (29) becomes a transcendental equation for K(1) that needs to be
solved numerically.
Once the coefficients L(1), R(1), R(2), R(3), K(0) and K(1) are determined as

functions of η, T ∗ and λ through Eqs. (28)–(30), G(s) becomes completely specified
in the RFA. The RDF g(r) in this case may again be obtained by numerically taking
the inverse Laplace transform [39] of the corresponding G(s) or, equivalently, from
the use of Eqs. (26)–(30), together with Eq. (13) [27].
It can be easily checked that the RFA is consistent with the exact conditions

(2)–(4) [23]. Table 1 summarises which ones of those conditions are fulfilled by the
FMSA, SEXP/FMSA and RFA approaches.

3. Comparison with simulation data

In order to assess the value of the three previous theoretical approximation for the
structural properties of SS fluids, in this section we carry out a comparison between
the results derived from them and those obtained from simulation [12, 19, 21].
Although we have made such a comparison with many other data, in Figs. 1–7 we
only show graphs of g(r) vs r for some representative cases.
Figure 1 displays the RDFs computed with the three theories and the corre-

sponding simulation data for a rather narrow shoulder (λ = 1.2) at relatively low
temperature (T ∗ = 0.5) and high density (η = 0.4 ⇒ λ3η = 0.6912). It is clear
that none of the theories provides a full quantitative agreement with simulation.
In particular, the contact value g(1+) is underestimated by all of them, with the
SEXP/FMSA giving the closest estimate. While g(λ−) is well accounted for in all
instances, in the case of g(λ+) both the RFA and the SEXP/FMSA do a reasonable
job but the FMSA heavily underestimates its value. This is obviously related to

8
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1.0 1.5 2.0 2.5 3.0

1.0

1.2

1.4

1.6
 MC
 FMSA
 SEXP/FMSA
 RFA

g(
r)

r/

 

 

Figure 2. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.3,
T ∗ = 5 and η = 0.2094 (ρσ3 = 0.4) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [21] (circles).

1.0 1.5 2.0 2.5 3.0
0

1

2

3

g(
r)

r/

 MC
 FMSA
 SEXP/FMSA
 RFA

 

 

Figure 3. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 0.5 and η = 0.2094 (ρσ3 = 0.4) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [19] (circles).

the failure of the FMSA to account for the exact relation (4). The location of the
maxima and minima of the subsequent oscillations seem to be well captured by all
approaches, the RFA exhibiting the poorest agreement with the actual values of
the function.
As a representative example of a wider shoulder, Fig. 2 presents the case λ = 1.3

at high temperature (T ∗ = 5) and medium density (η = 0.2094). In this case, the
three theories attain very good quantitative agreement, even for the contact value
g(1+) and the shoulder-edge values g(1+) and g(1+). At T ∗ = 5, e1/T

∗

= 1.221 ≃
1 + 1/T ∗ and thus condition (4) can be replaced by its linearized version, which
is satisfied by the FMSA. Although not shown, we have checked that the good
agreement observed in Fig. 2 stays rather reasonable as one increases the packing
fraction up to its double value, provided the values of T ∗ = 5 and λ = 1.3 are
maintained.
Next, in Figs. 3–7 we fix the standard value λ = 1.5 and analyze the influence

of density and, especially, temperature. When T ∗ = 0.5 and η = 0.2094 (see Fig.
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1.0 1.5 2.0 2.5 3.0
0

2

4

6

g(
r)

r/

 MC 
 FMSA
 SEXP/FMSA
 RFA

 

 

Figure 4. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 0.5 and η = 0.4 (ρσ3 = 0.764) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [12] (circles).

1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
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g(
r)

r/

 MC
 FMSA
 SEXP/FMSA
 RFA 

 

 

Figure 5. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 1 and η = 0.4 (ρσ3 = 0.764) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [12] (circles).

3), the situation is somewhat similar to the case in Fig. 1, with the contact value
being underestimated by all the theories but much less than in the denser system
considered in Fig. 1. This time, although the quantitative agreement seems not to
be bad for both the RFA and the SEXP/FMSA, none of the theories is completely
satisfactory. In this instance, it is the RFA the one that does the best job, while
the FMSA fails badly, especially in the prediction of both g(λ−) (that is even
negative) and g(λ+). As the density is increased to η = 0.4 (see Fig. 4), the region
between contact and r = λ− is poorly described by all theories. Further, the RFA
underestimates heavily g(1+), while both the FMSA and the SEXP/FMSA seem
to do a reasonable job for r > λ+.
Figure 5 corresponds to the same density as in Fig. 4, but the temperature has

been doubled. Now, as expected, the situation improves for the FMSA. Moreover,
the SEXP/FMSA does the best performance.
We keep increasing temperature to T ∗ = 2 in Figs. 6 (corresponding to η =
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Figure 6. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 2 and η = 0.2094 (ρσ3 = 0.4) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [21] (circles).
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Figure 7. Radial distribution function g(r) as a function of distance r for an SS fluid having λ = 1.5,
T ∗ = 2 and η = 0.4189 (ρσ3 = 0.8) as obtained from the FMSA (dashed line), the SEXP/FMSA (dotted
line), the RFA (solid line) and simulation data from Ref. [21] (circles).

