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Following an idea by Joyner et al. [EPL, 107 (2014) 50004] a microwave graph with an antiunitary
symmetry T obeying T 2 = −1 has been realized. The Kramers doublets expected for such systems
have been clearly identified and could be lifted by a perturbation which breaks the antiunitary
symmetry. The observed spectral level spacings distribution of the Kramers doublets is in agreement
with the predictions from the Gaussian symplectic ensemble, expected for chaotic systems with such
a symmetry.
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Random matrix theory has proven to be an extremely
powerful tool to describe the spectra of chaotic systems
[1–4]. For systems with time-reversal symmetry (TRS)
and no half-integer spin in particular there is an abun-
dant number of studies, theoretical, numerical and exper-
imental, showing that the universal spectral properties
are perfectly well reproduced by the corresponding prop-
erties of the Gaussian orthogonal random matrix ensem-
ble (GOE) (see Ref. 5 for a review). This is the essence of
the famous conjecture by Bohigas, Giannoni and Schmit
[3], which has received strong theoretical support, see
e.g. Refs. 6–8. For systems with TRS and half-integer
spin and systems with no TRS the Gaussian symplec-
tic ensemble (GSE) and the Gaussian unitary ensemble
(GUE), respectively, hold instead. For the latter two
of the classical ensembles the experimental situation is
still very limited. There are three studies of the spec-
tra of systems with broken TRS showing GUE statistics
[9–11], all of them applying microwave techniques. For
the GSE there is no experimental realization at all up to
now. Only by using that a GSE spectrum is obtained
by taking only every second level of a GOE spectrum
[1], GSE statistics has been experimentally observed in a
microwave hyperbola billiard [12].

In fact GUE statistics may be observed even in sys-
tems without broken TRS if there is a suitable geomet-
rical symmetry. One example is the billiard with three-
fold rotational symmetry [13], with microwave realiza-
tions [14, 15]. Another example is the constant width
billiard [16], again with an experimental realization [17].

On the other hand, GOE statistics may be obtained
in billiards with a magnetic field if there is an additional
reflection symmetry [18]. This is because, even though
time-reversal symmetry is broken, there exists an antiu-
nitary symmetry that combines time-reversal with reflec-
tion. To be able to observe GSE statistics in a system
without spin requires a similar non-conventional symme-

try. What is needed according to Dyson’s threefold way
[19] is an antiunitary symmetry T with the property that
T 2 = −1. This is sufficient to guarantee GSE statistics if
the system is chaotic. In addition it leads to Kramer’s de-
generacy, i. e. application of T to an energy eigenfunction
yields an orthogonal eigenfunction with equal energy. A
system with such a symmetry was recently found in the
form of a quantum graph [20].

Quantum graphs were introduced by Kottos and Smi-
lansky [21] as an ideal tool to study various aspects of
quantum chaos. The wave function on a quantum graph
satisfies a one-dimensional Schrödinger equation on each
of the bonds with suitable matching conditions (imply-
ing current conservation) at the vertices. Just, as for
quantum billiards, there is a one-to-one mapping onto
the corresponding microwave graph. This analogy has
been used in a number of experiments including one on
graphs with and without broken TRS [11, 22, 23]

To realize graphs with GSE symmetry the graph shown
in Fig. 1(top) was proposed in [20]. It contains two geo-
metrically identical subgraphs, but with phase shifts by
+π/2 and −π/2, respectively, along two corresponding
bonds. The two subgraphs are connected by a pair of
bonds yielding a graph with a geometric inversion cen-
ter. In addition there is another phase shift of π along
one of the two bonds, but not the other one! This is the
crucial point: Due to this trick the total graph is symmet-
ric with respect to an antiunitary operator T , squaring
to minus one, T 2 = −1, where

Tψ(x1) = +ψ∗(x2),
Tψ(x2) = −ψ∗(x1),

(1)

i. e. if ψ satisfies the Schrödinger equation as well as the
vertex conditions then the same applies to Tψ. Here x1 is
a coordinate in subgraph 1, and x2 the corresponding co-
ordinate (related by inversion) in subgraph 2. Applying
(1) twice shows T 2 = −1.
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FIG. 1. (Color online) (Top) Sketch of the graph proposed
in Ref. 20 to study GSE statistics without spin. The four
arrows denote bonds along which additional phases are ac-
quired. (Bottom) Photograph of the graph used in the exper-
iment.

Since this fact is essential for the following, a com-
plementary approach shall be given establishing a direct
correspondence between the experiment and a spin 1/2
system. The wave function in a quantum graph is subject
to two constraints, continuity at the vertices and current
conservation. In a microwave graph these constraints
correspond to the well-known Kirchhoff rules governing
electric circuits. They lead to a secular equation system
having a solution only if the determinant of the corre-
sponding matrix vanishes,

det[h(k)] = 0 (2)

where the matrix elements of h(k) are given by

hij(k) =

{ −
∑
n 6=i

Cin cot(klin) i = j

Cije
−ıϕij [sin(klij)]

−1
i 6= j

(3)

where Cij = 1, if nodes i and j are connected, and Cij =
0 otherwise. lij is the length of the bond connecting

nodes i and j. ϕij is a phase resulting, e. g., from a
vector potential and breaks TRS if present. The equation
holds for Neumann boundary conditions at all nodes, the
situation found in the experiment. Details can be found
in [24]. The solutions of the determinant condition (2)
generate the spectrum of the graph.