0.2094) and 7 (corresponding to η = 0.4189). In the former case, the agreement
between theories and simulation is very good, with an almost equal performance
of the RFA and the SEXP/FMSA, which are both only slightly superior to the
FMSA. Comparison between Figs. 3 and 6 shows the significant improvement of
the FMSA as temperature increases from T ∗ = 0.5 to T ∗ = 2. Finally, Fig. 7 shows
that the trends observed in Fig. 6 still hold as one increases the packing fraction,
although now the predictions for the contact value somewhat worsen.
It is clear that the poorest performance of all the theoretical developments occurs

for relatively low reduced temperatures, as the cases with T ∗ = 0.5 (see Figs. 3
and 4) illustrate. For such temperatures the deficiencies show mostly around the
contact region but the theories become less reliable even beyond that region as the
packing fraction is increased. The influence of temperature at fixed values of λ and
η may be assessed by comparing Figs. 3 and 6. We note that, as the temperature
decreases, the contact value increases moderately and also g(r) for r & 2 becomes
more structured. The strongest influence of temperature occurs in the region r ≈ λ
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and, as expected on physical grounds, the discontinuity at r = λ becomes much
more pronounced as the temperature decreases.
Some insight into the effect of the shoulder width on the performance of the

theories may be gained by comparing the cases with T ∗ = 0.5 and η = 0.4 in
Figs. 1 (λ = 1.2) and 4 (λ = 1.5). One may observe that shrinking the shoulder
at fixed temperature and packing fraction makes the theories in general become
more reliable, even in a case where the low value of the reduced temperature is
less favorable for them. This is not surprising in view of the fact that the SS
model becomes closer and closer to the HS model as the shoulder width decreases,
as shown by Eq. (2b). In this HS limit all three theories reduce to Wertheim–
Thiele’s [33–35] exact solution of the OZ equation with the PY closure. Since
the HS potential is also reached from the SS one in the high-temperature limit
(T ∗ → ∞) [see Eq. (2b)], a better performance of all three approaches can be
expected to hold for sufficiently high temperatures. This is confirmed by Fig. 2 in
the case λ = 1.3, T ∗ = 5 and η = 0.2094. On the other hand, if the temperature
were so low that the situation described by Eq. (2c) were approached, the RFA is
expected to prevail over the FMSA and SEXP/FMSA.
Before closing this section, it is worth noting that the systems considered in

Figs. 1, 3 and 4 are the same as those considered in the sixth panel of Fig. 2, the
third panel of Fig. 3 and the sixth panel of Fig. 3, respectively, of Ref. [24]. On
the other hand, the curves corresponding to the SEXP/FMSA displayed in those
figures of Ref. [24] exhibit a higher discrepancy with respect to simulation data
than in our Figs. 1, 3 and 4. Although the reason for this difference between both
sets of results is not clear, we are persuaded that it might be due to a small flaw
in the implementation of the SEXP/FMSA in Ref. [24].

4. Concluding remarks

In this paper we have revisited three analytical procedures [23, 24, 29, 30, 32] to
obtain the structural properties of SS fluids and compared their predictions against
simulation results [12, 19, 21] in order to assess their merits and limitations. All
these approaches have in common the fact that they are analytical in Laplace
space and reduce in two independent limits [see Eqs. (2a) and (2b)] to the PY re-
sult for the HS fluid, although only the RFA does it in a third limit [see Eq. (2c)].
One should insist on the usefulness of having at hand analytical or semi-analytical
approximations for the equilibrium structural properties of simple fluids. In this
sense, the FMSA, the SEXP/FMSA and the RFA have once more proved their
importance and are simple enough to allow for immediate computations. In a way,
the results of the present paper are complementary to those of Refs. [23] and [24],
where a (partial) similar analysis was carried out. We have confirmed that the
theories lead to reasonably accurate results at any fluid packing fraction if the
shoulder is sufficiently narrow (say λ ≤ 1.2), as well as for any width if η is small
enough (η ≤ 0.4). However, as the width and/or the packing fraction increase, the
predictions worsen, especially at low temperatures and in the region between con-
tact and λ. In any case, from our analysis we can conclude the following. Being a
perturbation theory, as expected the FMSA works reasonably well at high temper-
atures, but worsens as the temperature is reduced, even yielding negative values
for g(λ−), especially when λ is increased. The RFA is a reasonable compromise
between accuracy and simplicity, but presents some limitations when either the
shoulder width or the packing fraction increase. Finally, we found that the best
overall performance was shown by the SEXP/FMSA and that it was even better
than what was reported in Ref. [24].
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(2010).
[22] M.N. Bannerman and L. Lue, J. Chem. Phys. 133, 124506 (2010).
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