Applied to the graph of Fig. 1 the secular matrix h(k)
may be written as

h = hdis + v (4)

where hdis is the secular matrix for the disconnected sub-
graphs, and v describes the connecting bonds. It is con-
venient to introduce an order of rows and columns ac-
cording to {1, 2, . . . , n; 1̄, 2̄, . . . , n̄}, where the numbers
without bar refer to the vertices of subgraph 1, and the
numbers with bar to those of subgraph 2. hdis may then
be written as

hdis =

(
h0 ·
· h∗0

)
(5)

where h0 and h∗0 are the secular matrices for each of the
two subgraphs, respectively. Since the only difference
between the subgraphs is the sign of the π/2 phase shift in
one of the bonds, their secular matrices are just complex
conjugates of each other, see Eq. (3). Assuming for the
sake of simplicity that there is just one pair of bonds
connecting node 1 with node 2̄, and node 1̄ with node 2,
the matrix elements of v are given by

v11 = v22 = v1̄1̄ = v2̄2̄ = − cot(kl) (6)

v12̄ = v2̄1 = −v21̄ = −v1̄2 = [sin(kl)]
−1

(7)

vij = vīj̄ = vij̄ = vīj = 0 otherwise (8)

where l is the length of the bond connecting 1 with 2̄ and
1̄ with 2. The generalization to a larger number of bond
pairs is straightforward.

Changing now the sequence of rows and columns to
{1, 1̄; 2, 2̄; . . . ;n, n̄}, the resulting 2n × 2n matrix h̃(k)
may be written in terms of a n×n matrix with quaternion
matrix elements,

[h̃(k)]nm = [Re(h0)nm + vnm]1− Im(h0)nmτz − vnm̄τy
(9)

where

1 =

(
1 ·
· 1

)
, τz =

(
−ı ·
· ı

)
, τy =

(
· −1
1 ·

)
(10)

The determinant is not changed by this rearrangement
of rows and columns, det[h(k)] = det[h̃(k)]. The matrix
elements [h̃(k)]nm commute with Cτy, where C denotes
the complex conjugate, and hence the whole matrix com-
mutes with T = diag(Cτy . . . , Cτy), where T squares to
minus one, T 2 = −1. This is exactly the situation found
for spin 1/2 systems, and just as in such systems a two-
fold Kramers degenerate spectrum is expected showing
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the signatures of the GSE provided the system is chaotic,
see e. g. Chapter 2 of Ref. 4.

The requirements defined by Joyner et al. [20] to re-
alize graphs with GSE symmetry pose some challenges.
Since we did not know of a simple way to achieve phase
shifts of ±π/2 along the bonds, we proceeded in a some-
what different way and instead built two geometrically
identically subgraphs, but with two circulators of op-
posite sense of rotation within the two subgraphs. A
circulator is a microwave device introducing directional-
ity: Microwaves pass from port 1 to port 2, from port
2 to port 3, and from port 3 to port 1. The result is
the same as with the ±π/2 shifts: the circulators break
TRS, resulting in identical GUE spectra for the two dis-
connected subgraphs, but with an opposite sense of prop-
agation within the respective subgraphs. Again the two
subgraphs may thus be described in terms of a secular
matrix h0 and its complex conjugate h∗0, respectively.

The phase difference between the two connecting bonds
is adjustable by means of mechanical phase shifters which
in reality, however, do not change the phase but the
length. This approach has the obvious shortcoming that
for a given length change ∆l the phase shift ∆ϕ depends
on frequency ν:

∆ϕ = k∆l =
2πν

c
∆l (11)

where k is the wave number, and c is the vacuum velocity
of light. l = nl0 is the optical length where l0 is the
geometrical length and n = 1.43 the index of refraction
of the dielectric within the coaxial cables.

Figure 1(b) shows a photograph of the graph used in
the experiment. The bonds of the graphs were formed
by Huber & Suhner EZ-141 coaxial semi-rigid cables
with SMA connectors, coupled by T junctions at the
vertices. The phase shifters (ATM, P1507) had been
equipped with motors to allow for an automatic step-
ping. Reflection and transmission measurements were
performed with an Agilent 8720ES vector network ana-
lyzer (VNA) with two ports at equivalent positions of
the two subgraphs. The corresponding reflection and
transmission amplitudes will be denoted in the following
by Sij , i, j = 1, 2. The operating range of the circula-
tors (Aerotex I70-1FFF) extended from 6 GHz to 12 GHz.
Therefore the evaluation of the spectra was restricted to
this window.

We started by taking a series of spectra for constant
∆l. Figure 2(top) shows the transmission for altogether
396 ∆l values stacked onto each other between ∆lmin ≈ 0
and ∆lmax = 4.4 cm in a gray scale. The lines for ∆ϕ = π
and ∆ϕ = 3π are marked in red and green, respectively.
Next, a variable transformation from ∆l to ∆ϕ was per-
formed, using Eq. (11), to obtain reflection spectra S11

for constant ∆ϕ. The result is shown in Fig. 2(bottom).
For a given frequency ν the maximum ∆ϕ accessible is,
according to Eq. (11), given by ∆ϕmax = (2π∆lmax/c)ν.

FIG. 2. (Color online) (Top) Transmission |S12|2 in de-
pendence of frequency for constant ∆l in a gray scale. The
spectra for different ∆l are stacked onto each other. (Bottom)
The same data, but rearranged to yield spectra for constant
∆ϕ.

FIG. 3. Reflection |S11|2 in dependence of frequency in a
shade plot. The spectra for different ∆ϕ are stacked onto
each other.

The inaccessible regime above this limit is left white in
Fig. 2(bottom). As expected the pattern is periodic in
∆ϕ with period 2π. Moreover, dark regions concentrate
at the π and 3π lines, corresponding to low transmis-
sion, whereas in between for ∆ϕ = 0 and ∆ϕ = 2π light
regions are found. This is an interference effect: Trans-
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FIG. 4. (Color online) Spectral nearest neighbor distance
distribution obtained by superimposing the results from four
different spectra. The solid red and dotted green lines cor-
respond to GSE and GUE Wigner distributions, respectively,
see Eqs. (12) and (13).

mission paths always occur in pairs, both of them of the
same length, but one of them passing through the bond
with the phase shift, the other one through the other
bond.

Figure 3 shows the reflection spectra for different ∆ϕ,
again stacked onto each other in a shade plot. One clearly
observes the formation of Kramers doublets at the π line,
and their splitting into singlets when departing from this
line. There is a complete equivalence to the Zeeman split-
ting of spin doublets, where ∆ϕ takes the role of the
magnetic field. This is a clear confirmation that we had
been successful in constructing a graph with anti-unitary
symmetry T with T 2 = −1. Furthermore there is a clear
tendency of the levels towards an equal level spacings at
the π line, one of the fingerprints for a GSE spectrum.

To obtain the complete spectrum, we did not use the
reflection spectrum but its phase derivative. The phase
of the reflection shows steps for each resonance leading to
sharp peaks in the phase derivative. This allowed for an
automatic determination of about 90 % of the eigenval-
ues. With the additional information from the spectral
level dynamics, see Fig. 3, the missing ones could be eas-
ily identified. About 10 % of the Kramers doublets split
due to experimental imperfections. Whenever this was
evident from the level dynamics, the resulting two reso-
nances were replaced by a single one in the middle.

The integrated density of states, with ν as the vari-
able, may be written as n(ν) = nWeyl(ν) +nfluc(ν) where
the average part is given by Weyl’s law, nWeyl(ν) =
(π/L)(2πν/c) with L denoting the sum of all bond

lengths. The fluctuating part nfluc(ν) reflects the influ-
ence of the periodic orbits [24]. We determined nfluc(ν)
by fitting a straight line to the experimental integrated
density of states and subtracting the linear part. A small
number of missing or misidentified resonances showing up
in step-wise changes of nfluc(ν) enabled the final correc-
tion of the spectrum. From the fit a length of L = 2.93 m
was obtained. The fluctuating part nfluc(ν) showed only
the fluctuations typical for periodic orbits, thus illustrat-
ing the correctness of the procedure.

Figure 4 shows the resulting distribution of spacings
between neighboring levels in units of the mean level
spacing. To improve the statistics, the results from 4 dif-
ferent graphs were superimposed, leading to 477 Kramers
doublets. The red solid and the green dotted line corre-
spond to the Wigner prediction for the GSE,

pGSE(s) =
218

36π3
s4 exp

(
− 64

9π
s2

)
(12)

and the GUE,

pGUE(s) =
32

π2
s2 exp

(
− 4

π
s2

)
(13)

respectively. The experimental result fits well to the GSE
distribution and, though the statistical evidence as yet is
only moderate, it is clearly at odds with a GUE distri-
bution.

It needed half a century after the establishment of ran-
dom matrix theory by Wigner, Dyson, Mehta and others
to arrive at the present experimental realization of the
third of the three classical random matrix ensembles. It
might be considered surprising that two bonds between
the two subgraphs are already sufficient to turn the two
GUE spectra of the disconnected subgraphs into a GSE
spectrum for the total graph. On the other hand the
present statistical evidence is not yet sufficient to deter-
mine whether more connecting bonds are needed in or-
der to reduce the minor differences in the level spacing
statistics. Further studies are thus required. The de-
pendence of the level dynamics on ∆ϕ offers a promising
research direction, due to the interesting feature that all
three classical ensembles are present, namely the GSE
for ∆ϕ = π, the GOE for ∆ϕ = 0, and the GUE in
between. However, the most promising future aspect is
undoubtedly that the whole spin 1/2 physics [25] is now
accessible to microwave analogue studies.

This work was funded by the Deutsche Forschungsge-
meinschaft via the individual grants STO 157/16-1 and
KU 1525/3-1.
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